Subdivided Module Catalogue
for the Subject
Physics International
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2020
Responsible: Faculty of Physics and Astronomy
Learning Outcomes

After having successfully completed their studies the graduates saufil the following requirements:

- The graduates are highly skilled in abstract thinking, they are able to think analytically, they have a high problem-solving competence and are able to structure complex interrelations.
- The graduates have a wide overview of the different areas of physics and of connections to other sciences.
- They have profound knowledge of the mathematical and theoretical basics of physics as well as profound knowledge of the theoretical and experimental methods to gain new insights.
- They are able to transfer their abilities and expertise to research projects and know the current state of research in at least one speciality.
- With the help of primary literature, especially in English, they are able to become acquainted with the current state of research in a speciality.
- They have the ability to independently apply physical and mathematical methods to concrete experimental or theoretical physical tasks, to develop solutions and to interpret and assess the results.
- Even with incomplete information they are in a position to work independently on physical problems, applying scientific methods and following the rules of good scientific practice, and to present, assess and attend to the results and consequences of their work.
- They are able to discuss physical topics on the current state of research with other physicists and also to explain connections to physics to non-scientists.
- As physicists they are able to work in or even lead interdisciplinary and international teams with (natural) scientists and/or engineers in research, industry and economy.

Scientific qualification

- The graduates have profound knowledge of the mathematical, experimental and theoretical basics of physics.
- The graduates can resort to profound knowledge of the theoretical and experimental methods to gain new insights.
- The graduates have a wide overview of the different areas of physics.
- The graduates know scientific areas adjacent to physics and realise interdisciplinary connections.
- The graduates have are highly skilled in abstract thinking, they are able to think analytically, they have a high problem-solving competence and are in a position to structure complex interrelations.
- The graduates transfer their abilities and expertise to research projects and know the current state of research in at least one speciality.
- The graduates are able to discuss physical topics on the current state of research with other physicists.
- The graduates are in a position to independently apply physical and mathematical methods to concrete experimental or theoretical physical tasks, to develop solutions and to interpret and assess the results.
- With the help of primary literature, especially in English, the graduates are able to become acquainted with the current state of research in a speciality.

Qualification to start a job

- Even with incomplete information the graduates are in a position to work independently on physical problems, following the rules of good scientific practice, and to present, assess and attend to the results and consequences of their work.
- As physicists the graduates are able to work in or even lead interdisciplinary and international teams with (natural) scientists and/or engineers in research, industry and economy.
• The graduates have the ability to independently apply physical and mathematical methods to concrete experimental or theoretical physical tasks, to develop solutions and to interpret and assess the results.

• The graduates are able to transfer their abilities and expertise to research projects and know the current state of research in at least one speciality.

Self-development
• Even with incomplete information the graduates are in a position to work independently on physical problems, and to present, assess and attend to the results and consequences of their work.

• The graduates know the rules of good scientific practice and take them into account.

Qualification for social commitment
• The graduates are able to critically reflect scientific developments and to capture their impact on economy, society and environment. (technological impact assessment)

• The graduates have enlarged their knowledge concerning economic, social, natural scientific or cultural questions (to name but a few) and are able to attend to their views reasonably.

• The graduates are able to discuss physical topics on the current state of research with other physicists and also to explain physical correlations to non-scientists.

• The graduates have developed the willingness and ability to show their skills in participative processes and actively contribute to decisions.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

06-Feb-2020 (2020-16)

09-Jun-2021 (2021-63)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Electives Field (60 ECTS credits)</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfield Physics (min. 55 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Laboratory Courses (min. 9 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-P-FM1-Int-201-m01</td>
<td>Advanced Laboratory Course Master Part 1</td>
<td>3</td>
<td>B/NB</td>
</tr>
<tr>
<td>11-P-FM2-Int-201-m01</td>
<td>Advanced Laboratory Course Master Part 2</td>
<td>3</td>
<td>B/NB</td>
</tr>
<tr>
<td>11-P-FM3-Int-201-m01</td>
<td>Advanced Laboratory Course Master Part 3</td>
<td>3</td>
<td>B/NB</td>
</tr>
<tr>
<td>11-P-FM4-Int-201-m01</td>
<td>Advanced Laboratory Course Master Part 4</td>
<td>3</td>
<td>B/NB</td>
</tr>
<tr>
<td>Advanced Seminar (min. 5 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-OSP-A-Int-201-m01</td>
<td>Advanced Seminar Physics A</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-OSP-B-Int-201-m01</td>
<td>Advanced Seminar Physics B</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>Experimental Physics (min. 10 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-BSV-Int-201-m01</td>
<td>Image and Signal Processing in Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-OLH-Int-201-m01</td>
<td>Organic Semiconductors</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-PMM-Int-201-m01</td>
<td>Physics of Advanced Materials</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-SPI-Int-201-m01</td>
<td>Spintronics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FK2-Int-201-m01</td>
<td>Solid State Physics 2</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FKS-Int-201-m01</td>
<td>Solid State Spectroscopy</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-MAG-Int-201-m01</td>
<td>Magnetism</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-HNS-Int-201-m01</td>
<td>Optical Properties of Semiconductor Nanostructures</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-HPH-Int-201-m01</td>
<td>Semiconductor Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QTR-Int-201-m01</td>
<td>Quantum Transport</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-NOP-Int-201-m01</td>
<td>Nano-Optics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-PTS-Int-201-m01</td>
<td>Phenomenology and Theory of Superconductivity</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>08-PCM4-161-m01</td>
<td>Ultrafast spectroscopy and quantum-control</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CSFM-Int-201-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-ASM-Int-201-m01</td>
<td>Methods of Observational Astronomy</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TPE-Int-201-m01</td>
<td>Experimental Particle Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-ASP-Int-201-m01</td>
<td>Introduction to Space Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-MAS-Int-201-m01</td>
<td>Multi-wavelength Astronomy</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CSAM-Int-201-m01</td>
<td>Advanced Topics in Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-MRI-Int-201-m01</td>
<td>Advanced Magnetic Resonance Imaging</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-SSC-Int-201-m01</td>
<td>Surface Science</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-BIC-Int-201-m01</td>
<td>Basic Imaging Concepts</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-IRP-Int-201-m01</td>
<td>Basic Imaging Reconstruction and Processing</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CAP-Int-201-m01</td>
<td>Contemporary Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AAI-Int-201-m01</td>
<td>Advanced Astro Imaging</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CTA-Int-201-m01</td>
<td>Advanced Computer Tomography</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EIM-Int-201-m01</td>
<td>Electron and Ion Microscopy</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-SPT-Int-201-m01</td>
<td>Scanning Probe Technologies</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FPA-Int-201-m01</td>
<td>Visiting Research</td>
<td>10</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXE5-Int-201-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXE6-Int-201-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>Module Code</td>
<td>Title</td>
<td>ECTS</td>
<td>NUM</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>11-EXE7-Int-201-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>7</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXE8-Int-201-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXP6-Int-201-m01</td>
<td>Current Topics in Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
</tbody>
</table>

