

Subdivided Module Catalogue for the Subject

Keine PO-STG-Zuordnung vorhanden

Responsible: JMU Würzburg

JMU Würzburg • generated 14-Dez-2024 • exam. reg. data record 88|l22|-|-|H|2025

Course of Studies - Contents and Objectives

The Master programme Mathematical Data Science is offered by the Department of Mathematics and Computer Science as part of a consecutive Bachelor and Master programme. It is a research-oriented programme with the degree "Master of Science" (M.Sc.) which constitutes a further degree qualifying for profession and research.

The aim of the course is to provide students with in-depth knowledge of various sub-areas of mathematics and computer science and their relevance to data science, which includes in particular insights into interdisciplinary aspects as well as a sound knowledge of mathematical methods for analyzing and developing new data science techniques, including the necessary ones Abstract ability and analytical thinking, a high level of problem-solving skills and the ability to structure complex relationships, with which the course lays the basis for working as a responsible mathematician in interdisciplinary and international teams to participate successfully in research, industry and business.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

??-???-2025 (2025-??)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

The subject is divided into

Abbreviation	Module title	ECTS credits	Method of grading	page
Compulsory Courses (15 E	CTS credits)			
10-M=AMML-252-m01	Mathematical Data Science and Machine Learning	10	NUM	57
10-Al=ML-242-m01	Machine Learning	5	NUM	15
Compulsory Electives (75	ECTS credits)			
Subfield Optimization (10	D ECTS credits)			
10-M=VOPT-161-m01	Selected Topics in Optimization	10	NUM	127
10-M=AOPT-161-m01	Basics in Optimization	10	NUM	60
Subfield Applied Mathen	natics (20 ECTS credits)			
10-M=VMML-252-m01	Advanced Topics in Mathematics of Machine Learning	5	NUM	120
10-M=VKOM-161-m01	Mathematical Continuum Mechanics	5	NUM	114
10-M=AAAN-161-m01	Applied Analysis	10	NUM	43
10-M=ANGG-161-m01	Numeric of Large Systems of Equations	10	NUM	58
10-M=VNPE-161-m01	Numeric of Partial Differential Equations	10	NUM	125
10-M=VOST-161-m01	Optimal Control	5	NUM	129
10-M=VIPR-222-m01	Inverse Problems 1	5	NUM	112
10-M=VIP2-222-m01	Inverse Problems 2	5	NUM	110
10-M=ASTP-161-m01	Stochastical Processes	10	NUM	65
10-M=AZRA-212-m01	Time Series Analysis	10	NUM	69
10-M=VSTA-212-m01	Mathematical Statistics	10	NUM	135
10-M=ASMR-161-m01	Stochastic Models of Risk Management	10	NUM	63
10-M=VNAM-192-m01	Selected Topics in Numerical and Applied Mathematics	10	NUM	121
Subfield Mathematics				<u>. </u>
10-M=ADGM-161-m01	Differential Geometry	10	NUM	46
10-M=ALTH-161-m01	Lie Theory	10	NUM	55
10-M=ARTH-242-m01	Mathematical Control Theory	10	NUM	62
10-M=AFTH-161-m01	Complex Analysis	10	NUM	50
10-M=AVSM-161-m01	Insurance Mathematics 1	10	NUM	67
		5	NUM	52
10-M=VANA-161-m01	Selected Topics in Analysis	10	NUM	98
10-M=VFNM-161-m01	Selected Topics in Financial Mathematics	10	NUM	104
10-M=VGDS-161-m01	Groups and their Representations	10	NUM	106
10-M=VDSY-161-m01	Dynamical Systems	5	NUM	102
10-M=VMBV-161-m01	Mathematical Imaging	5	NUM	118
10-M=VTRT-242-m01	Selected Topics in Mathematical Control Theory	10	NUM	137
10-M=VNAN-161-m01	Non-linear Analysis	5	NUM	123
10-M=VVSY-161-m01	Networked Systems	5	NUM	138
10-M=VPDP-161-m01	Partial Differential Equations of Mathematical Physics	10	NUM	131
10-M=VPRG-161-m01	Pseudo Riemannian and Riemannian Geometry	10	NUM	133
10-M=AFAN-161-m01	Functional Analysis	10	NUM	48
10-M=VADG-161-m01	Applied Differential Geometry	10	NUM	96
10-M=VGPSin-152-m01	Giovanni Prodi Lecture Selected Topics (Master)	10	NUM	108
10-M=AAML-242-m01	Selected Topics in Mathematical Logic	5	NUM	45

10-M=AHAN-242-m01	Harmonic Analysis	10	NUM	54			
10-M=VKRY-192-m01	Cryptography/Coding Theory	10	NUM	116			
	Discrete Mathematics	5	NUM	100			
Subfield Research in Groups and Seminars (10 ECTS credits)							
	Research in Groups - Inverse Problems	10	NUM	72			
	Research in Groups - Mathematics of Machine Learning	10	NUM	73			
	Seminar in Mathematics of Machine Learning	5	NUM	87			
10-M=SINP-252-m01	Seminar in Inverse Problems	5	NUM	86			
	Research in Groups - Numerical Mathematics and Applied Ana-	,					
10-M=GNMA-161-m01	lysis	10	NUM	76			
10-M=SGPCin-152-m01	Giovanni Prodi Seminar (Master)	5	NUM	84			
10-M=SNMA-161-m01	Seminar in Numerical Mathematics and Applied Analysis	5	NUM	90			
10-M=SOPT-161-m01	Seminar in Optimization	5	NUM	92			
10-M=SAMA-192-m01	Seminar Applied Mathematics	5	NUM	81			
10-M=GDSC-242-m01	Research in Groups - Dynamical Systems and Control Theory	10	NUM	71			
10-M=GSTA-161-m01	Research in Groups - Statistics	10	NUM	78			
10-M=GNLA-161-m01	Research in Groups - Non-linear Analysis	10	NUM	74			
10-M=SDSC-242-m01	Seminar in Dynamical Systems and Control Theory	5	NUM	83			
10-M=SSTA-161-m01	Seminar in Statistics	5	NUM	94			
10-M=SNLA-161-m01	Seminar in Non-linear Analysis	5	NUM	88			
Subfield Computer Science	ce (15 ECTS credits)						
10-I=PNN-252-m01	Programming with neural nets	5	NUM	35			
10-l=AGIS-232-m01	Algorithms for Geographic Information Systems	5	NUM	19			
10-l=AG-232-m01	Computational Geometry		NUM	18			
10-I=APA-161-m01	Approximation Algorithms	5	NUM	21			
10-l=VG-161-m01	Visualization of Graphs	5	NUM	41			
10-I=AKT-232-m01	Selected Topics in Theory	5	NUM	20			
10-I=NLP-212-m01	Machine Learning for Natural Language Processing	5	NUM	32			
10-I=STM-162-m01	NLP and Text Mining	5	NUM	39			
10-I=SNA-232-m01	Statistical Network Analysis	5	NUM	37			
10-Al=IAI-242-m01	Introduction in Al	5	NUM	14			
10-AI=SEM1-242-m01	Seminar Artificial Intelligence	5	NUM	17			
10-AI=CV1-242-m01	Computer Vision 1	5	NUM	10			
10-Al=CV2-242-m01	Computer Vision 2	5	NUM	12			
10-l=MLN1-232-m01	Machine Learning for Networks 1	5	NUM	26			
10-l=MLN2-232-m01	Machine Learning for Networks 2	5	NUM	28			
10-l=IP-222-m01	Image Processing and Computational Photography	5	NUM	23			
10-I=RLCDM-252-m01	Reinforcement Learning and Computational Decision Making	5	NUM	36			
10-l=MNLP-232-m01	Multilingual NLP	5	NUM	30			
	Selected Topics in Al Methods 1	5	NUM	7			
· · · · · · · · · · · · · · · · · · ·	Selected Topics in Al Methods 2	5	NUM	8			
10-AI=SAC-242-m01	Self-aware Computing	5	NUM	16			
· · · · · · · · · · · · · · · · · · ·	Selected Topics in Al Application & Technologies	5	NUM	9			
10-l=MIR-252-m01	Music Information Retrieval	5	NUM	25			
	Practical Course - Data Science 1	10	NUM	34			
Thesis (30 ECTS credits)			l				
Master's with 1 major Mathematical D	ata Science JMU Würzburg • generated 14-Dez-2024 • exam. reg.	data re-		5 / 139			

