Subdivided Module Catalogue
for the Subject
Chemistry
as Unterrichtsfach
with the degree "Erste Staatsprüfung für das Lehramt an
Hauptschulen"

Examination regulations version: 2009
Responsible: Faculty of Chemistry and Pharmacy
Abbreviations used

Course types: \(E\) = field trip, \(K\) = colloquium, \(O\) = conversatorium, \(P\) = placement/lab course, \(R\) = project, \(S\) = seminar, \(T\) = tutorial, \(Ü\) = exercise, \(V\) = lecture

Term: \(SS\) = summer semester, \(WS\) = winter semester

Methods of grading: \(NUM\) = numerical grade, \(B/NB\) = (not) successfully completed

Regulations: \((L)ASPO\) = general academic and examination regulations (for teaching-degree programmes), \(FSB\) = subject-specific provisions, \(SFB\) = list of modules

Other: \(A\) = thesis, \(LV\) = course(s), \(PL\) = assessment(s), \(TN\) = participants, \(VL\) = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

\(LASPO2009\)

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

\(11-Jan-2012\ (2011-103)\)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Discipline (54 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory Courses (54 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-PC-GHR-102-m01</td>
<td>Physical Chemistry (teaching degree for secondary schools)</td>
<td>4</td>
<td>NUM</td>
<td>22</td>
</tr>
<tr>
<td>08-OC-Prakt-GHR-092-m01</td>
<td>Organic Chemistry - laboratory course (teaching degree for secondary schools)</td>
<td>5</td>
<td>B/NB</td>
<td>24</td>
</tr>
<tr>
<td>08-PC-VKM-LA-102-m01</td>
<td>Basic Mathematics (teaching degree)</td>
<td>2</td>
<td>B/NB</td>
<td>33</td>
</tr>
<tr>
<td>08-Ch-GH-ÜIV-092-m01</td>
<td>Exercises in Experimental Presentation</td>
<td>6</td>
<td>B/NB</td>
<td>31</td>
</tr>
<tr>
<td>08-OC1-GHR-092-m01</td>
<td>Organic Chemistry 1 (teaching degree for secondary schools)</td>
<td>6</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>08-OC2-GHR-092-m01</td>
<td>Organic Chemistry 2 (teaching degree for secondary schools)</td>
<td>7</td>
<td>NUM</td>
<td>19</td>
</tr>
<tr>
<td>08-BC-GHR-092-m01</td>
<td>Biochemistry (teaching degree for secondary schools)</td>
<td>4</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>08-AC1-LA-102-m01</td>
<td>Inorganic Chemistry 1 (teaching degree)</td>
<td>20</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>Teaching (12 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-FD-ExUnt-092-m01</td>
<td>Experiments in Chemical Education</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>08-FD-Ch-BM-092-m01</td>
<td>Chemistry Education: Educational Theory and Models of Teaching Concepts</td>
<td>4</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>08-FD-Schu-Ums-092-m01</td>
<td>Concepts of Teaching Chemistry</td>
<td>3</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>Extra Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching degree students must take modules worth a total of 15 ECTS credits in the area Freier Bereich (general as well as subject-specific electives) (Section 9 LASPO (general academic and examination regulations for teaching-degree programmes)). To achieve the required number of ECTS credits, students may take any modules from the areas below. Freier Bereich -- interdisciplinary: The interdisciplinary additional offer for a teaching degree can be found in the respective Annex "Ergänzende Bestimmungen für den "Freien Bereich" im Rahmen des Studiums für ein Lehramt".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject-specific Extra Skills (Freier Bereich (general as well as subject-specific electives) -- subject specific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03-TR-072-m01</td>
<td>Toxicology and legal studies</td>
<td>3</td>
<td>NUM</td>
<td>30</td>
</tr>
<tr>
<td>08-PC4-092-m01</td>
<td>Physical Chemistry 4: Statistical Thermodynamics</td>
<td>3</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>08-PC3-092-m01</td>
<td>Physical and Theoretical Chemistry 3: Symmetry and Quantum Chemistry</td>
<td>6</td>
<td>NUM</td>
<td>23</td>
</tr>
<tr>
<td>08-OC-Spec-LAGY-092-m01</td>
<td>Practical spectroscopy 1 (teaching degree for secondary schools)</td>
<td>3</td>
<td>NUM</td>
<td>25</td>
</tr>
<tr>
<td>08-AC2-PS-LA-102-m01</td>
<td>Practical spectroscopy 2 (teaching degree for secondary schools)</td>
<td>3</td>
<td>NUM</td>
<td>26</td>
</tr>
<tr>
<td>08-AC2-LAGY-102-m01</td>
<td>Inorganic Chemistry of the Elements (teaching degree for secondary schools)</td>
<td>3</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>08-AC3-LA-102-m01</td>
<td>Elemental Organic Chemistry (teaching degree for secondary schools)</td>
<td>4</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>08-FBC2-PV-101-m01</td>
<td>Preparation of Exams Chemistry</td>
<td>5</td>
<td>B/NB</td>
<td>27</td>
</tr>
<tr>
<td>08-OC4-LAGY-102-m01</td>
<td>Organic Chemistry 4 - advanced course</td>
<td>5</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>08-FD-WPF-WA-092-m01</td>
<td>Guidance in Self-reliant Scientific Work</td>
<td>2</td>
<td>B/NB</td>
<td>5</td>
</tr>
<tr>
<td>08-FD-WPF-PVGS-HS-092-m01</td>
<td>Preparation of Exams (Primary and Secondary Public Scholl Teachers)</td>
<td>2</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>08-FD-WPF-LLL-092-m01</td>
<td>Extracurricular Sites</td>
<td>4</td>
<td>B/NB</td>
<td>9</td>
</tr>
</tbody>
</table>
Thesis (10 ECTS credits)