Theoretical Physics (min. 10 ECTS credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>ECTS</th>
<th>NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-QM2-Int-201-m01</td>
<td>Quantum Mechanics II</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RTT-Int-201-m01</td>
<td>Theory of Relativity</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RMFT-Int-201-m01</td>
<td>Renormalization Group Methods in Field Theory</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-PKS-Int-201-m01</td>
<td>Physics of Complex Systems</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QIC-Int-201-m01</td>
<td>Advanced Theory of Quantum Computing and Quantum Information</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TFK-Int-201-m01</td>
<td>Theoretical Solid State Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TFK2-Int-201-m01</td>
<td>Theoretical Solid State Physics 2</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TEFK-Int-201-m01</td>
<td>Topological Effects in Solid State Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FFK-Int-201-m01</td>
<td>Field Theory in Solid State Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AKTF-Int-201-m01</td>
<td>Selected Topics of Theoretical Solid State Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CMS-Int-201-m01</td>
<td>Computational Materials Science (DFT)</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-KFT-Int-201-m01</td>
<td>Conformal Field Theory</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-KFT2-Int-201-m01</td>
<td>Conformal Field Theory 2</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-GRTM-Int-201-m01</td>
<td>Group Theory</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TPSM-Int-201-m01</td>
<td>Particle Physics (Standard Model)</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-CRP-Int-201-m01</td>
<td>Renormalization Group and Critical Phenomena</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-BWW-Int-201-m01</td>
<td>Bosonisation and Interactions in One Dimension</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-GGD-Int-201-m01</td>
<td>Introduction to Gauge/Gravity Duality</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AKM-Int-201-m01</td>
<td>Cosmology</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AST-Int-201-m01</td>
<td>Theoretical Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EPP-Int-201-m01</td>
<td>Introduction to Plasma Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-APL-Int-201-m01</td>
<td>High-Energy Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-NMA-Int-201-m01</td>
<td>Computational Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QFT1-Int-201-m01</td>
<td>Quantum Field Theory I</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QFT2-Int-201-m01</td>
<td>Quantum Field Theory II</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TEP-Int-201-m01</td>
<td>Theoretical Elementary Particle Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-ATTP-Int-201-m01</td>
<td>Selected Topics of Theoretical Elementary Particle Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-BSM-Int-201-m01</td>
<td>Models Beyond the Standard Model of Elementary Particle Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-STRG1-Int-201-m01</td>
<td>String Theory 1</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-STRG2-Int-201-m01</td>
<td>String Theory 2</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RAI-Int-211-m01</td>
<td>Radio Astronomical Interferometry</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TPSM-Int-211-m01</td>
<td>Particle Physics (Standard Model)</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FPA-Int-201-m01</td>
<td>Visiting Research</td>
<td>10</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXT5-Int-201-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXT6-Int-201-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXT7-Int-201-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>7</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXT8-Int-201-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EXP6A-Int-201-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
</tbody>
</table>
Subfield Non-Physical Minors

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-M-ORSaf-152-m01</td>
<td>Operations Research for students of other subjects</td>
<td>10</td>
<td>NUM</td>
<td>75</td>
</tr>
<tr>
<td>10-M-VAN-152-m01</td>
<td>Advanced Analysis</td>
<td>7</td>
<td>NUM</td>
<td>117</td>
</tr>
<tr>
<td>10-M=AAAAnin-152-m01</td>
<td>Applied Analysis</td>
<td>10</td>
<td>NUM</td>
<td>20</td>
</tr>
<tr>
<td>10-M=ADGMin-152-m01</td>
<td>Differential Geometry</td>
<td>10</td>
<td>NUM</td>
<td>46</td>
</tr>
<tr>
<td>10-M=AFTHin-152-m01</td>
<td>Complex Analysis</td>
<td>10</td>
<td>NUM</td>
<td>25</td>
</tr>
<tr>
<td>10-M=ALTHin-152-m01</td>
<td>Lie Theory</td>
<td>10</td>
<td>NUM</td>
<td>65</td>
</tr>
<tr>
<td>10-M=AZTHin-152-m01</td>
<td>Topology</td>
<td>10</td>
<td>NUM</td>
<td>115</td>
</tr>
<tr>
<td>10-M=VGDSin-152-m01</td>
<td>Groups and their Representations</td>
<td>10</td>
<td>NUM</td>
<td>56</td>
</tr>
<tr>
<td>10-M=VGEMin-152-m01</td>
<td>Geometrical Mechanics</td>
<td>10</td>
<td>NUM</td>
<td>55</td>
</tr>
<tr>
<td>10-M=VNPEin-152-m01</td>
<td>Numeric of Partial Differential Equations</td>
<td>10</td>
<td>NUM</td>
<td>74</td>
</tr>
<tr>
<td>10-M=VDIMin-152-m01</td>
<td>Discrete Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>47</td>
</tr>
<tr>
<td>10-M=VMPHin-152-m01</td>
<td>Selected Topics in Mathematical Physics</td>
<td>10</td>
<td>NUM</td>
<td>97</td>
</tr>
<tr>
<td>10-M=VPDPin-152-m01</td>
<td>Partial Differential Equations of Mathematical Physics</td>
<td>10</td>
<td>NUM</td>
<td>78</td>
</tr>
<tr>
<td>10-M=VPRGin-152-m01</td>
<td>Pseudo Riemannian and Riemannian Geometry</td>
<td>10</td>
<td>NUM</td>
<td>85</td>
</tr>
<tr>
<td>10-I=DB-161-m01</td>
<td>Databases</td>
<td>5</td>
<td>NUM</td>
<td>45</td>
</tr>
<tr>
<td>10-I=PA-161-m01</td>
<td>Analysis and Design of Programs</td>
<td>5</td>
<td>NUM</td>
<td>51</td>
</tr>
<tr>
<td>10-I-RAK-152-m01</td>
<td>Computer Architecture</td>
<td>5</td>
<td>NUM</td>
<td>92</td>
</tr>
<tr>
<td>10-I-APR-172-m01</td>
<td>Advanced Programming</td>
<td>5</td>
<td>NUM</td>
<td>54</td>
</tr>
<tr>
<td>10-I-BS-191-m01</td>
<td>Operating Systems</td>
<td>5</td>
<td>NUM</td>
<td>23</td>
</tr>
<tr>
<td>10-I=KI1-161-m01</td>
<td>Artificial Intelligence 1</td>
<td>5</td>
<td>NUM</td>
<td>64</td>
</tr>
<tr>
<td>08-FU-SAM-161-m01</td>
<td>Sensor and Actor Materials - Functional Ceramics and Magnetic Particles</td>
<td>5</td>
<td>NUM</td>
<td>101</td>
</tr>
<tr>
<td>08-FU-E EW-152-m01</td>
<td>Electrochemical Energy Storage and Conversion</td>
<td>5</td>
<td>NUM</td>
<td>50</td>
</tr>
<tr>
<td>08-FU-MW-161-m01</td>
<td>Structure and Properties of Modern Materials: Experiments vs. Simulations</td>
<td>5</td>
<td>NUM</td>
<td>48</td>
</tr>
<tr>
<td>11-EXNP6-Int-201-m01</td>
<td>Nonphysical Minor Subject</td>
<td>6</td>
<td>NUM</td>
<td>72</td>
</tr>
</tbody>
</table>