Subdivided Module Catalogue for the Subject Mathematical Data Science Master's with 1 major, 120 ECTS credits

10-M=MAMDS-252-m01	Master-Thesis Mathematical Data Science	30	NUM	80

Module	title				Abbreviation
Selected Topics in Al Methods 1					10-AI=AKAIM1-242-m01
Modul	coord	inator		Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Comput	ter Science
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	n	Module level	Other prerequisites		
1 seme	ster	graduate			
Conten	ts				
Selecte	d Topi	cs in Al Methods.			
Intend	ed lear	ning outcomes			
		possess an advanced kn oblems in this area and t			are able to understand solutions
Course	s (type	, number of weekly conta	act hours, language –	- if other than Germa	an)
	taugh	t in: German and/or Engl			
		sessment (type, scope, la ion on whether module c			ation offered — if not every seme-
b) projethe top c) oral d) oral	ect wor ic or examin examir ege of a	nation of one candidate e nation in groups of up to ussessment: German and	es) with presentation ach (approx. 20 minu 3 candidates (approx	utes) or	and subsequent discussion on didate).
Allocat	ion of	places	•		
Additio	nal inf	ormation			
Worklo	ad		-		
150 h					
Teachi	ng cvcl	e			
		e: if announced			
	is cycl				

Master's degree (1 major) Artificial Intelligence (2024)

Referred to in LPO I (examination regulations for teaching-degree programmes)

		17/2/41	O WEXOVENED O)	.,		
	Module title Abbreviation						
Selecte	ed Topi	cs in Al Methods 2			10-Al=AKAlM2-242-m01		
Module	coord	inator		Module offered by			
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Comput	er Science		
ECTS		od of grading	Only after succ. con	npl. of module(s)			
5	L	rical grade					
Duratio		Module level	Other prerequisites				
1 seme		graduate					
Conten	-						
		cs in Al Methods.					
Intende	ed lear	ning outcomes					
		possess an advanced kno oblems in this area and t			re able to understand solutions		
Course	s (type	, number of weekly conta	ct hours, language –	- if other than Germa	n)		
V (2) + Module	` '	t in: German and/or Engl	ish				
		sessment (type, scope, la ion on whether module ca			tion offered — if not every seme-		
b) proje the top c) oral d) oral	ect wor ic or examin examir ege of a	nation of one candidate e nation in groups of up to ussessment: German and	es) with presentatior ach (approx. 20 minu 3 candidates (approx	ites) or	and subsequent discussion on didate).		
Allocat	ion of	places					
Additio	nal inf	ormation					
Worklo	Workload						
150 h							
_	Teaching cycle						
	Teaching cycle: if announced						
	Referred to in LPO I (examination regulations for teaching-degree programmes)						

Master's degree (1 major) Artificial Intelligence (2024)

Module appears in

					T
Module					Abbreviation
Selecte	ed Topi	cs in AI Application & Te	chnologies		10-Al=AKAKI-242-m01
Module	e coord	inator		Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Comput	ter Science
ECTS		od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	n	Module level	Other prerequisites	1	
1 seme	ster	graduate			
Conten	ts				
Selecte	d Topi	cs in Al application & tec	hnologies		
Intende	ed lear	ning outcomes			
		erstand the basic approa			. They are able to understand so-
Course	s (type	, number of weekly conta	ıct hours, language –	- if other than Germa	an)
	e taugh	t in: German and/or Engl		an Garman, avamina	ntion offered — if not every seme-
		ion on whether module c			ttion offered — If flot every seme-
b) proje the top c) oral d) oral	ect wor ic or examir examir ege of a	nation of one candidate e nation in groups of up to ussessment: German and	es) with presentation ach (approx. 20 minu 3 candidates (approx	ıtes) or	and subsequent discussion on didate).
Allocat	ion of	places			
Additio	nal inf	ormation			
Worklo	ad				
150 h					
Teachi	ng cycl	e			
Teachi	ng cycl	e: if announced			

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's degree (1 major) Artificial Intelligence (2024)

Module appears in

Module title					Abbreviation		
Computer Vision 1					10-Al=CV1-242-m01		
Module	e coord	inator		Module offered by			
holder	of the	Chair of Computer Science	te IV	Institute of Computer Science			
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
5	nume	rical grade					
Duration Module level		Other prerequisites					
1 semester graduate							
Conten	Contents						

The lecture provides knowledge about current methods and algorithms in the field of computer vision. Important basics as well as the most recent approaches to image representation, image processing and image analysis are taught.

Topics include data representation, image acquisition, restoration and enhancement, features, object modeling, image and video understanding, deep learning and generative methods and applications.

Actual models and methods of machine learning as well as their technical backgrounds are presented and their respective applications in Computer Vision are shown.

Intended learning outcomes

Students have fundamental knowledge of problems and techniques in the field of computer vision and are able to independently identify and apply suitable methods for concrete problems.

- Overview of the most important concepts of image representation, image analysis, machine learning and algorithms from Computer Vision
- Gaining experience through home assignments, practical computer and programming exercises
- Providing a sound solid background knowledge for the advanced Computer Vision 2 course

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

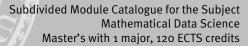
Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester


Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Module title					Abbreviation	
Compu	Computer Vision 2				10-Al=CV2-242-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer S	cience IV	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level Ot		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

The lecture provides knowledge about current state-of-the-art in the field of computer vision. The most recent advances are taught. The topics that will be covered are:

- review of computer vision
- review of deep learning
- · classification, detection, recognition
- · motion and tracking
- geometry and 2D/3D modeling
- segmentation
- lightfields and neural radiance fields
- generative methods and diffusion models
- transformers and foundation models
- efficiency and explainability
- applications

State-of-the-art models and methods as well as their technical backgrounds are presented and their respective applications in Computer Vision are shown.

Intended learning outcomes

Students have advanced knowledge of problems and techniques in the field of computer vision and are able to independently identify and apply suitable methods for concrete problems.

- Overview of the main concepts and state-of-the-art machine learning models and algorithms from Computer Vision
- · Hands-on experience through home assignments, practical computer and programming exercises

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

._

Module appears in

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Modul	e title		Abbreviation				
Introduction in AI					10-Al=IAI-242-m01		
Module coordinator				Module	Module offered by		
Dean o	f Studi	es Informatik (Comp	outer Science)	Institute	Institute of Computer Science		
ECTS	Meth	od of grading	Only after suc	c. compl. of mo	dule(s)		
5	nume	rical grade					
Duratio	on	Module level	Other prerequ	Other prerequisites			
1 semester graduate							
Contents							

Essential concepts and algorithms of artificial intelligence. Theoretical or practical competences are taught, ranging from classical simple heuristic methods to more complex probabilistic models of artificial intelligence.