Preparation of a written Hausarbeit (thesis) in accordance with the provisions of Section 29 LPO I (examination regulations for teaching-degree programmes) is a prerequisite for teaching degree students to be admitted to the Erste Staatsprüfung (First State Examination). In accordance with the provisions of Section 29 LPO I, students studying for a teaching degree Hauptschule may write this thesis in the subject Didaktik einer Fächergruppe der Hauptschule (Didactics of a Group of Subjects of Hauptschule), in the subject they selected as Unterrichtsfach (subject studied with a focus on the scientific discipline) or in the subject Erziehungswissenschaften (Educational Science). Pursuant to Section 29 Subsection 1 Sentence 2 LPO I, students may also choose to write an interdisciplinary thesis.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS Credits</th>
<th>Num</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-PC-ESS-092-m01</td>
<td>Electronic structure and spectroscopy</td>
<td>3</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>08-TC-LA-092-m01</td>
<td>Theoretical Models in Chemistry (teaching degree for secondary schools)</td>
<td>3</td>
<td>NUM</td>
<td>29</td>
</tr>
<tr>
<td>08-OC3-LA-102-m01</td>
<td>Organic Chemistry 3 (teaching degree for secondary schools)</td>
<td>6</td>
<td>NUM</td>
<td>20</td>
</tr>
<tr>
<td>08-Ch-HA-UF-HS-092-m01</td>
<td>Admission work (Chemistry for Secondary School Teachers)</td>
<td>10</td>
<td>NUM</td>
<td>28</td>
</tr>
</tbody>
</table>
Module title | **Abbreviation**
--- | ---
Guidance in Self-reliant Scientific Work | 08-FD-WPF-WA-092-m01

Module coordinator	**Module offered by**
holder of the Professorship of Didactics of Chemistry | Institute of Inorganic Chemistry

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
2 | (not) successfully completed | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --

Contents

This module will teach students how to independently research and write on selected topics in chemistry didactics.

Intended learning outcomes

Students are able to independently research and write on selected topics in chemistry didactics. They are able to provide an account of the current state of research as well as to develop ideas to advance the discipline.