Master Project Modules (60 ECTS credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-FS-P-Int-201-m01</td>
<td>Professional Specialization Physics International</td>
<td>15</td>
<td>B/NB</td>
<td>84</td>
</tr>
<tr>
<td>11-MP-P-Int-201-m01</td>
<td>Scientific Methods and Project Management Physics Inter</td>
<td>15</td>
<td>B/NB</td>
<td>96</td>
</tr>
<tr>
<td>11-MA-P-Int-201-m01</td>
<td>Master Thesis Physics International</td>
<td>30</td>
<td>NUM</td>
<td>67</td>
</tr>
</tbody>
</table>
Module title
Advanced Astro Imaging

Abbreviation
11-AAI-Int-201-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

1) Image Acquisition: a) Motivation: History of Astronomical Imaging - From the Eye to the Detector; b) Atmospheric Transmission: Ground Based vs. Space Based Imaging; c) Observing Techniques and Instruments; d) Optical Detector Types and CCD Properties; e) Imaging in Other Bands of the Electromagnetic Spectrum

3) Advanced Processing: a) FITS File Format; b) Image Reconstruction; c) Fourier Analysis; d) Speckle Interferometry; e) Maximum Entropy Methods; f) Interferometry; g) Image Classification, Machine Learning Methods

4) Outlook: a) Future Challenges: Scientific Questions / Instruments / Data Processing; b) Future Facilities Radio to Gamma-rays; c) Imaging in Other Scientific Fields

Intended learning outcomes
The aim of the module is to convey a fundamental understanding of imaging methods using examples from modern astronomy, incorporating measurements from ground- and space-based instruments. The students acquire the following qualifications: ability to process and interpret raw-image data, to perform data reduction, image analysis, application and improvement of processing algorithms. The concepts and methods are not limited to the field of astronomy but applicable to many other areas.

Courses
(type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Advanced Computer Tomography

Abbreviation
11-CTA-Int-201-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
This advanced course focuses on the details of modern computed tomography (CT), which is employed both in medical and industrial imaging applications. In addition to the technicalities of CT systems and their application to various tasks in engineering and medical science, this lecture emphasizes on the mathematics of “inverting the Radon transform”. Starting with the simple Filtered Back Projection method which is applied to a variety of standard recording geometries (parallel, fan, cone, helix) the advanced course lays out the strategies for algebraic reconstruction techniques (ART) along with many types of regularization schemes which may accompany these methods. Students will have the opportunity to see how Radon data is recorded and how different error sources as well as the corresponding correction schemes influence the outcome of the reconstructed volume images. Finally the most common tools for volume image analysis are presented, such as distance transforms, watersheds, labelling and fiber orientation analysis.

Intended learning outcomes
The student know the concept of Computed tomography (CT) and its applications. From the formulation of the basic inverse problem posed by this technique the students are able to derive strategies for different numerical solutions, based on Fourier analysis and/or based on probability theory. Most importantly the students have a firm impression (first-hand experience) of the various sources of measurement errors in CT which can impede any well-prepared reconstruction.

Courses
(type, number of weekly contact hours, language — if other than German)

- **V (3) + R (1)**
 - Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Advanced Laboratory Course Master Part 1

Abbreviation
11-P-FM1-Int-201-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
3

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
Preparation and safety briefing.

Contents
Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics.

Intended learning outcomes
Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)
P (3)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
practical examination
Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.
Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Laboratory Course Master Part 2</td>
<td>11-P-FM2-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Preparation and safety briefing.</td>
</tr>
</tbody>
</table>

Contents

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics.

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Laboratory Course Master Part 3</td>
<td>11-P-FM3-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>Preparation and safety briefing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P (3)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Advanced Laboratory Course Master Part 4

Abbreviation

11-P-FM4-Int-201-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

3

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

Preparation and safety briefing.

Contents

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Advanced Magnetic Resonance Imaging

| Abbreviation | 11-MRI-Int-201-m01 |

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

| 6 |

Method of grading

Only after succ. compl. of module(s)

Duration

| 1 semester |

Module level

graduate

Other prerequisites

--

Contents

Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon that, through magnetic resonance imaging (MRI), has played a major role in the revolution in medical imaging over the last 30 years. Starting from the fundamentals of nuclear magnetic resonance (resonance principle, relaxation times, chemical shift) this course covers:

1. the NMR signal theory and signal evolution (Bloch equations)
2. the principles of spatial encoding, magnetic resonance imaging (MRI) and corresponding imaging sequences and measurement parameters,
3. the concept of k-space and Fourier imaging,
4. the physical, methodological and technical possibilities and limitations of MRI. Finally, typical application fields of MRI in biomedical research, clinical imaging and non-destructive testing will be covered.

Intended learning outcomes

The students are familiar with the basics and the deepened aspects of NMR and MRI including the mathematical-theoretical description and the physical basics of modern MRI, MRI-instrumentation and image-formation/image-processing principles. The students gain a deep insight into the area of modern MRI and its interdisciplinary relations and applications.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Seminar Physics A</td>
<td>11-OSP-A-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Seminar on current topics in theoretical and experimental physics

Intended learning outcomes

In-depth knowledge about a current topic in experimental or theoretical physics. Ability to read scientific publications, summarizing them and presenting them to a peer audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk with discussion (30 to 45 minutes)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Seminar Physics B</td>
<td>11-OSP-B-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Seminar on current topics in theoretical and experimental physics.

Intended learning outcomes

In-depth knowledge about a current topic in experimental or theoretical physics. Ability to read scientific publications, summarizing them and presenting them to a peer audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk with discussion (30 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Advanced Theory of Quantum Computing and Quantum Information

Abbreviation
11-QIC-Int-201-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
1. Brief summary of classical information theory
2. Quantum theory seen from the perspective of information theory
3. Composite systems and the Schmidt decomposition
4. Entanglement measures
5. Quantum operations, POVMs, and the theorems of Kraus and Stinespring
6. Quantum gates and quantum computers
7. Elements of the theory of decoherence

Intended learning outcomes
Comprehensive understanding of quantum states and identity matrix beyond the usual textbook interpretation. Knowledge of handling tensor products and dealing with quantum effects in multipartite quantum systems. In-depth understanding of the phenomenon of entanglement. Knowledge of the fundamental mathematical concepts of quantum information theory. Ability to assess the limitations of quantum computing arising from decoherence.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title

Advanced Topics in Astrophysics

Abbreviation

11-CSAM-Int-201-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Approval from examination committee required.

Contents

An in-depth study of particular current topics in astrophysics. Concepts of astrophysics will be conveyed which are relevant to the following topics: Stellar structure, star formation and development, radiation transport, gas dynamics, heating and cooling processes of the interstellar medium, astrochemistry, accretion and jets, galaxy formation, as well as related topics.

Intended learning outcomes

Acquisition of advanced skills in current topics of astrophysics. Capability to independently get acquainted with current research topics in astrophysics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Advanced Topics in Solid State Physics

Abbreviation
11-CSFM-Int-201-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Approval from examination committee required.

