Subdivided Module Catalogue
for the Module studies (Master)

Nanostructure Technology

Examination regulations version: 2019
Responsible: Faculty of Physics and Astronomy
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

15-May-2019 (2019-36)
27-Jun-2019 (2019-41)
14-Nov-2019 (2019-52)
22-Jan-2020 (2020-13)
06-May-2019 (2020-39)
22-Jul-2020 (2020-57)
17-Dec-2020 (2020-110)
10-Mar-2021 (2021-17)
This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Term 2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXN5-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>11-EXN6-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>11-EXN7-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>11-EXN8-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-EXN6A-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-EXP5-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>11-EXP7-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>11-EXP8-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>11-CSNM-161-m01</td>
<td>Advanced Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>11-CSPM-161-m01</td>
<td>Advanced Topics in Physics</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>Winter Term 2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXN5-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>11-EXN6-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>11-EXN7-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-EXN8-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>11-EXN6A-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>11-EXP5-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>11-EXP7-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>11-EXP8-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>11-CSNM-161-m01</td>
<td>Advanced Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>11-CSPM-161-m01</td>
<td>Advanced Topics in Physics</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>Summer Term 2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXN5-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>11-EXN6-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>11-EXN7-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-EXN8-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>11-EXN6A-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>11-EXP5-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>11-EXP7-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>11-EXP8-161-m01</td>
<td>Current Topics in Physik</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>11-CSNM-161-m01</td>
<td>Advanced Topics in Nanostructure Technology</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>11-CSPM-161-m01</td>
<td>Advanced Topics in Physics</td>
<td>NUM</td>
<td>18</td>
</tr>
</tbody>
</table>
Winter Term 2020

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
<th>Lecture Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-EXN5-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>11-EXN6-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>11-EXN7-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>7</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-EXN8-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>11-EXN6A-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>11-EXP5-161-m01</td>
<td>Current Topics in Physik</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>11-EXP7-161-m01</td>
<td>Current Topics in Physik</td>
<td>7</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>11-EXP8-161-m01</td>
<td>Current Topics in Physik</td>
<td>8</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>6</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>11-CSNM-161-m01</td>
<td>Advanced Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>11-CSPM-161-m01</td>
<td>Advanced Topics in Physics</td>
<td>6</td>
<td>NUM</td>
<td>18</td>
</tr>
</tbody>
</table>

Summer Term 2021

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
<th>Lecture Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-EXN5-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>11-EXN6-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>11-EXN7-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>7</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-EXN8-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>11-EXN6A-161-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>11-EXP5-161-m01</td>
<td>Current Topics in Physik</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>11-EXP7-161-m01</td>
<td>Current Topics in Physik</td>
<td>7</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>11-EXP8-161-m01</td>
<td>Current Topics in Physik</td>
<td>8</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>6</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>11-CSNM-161-m01</td>
<td>Advanced Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>11-CSPM-161-m01</td>
<td>Advanced Topics in Physics</td>
<td>6</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Topics in Nanostructure Technology</td>
<td>11-EXN5-161-m01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
- If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
- Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Current Topics in Nanostructure Technology | 11-EXN6-161-m01

Module coordinator	Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | Approval from examination committee required.

Contents

Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Current Topics in Nanostructure Technology | 11-EXN7-161-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
</table>
| 7 | numerical grade | Approval from examination committee required.

Duration	Module level
1 semester | graduate |

Contents
Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	**Abbreviation**
Current Topics in Nanostructure Technology | 11-EXN8-161-m01

Module coordinator
Chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
8 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | Approval from examination committee required.

Contents
Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Current Topics in Nanostructure Technology

Abbreviation
11-EXN6A-161-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
Approval from examination committee required.

Contents
Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses
(type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physik</td>
<td>11-EXP6-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination</td>
<td>Faculty of Physics and Astronommy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Current Topics in Physik

Abbreviation
Module offered by
11-EXP6A-161-m01
Faculty of Physics and Astronomy

Module coordinator
chairperson of examination committee

ECTS
Method of grading
Only after succ. compl. of module(s)
6
numerical grade
--

Duration
Module level
Other prerequisites
1 semester
graduate
Approval from examination committee required.

Contents
Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physik</td>
<td>11-EXP5-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Current Topics in Physik

Abbreviation

11-EXP7-161-m01

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

Method of grading

Only after succ. compl. of module(s)

7

Numerical grade

Duration

Module level

Other prerequisites

1 semester

Graduate

Approval from examination committee required.

Contents

Current topics of Experimental and Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physik</td>
<td>11-EXP8-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental and Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Advanced Topics in Solid State Physics

| Abbreviation | 11-CSFM-161-m01 |

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Approval from examination committee required.

Contents

This module will enable the lecturers of Condensed Matter Physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes

The students advance their knowledge and understanding of an advanced topic of Condensed Matter Physics and acquire insights into the connections between research and teaching.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Advanced Topics in Nanostructure Technology | 11-CSNM-161-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Approval from examination committee required.

Contents
This module allows lecturers of the nanotechnology study programme to give lectures on advanced topics that cannot be covered by any other module. These lectures may either reflect new developments in research or deal with topics that are not included in the regular teaching cycle.

Intended learning outcomes
The students advance their knowledge and understanding of an advanced topic of nanostructure technology and acquire insights into the connections between research and teaching.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Advanced Topics in Physics

Abbreviation

11-CSPM-161-m01

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

Approval from examination committee required.

Contents

This module will enable lecturers of Physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes

The students advance their knowledge and understanding of an advanced topic of nanostructure technology and acquire insights into the connections between research and teaching.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--