Courses

(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation (approx. 30 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

Module title: Inorganic Chemistry 1 (teaching degree)

Abbreviation: 08-AC1-LA-102-m01

Module coordinator: lecturer of lecture "Experimentalchemie" (Experimental Chemistry)

Module offered by: Institute of Inorganic Chemistry

ECTS: 20

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents:

This module provides students with an overview of the fundamental principles of chemistry. It focuses on particles, metals, acid-base reactions, the periodic table, chemical equilibrium and complexometry. In addition, the module introduces fundamental models of chemistry and principles of inorganic chemistry. It includes practical exercises based on the lecture on experimental chemistry and its extension. After a safety briefing, the students autonomously conduct experiments in the laboratory. The course focuses on laboratory safety, simple lab techniques, the synthesis of simple substances and analyses of unknown substances. In addition, students have the opportunity to advance their laboratory knowledge.

Intended learning outcomes:

Students are able to explain the principles of the periodic table and to extract information from it. They are able to explain basic models of the structure of matter. They have developed the ability to use the language of chemical formulas to describe chemical reactions and to interpret them by identifying the type of reaction. Students are able to describe the main quantitative and qualitative analytical methods and their application areas. They are able to identify fundamental problems in chemistry and perform experiments to solve them. They have developed the ability to perform the necessary stoichiometric calculations and describe the chemical processes in an appropriate manner, both in written and oral form.

Courses:

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 08-AC1-1-102: V + V + Ü (no information on SWS (weekly contact hours) and course language available)
- 08-AC1-LA-2-102: P (no information on SWS (weekly contact hours) and course language available)
- 08-AC1-LA-3-102: V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-AC1-1-102: Principles of Inorganic Chemistry

- 10 ECTS, Method of grading: numerical grade
- a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German or English
- Other prerequisites: Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Assessment in module component 08-AC1-LA-2-102: Inorganic and Analytical Chemistry (lab) (teaching degree)

- 7 ECTS, Method of grading: (not) successfully completed
- pre/post-experiment examination talks (Vor-/Nachtestate, approx. 15 minutes each), log (approx. 5 to 10 pages)
- Assessment offered: once a year, summer semester
- Language of assessment: German or English

Assessment in module component 08-AC1-LA-3-102: Inorganic Chemistry 1 (accompanying lecture) (teaching degree)

- 3 ECTS, Method of grading: numerical grade
- a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German or English

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 42 (1) 1. Chemie "Allgemeine und Anorganische Chemie" und "Physikalische und Analytische Chemie"</td>
</tr>
<tr>
<td>§ 62 (1) 1. Chemie "Allgemeine und Anorganische Chemie"; "Physikalische und Analytische Chemie"</td>
</tr>
</tbody>
</table>
Module title
Inorganic Chemistry of the Elements (teaching degree for secondary schools)

Abbreviation
08-AC2-LAGY-102-m01

Module coordinator
lecturer of lecture "Festkörperchemie" (Solid State Chemistry)

Module offered by
Institute of Inorganic Chemistry

ECTS
3

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module equips students with an advanced knowledge of metals, alloys and saline compounds. It focuses on their structures and properties, special material classes, reactivity and technical processes.

Intended learning outcomes
Students are able to describe the structure and properties of metals, alloys and saline compounds in an appropriate manner. They are able to systemise them and characterise their structure and reactivity.

Courses (type, number of weekly contact hours, language — if other than German)
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
§ 62 (1) 1. Chemie "Allgemeine und Anorganische Chemie"; "Physikalische und Analytische Chemie"
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracurricular Sites</td>
<td>08-FD-WPF-LLL-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Didactics of Chemistry</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses the opportunities and limitations of out-of-classroom learning in chemistry.