Intended learning outcomes

The students have theoretical and practical knowledge in the field of artificial intelligence. They are able to identify and apply appropriate methods to solve problems in the field of Al.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Module	e title			Abbreviation			
Machir	ne Lear	ning			10-Al=ML-242-m01		
Module	e coord	inator		Module offered by			
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science			
ECTS	Meth	od of grading	Only after succ. compl. of module(s)				
5	nume	rical grade					
Duratio	Duration Module level		Other prerequisites				
1 seme	1 semester graduate						
Conten	Contents						

Foundations in the following areas: Theoretical knowledge and practical experience in machine learning. Models, approaches and algorithms, and their practical implementation for the classical problems of machine learning. Supervised and unsupervised learning methods.

Intended learning outcomes

The students have theoretical and practical knowledge of typical models, methods and algorithms in the field of machine learning. They are able to solve practical problems in the field of machine learning with the help of appropriate methods. They have experience in the application or implementation of machine learning approaches.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module title					Abbreviation		
Self-aware Computing					10-Al=SAC-242-m01		
Modul	e coord	inator	Module offered by				
Dean of Studies Informatik (Computer Science)			Science)	Institute of Computer Science			
ECTS	Meth	od of grading	Only after succ. cor	nly after succ. compl. of module(s)			
5	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 semester graduate							
Contents							
The best of the be							

The lecture provides knowledge about techniques and methods for Self-Aware Computing Systems. Current algorithms and concepts for Self-Aware Computing Systems as well as related concepts such as e.g. Autonomic Computing, Self-Organized Systems, or Self-Adaptive Systems are taught. Additionally, current application areas such as i. e. Internet of Things or Cyber-Physical Systems are discussed. Basic capabilities of these systems, methods for evaluating their performance, and how they can be improved through the use of artificial intelligence are taught.

Intended learning outcomes

The participants have basic knowledge of methods and techniques in the field of Self-Aware Computing Systems and are able to independently identify and apply suitable methods for concrete problems and to evaluate systems appropriately.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

__

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module title Abbreviation							
Seminar Artificial Intelligence 10-Al=SEM1-242-m01							
Module	coord	inator		Module offered by			
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Comput	ter Science		
ECTS		od of grading	Only after succ. con	npl. of module(s)			
5	nume	rical grade					
Duratio	n	Module level	Other prerequisites				
1 seme	ster	graduate					
Conten	ts		,				
		review of a current artifici nd oral presentation.	al intelligence topic l	oased on literature a	and, where applicable, software		
Intende	ed lear	ning outcomes					
		are able to independently tten form and to orally pr			pic, to summarise the main		
Course	s (type	, number of weekly conta	ct hours, language –	- if other than Germa	an)		
S (2) Module	e taugh	t in: German and/or Engl	ish				
		sessment (type, scope, la ion on whether module c			ation offered — if not every seme-		
	ige of a	o to 15 pages) and preser ssessment: German and bonus		utes) followed by a c	liscussion on the topic		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Workload							
150 h							
	Teaching cycle						
Teaching cycle: every semester							
	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Referre	Referred to III El OT (Chammation regulations for teaching degree programmes)						

Module appears in

Module title					Abbreviation	
Computational Geometry					10-l=AG-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science I			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	ester	graduate				
Contor	Contents					

In many areas of computer science -- for example robotics, computer graphics, virtual reality and geographic information systems -- it is necessary to store, analyse, create or manipulate spatial data. This class is about the algorithmic aspects of these tasks: We will acquire techniques that are needed to plan and analyse geometric algorithms and data structures. Every technique will be illustrated with a problem in the practical areas listed above.

Intended learning outcomes

The students are able to decide which algorithms or data structures are suitable for the solution of a given geometric problem. The students are able to analyse new problems and to come up with their own efficient solutions based on the concepts and techniques acquired in the lecture.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,HCI,GE,IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Algorithms for Geographic Information Systems					10-l=AGIS-232-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer S	cience I	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	ester	graduate				
Contor	Contents					

Algorithmic foundations of geographic information systems and their application in selected problems of acquisition, processing, analysis and presentation of spatial information. Processes of discrete and continuous optimisation. Applications such as the creation of digital height models, working with GPS trajectories, tasks of spatial planning as well as cartographic generalisation.

Intended learning outcomes

The students are able to formalise algorithmic problems in the field of geographic information systems as well as to select and improve suitable approaches to solving these problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,KI,HCI,LR,IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation
Selected Topics in Theory					10-l=AKT-232-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science I			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester graduate				
Contents					

Selected topics in theory.

Intended learning outcomes

The students understand the basic approach of theoretical computer science. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Approximation Algorithms					10-l=APA-161-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science I			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
<i>~</i> .	Contracts					

The task of finding the optimal solution for a given problem is omnipresent in computer science. Unfortunately, there are many problems without an efficient algorithm for an optimal solution. As a result, in practice, methods are used which do not always give the optimal solution but always give good solutions. This lecture will discuss drafting and analysing techniques for algorithms which have a proven approximation quality. With the help of practical optimisation problems, the lecture will introduce students to important drafting techniques such as greedy, local search, scaling as well as methods based on linear programming.

Intended learning outcomes

The students are able to analyse easy approximation methods in terms of their quality. They understand fundamental drafting techniques such as greedy, local search and scaling as well as methods based on linear programming and are able to apply these to new problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Image Processing and Computational Photography					10-l=IP-222-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science IV			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contonts					

This course aims at offering a self-contained account of image processing and computational photography and its underlying concepts, including the recent use of deep learning. The topics that will be covered are:

- introduction to image processing and computational photography
- sampling and quantization
- light and color
- image acquisition
- deep learning
- generative methods
- image signal processing
- image restoration
- sensor and image quality assessment
- image compression
- applications

Intended learning outcomes

Students have fundamental knowledge of problems and techniques in the field of image processing and computational photography and are able to independently identify and apply suitable methods for concrete problems.

- Overview of the most important concepts of image formation, perception and analysis, and Computational Photography
- Gaining experience through home assignments, practical computer and programming exercises
- Providing a sound solid background knowledge for the Computer Vision courses

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

...

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) eXtended Artificial Intelligence (xtAl) (2020)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Information Systems (2025)

Module title					Abbreviation	
Music Information Retrieval					10-I=MIR-252-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Camban	Combonido					

This lecture introduces the research field of Music Information Retrieval (MIR), focussing on the following topics: Music representations (graphical, symbolic, audio), basic music theory concepts, audio signal processing (esp. time-frequency transformations, variants of the Fourier transform), selected machine learning techniques, overview and in-depth study of individual MIR tasks (e.g., harmony analysis/chord recognition, beat tracking/tempo, structure analysis, genre/style classification), data preparation/annotation and corpus analysis for digital humanities/musicology

Intended learning outcomes

The students have a fundamental understanding of music representations and audio data as well as theoretical and practical knowledge in the field of audio signal processing and specialized machine learning techniques. They have gained experience with typical MIR tasks and are able to understand, develop, and apply MIR algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

keinem Studiengang zugeordnet

Module title					Abbreviation	
Machine Learning for Networks 1					10-I=MLN1-232-m01	
Modul	Module coordinator			Module offered by		
holder	holder of the Chair of Computer Science XV			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Camban	Combonido					

Networks matter! This holds for technical infrastructures like communication or transportation networks, for information systems and social media in the World Wide Web, but also for various social, economic and biological systems. What can we learn from data that capture the interaction topology of such complex systems? What is the role of individual nodes and how can we discover significant patterns in the structure of networks? How do these structures influence dynamical process like diffusion or the spreading of epidemics? Which are the most influential actors in a social network? And how can we analyze time series data on systems with dynamic network topologies?