Contents
This module will enable the lecturers of condensed matter physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes
In-depth knowledge and understanding of an advanced topic in condensed matter physics. Insight into the interface between teaching and research.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V(3)</td>
<td>+ R(1)</td>
<td>English</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Analysis</td>
<td>10-M=AAANin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

<table>
<thead>
<tr>
<th>type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)</td>
</tr>
</tbody>
</table>

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	**Abbreviation**
Basic Imaging Concepts | 11-BIC-Int-201-m01

Module coordinator | **Module offered by**
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Introduction to generic imaging concepts and physical imaging methods covering the most central aspects across all imaging modalities, including 1) the concept of Fourier imaging, 2) tomography (Radon-Transformation, central-slice-theorem), 3) the system theory of imaging systems, and 4) issues of image quality (point-spread function, modulation transfer function, spatial resolution, contrast, noise). During the course different advanced methods for image acquisition will be covered and a comprehensive overview of modern imaging modalities in biomedicine, material science and astrophysics will be given.

Intended learning outcomes

The students know the physical foundations of imaging methods and their applications. They understand the principles of image formation and are able to explain the different methods and to interpret simple images.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>3</td>
<td>English</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>English</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Imaging Reconstruction and Processing</td>
<td>11-IRP-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This training course uses the fundamentals of modern signal processing and imaging concepts, which are introduced in the corresponding lecture. Starting with the different categories of signals and transferring them to imaging applications, the students can test Fourier transform properties first hand by developing Matlab or Python code. Image convolution and de-convolution techniques are addressed in particular with respect to image processing tasks in modern physics (e.g. denoising). The Radon-Transform, which takes an outstanding importance in the field of computed tomography is demonstrated by the three-dimensional image reconstruction from real CT data whereby different sources of error can be tested. The theoretical part on discrete signals and their Fourier transform properties as well as different ways of image compression will also be further developed during this course.

Intended learning outcomes

Students who attended the course are firm with the theoretical concepts of signal processing in particular with respect to imaging applications. They are able to devise a strategy /toolchain for basic and advanced imaging problems, such as image reconstruction, denoising, Fourier analysis and frequency decomposition. By using Matlab or Python they are able to calculate appropriate figures of merit from scientific images, such as SNR.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>10-I-BS-191-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: English

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>(approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate). Language of assessment: German and/or English creditable for bonus</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosonisation and Interactions in One Dimension</td>
<td>11-BWW-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Instability of Fermi systems in one dimension (1D)
2. Abelian bosonisation and Luttinger liquids (spinless fermions, correlation functions, models with spin, renormalization group, and the sine-Gordon model).

The below mentioned topics will be presented in different years:
3. Interacting fermions on a lattice (Hubbard model, t/J model, transport properties)
4. Bethe ansatz
5. Spin-1/2 chains
6. Disordered systems
7. Non-abelian bosonisation and the WZW model (Kac-Moody algebras, Sugawara construction, Knizhnik-Zamolodchikov equation, applications of the WZW model)

Intended learning outcomes

Familiarity with the peculiarities of one-dimensional (1D) electron systems. Acquisition of the theoretical tools to understand experimentally relevant features including disorder effects and transport in 1D.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Complex Analysis

Abbreviation
10-M=AFTHin-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e.g., elliptic functions).

Intended learning outcomes
The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses
(V 4) + Ü (2)
Module taught in: English

Method of assessment
(a) written examination (approx. 90 to 120 minutes, usually chosen) or (b) oral examination of one candidate each (approx. 20 minutes) or (c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Master's with 1 major Physics International (2020)
JMU Würzburg • generated 17-jul-2021 • exam. reg. data record Master (120 ECTS) Physics International - 2020

page 25 / 118
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Astrophysics</td>
<td>11-NMA-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

Ability to solve problems and equations typical in astrophysics and other fields of physics with the aid of numerical simulations. Capability to choose adequate strategies to approach such problems and to validate the results.

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
</tr>
<tr>
<td>Module taught in: English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Computational Materials Science (DFT)

Module title
Computational Materials Science (DFT)

Abbreviation
11-CMS-Int-201-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Numerical grade

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
1. Density functional theory (DFT)
2. Wannier functions and localized basis functions
3. Numerical evaluation of topological invariants
4. Hartree-Fock and static mean-field theory
5. Many-body methods for solid state physics
6. Anderson impurity model (AIM) and Kondo physics
7. Dynamical mean-field theory (DMFT)
8. DFT + DMFT methods for realistic modeling of solids
9. Strongly correlated electrons

Intended learning outcomes
Theoretical treatment of the above topics complemented by hands-on tutorials to be held in the CIP-Pool. Familiarity with DFT software packages such as VASP or Wien2k and construction of maximally localized Wannier functions by projecting DFT results onto atomic orbitals using wannier90. Knowledge how to obtain many-body solutions of the AIM and explore some of its limiting cases such as the Kondo regime. Ability to use impurity solvers based on exact diagonalization or continuous-time quantum Monte Carlo for the solution of the DMFT self-consistency equations.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformal Field Theory</td>
<td>11-KFT-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Conformal field theory (CFT), as developed in the 1980s, finds immediate applications in string theory and two-dimensional statistical mechanics, where critical exponents and correlation functions for many models (Ising, tricritical Ising, 3-state Potts, etc.) can be calculated exactly. The physical idea is that the principle of scale invariance is elevated from a global to a local invariance, which for reasons of consistency amounts to invariance under conformal transformations. This, in turn, yields a rich and fascinating mathematical structure for two-dimensional systems (either two space or one time and one space dimension). CFT has become relevant to many interesting areas of condensed matter physics, including Abelian and non-Abelian bosonization, quantized Hall states (where the bulk wave function is described in terms of conformal correlators, and the edge in terms 1+1 dimensional CFTs), the two-channel Kondo effect, fractional topological insulators, and in particular fault-tolerant topological quantum computing involving non-Abelian anyons (Ising and Fibonacci anyons, for example, owe their names to the fusion rules of the associated conformal fields.) A potential syllabus for the first term of the course is:

0 Introduction (scale and conformal invariance, critical exponents, the transverse Ising model at the self-dual point)

1 Conformal theories in D dimensions (conformal group, conformal algebra in 2D, constraints on correlation functions)

2 Conformal theories in D=2 (primary fields and correlation functions, quantum field theory, canonical quantization and Noether's theorem, radial quantization and Polyakov's theorem, time ordering and functional integration, the free boson and vertex operators, conformal Ward identities)

3 The central charge and the Virasoro algebra (central charge, the Schwarzian derivative, the free fermion, (Abelian) bosonization, mode expansions and the Virasoro algebra, the cylinder geometry and the Casimir effect, in- and out-states, highest weight states, descendant fields and operator product expansions, conformal blocks, duality and the bootstrap)

4 Kac determinant and unitarity (Verma modules and null states, Kac determinant formula, non-unitarity proof, conformal grids, minimal models in general)

Intended learning outcomes

Acquisition of both practical and conceptional familiarity with the methods of conformal field theory. Basic understanding of critical phenomena, quantum field theory, and functional integration. Enhanced level of understanding in particular for students of theoretical physics by exposure to an ambitious method with significant applications in contemporary condensed matter physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Conformal Field Theory 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