Intended learning outcomes

Students are able to plan chemistry lessons that include out-of-classroom learning activities and, in particular, activities in school labs that support their teaching goals. They are able to put those plans into practice and guide pupils as they perform experiments.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 08-FD-WPF-LLL-1-092: S (no information on SWS (weekly contact hours) and course language available)
- 08-FD-WPF-LLL-2-092: P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-FD-WPF-LLL-1-092: Opportunities of Extracurricular Sites

- 2 ECTS, Method of grading: (not) successfully completed
- presentation of a project (approx. 30 minutes)
- Language of assessment: German or English

Assessment in module component 08-FD-WPF-LLL-2-092: School Lab

- 2 ECTS, Method of grading: (not) successfully completed
- successful supervision of experiments in learn-teach-lab
- Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Biochemistry (teaching degree for secondary schools)
Abbreviation: 08-BC-GHR-092-m01

Module coordinator: holder of the Chair of Biochemistry
Module offered by: Chair of Biochemistry

ECTS: 4

Method of grading: numerical grade

Duration: 1 semester
Module level: undergraduate

Other prerequisites: Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
The module imparts the basic knowledge of biochemistry by lectures and in-depth tutorials.

Intended learning outcomes
Students have become familiar with the fundamental principles of biochemistry. They are able to describe the key biochemical processes in cellular systems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 42 (1) 2. Chemie "Organische und Bioorganische Chemie"
Module title
Electronic structure and spectroscopy

Abbreviation
o8-PC-ESS-092-m01

Module coordinator
lecturer of lecture "Elektronische Struktur and Spektroskopie" (Electronic Structure and Spectroscopy)

Module offered by
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

ECTS
3

Method of grading
Only after succ. compl. of module(s)

Module coordinator
lecturer of lecture "Elektronische Struktur and Spektroskopie" (Electronic Structure and Spectroscopy)

Module offered by
Institute of Physical and Theoretical Chemistry

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
Fundamentals of atomic and molecular structure as well as spectroscopy.

Intended learning outcomes
Students have learned the fundamentals of atomic and molecular structure as well as spectroscopy and are able to apply the knowledge they have developed.

Courses
(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Elemental Organic Chemistry (teaching degree for secondary schools)

Abbreviation
08-AC3-LA-102-m01

Module coordinator
Lecturer of lecture "Elementorganische Chemie" (Elemental Organic Chemistry)

Module offered by
Institute of Inorganic Chemistry

ECTS
4

Method of grading
Numerical grade

Only after succ. compl. of module(s)
08-AC1 (module component 08-AC1-4 only) and 08-OC3 (module component 08-OC3-2 only)

Duration
1 semester

Module level
Undergraduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module equips students with an advanced knowledge of organometallics. It focuses on their structures and properties, special material classes, reactivity and technical processes.

Intended learning outcomes
Students are able to describe the structure and properties of organometallics in an appropriate manner. They are able to systemise them and characterise their structure and reactivity. In addition, they are able to develop and explain principles for the synthesis of elementary organic compounds.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or (b) oral examination of one candidate each (approx. 20 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Experiments in Chemical Education

Abbreviation
08-FD-ExUnt-092-m01

Module coordinator
holder of the Professorship of Didactics of Chemistry

Module offered by
Institute of Inorganic Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module equips students with experimental skills and teaches them how to incorporate experiments into their lessons.

Intended learning outcomes
Students have learned some essential experiments for the chemistry classroom in Grundschule and Hauptschule schools and have developed the ability to safely perform them. They have developed the ability to design their own experiments, tailor them to their teaching goals and to incorporate them into their lessons.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **08-FD-ExUnt-1-092:** Ü (no information on SWS (weekly contact hours) and course language available)
- **08-FD-ExUnt-2-092:** S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

- **Assessment in module component 08-FD-ExUnt-1-092:** Experiments in Chemical Teaching at Primary and Secondary Public Schools
 - 4 ECTS, Method of grading: numerical grade
 - presentation with demonstration (approx. 30 minutes)
 - Language of assessment: German or English

- **Assessment in module component 08-FD-ExUnt-2-092:** Planning of Teaching Units
 - 1 ECTS, Method of grading: numerical grade
 - presentation (approx. 20 minutes)
 - Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 36 (1) 7. Didaktik der Grundschule Chemie
- § 38 (1) 1. Didaktik der Hauptschule Chemie
- § 38 (1) 1. Didaktik der Mittelschule Chemie
- § 42 Chemie Fachdidaktik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts of Teaching Chemistry</td>
<td>08-FD-SchulUms-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Didactics of Chemistry</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Topics covered in the chemistry curricula for Grundschule and Hauptschule schools and ways to teach them.