Addressing those questions, the course combines a series of lectures -- which introduce fundamental concepts for the statistical modelling of complex networks -- with weekly exercises that show how we can apply them to practical network analysis tasks. Topics covered include foundations of graph theory, centrality and modularity measures, aggregate statistical characteristics of large networks, random graphs and statistical ensembles of complex networks, generating function analysis of expected graph properties, scale-free networks, stochastic dynamics in networks, spectral analysis, as well as the modelling of time-varying networks. The course material consists of annotated slides for lectures as well as a accompanying git-Repository of jupyter notebooks, which implement and validate the theoretical concepts covered in the lectures. Students can test and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Intended learning outcomes

The course will equip participants with statistical network analysis techniques that are needed for the data-driven modelling of complex technical, social, and biological systems. Students will understand how we can quantitatively model the topology of networked systems and how we can detect and characterize topological patterns. Participants will learn how to use analytical methods to make statements about the expected properties of very large networks that are generated based on different stochastic models. They further gain an analytical understanding of how the structure of networks shapes dynamical processes, how statistical fluctuations in degree distributions influence the robustness of systems, and how emergent network features emerge from simple random processes.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,SE,KI,HCI,IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Information Systems (2025)

Module title					Abbreviation	
Machine Learning for Networks 2					10-I=MLN2-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science XV			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Cantan	Contonto					

Graph representations of relational data have become an important foundation to address data science and machine learning tasks across the sciences. Graph mining and learning techniques help us to detect functional modules in biological networks and communities in social networks, to find missing links in social networks, or to address node-, link-, or graph-level classification tasks. But how can we apply frequentist and Bayesian statistical learning techniques to data on complex networks? And how we can use the topology of relationships to infer similarity scores between objects that can, e.g., be used for the design of recommender systems? How can we use matrix factorization techniques to generate low-dimensional vector-space representations of nodes that retain a maximum amount of information about the topology of links? And how can we apply the latest deep learning techniques to address node-, link-, or graph-level learning tasks in data with relation structures?

Addressing these questions, this course combines a series of lectures - which introduce theoretical concepts in statistical learning, representation learning, and graph neural networks -- with practice sessions that show how we can apply them in practical graph learning tasks. The course material consists of annotated slides for lectures and a series of accompanying jupyter notebooks.

Intended learning outcomes

The course will equip students with techniques to address supervised and unsupervised learning tasks in data on complex networks. Students will learn how statistical learning and data compression techniques can be used to infer cluster pattern and how topological similarity scores can be used to address unsupervised link prediction and graph reconstruction. Participants will further study both algebraic and deep learning based methods to learn low-dimensional vector-space representations of graph-structured data, and learn how graph neural networks help us to apply deep learning to node- and graph-level learning tasks in large complex networks. Students can apply and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,SE,KI,HCI,IN

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation	
Multilingual NLP					10-l=MNLP-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science XII			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate						
Contor	Contents					

Languages of the world: language families, typology, etymology. Linguistic universals: words, morphology, parts-of-speech, syntax. Alphabets (scripts), encoding, and language identification. Multilingual word representation spaces (aka cross-lingual word embeddings). Transformer architecture and Pretrained (multilingual) Language Models. Machine translation. Multilingual resources: unlabeled corpora, lexico-semantic networks and word translations, parallel corpora. Cross-lingual transfer: from word alignment and label projection, over MT-based transfer to zero-shot and few-shot transfer with multilingual Transformer-based language models. Advanced topics: curse of multilinguality, modularization and language adaptation, multilingual sentence encoders, contextual parameter generation, multi-source transfer, gradient manipulations.

Intended learning outcomes

Students will acquire theoretical and practical knowledge on modern multilingual natural language processing and also get an insight into cutting edge research in (multilingual) NLP. They will learn how to represent texts from different languages in shared representation spaces that enable semantic comparison and cross-lingual transfer for various NLP tasks. Upon successful completion of the course, the students will be well-equipped to solve practical NLP problems regardless of the language of the text data, and to determine the optimal strategy to obtain best performance for any concrete target language.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

..

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 30 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Module title					Abbreviation	
Machine Learning for Natural Language Processing					10-l=NLP-212-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science X			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contents					

The lecture conveys advanced knowledge about methods in computational text processing. To this end, it presents state of the art models and techniques in the area of machine learning, as well as their technical background, and their respective applications in Natural Language Processing. As one important building block of almost all modern NLP-models, different techniques for learning representations of words, so called Word Embeddings, are presented. Starting from this we cover, among others, models from the area of Deep Learning, like CNNs, RNNs and Sequence-to-Sequence architectures. The theoretical foundations of these models, like their training with Backpropagation, are also covered in depth. For all models presented in the lecture, we show their application to problems like sentiment analysis, text generation and machine translation in practice.

Intended learning outcomes

The participants have solid knowledge on problems and methods in the area of computational text processing and are able to identify and apply suitable methods for a specific task.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,KI,HCI

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Module title					Abbreviation	
Practic	Practical Course - Data Science 1				10-l=PDS1-232-m01	
Module	Module coordinator			Module offered by		
holder	of the (Chair of Computer Scienc	ce X	Institute of Comput	er Science	
ECTS		od of grading	Only after succ. con			
10	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	graduate				
Conten	ts					
Comple	etion of	a practical task in Data	Science			
Intendo	ed learı	ning outcomes				
The pra	actical a	allows participants to wo	rk on a problem in Da	ata Science in teams		
Course	s (type	, number of weekly conta	act hours, language –	- if other than Germa	ın)	
R (6)			_			
		sessment (type, scope, la on on whether module c			tion offered — if not every seme-	
	ige of a	5 pages) and presentationssessment: German and bonus		minutes)		
Allocat	ion of p	olaces				
Additio	nal inf	ormation				
	-					
Worklo	ad					
300 h						
Teachi	Teaching cycle					
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module	Module appears in					
Master	Master's degree (1 major) Computer Science (2023)					

Module	e title				Abbreviation			
Progra	mming	with neural nets		-	10-l=PNN-252-m01			
Module	e coord	inator		Module offered by				
holder of the Chair of Computer Science VI				Institute of Computer Science				
ECTS	Meth	thod of grading Only after succ. o		mpl. of module(s)				
5	nume	rical grade						
Duration		Module level	Other prerequisites	Other prerequisites				
1 semester		graduate						
Contents								

Overview over NN, implementation of important NN-architectures like FCN, CNN and LSTMs, practical example for NN-architectures, among others in the area of image and language processing.

Intended learning outcomes

Knowledge about possible applications and limitations of NN, for important architectures (eg. FCN, CNN, LSTM) and how they are implemented in NN-tools like Tensorflow/Keras, ability to program network structures from literature, to prepare data and solve concrete tasks for NN.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, KI, HCI, GE, IN

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Information Systems (2025)

Module	e title		Abbreviation					
Reinfo	rcemen	t Learning and Comp	outational Decision Maki	ng	10-I=RLCDM-252-m01			
Module	e coord	inator		Module offered by				
Dean of Studies Informatik (Computer Science)				Institute of Computer Science				
ECTS	Meth	od of grading	Only after succ. co	ly after succ. compl. of module(s)				
5	nume	rical grade						
Duration		Module level	Other prerequisites	Other prerequisites				
1 semester		graduate						
Contents								

This course will provide the essential notions about reinforcement learning and further related approaches for computational decision-making (e.g., multi-armed bandits, recommender systems). The topics will be covered under a both theoretical and empirical lens, providing the rigorous mathematical foundations of reinforcement learning and decision-making, complementing them with concrete examples of real-world applications.