5 Minimal models (critical statistical mechanics models (Ising, tricritical Ising, 3 state Potts model, restricted solid-on-solid models), correlation functions of the critical Ising model, fusion rules and the Verlinde algebra, Landau-Ginzburg description of minimal models, modified Coulomb gas method and its application to the Ising model, superconformal models)

6 Free bosons and fermions (mode expansions, twist fields, fermionic zero modes and fermion parity)

7 Free fermions on the torus (operator implementation of the partition function, vacuum energies, representations of Virasoro algebra, the modular group and fermionic spin structures, Virasoro characters, critical Ising model on the torus, Jacobi theta function identities)

8 Free bosons on the torus (Lagrangian formulation of the partition function, fermionization, orbifolds in general, S1/Z2 orbifold, Gaussian and Askhin-Teller models, duality between original and orbifold theories, marginal operators, the space of c=1 theories)

Intended learning outcomes

Acquisition of both practical and conceptional familiarity with the methods of conformal field theory. Basic understanding of critical phenomena, quantum field theory, and functional integration. Enhanced level of understanding in particular for students of theoretical physics by exposure to an ambitious method with significant applications in contemporary condensed matter physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Contemporary Astrophysics
Abbreviation: 11-CAP-Int-201-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
- History of Astronomy
- Coordinates and Time Measurement
- The Solar System
- Exoplanets
- Astronomical Scales
- Telescopes and Detectors
- Stellar Structure and Atmospheres
- Stellar Evolution and their End Stages
- Interstellar Medium
- Molecular Clouds
- Structure of the Milky Way
- The Local Universe
- The Expanding Universe
- Galaxies
- Active Galactic Nuclei
- Large-Scale Structures
- Cosmology

Intended learning outcomes:
The student is familiar with the modern astrophysical world view. He/She knows the methods and instruments of astrophysical research. He/She is able to plan and interpret his/her own observations. He/She is familiar with the physics and evolution of the most important astrophysical objects, e.g., stars and galaxies.

Courses:
V (3) + R (1)
Module taught in: English

Method of assessment:
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmology</td>
<td>11-AKM-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Expanding Space-Time, Friedmannian Cosmology, Basics of General Relativity, The Early Universe, Inflation, Dark Matter, Primordial Nucleosynthesis, Cosmic Microwave Background, Structure Formation, Galaxies and Galaxy Clusters, Intergalactic Medium, Cosmological Parameters

Intended learning outcomes

Basic knowledge of cosmology. Knowledge of the theoretical methods of cosmology and the ability to relate those to observations. Insight into current research topics and is able to work on scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EX5-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics, Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in experimental physics on Master's level. He/She commands knowledge in a current field in experimental physics and insight into the measuring and evaluation methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE6-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in experimental physics on Master's level. He/She commands knowledge in a current field in experimental physics and insight into the measuring and evaluation methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (3) + R (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE7-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in experimental physics on Master's level. He/She commands knowledge in a current field in experimental physics and insight into the measuring and evaluation methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE8-Int-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in experimental physics on Master's level. He/She commands knowledge in a current field in experimental physics and insight into the measuring and evaluation methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + R (2)
Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE6A-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics, credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in experimental physics on Master's level. He/She commands knowledge in a current field in experimental physics and insight into the measuring and evaluation methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
- **Current Topics in Physics**

Abbreviation
- 11-EXP6-Int-201-m01

Module coordinator
- chairperson of examination committee

Module offered by
- Faculty of Physics and Astronomy

ECTS
- 6

Method of grading
- numerical grade

Duration
- 1 semester

Module level
- graduate

Other prerequisites
- Approval from examination committee required.

Contents
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The student possesses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses
(type, number of weekly contact hours, language — if other than German)

- **V (3) + R (1)**

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physics</td>
<td>11-EXP6A-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT5-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses deepened knowledge meeting the requirements of a module in theoretical physics on Master’s level. He/She commands advanced technical knowledge in a current field in theoretical physics and masters the respective methods. He/She is able to apply these methods to current problems in theoretical physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Current Topics of Theoretical Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT6-Int-201-m01</td>
</tr>
</tbody>
</table>

Module Coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS | Method of grading | Only after succ. compl. of module(s) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents
Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The student possesses deepened knowledge meeting the requirements of a module in theoretical physics on Master's level. He/She commands advanced technical knowledge in a current field in theoretical physics and masters the respective methods. He/She is able to apply these methods to current problems in theoretical physics.

Courses
(V (3) + R (1))
Module taught in: English

Method of assessment
(a) written examination (approx. 90 to 120 minutes) or
(b) oral examination of one candidate each (approx. 30 minutes) or
(c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
(d) project report (approx. 8 to 10 pages) or
(e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title

Current Topics of Theoretical Physics

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-EXT7-Int-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses deepened knowledge meeting the requirements of a module in theoretical physics on Master's level. He/She commands advanced technical knowledge in a current field in theoretical physics and masters the respective methods. He/She is able to apply these methods to current problems in theoretical physics.

Courses

(V (3) + R (1))

Module taught in: English

Method of assessment

(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT8-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses deepened knowledge meeting the requirements of a module in theoretical physics on Master's level. He/She commands advanced technical knowledge in a current field in theoretical physics and masters the respective methods. He/She is able to apply these methods to current problems in theoretical physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT6A-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student possesses deepened knowledge meeting the requirements of a module in theoretical physics on Master's level. He/She commands advanced technical knowledge in a current field in theoretical physics and masters the respective methods. He/She is able to apply these methods to current problems in theoretical physics.

Courses

V (3) + R (1)
Module taught in: English

Method of assessment

(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases</td>
<td>10-I=DB-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Relational algebra and complex SQL statements; database planning and normal forms, XML data modelling; transaction management.

Intended learning outcomes

The students possess knowledge about data modelling and queries in SQL, transactions as well as about easy data modelling in XML.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Separate written examination for Master's students.

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IS, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Geometry</td>
<td>10-M=ADGMin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Intended learning outcomes

The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geometry.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Mathematics</td>
<td>10-M=VDIMin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advanced methods and results in a selected field of discrete mathematics (e. g. coding theory, cryptography, graph theory or combinatorics)

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure and Properties of Modern Materials: Experiments vs. Simulations</td>
<td>08-FU-MW-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Material properties of metals and ceramics: Structur-property relationships through experiments and simulation.

Intended learning outcomes

The students gain fundamental knowledge about the properties of modern materials: aviation aluminum alloys and high performance ceramics. Analytical methods and predictions through numerical simulations will be presented. The relationship of mikro- and nanoscopic structure of materials and the resulting properties are emphasized.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) talk (approx. 30 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups of 2 (approx. 30 minutes total)

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron and Ion Microscopy</td>
<td>11-EIM-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student has specific and immersed knowledge in electron and ion microscopy. He/she knows the theoretical and instrumental basics and principles of detectors and contrast mechanisms. He/she knows different modi of electron microscopy and their applications. He/she knows ongoing developments in this field.