Intended learning outcomes

Students have become familiar with the contents, objectives and framework conditions of chemistry lessons. They have developed the ability to plan and teach lessons in the Grundschule or Hauptschule chemistry classroom on the basis of the relevant curricula.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Testat (exam, approx. 20 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

§ 36 (1) 7. Didaktik der Grundschule Chemie

§ 38 (1) 1. Didaktik der Hauptschule Chemie

§ 38 (1) 1. Didaktik der Mittelschule Chemie

§ 42 Chemie Fachdidaktik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Preparation of Exams (Primary and Secondary Public School Teachers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>08-FD-WPF-PVGS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Didactics of Chemistry</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Students will solve selected questions that were asked in the state examination in previous years.

Intended learning outcomes

The student is able to solve selected state examination issues of the previous years.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Chemistry Education: Educational Theory and Models of Teaching Concepts | 08-FD-Ch-BM-092-m01

Module coordinator | Module offered by
holder of the Professorship of Didactics of Chemistry | Institute of Inorganic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
</table>
| 4 | numerical grade | Only after succ. compl. of module(s)

Contents

This module introduces students to the fundamentals of chemistry didactics.

Intended learning outcomes

Students have become familiar with theories and models for teaching chemistry as well as with the objectives and framework conditions of chemistry lessons.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 08-FD-Einf-1-092: V (no information on SWS (weekly contact hours) and course language available)
- 08-FD-Ch-BM-2-092: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-FD-Einf-1-092: Introduction in Chemistry Education

- 3 ECTS, Method of grading: numerical grade
- written examination (approx. 90 minutes)
- Language of assessment: German or English

Assessment in module component 08-FD-Ch-BM-2-092: Introduction in Chemistry Education (accompanying seminar)

- 1 ECTS, Method of grading: (not) successfully completed
- presentation (approx. 20 minutes)
- Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 36 (1) 7. Didaktik der Grundschule Chemie
§ 38 (1) 1. Didaktik der Hauptschule Chemie
§ 38 (1) 1. Didaktik der Mittelschule Chemie
§ 42 Chemie Fachdidaktik
§ 62 (1) 6. Chemie Didaktik
Module title	Organic Chemistry 4 - advanced course
Abbreviation | 08-OC4-LAGY-102-m01

Module coordinator
holder of the Chair of Organic Chemistry II

Module offered by
Institute of Organic Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | 08-OC1 or 08-OC1-GHR

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module discusses biologically important bonding classes, their reactions and syntheses, working with special hazardous substances, complicated working and synthesis techniques, purification methods and product analysis.

Intended learning outcomes
Students are able to name important heteroaromatics and to formulate their reactions and syntheses. They are able to characterise and categorise dyes. Students are able to describe the structure and selective synthesis of proteins. In addition, they are able to describe the structure of the DNA, carbohydrates, fats, terpenes and steroids.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 62 (i) 2. Chemie "Organische und Bioorganische Chemie"
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry 1 (teaching degree for secondary schools)</td>
<td>08-OC1-GHR-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Organic Chemistry</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

This module provides students with an overview of the fundamental principles of organic chemistry. It examines the bonding situation of carbon and introduces students to the nomenclature of simple and moderately complex organic compounds. The module also discusses the fundamental principles of stereochemistry, substitution, addition and elimination reactions as well as synthesis planning.