Intended learning outcomes

The students will gain fundamental knowledge of Reinforcement Learning spanning from classical methods to modern algorithms based on deep learning techniques, and Decision-Making approaches such as multi-armed bandits and recommender systems. Students will know about the theoretical treatment of the methods explained in the course, and will have a deep understanding of the importance of Reinforcement Learning and Decision-Making in solving real-world problems. They will be able to design, implement, and conduct Reinforcement Learning experiments for solving problems from simulated basic tasks to advanced real-world applications, e.g., games, autonomous driving, finance, robotics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

keinem Studiengang zugeordnet

Module title					Abbreviation
Statist	ical Ne	twork Analysis			10-l=SNA-232-m01
Modul	e coord	inator		Module offered by	
holder	of the	Chair of Computer Science	te XV	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	ipl. of module(s)	
5	nume	rical grade			
Duration	Duration Module level		Other prerequisites		
1 semester graduate					
C 4		-	•		

Networks matter! This holds for technical infrastructures like communication or transportation networks, for information systems and social media in the World Wide Web, but also for various social, economic and biological systems. What can we learn from data that capture the interaction topology of such complex systems? What is the role of individual nodes and how can we discover significant patterns in the structure of networks? How do these structures influence dynamical process like diffusion or the spreading of epidemics? Which are the most influential actors in a social network? And how can we analyze time series data on systems with dynamic network topologies?

Addressing those questions, the course combines a series of lectures -- which introduce fundamental concepts for the statistical modelling of complex networks -- with weekly exercises that show how we can apply them to practical network analysis tasks. Topics covered include foundations of graph theory, centrality and modularity measures, aggregate statistical characteristics of large networks, random graphs and statistical ensembles of complex networks, generating function analysis of expected graph properties, scale-free networks, stochastic dynamics in networks, spectral analysis, as well as the modelling of time-varying networks. The course material consists of annotated slides for lectures as well as a accompanying git-Repository of jupyter notebooks, which implement and validate the theoretical concepts covered in the lectures. Students can test and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Intended learning outcomes

The course will equip participants with statistical network analysis techniques that are needed for the data-driven modelling of complex technical, social, and biological systems. Students will understand how we can quantitatively model the topology of networked systems and how we can detect and characterize topological patterns. Participants will learn how to use analytical methods to make statements about the expected properties of very large networks that are generated based on different stochastic models. They further gain an analytical understanding of how the structure of networks shapes dynamical processes, how statistical fluctuations in degree distributions influence the robustness of systems, and how emergent network features emerge from simple random processes.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Module title					Abbreviation	
NLP an	d Text	Mining			10-l=STM-162-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate						

Foundations in the following areas: definition of NLP and text mining, properties of text, sentence boundary detection, tokenisation, collocation, N-gram models, morphology, hidden Markov models for tagging, probabilistic parsing, word sense disambiguation, term extraction methods, information extraction, sentiment analysis. The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing mostly for English. They are able to solve problems through the methods taught. They have gained experience in the application of text mining algorithms.

Intended learning outcomes

The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing. They are able to solve practical problems with the methods acquired in class. They have gained experience in the application of text mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, IT, HCI.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Visual	ization	of Graphs		-	10-l=VG-161-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer S	Science I	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisite	Other prerequisites		
1 semester graduate					
Conto	ntc		·		

This course covers the most important algorithms to draw graphs. Methods from the course *Algorithmische Graphentheorie* (*Algorithmic Graph Theory*) such as divide and conquer, flow networks, integer programming and the planar separator theorem will be used. We will become familiar with measures of quality of a graph drawing as well as algorithms to optimise these measures.

Intended learning outcomes

The participants get an overview of graph visualisation and become familiar with typical tools. They consolidate their knowledge about the modelling and solving of problems with the help of graphs and graph algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Applie	d Analy	/sis		===	10-M=AAAN-161-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Durati	on	Module level	Other prerequisit	Other prerequisites		
1 semester graduate						
Contor	Contents					

In-depth study of functional analysis and operator theory, Sobolev spaces and partial differential equations, theory of Hilbert spaces and Fourier analysis, spectral theory and quantum mechanics, numerical methods (in particular FEM methods), principles of functional analysis, function spaces, embedding theorems, compactness, theory of elliptic, parabolic and hyperbolic partial differential equations with methods from functional analysis.

Recommended previous knowledge:

Familiarity with the contents of the module "Functional Analysis" is strongly recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Select	ed Topi	cs in Mathematical	Logic		10-M=AAML-242-m01
Module coordinator				Module offered by	
				Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level Othe		Other prerequisites	Other prerequisites		
1 semester					
Contents					

Recommended previous knowledge:

Familiarity with the contents of the module "Introduction to Mathematical Logic" is recommended. Students who have not attended this lecture are welcome to discuss the prior knowledge required for the current course with the lecturer.

Intended learning outcomes

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Differe	ntial G	eometry			10-M=ADGM-161-m01	
Modul	e coord	inator		Module offered by		
Dean c	f Studi	es Mathematik (Mathe	matics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conter	Contents					

Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Recommended previous knowledge:

Basic knowledge from the modules "Introduction to Differential Geometry", "Introduction to Topology" and "Geometric Analysis" is recommended.

Intended learning outcomes

The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geome-

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Functi	onal An	alysis			10-M=AFAN-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	Other prerequisites		
1 semester graduate					
Conto	ntc		·		

Banach and Hilbert spaces, bounded operators, principles of functional analysis, further contemporary topics in functional analysis and applications to other fields of mathematics.

Recommended previous knowledge:

Familiarity with the contents of the module "Advanced Analysis" is strongly recommended.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in a contemporary field of functional analysis, and is able to apply these skills to complex questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Complex Analysis					10-M=AFTH-161-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 semester graduate						
Conter	Contents					

In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e. g. elliptic functions).

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Complex Analysis" is recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 50 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Giovan	ni Proc	li Lecture (Master)		-	10-M=AGPCin-152-m01	
Module coordinator				Module offered by		
Dean o	f Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate						
Conten	Contents					

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022) Master's degree (1 major) Computational Mathematics (2024) Master's degree (1 major) Mathematics (2024)

Modul	e title				Abbreviation		
Harmonic Analysis					10-M=AHAN-242-m01		
Module coordinator				Module offered by			
				Institute of Mathem	natics		
ECTS	Meth	od of grading	Only after succ. con				
10		rical grade		, , ,			
Durati	on	Module level	Other prerequisites				
1 seme	ester						
Conte	nts						
Intend	led lear	ning outcomes					
Course	es (type	, number of weekly conta	ıct hours, language –	- if other than Germa	un)		
V (4) +		•					
Modul	e taugh	t in: German and/or Engl	ish				
		sessment (type, scope, la ion on whether module c			ition offered — if not every seme-		
b) oral c) oral Langua Assess	examine examine examine	mination (approx. 60 to 1 nation of one candidate enation in groups (groups of assessment: German and offered: In the semester in bonus	ach (approx. 20 minu of 2, 15 minutes per c /or English	utes) or andidate)	ubsequent semester		
Alloca	tion of	places					
Additio	onal inf	ormation					
Worklo	oad						
300 h	300 h						
Teachi	ing cycl	le					
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Modul	e appe	ars in					
		ee (1 major) Computatior	nal Mathematics (202	4)			

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Lie The	eory				10-M=ALTH-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	natics
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 semester graduate					
Conto	ntc		·		

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e. g. in physics and control theory.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Functional Analysis" and "Introduction to Topology" is recommended. Furthermore, basic knowledge of the contents of the module "Introduction to Differential Geometry" is useful.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title Abbreviation					
Mathematical	Data Science and Machi	ne Learning		10-M=AMML-252-m01	
Module coordinator			Module offered by		
			Institute of Mathem	natics	
ECTS Metho	d of grading	Only after succ. com	ipl. of module(s)		
10 numer	ical grade	<u></u>			
Duration	Module level	Other prerequisites			
1 semester					
Contents					
Intended learn	ing outcomes				
Courses (type,	number of weekly conta	ct hours, language –	- if other than Germa	ın)	
V (4) + Ü (2)					
Module taught	in: German and/or Engl	ish			
	essment (type, scope, la on on whether module ca	-		tion offered — if not every seme-	
b) oral examinac) oral examina	nination (approx. 90 to 1 ation of one candidate e ation in groups (groups c ssessment: German or Er ponus	ach (approx. 20 minu of 2, 15 minutes per c	ıtes) or		
Allocation of p	laces				
Additional info	ormation				
Workload					
300 h					
Teaching cycle					
Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module appears in					
keinem Studie	keinem Studiengang zugeordnet				

Module title			Abbreviation		
Numeric of Large Systems of Equations			ations		10-M=ANGG-161-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
10	nume	rical grade			
Duration Module level Other prerequisit		es			
1 semester graduate					
Contents					

Discretisation of elliptic differential equations, classical iteration methods, preconditioners, multigrid methods.