Courses

V (3) + R (1)

Module taught in: German or English

Teaching cycle: annually, after announcement

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrochemical Energy Storage and Conversion</td>
<td>08-FU-EEW-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemistry and application of battery systems (aqueous and non-aqueous systems like lead, nickel cadmium and nickel metal hydride, sodium sulfur, sodium nickel chloride, lithium ion accumulators), electrochemical double layer capacitors, redox-flow battery, fuel cell systems (AFC, PEMFC, DMFC, PAFC, SOFC), Solar cells (Si, CIS, CIGS, GaAs, organic and dye solar cell), thermoelectric devices.

Intended learning outcomes

The students gain comprehensive knowledge in the field of electrochemical energy storage and transformation and are able to apply this to scientific problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + P (1) + E (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) assessment and b) Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations), weighted 7:3

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis and Design of Programs</td>
<td>10-I=PA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes

The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Particle Physics</td>
<td>11-TPE-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

Familiarity with the basic questions studied with a modern particle physics detector, and with modern data analysis techniques in particle physics. Ability to put results into context and to assess their systematic uncertainties.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Theory in Solid State</td>
<td>11-FFK-Int-201-m01</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the</td>
<td>Faculty of Physics</td>
</tr>
<tr>
<td>Institute of Theoretical</td>
<td>and Astronomy</td>
</tr>
<tr>
<td>Physics and Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This will usually be a course on quantum many particle physics approached by the perturbative methods using Green's functions

An outline could be:

1. Single-particle Green's function
2. Review of second quantization
3. Diagrammatic method using many particle Green's functions at temperature T=0
4. Diagrammatic method for finite T
5. Landau theory of Fermi liquids
6. Superconductivity
7. One-dimensional systems and bosonization

Intended learning outcomes

Working knowledge of the methods of quantum field theory in a non-relativistic context. Ability to study properties of Fermi liquids (and bosonic systems) beyond the one-particle picture. Acquisition of methods which are essential for the understanding the effects of interactions, including superconductivity and the Kondo effect.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest. Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Advanced Programming | 10-I-APR-172-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science II | Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes
Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrical Mechanics</td>
<td>10-M=VGEMin-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematic (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: symplectic geometry, cotangent bundles and other examples of symplectic manifolds, symmetries and Noether theorem, phase space reduction, normal forms, introduction to Poisson geometry.

Intended learning outcomes
The student is acquainted with selected advanced applications of differential geometry to geometric mechanics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Groups and their Representations

Abbreviation
10-M=VGDSin-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Intended learning outcomes
The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Theory</td>
<td>11-GRTM-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: High-Energy Astrophysics
Abbreviation: 11-APL-Int-201-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Astrophysical sources of high-energy emission, radiative processes, interaction of light with matter, particle-acceleration processes, pair creation, nuclear processes, pion production, astrophysical shock waves, kinetic equations

Intended learning outcomes:
The student gains knowledge in fundamentals of high-energy astrophysics, such as particle acceleration and non-thermal radiative processes in astrophysical

Courses:
(type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title

Image and Signal Processing in Physics

Abbreviation

11-BSV-Int-201-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Periodic and aperiodic signals; basic principles of the discrete and exact Fourier transformation; basic principles of the digital signal and image processing; discretization of signals/Shannon sampling theorem; Parseval theorem, correlation and energy consideration; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes

Advanced knowledge about digital image and signal processing. Familiarity with the physical principles of image processing and various methods of signal processing. Capability of describing the various methods and in particular of applying them to tomography.

Courses

V (2) + Ü (2)

Module taught in: English

Method of assessment

(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Introduction to Gauge/Gravity Duality | 11-GGD-Int-201-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents

1. Elements of quantum field theory:
 - Quantisation of the free field
 - Interactions
 - Renormalisation Group
 - Gauge Fields
 - Conformal Symmetry
 - Large N expansion
 - Supersymmetry

2. Elements of gravity
 - Manifolds, coordinate covariance and metric
 - Riemann curvature
 - Maximally symmetric spacetimes
 - Black holes

3. Elements of string theory
 - Open and closed strings
 - Strings in background fields
 - Type IIB String Theory
 - D-Branes

4. The AdS/CFT correspondence
 - Statement of the correspondence
 - Near-horizon limit of D3-Branes
 - Field-operator correspondence
 - Tests of the correspondence: Correlation functions
 - Tests of the correspondence: Conformal anomaly
 - Holographic principle

5. Extensions to non-conformal theories
 - Holographic renormalisation group
 - Holographic C-Theorem

6. Applications I: Thermo- and hydrodynamics
 - Quantum field theory at finite temperature
 - Black holes
 - Holographic linear response formalism
 - Transport coefficients: Shear viscosity and conductivities

7. Applications II: Condensed matter physics
 - Finite charge density and Reissner-Nordström black holes
 - Quantum critical behaviour
 - Holographic fermions
 - Holographic superconductors
- Entanglement entropy

8. Applications III: Particle physics
- Gravity dual of confinement
- Gravity dual of chiral symmetry breaking
- Quark-gluon plasma

Intended learning outcomes

Thorough understanding of the foundations of gauge/gravity duality and the ability to carry out basic tests. Working knowledge of essential applications. Knowledge of quantum mechanics and classical electrodynamics is a prerequisite for this course. Knowledge of quantum field theory and general relativity will be useful, however is not a prerequisite.

Courses (type, number of weekly contact hours, language — if other than German)

| V (4) + R (2) |
| Module taught in: English |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Introduction to Plasma Physics

Managing Director of the Institute of Theoretical Physics and Astrophysics

Faculty of Physics and Astronomy

Module title	Abbreviation
Introduction to Plasma Physics | 11-EPP-Int-201-m01

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, Magnetohydrodynamics, Transport equations for energetic particles, Properties of magnetic turbulence, Propagation of solar particles within the solar wind, Particle acceleration via shock waves and via interaction with plasma turbulence, Particle acceleration and transport in galaxies and other astrophysical objects, Cosmic radiation.

Intended learning outcomes
Knowledge of fundamental processes in plasma astrophysics.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Space Physics</td>
<td>11-ASP-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Overview
2. Dynamics of charged particles in magnetic and electric fields
3. Elements of space physics
4. The sun and heliosphere
5. Acceleration and transport of energetic particles in the heliosphere
6. Instruments to measure energetic particles in extraterrestrial space

Intended learning outcomes

Basic knowledge in space physics, in particular of the characterization of the dynamics of charged particles in space and the heliosphere. Knowledge of the relevant parameters, the theoretical concepts and the methods of their measurements.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence 1</td>
<td>10-l=KI1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence in the area of agents, search and logic and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie Theory</td>
<td>10-M=ALThin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e.g. in physics and control theory.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetism</td>
<td>11-MAG-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Dia- and paramagnetism, Exchange interaction, Ferromagnetism, Antiferromagnetism, Anisotropy, Domain structure, Nanomagnetism, Superparamagnetism, Experimental methods to measure magnetic properties. Kondo effect.