Intended learning outcomes

Students know important categories of substances in organic chemistry. They are able to use different systems of nomenclature to determine simple substance names. Students are able to analyse the stereochemistry of molecules. They are able to describe and formulate some of the most important reactions in organic chemistry. For that purpose, they can analyse and categorise the characteristic reaction conditions and can use them for simple syntheses.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 42 (1) 2. Chemie "Organische und Bioorganische Chemie"
Module title	**Abbreviation**
Organic Chemistry 2 (teaching degree for secondary schools) | 08-OC2-GHR-092-m01

Module coordinator
holder of the Chair of Physically Organic Chemistry

Module offered by
Institute of Organic Chemistry

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
7 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module introduces students to the rules of aromaticity and discusses specific reactions of aromatics. Using the example of carbonyl compounds, it extends the students’ knowledge of substitution, elimination and addition reactions to complex reaction mechanisms. The course also focuses on oxidation and reduction reactions as well as rearrangement.

Intended learning outcomes
Students have become familiar with the criteria for aromaticity. They can analyse the varying reactivity of carbonyl compounds. They are able to describe specific reactions of carbonyls and aromatics. For that purpose, they can plan and formulate multi-stage syntheses with complex reaction mechanisms and can transfer them to unknown reactions.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 42 (1) 2. Chemie "Organische und Bioorganische Chemie"
Module title
Organic Chemistry 3 (teaching degree for secondary schools)

| Abbreviation | 08-OC3-LA-102-m01 |

Module coordinator
holder of the Professorship of Organic Chemistry

Module offered by
Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>08-OC1 or 08-OC1-GHR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

The module focuses on polar rearrangements, olefination reactions, pericyclic reactions, carbenes, nitriles and radicals. It imparts basic knowledge of stereoselective synthesis, asymmetric catalysis, organometallic chemistry and retrosynthesis.

Intended learning outcomes

Students are able to formulate olefination reactions. They are able to develop stereoselective syntheses and asymmetric catalyses. Students are able to describe organometallic reactions. They are able to conduct retrosynthetic analyses of molecules.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Physical Chemistry 4: Statistical Thermodynamics

Abbreviation

08-PC4-092-m01

Module coordinator

Lecturer of lecture "Statistische Thermodynamik"

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS Method of grading

3 numerical grade

Only after succ. compl. of module(s)

--

Duration Module level Other prerequisites

1 semester undergraduate Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

This module deals with basics of statistical thermodynamics.

Intended learning outcomes

Students have become familiar with the fundamental principles of statistical thermodynamics and are able to apply the knowledge they have developed.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Physical Chemistry (teaching degree for secondary schools)

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-PC-GHR-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
lecturer of lecture "Thermodynamik, Kinetik, Elektrochemie für Studierende der Biologie, Lebensmittelchemie and des Lehramtes Chemie GHR"

Module offered by
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module deals with basics of thermodynamics, kinetics and electrochemistry.

Intended learning outcomes
Students have become familiar with the fundamental principles of thermodynamics, kinetics and electrochemistry. They are able to understand and explain fundamental processes in nature and engineering.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 42 (1) 1. Chemie "Allgemeine und Anorganische Chemie" und "Physikalische und Analytische Chemie"
Module title

Physical and Theoretical Chemistry 3: Symmetry and Quantum Chemistry

Abbreviation

08-PC3-092-m01

Module coordinator

Lecturer of lecture "Quantenchemie"

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS

6

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Undergraduate

Other prerequisites

Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

This module deals with basics of quantum chemistry and symmetry in chemistry.

Intended learning outcomes

Students have become familiar with the fundamental principles of quantum chemistry and symmetry in chemistry and are able to apply the knowledge they have developed.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü + V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--)
Module title
Organic Chemistry - laboratory course (teaching degree for secondary schools)

Abbreviation
08-OC-Prakt-GHR-092-m01

Module coordinator
lecturers Organische Chemie (Organic Chemistry)

Module offered by
Institute of Organic Chemistry

ECTS
5

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module gives students the opportunity to apply in practice the knowledge they have gained through the related lecture(s). After a safety briefing, the students autonomously conduct experiments in the laboratory. In addition to those experiments, students will be expected to take oral tests and write lab reports to demonstrate their knowledge. The course focuses on the safe handling of hazardous substances, simple experimental unit operations of organic chemistry, simple to multi-level syntheses and the analysis of the products.