Recommended previous knowledge:

Basic knowledge of numerical mathematics, such as that acquired in the modules "Numerical Mathematics 1" and "Numerical Mathematics 2", is required. Knowledge of the contents of the module "Basics in Optimization" is also recommended.

Intended learning outcomes

The student is acquainted with the most important methods for solving large systems of equations, and knows the most efficient way to solve a given system of equations.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	р
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Basics in Optimization					10-M=AOPT-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level Othe		Other prerequisites	Other prerequisites		
1 semester graduate -					
Contents					

Fundamental methods and techniques in continuous optimization, unrestricted optimization, conditions for optimality, restricted optimization, examples and applications in natural and engineering sciences as well as economics.

Intended learning outcomes

The student knows the fundamental methods of continous optimization, can judge their strengths and weaknesses and can decide which method is the most suitable in applications.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Mathematical Control Theory				-	10-M=ARTH-242-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mather	natics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other pr		Other prerequisites	i		
1 semester graduate					
Conter	Contents				

Introduction to mathematical systems theory: stability, controllability and observability, state feedback and stability, basics in optimal control.

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of control theory. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation		
Stochastic Models of Risk Management			gement		10-M=ASMR-161-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duration Module level Other prere		Other prerequisite	es			
1 semester graduate -						
Conto	ntc		·			

Measure theory, risk diagrams, failure mode and effects analysis, risk assessment in auditing, shortfall measures, value at risk, conditional value at risk, axiomatic of risk measures, modelling of interdependencies, copula, modelling of functional interrelations, regression models, basics in time series modelling, aggregated losses, estimates of shortfall measures, estimates of value at risk and conditional value at risk, basics in empirical time series analysis, methods of exponential smoothing, predictions and prediction domains, estimates of value at risk in time series, elementary empirical regression analysis, simulation methods.

Intended learning outcomes

The student is acquainted with the fundamental methods of stochastic risk analysis.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title Abbreviation			Abbreviation		
Stochastical Processes					10-M=ASTP-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level Other prere		Other prerequisite	es		
1 semester graduate -					
Conto	ntc				

Markov chains, queues, stochastic processes in C[0,1], Brownian motion, Donsker's theorem, projective limits.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of stochastical processes and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Insurance Mathematics 1				=	10-M=AVSM-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level Other		Other prerequisites	5		
1 semester graduate					
Contents					

The module discusses policies on one life: distributions of future lifetime, life tables, life table approximations, types of benefits, present value, expection principle, premium calculation, commutation functions, reserves and policy values, expenses, bonus, recursive methods, Thiele's differential equation.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of statistics or stochastics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of life insurance mathematics and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 67 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Time Series Analysis					10-M=AZRA-212-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Mathematik (Mathe	matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other pr		Other prerequisites	;		
1 semester graduate					
Contents					

Additive model, linear filters, autocorrelation, moving average, autoregressive processes, Box-Jenkins method.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental methods of time series analysis and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: in the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Research in Groups - Dynamical Systems and Control Theory				10-M=GDSC-242-m01	
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. com	mpl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level Other prerec		Other prerequisites		
1 seme	1 semester graduate				
Conter	Contents				

Selected modern topics in dynamical systems and control theory.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student gains insight into contemporary research problems in dynamical systems and control theory. He/ She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Research in Groups - Inverse Problems			olems		10-M=GINP-222-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics) Institute of Mathematics			Institute of Mathen	natics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)	
10	nume	rical grade			
Duration Module level Other prerequisite		tes			
1 semester graduate					
Conte	Contents				

Selected modern topics in inverse problems.

Recommended previous knowledge:

After consultation with the lecturer, prior knowledge from the modules "Inverse Problems 1" and possibly "Inverse Problems 2" is recommended. The research in groups usually builds on the content of a course from the previous semester.

Intended learning outcomes

The student gains insight into contemporary research problems in inverse problems. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title Abbreviation						
Resear	ch in G	roups - Mathematics of M	Machine Learning		10-M=GMAL-252-m01		
Module	Module coordinator			Module offered by			
				Institute of Mathem	natics		
ECTS	Meth	od of grading	Only after succ. con				
10		rical grade					
Duratio	n	Module level	Other prerequisites				
1 seme	ster						
Conten	ts						
Intende	ed lear	ning outcomes					
Course	s (type	, number of weekly conta	ct hours, language –	- if other than Germa	ın)		
V (2) +							
Module	taugh	t in: German and/or Engl	ish				
					tion offered — if not every seme-		
-		ion on whether module ca	an be chosen to earn	a bonus)			
		o minutes) Issessment: German or Ei	nglich				
		offered: In the semester in		offered and in the su	ubsequent semester		
Allocat							
Additio	nal inf	ormation					
Worklo	ad		,				
300 h							
_	Teaching cycle						
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	Module appears in						
	keinem Studiengang zugeordnet						
Remen	Remem Stadiengang Zageoranet						

Modul	Module title				Abbreviation	
Research in Groups - Non-linear Analysis					10-M=GNLA-161-m01	
Modul	e coord	linator		Module offered by		
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level Ot		Other prerequisite	Other prerequisites			
1 semester graduate						
Conto	Contonts					

Selected modern topics in non-linear analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student gains insight into contemporary research problems in Non-linear Analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Research in Groups - Numerical Mathematics and Applied Analysis				10-M=GNMA-161-m01		
Modul	e coord	linator		Module offered by		
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 semester graduate						
Conter	Contents					

Selected topics in numerical mathematics, applied analysis or scientific computing.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis and/or numerical mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student gains insight into a contemporary research problems in numerical mathematics or applied analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Research in Groups - Statistics					10-M=GSTA-161-m01	
Modul	e coord	linator		Module offered by		
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisite	Other prerequisites			
1 semester graduate						
Conto	Contents					

Selected modern topics in statistics.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended. Depending on the content of the course, other prior knowledge may also be helpful; consultation with the lecturer is recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in statistics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

__

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Maste	Master-Thesis Mathematical Data Science				10-M=MAMDS-252-m01	
Modul	Module coordinator			Module offered by		
Dean c	of Studi	es Mathematik (Math	ematics)	Institute of Mathem	natics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
30	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ester	graduate			I completion of certain modu- opic a prerequisite for the assign-	
Conter	nts					
Intend	ed lear	ning outcomes				
Course	es (type	, number of weekly co	ontact hours, language –	- if other than Germa	an)	
Νο cou	ırses as	signed to module				
			e, language — if other th le can be chosen to earn		ation offered — if not every seme-	
Registi	ration a	is (750 to 900 hours t nd assignment of top ssessment: German	oic in consultation with s	upervisor.		
Alloca	tion of _I	places	,			
Additio	onal inf	ormation				
Time to	o comp	lete: 6 months				
Worklo	oad					
900 h						
Teaching cycle						
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)					
Modul	Module appears in					
keinen	keinem Studiengang zugeordnet					

Module title					Abbreviation
Seminar Applied Mathematics					10-M=SAMA-192-m01
Modul	e coord	linator		Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other pre		Other prerequisite	es		
1 semester graduate					
Contor	Contents				