Intended learning outcomes

Knowledge of the basic terminology, concepts and phenomena of magnetism and the experimental methods to measure them. Skills in constructing simple models and describing the mathematical formalism, and the ability to apply these skills to the mentioned fields of magnetism. Competence to independently solve problems in these fields. Capability of assessing the precision of observations and of their analysis.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Master Thesis Physics International
Abbreviation: 11-MA-P-Int-201-m01

Module coordinator: Chairperson of examination committee
Module offered by: Faculty of Physics and Astronomy

ECTS: 30
Method of grading: Numerical grade
Only after successful completion of module(s)

Duration: 1 semester
Module level: Graduate
Other prerequisites: No specific prerequisites

Contents:
Independent work on an experimental or theoretical research task within physics, in particular using state-of-the-art methods and according to scientific aspects. Writing of the master thesis.

Intended learning outcomes:
Ability to independently work on an experimental or theoretical task in physics, in particular according to state-of-the-art methods and scientific aspects, and to discuss and present it in a written final thesis.

Courses (type, number of weekly contact hours, language — if other than German):

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
Master’s thesis (750 to 900 hours total)
Language of assessment: English

Allocation of places:

Additional information:
Bearbeitungszeit: 6 Monate

Referred to in LPO I (examination regulations for teaching-degree programmes):
Module title
Methods of Observational Astronomy

Abbreviation
11-ASM-Int-201-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Methods of observational Astronomy across the electromagnetic spectrum; Extraction and reduction of observational data from radio, optical, X-ray and gamma-ray telescopes.

Intended learning outcomes
Overview over the methods used in observational astronomy in various parts of the electromagnetic spectrum (radio, optical, X-ray and gamma-ray energies). Knowledge of principles and applications of these methods and ability to conduct astronomical observations.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title

Models Beyond the Standard Model of Elementary Particle Physics

Abbreviation

11-BSM-Int-201-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

1. Basics of the Standard Model of Particle Physics
2. Tests of the Standard Model in Low Energy Experiments and at High Energy Colliders
3. Neutrino Physics
4. Higgs Physics

A selection of topics from the following fields will be covered:
- Phenomenology of Experiments at the LHC
- Particle Cosmology
- Extended Gauge Theories
- Models with Extended Higgs Sectors
- Supersymmetry
- Models with Extra Dimension of Space-Time

Intended learning outcomes

Familiarity with tests of the standard model and their limitations. Knowledge in the description of elementary particle phenomenology, in particular Higgs and neutrino physics. Ability to construct extensions of the standard model and understand how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses

(V (3) + R (1))
Module taught in: English

Method of assessment

(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-wavelength Astronomy</td>
<td>11-MAS-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Phenomenology of active galactic nuclei and extragalactic jets
2. Jet-emission processes
3. VLBI observations of jets
4. High-energy observations of jets
5. Multimessenger signatures of jets

Intended learning outcomes

Knowledge in multiwavelength astronomy by studying the observations of active galactic nuclei and their extragalactic jets. Insight into a new not-yet solved astrophysical question. Practice in writing an observing proposal.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano-Optics</td>
<td>11-NOP-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lecture conveys theoretical fundamentals, experimental techniques, and applications of nano-optics starting from the discussion of the focusing of light. Based on this, the fundamentals of modern far-field optical microscopy are discussed. In the following, the near-field optical microscopy is introduced and discussed. As a further basis, quantum emitters are introduced and their light emission in nano-environments is derived. Plasmons in 2D, 1D and 0 dimensions are introduced and discussed in detail. This finally leads to the concept of optical antennas.

Intended learning outcomes

Specific and in-depth knowledge of the topic of nano-optics. Familiarity with the basic theoretical description and applications of nano-optics as well as the current developments of the topic.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonphysical Minor Subject</td>
<td>11-EXNP6-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Non-technical minor. Crediting for academic achievements, e.g. from university change or study abroad

Intended learning outcomes

The student possesses advanced knowledge on Master’s level meeting the requirements of a module in the field of a non-physical minor subject (mathematics, chemistry, computer science, ...).

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Theory</td>
<td>10-M=AZTHin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Intended learning outcomes

The student is acquainted with the fundamental methods of analytics number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric of Partial Differential Equations</td>
<td>10-M=VNPEin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
Creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research for students of other subjects</td>
<td>10-M-ORSaf-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes
The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English
creditable for bonus
Module title

Optical Properties of Semiconductor Nanostructures

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-HNS-Int-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

SEMESTER

1 semester

Module level

graduate

Other prerequisites

--

Contents

Semiconductor Nanostructures are frequently referred to as ‘artificial materials’. In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored via changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, 0D). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks for quantum communication and quantum computing architectures.

Intended learning outcomes

Familiarity with the fundamental properties of semiconductor nanostructures as well as with their theoretical foundations. Knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Semiconductors</td>
<td>11-OHL-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation and safety briefing</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applications.

Intended learning outcomes
In-depth knowledge of the properties of organic semiconductor materials and their applications.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or
b) oral examination of one candidate each (approx. 30 minutes) or
c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
d) project report (approx. 8 to 10 pages) or
e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester.
Language of assessment: English.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Differential Equations of Mathematical Physics</td>
<td>10-M=VPDPin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Elliptic, parabolic, and hyperbolic equations; Laplace equation, heat equation and wave equation as standard examples; initial and boundary value problems; well-posed and ill-posed problems; solution methods; extensions and generalisations; Hilbert space methods; Sobolev spaces and Fourier transforms.

Intended learning outcomes
The student is acquainted with fundamental concepts and solution methods in the theory of partial differential equations, as well as standard examples from mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title

Particle Physics (Standard Model)

Abbreviation

11-TPSM-Int-201-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Theoretical description of the Standard Model
Electroweak symmetry breaking through the Higgs mechanism
Parity Violation
Bhabha scattering
Z-Line Shape and forward / reverse asymmetry
Higgs production and decay
Experimental setup and results of key experiments to test the Standard Model and for determining its parameters
Search for the Higgs boson

Intended learning outcomes

Students know the theoretical fundamental laws of the standard model of particle and the key experiments that have established and confirmed the standard model. They have basic knowledge in order to interpret experimental or theoretical results in the framework of the standard model and can and knows its significance and limitations.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Particle Physics (Standard Model)

Abbreviation

11-TPSM-Int-211-m01

Module coordinator

Managing Director of the Institute of Applied Physics and of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

8

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Approval from examination committee required.

Contents

- Theoretical description of the Standard Model
- Electroweak symmetry breaking through the Higgs mechanism
- Parity Violation
- Bhabha scattering
- Z-Line Shape and forward / reverse asymmetry
- Higgs production and decay
- Experimental setup and results of key experiments to test the Standard Model and for determining its parameters
- Search for the Higgs boson

Intended learning outcomes

Students know the theoretical fundamental laws of the standard model of particle and the key experiments that have established and confirmed the standard model. They have basic knowledge in order to interpret experimental or theoretical results in the framework of the standard model can and knows its significance and limitations.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title | Phenomenology and Theory of Superconductivity
Abbreviation | 11-PTS-Int-201-m01

Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by | Faculty of Physics and Astronomy

ECTS | 6
Method of grading | numerical grade
Only after succ. compl. of module(s) | --
Duration | 1 semester
Module level | graduate
Other prerequisites | --

Contents

Intended learning outcomes
Acquisition of basic knowledge about superconductivity as a macroscopic quantum phenomenon. Profound understanding of unconventional superconductivity and its interplay with magnetism in the context of current research. Knowledge of BCS mean-field theory, the quantum-field theory methods necessary to extend BCS theory, as well as the Meissner effect and the Higgs mechanism. Basic understanding of unconventional superconductors and their fascinating connection with competing magnetic phases.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Advanced Materials</td>
<td>11-PMM-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

General properties of various material groups such as liquids, liquid crystals and polymers; magnetic materials and superconductors; thin films, heterostructures and superlattices. Methods to characterize these material groups. Two-dimensional layered structures.