Intended learning outcomes
Students know how to safely handle hazardous substances. They are able to conduct simple experimental operations of organic chemistry. They are able to analyse the yield and purity of the products and identify possible error sources. They are able to connect the theoretical aspects covered in the lecture with practical experiments in the laboratory.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
pre/post-experiment examination talks (Vor-/Nachtestate, approx. 15 minutes each), log (approx. 5 to 10 pages)

Assessment offered: once a year, summer semester

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 42 (1) 2. Chemie "Organische und Bioorganische Chemie"
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical spectroscopy 1 (teaching degree for secondary schools)</td>
<td>08-OC-Spec-LAGY-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Organische Chemie 2"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the spectroscopic methods of infrared spectroscopy, mass spectrometry and NMR spectroscopy.

Intended learning outcomes

Students are able to describe important spectroscopic methods, to evaluate a spectrum and to draw conclusions regarding the molecular structure.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 62 (1) 2. Chemie "Organische und Bioorganische Chemie"
Module title
Practical spectroscopy 2 (teaching degree for secondary schools)

Abbreviation
08-AC2-PS-LA-102-m01

Module coordinator
Lecturer of lecture "Praktische Spektroskopie 2"

Module offered by
Institute of Inorganic Chemistry

ECTS
3

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
This module equips students with an advanced knowledge of metals, alloys and saline compounds. It focuses on their structures and properties, special material classes, reactivity and technical processes.

Intended learning outcomes
Students are able to describe the structure and properties of metals, alloys and saline compounds in an appropriate manner. They can list spectroscopic methods that can be used for the structural analysis of solids and can describe them in an appropriate manner.

Courses
(type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Preparation of Exams Chemistry</th>
<th>Abbreviation</th>
<th>08-FBC2-PV-101-m01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordinator</td>
<td>lecturers Inorganic and Organische Chemie (Organic Chemistry)</td>
<td>Module offered by</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>08-OC2-GHR and 08-OC-Prakt-GHR or 08-OC2-LAGY and 08-OC-Prakt-LAGY</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
<td>Other prerequisites</td>
<td></td>
</tr>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Contents
Repetition of relevant topics and work on selected state examination issues in Inorganic and Organic Chemistry.

Intended learning outcomes
The student is able to solve selected state examination issues of the previous years in Inorganic and Organic Chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 08-FBC2-PV-1-101: S (no information on SWS (weekly contact hours) and course language available)
- 08-FBC2-PV-2-101: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-FBC2-PV-1-101: Preparation of Exams Inorganic Chemistry
- 2 ECTS, Method of grading: (not) successfully completed
- successful participation in the form of short presentations on selected assignments
- Assessment offered: once a year, summer semester
- Language of assessment: German or English

Assessment in module component 08-FBC2-PV-2-101: Preparation of Exams Organic Chemistry
- 3 ECTS, Method of grading: (not) successfully completed
- successful participation in the form of short presentations on selected assignments
- Assessment offered: once a year, summer semester
- Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Admission work (Chemistry for Secondary School Teachers)

Abbreviation
08-Ch-HA-UF-HS-092-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Where applicable, specific modules/module components as specified by supervisor.</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Adhering to the principles of good scientific practice, students will independently research and write on a topic in chemistry or chemistry didactics they have agreed upon with an authorised examiner in accordance with the provisions of Section 29 LPO (examination regulations for teaching degree programmes).

Intended learning outcomes
To pass this module, students will be expected to:
- be able to independently write an academic paper (define and analyse a problem, conduct a literature search, refer to relevant theories, interpret data, draw logical conclusions, and offer approaches to the solution of said problem).
- be able to work to deadlines.
- be able to prepare an appropriate written account of the results of their work.