A modern topic in applied mathematics.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of applied mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: in the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	title			Abbreviation		
Semina	r in Dy	namical Systems and Co		10-M=SDSC-242-m01		
Module	coord	inator		Module offered by		
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. com	npl. of module(s)		
5	nume	rical grade	-			
Duratio	n	Module level	Other prerequisites			
1 semester graduate						
Conten	Contents					

A modern topic in dynamical systems and control.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

_

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Giovanni Prodi Seminar (Master)					10-M=SGPCin-152-mo1	
Modul	e coord	inator		Module offered by		
Dean c	f Studi	es Mathematik (Mat	hematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisi	Other prerequisites			
1 semester graduate						
Contents						

A modern topic in the research expertise of the current holder of the Giovanni Prodi Chair.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Economathematics (2022)

Master's degree (1 major) Computational Mathematics (2024) Master's degree (1 major) Mathematics (2024) Master's degree (1 major) Economathematics (2024)

Module title					Abbreviation	
Seminar in Inverse Problems					10-M=SINP-252-m01	
Module coordinator				Module offered by		
				Institute of Mathem	natics	
ECTS	Meth	od of grading	Only after succ. con			
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ster					
Conten	ts					
Intend	ed lear	ning outcomes				
Course	s (type	, number of weekly conta	ct hours, language –	- if other than Germa	n)	
S (2)						
		t in: German and/or Engl				
		sessment (type, scope, la ion on whether module ca			tion offered — if not every seme-	
		o minutes)				
		ssessment: German and,		offered and in the co	uh sa quant samastar	
Allocat		ffered: In the semester in	willer the course is	onered and in the St	absequent semester	
Allocal	lion or	Diaces				
 A d ditia		ormation				
Auditio	niat IIII	umatium				
Worklo						
	au					
_	150 h					
Teaching cycle						
Peterred to in LPO I (evamination regulations for teaching degree programmes)						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Modulo appears in						
	Module appears in					
keinem	keinem Studiengang zugeordnet					

Module title Abbreviation						
Semina	ar in Ma	athematics of Machine	Learning		10-M=SMAL-252-m01	
Module coordinator				Module offered by	<u> </u>	
				Institute of Mathem	natics	
ECTS	Metho	od of grading	Only after succ. con			
5		rical grade		, , ,		
Duratio	n	Module level	Other prerequisites			
1 seme	ster					
Conten	ts					
Intende	ed lear	ning outcomes				
Course	s (type	, number of weekly con	tact hours, language –	- if other than Germa	ın)	
S (2)						
Module	e taugh	t in: German and/or Eng	glish			
		sessment (type, scope, ion on whether module			ition offered — if not every seme-	
Langua	ige of a	o minutes) ssessment: German an ffered: In the semester		offered and in the su	ubsequent semester	
Allocat						
Additio	nal inf	ormation				
Worklo	ad					
150 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	Module appears in					
keinem	keinem Studiengang zugeordnet					

Module title					Abbreviation	
Seminar in Non-linear Analysis				-	10-M=SNLA-161-m01	
Modul	e coord	inator		Module offered by		
Dean c	f Studi	es Mathematik (Math	nematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate						
Conter	Contents					

A modern topic in non-linear analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title	,	Abbreviation			
Seminar in Numerical Mathematics and Applied Analysis					10-M=SNMA-161-m01	
Module	e coord	linator		Module offered by		
Dean o	f Studi	es Mathematik (Mat	hematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	ster	graduate				
Conten	Contents					

A modern topic in numerical mathematics or applied analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis and/or numerical mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Seminar in Optimization				•	10-M=SOPT-161-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
C 4	Containts				

A modern topic in optimisation.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Seminar in Statistics					10-M=SSTA-161-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Other p			<u>!</u> S		
1 seme	ester	graduate				
Contor	Contents					

A modern topic in statistics.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended. Depending on the content of the course, other prior knowledge may also be helpful; consultation with the lecturer is recommended.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Applie	Applied Differential Geometry				10-M=VADG-161-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10 numerical grade					
Duratio	on	Module level	Other prerequisites		
1 seme	ester	graduate			
Conter	Contents				

The module builds on the topics covered in module 10-M=ADGM and discusses selected applications of differential geometry, e. g. at the interface of control theory and mechanics (subriemannian geometry), in the smooth optimisation on manifolds or applications in physics.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Applied Differential Geometry", "Geometric Mechanics", "Pseudo-Riemannian and Riemannian Geometry" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is acquainted with selected advanced applications of differential geometry. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Selected Topics in Analysis					10-M=VANA-161-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level Oth			Other prerequisite	es	
1 semester graduate					
Conto	Contents				

In-depth discussion of a specialised topic in analysis taking into account recent developments and interrelations with other mathematical concepts.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in analysis, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

__

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Discrete Mathematics					10-M=VDIM-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level Other prerequis			s	
1 seme	ester	graduate			
Contor	Contonts				

Advanced methods and results in a selected field of discrete mathematics (e. g. coding theory, cryptography, graph theory or combinatorics)

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Discrete Mathematics" is required.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Dynamical Systems					10-M=VDSY-161-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5 numerical grade						
Duration Module level		Other prerequisit	Other prerequisites			
1 seme	ester	graduate				
Conter	Contents					

Fundamentals of dynamical systems, e. g. stability theory, ergodic theory, Hamiltonian systems.

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student masters the mathematical methods in the theory of dynamic systems, and is able to analyse their quality.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation	
Selecto	Selected Topics in Financial Mathematics				10-M=VFNM-161-m01	
Modul	Module coordinator			Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10 numerical grade						
Duratio	Duration Module level Oth		Other prerequisite	S		
1 seme	1 semester graduate					
Conter	Contents					

Selected topics in financial mathematics, e. g. conditional expectation and martingales, fundamental theorem of asset pricing in discrete time for finite spaces, American put, Snell envelope, stopping time, optimal stopping, stochastic integration, stochastic differential equations and Ito calculus, Black-Merton-Scholes model.

Recommended previous knowledge:

Familiarity with the contents of the modules "Introduction to Stochastic Financial Mathematics" and "Stochastics 1" is strongly recommended.

Intended learning outcomes

The student is acquainted with advanced results in financial mathematics. He/She gains the ability to work on contemporary research questions in financial mathematics and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 104 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Groups and their Representations					10-M=VGDS-161-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level			Other prerequisite	Other prerequisites	
1 seme	ester	graduate			
Conter	Contents				

Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Giovanni Prodi Lecture Selected Topics (Master)			Topics (Master)		10-M=VGPSin-152-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisi	tes			
1 semester graduate						
Conter	Contents					

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022) Master's degree (1 major) Computational Mathematics (2024) Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation
Inverse Problems 2				-	10-M=VIP2-222-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level			Other prerequisites		
1 semester undergraduate					
Contents					

Variational regularisation methods, source conditions, non-linear operator equations.

Recommended previous knowledge:

Basic knowledge of functional analysis, such as that taught in the module "Functional Analysis", is recommended, as well as the contents of the module "Inverse Problems 1" if applicable.

Intended learning outcomes

The students understand the particular difficulties of nonlinear problems and know solution methods for those. They have the ability to apply variational regularisation methods and to examine them with respect to stability and convergence. They gain deeper knowledge in selected inverse problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Inverse Problems 1					10-M=VIPR-222-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Duration Module level			Other prerequisite	Other prerequisites		
1 semester graduate						
Contents						

Linear operator equations, ill-posed problems, regularisation theory, Tikhonov regularisation, iterative regularisation methods, examples of ill-posed problems.

Recommended previous knowledge:

Basic knowledge of functional analysis, such as that taught in the module "Functional Analysis", is recommended.