Courses (type, number of weekly contact hours, language — if other than German)
no courses assigned

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written thesis (Zulassungsarbeit, approx. 40 pages)

Language of assessment: German, exceptions in accordance with Section 29 LPO I (examination regulations for teaching degree programmes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Theoretical Models in Chemistry (teaching degree for secondary schools)

Abbreviation
08-TC-LA-092-m01

Module coordinator
Lecturer of lecture "Quantenchemie"

Module offered by
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents
This module provides students with deeper insights into advanced topics in quantum chemistry. It focuses on spin, the Pauli principle, Slater determinants, the Hartree-Fock method, correlation energy, configuration interaction and excited states, the Born-Oppenheimer approximation and bonding models of H₂⁺.

Intended learning outcomes
Students are able to describe excited states of molecules with the help of key concepts and models.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Toxicology and legal studies

Abbreviation
03-TR-072-m01

Module coordinator
lecturer of lecture "Toxikologie und Rechtskunde"

Module offered by
Faculty of Medicine

ECTS
3

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Basics of legal regulations for chemists (handling and transportation of hazardous materials), fundamentals of toxicology.

Intended learning outcomes
The students master the basics of legal regulations for chemists (handling and transport of hazardous substances) as well as the fundamentals of toxicology.

Courses (type, number of weekly contact hours, language — if other than German)
V + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Exercises in Experimental Presentation

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises in Experimental Presentation</td>
<td>08-Ch-GH-ÜiV-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lecturers of the three lectures offered in this module

Module offered by

Faculty of Chemistry and Pharmacy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Students will design, prepare and deliver presentations on a range of topics in chemistry. Presentations will include live demonstrations.

Intended learning outcomes

Students are able to deliver a detailed and scientifically correct presentation on a given topic that is tailored to the specific needs of their audience. They are able to select experiments on the topic in question that support a particular teaching goal as well as to plan and safely perform them. Students will be expected to apply both their chemistry knowledge and skills and their teaching skills.

Courses

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 08-Ch-LA-ÜiV-1-092: Ü (no information on SWS (weekly contact hours) and course language available)
- 08-Ch-LA-ÜiV-2-092: Ü (no information on SWS (weekly contact hours) and course language available)
- 08-Ch-GH-ÜiV-3-092: Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-Ch-LA-ÜiV-1-092: Exercises in Experimental Presentation (Inorganic Chemistry)

- 2 ECTS, Method of grading: (not) successfully completed
- talk with demonstrations (approx. 45 minutes)
- Assessment offered: once a year, winter semester
- Language of assessment: German or English

Assessment in module component 08-Ch-LA-ÜiV-2-092: Exercises in Experimental Presentation (Organic Chemistry)

- 2 ECTS, Method of grading: (not) successfully completed
- talk with demonstrations (approx. 45 minutes)
- Assessment offered: once a year, winter semester
- Language of assessment: German or English

Assessment in module component 08-Ch-GH-ÜiV-3-092: Exercises in Experimental Presentation (Physical Chemistry) for Primary School and Secondary Public School Teachers

- 2 ECTS, Method of grading: (not) successfully completed
- talk with demonstrations (approx. 45 minutes)
- Assessment offered: once a year, winter semester
- Language of assessment: German or English

Allocation of places

--

Additional information

--
Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 42 (1) 3. Chemie “Übungen im Vortragen mit Demonstrationen”
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Mathematics (teaching degree)</td>
<td>08-PC-VKM-LA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of block course "Mathematik" (Mathematics)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides an introduction to mathematical concepts and methods used in physical/theoretical chemistry. It trains students in those methods with the help of examples taken from thermodynamics and kinetics.

Intended learning outcomes

Students have been trained in mathematical methods. They are able to apply those methods to problems in chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

exercises (4 work sheets)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--