Intended learning outcomes

The student can judge whether a given problem is well posed or ill posed. He/She can apply regularisation methods and examine them regarding stability and convergence, and is familiar with selected inverse problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Mathematical Continuum Mechanics					10-M=VKOM-161-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Duration Module level Othe			Other prerequisit	es		
1 semester graduate						
Contents						

Partial differential equations and/or variational methods in the context of continuum mechanics.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student masters the mathematical methods in mathematical continuum mechanics and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation	
Cryptography/Coding Theory					10-M=VKRY-192-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisite	Other prerequisites		
1 semester graduate						
Conto	Contents					

Error detection and error correction, linear codes, channel coding theorems of Shannon, classical and contemporary codes, bounds, network codes, connections to cryptography.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student is acquainted with fundamental concepts, methods and results in coding theory and cryptography, is able to classify these results within more general theories and knows about the connections of coding theory and cryptography with other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 116 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	İ

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Mathematical Imaging				-	10-M=VMBV-161-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level			Other prerequisite	Other prerequisites		
1 semester graduate						
Contor	Contonts					

Mathematical fundamentals of image processing and computer vision such as elementary projective geometry, camera models and camera calibration, rigid and non-rigid registration, reconstruction of 3D objects from camera pictures; algorithms; module might also include an introduction to geometric methods and tomography.

Recommended previous knowledge:

Basic knowledge of functional analysis, such as that taught in the module "Functional Analysis", is recommended.

Intended learning outcomes

The student masters the mathematical methods in the theory of image processing and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

__

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 118 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Advan	ced Top	oics in Mathematics of Ma	10-M=VMML-252-m01			
Modul	e coord	linator		Module offered by	<u> </u>	
		_		Institute of Mathem	natics	
ECTS	Meth	od of grading	Only after succ. con			
5		rical grade		-		
Durati	on	Module level	Other prerequisites			
1 seme	ester					
Conte	nts					
Intend	ed lear	ning outcomes				
		-				
Course	es (type	, number of weekly conta	ict hours, language –	- if other than Germa	an)	
V (3) +		· · · · · · · · · · · · · · · · · · ·	, , , ,			
		it in: German and/or Engl	ish			
		sessment (type, scope, la ion on whether module ca			ation offered — if not every seme-	
c) oral Langua Assess	examir age of a	nation of one candidate en ation in groups (groups of ssessment: German or En offered: In the semester in bonus	of 2, 10 minutes per c nglish	andidate)	ubsequent semester	
Alloca	tion of	places	-			
Additi	onal inf	ormation				
Workle	oad					
150 h						
Teaching cycle						
Referr	Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module appears in						
keiner	keinem Studiengang zugeordnet					

Module title					Abbreviation	
Selected Topics in Numerical and Applied Mathematics					10-M=VNAM-192-m01	
Modul	e coord	inator		Module offered by	Module offered by	
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

In-depth discussion of a specialised topic in numerical or applied mathematics taking into account recent developments and interrelations with other mathematical concepts.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of applied mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in numerical or applied mathematics, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Non-linear Analysis					10-M=VNAN-161-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Durati	on	Module level	Other prerequisit	Other prerequisites		
1 seme	1 semester graduate					
Contor	Contents					

Methods in nonlinear analysis (e. g. topological methods, monotony and variational methods) with applications.

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and partial differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Applied Analysis".

Intended learning outcomes

The student is acquainted with the concepts of non-linear analysis, can compare them and assess their applicability on practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Numer	ic of Pa	artial Differential Eq	uations		10-M=VNPE-161-m01	
Modul	e coord	linator		Module offered by		
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Durati	on	Module level	Other prerequisit	Other prerequisites		
1 semester graduate						
Contor	Contents					

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and partial differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Applied Analysis".

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

__

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 125 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Selected Topics in Optimization					10-M=VOPT-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	10 numerical grade				
Duration Module level Other prerequi			Other prerequisite	S	
1 semester graduate					
Conto	ntc				

Selected topics in optimization, e. g. inner point methods, semidefinite programs, non-smooth optimization, game theory, optimization with differential equations.

Intended learning outcomes

The student is acquainted with advanced methods in continuous optimization. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Optimal Control					10-M=VOST-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	numerical grade				
Duration Module level Other prerequisit			Other prerequisite	es	
1 semester graduate					
Contor	Contents				

Basics in optimal control of ordinary and partial differential equations, theory of optimal control, conditions for optimality, methods for numerical solution.

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and ordinary differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Ordinary Differential Equations". Knowledge of the contents of the module "Basics in Optimization" may also be useful.

Intended learning outcomes

The student is acquainted with advanced methods in optimal control. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Mathematical Data Science	JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re-	page 129 / 139
(2025)	cord Master (120 ECTS) Mathematical Data Science - 2025	

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Partial Differential Equations of Mathematical Physics					10-M=VPDP-161-m01	
Modul	e coord	linator		Module offered by	Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
10	nume	rical grade				
Duration Module level Other prerequisit			Other prerequisit	tes		
1 semester graduate						
Contor	Contents					

Elliptic, parabolic, and hyperbolic equations; Laplace equation, heat equation and wave equation as standard examples; initial and boundary value problems; well-posed and ill-posed problems; solution methods; extensions and generalisations; Hilbert space methods; Sobolev spaces and Fourier transforms.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student is acquainted with fundamental concepts and solution methods in the theory of partial differential equations, as well as standard examples from mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title	•	"	Abbreviation		
Pseudo Riemannian and Riemannian Geometry					10-M=VPRG-161-m01	
Module coordinator				Module offered by		
Dean of Studies Mathematik (Mathematics)			thematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Duration Module level Other prerequi		Other prerequisit	es			
1 semester graduate						
Conto	ntc					

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Riemannian and pseudo-Riemannian manifolds, Levi-Civita connection and curvature, geodesics and the exponential map, Jacobi fields, comparison theorems in Riemannian geometry, submanifolds, integration, d'Alembert and Laplace operators, causal structure of Lorenz manifolds, Einstein equations and applications in general relativity theory.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Introduction to Topology", "Geometric Mechanics" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is acquainted with advanced topics in differential geometry on Riemannian and pseudo-Riemannian manifolds. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Mathematical Statistics					10-M=VSTA-212-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
10	nume	rical grade				
Duration Module level Other prerequisit			Other prerequisit	tes		
1 semester graduate						
Contor	Contents					

Contingency tables, categorical regression, one-factorial variance analysis, two-factorial variance analysis, discriminant function analysis, cluster analysis, principal component analysis, factor analysis.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental methods in statistical analysis and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's with 1 major Mathematical Data Science JMU Würzburg • generated 14-Dez-2024 • exam. reg. data re(2025) cord Master (120 ECTS) Mathematical Data Science - 2025

Master's degree (1 major) Economathematics (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Selected Topics in Mathematical Control Theory			Control Theory		10-M=VTRT-242-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
10	nume	rical grade				
Duration Module level Other prerequisit			Other prerequisit	tes		
1 semester graduate						
Conte	Contents					

Selected topics in linear and non-linear control theory, e. g. networked linear control systems, controllability of bilinear systems.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student gains insight into contemporary research problems in control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Networked Systems				-	10-M=VVSY-161-m01	
Modul	e coord	linator		Module offered by		
Dean of Studies Mathematik (Mathematics)			thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	numerical grade					
Duration Module level Other pre			Other prerequisite	<u> </u>		
1 semester graduate						
Contor	Contents					

Contemporary topics in networked linear and non-linear dynamical systems (homogenous and non-homogenous systems); analysis of control-theoretical aspects (controllability, accessibility, etc.).

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student is acquainted with advanced methods in the field of networked systems. He gains the ability to work on contemporary research questions in networked systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)