Intended learning outcomes

Familiarity with the properties and characterization methods of various groups of modern materials.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Physics of Complex Systems

Abbreviation

11-PKS-Int-201-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

1. Theory of critical phenomena in thermal equilibrium
2. Introduction into the physics out of equilibrium
3. Entropy production and fluctuation
4. Phase transitions away from equilibrium
5. Universality
6. Spin glasses
7. Theory of neural networks

Intended learning outcomes

In-depth knowledge of concepts and methods essential for a thorough understanding of collective phenomena in complex many-body systems. Thorough understanding of the concepts of entropy, entropy production and universality. Ability to appreciate the central importance of symmetries. Ability to perform research tasks in the field of complex systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Specialization Physics International</td>
<td>11-FS-P-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to current experimental or theoretical research topics within physics that are of particular relevance for the envisaged topic of the master thesis. A seminar talk summarizing the required underlying fundamental topics.

Intended learning outcomes

Thorough understanding of a current experimental or theoretical research topic of relevance to the topic chosen for the master thesis. In-depth knowledge of the current state of research and ability to present and convey this knowledge in a seminar talk.

Courses (type, number of weekly contact hours, language — if other than German)

S (4)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk with discussion (30 to 45 minutes)
Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo Riemannian and Riemannian Geometry</td>
<td>10-M=VPRGin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Riemannian and pseudo-Riemannian manifolds, Levi-Civita connection and curvature, geodesics and the exponential map, Jacobi fields, comparison theorems in Riemannian geometry, submanifolds, integration, d'Alembert and Laplace operators, causal structure of Lorenz manifolds, Einstein equations and applications in general relativity theory.

Intended learning outcomes
The student is acquainted with advanced topics in differential geometry on Riemannian and pseudo-Riemannian manifolds. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (4) + Ü (2)</th>
</tr>
</thead>
</table>

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Field Theory I</td>
<td>11-QFT1-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

1. Symmetries.
2. Lagrange formalism for fields.
3. Field quantisation.
4. Asymptotic states, scattering theory and S-matrix
5. Gauge principle and interaction.
6. Perturbation theory.
7. Feynman rules.
8. Quantum electrodynamical processes in Born approximation.
9. Radiative corrections (optional)
10. Renormalisation (optional).

Intended learning outcomes

The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Field Theory II</td>
<td>11-QFT2-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
1. Generating Functionals
2. Path Integrals
3. Renormalization
4. Renormalization group
5. Gauge theories
6. Spontaneous Symmetry Breaking
7. Effective Field Theory (optional)

Intended learning outcomes
In-depth knowledge of the concepts and methods of quantum field theory, including the principles of renormalization and of gauge theories. Ability to formulate problems in quantum field theory and to solve them using the acquired calculational methods.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Quantum Mechanics II | 11-QM2-Int-201-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

“Quantum mechanics 2“ constitutes the central theoretical course to be taken within the international Master’s program in physics. While the specific emphasis can be adjusted individually, the core topics that are supposed to be covered should include:
1. Second quantization: fermions and bosons
2. Band structures of particles in a crystal
3. Angular momentum, symmetry operators, Lie Algebras
4. Scattering theory: potential scattering, partial wave expansion
5. Relativistic quantum mechanics: Klein-Gordon equation, Dirac equation, Lorentz group, fine structure splitting of atomic spectra
6. Quantum entanglement
7. Canonical formalism

Intended learning outcomes

In-depth knowledge of advanced quantum mechanics. Thorough understanding of the mathematical and theoretical concepts of the listed topics. Ability to describe or model problems of modern theoretical quantum physics mathematically, to solve problems analytically or using approximation methods and to interpret the results physically. The course is pivotal to subsequent theory courses in astrophysics, high energy physics and condensed matter/solid state physics. The course is mandatory for all Master’s students.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title: Quantum Transport
Abbreviation: 11-QTR-Int-201-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
The lecture addresses the fundamental transport phenomena of electrons in solids where Electron-electron interaction and the wave nature are the determining factors. This includes the diffusive and ballistic transport regime as well as the Coulomb blockade. Observations of electron interference effects, conductance quantization and the quantum Hall effect will be discussed. Thermoelectric properties of electronic system and the phenomenon of superconductivity will be examined as well.
Low dimensional electron systems and its quantum mechanical description are the basis of this lecture. Relevant material systems are semiconductor heterostructures as well as topological insulators, topological semimetals, and topological superconductors. The content will be guided by actual research results.

Intended learning outcomes:
Working knowledge of basic transport experiments, its analysis and its interpretation which enables the student to discuss results critical.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Radio Astronomical Interferometry
Abbreviation: 11-RAI-Int-211-m01

Module coordinator:
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by:
Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:

1) Motivation and Background
 a) History of radio astronomy
 b) The role and development of radio interferometry
 c) Applications of radio interferometry and scientific topics of special interest
 d) Summary of important concepts in radio astronomy

II) Fundamental Concepts
1. Fourier optics
 a) The concept of telescope aperture
 b) Convolution and Fourier Theorems
 c) (Radio) telescopes as spatial filters
2. Interferometry
 a) The Michelson interferometer
 b) The two-element interferometer
 c) The visibility function
 d) The influence of limited bandwidth
 e) Spatial frequencies in interferometry
 f) Coordinate systems
3. Aperture Synthesis by Radio Interferometric Arrays
 a) The concept of (u,v) coverage
 b) Simple configurations and transit arrays
 c) Tracking arrays and Earth-rotation synthesis
 d) VLBI arrays
 e) Antenna separations and geometry
4. Receiver Response
 a) Heterodyne frequency conversion
 b) Interferometer sensitivity
 c) Sampling, weighting, gridding
 d) Bandwidth smearing
 c) Calibration
5. Image reconstruction
 a) CLEAN and alternative imaging algorithms
 b) Image defects
 c) Seif calibration
6. Digital Beamforming

II I. Special Applications and Challenges

a) Surveys and Wide-Field Imaging
b) Very Long Baseline Interferometry
c) Spectroscopy in Radio Interferometry
d) Polarisation in Radio Interferometry
e) Time-Domain Science in Radio Interferometry
f) Low-frequency Challenges Interferometry
g) Big Data in Radio Interferometry
h) Interferometry and Geodesy

IV) Technical realization: Current and Upcoming Radio Interferometers

1. Low-frequency arrays: LOFAR, GMRT, ASKAP, APERTIF/WSRT, LWA, MWA
2. Centimeter-Band Arrays: JVLA, MERLIN, ATCA, MeerKAT, VLBA, EVN, LBA, JVN, VERA, AVN
3. (Sub-) Millimeter Arrays: ALMA, NOEMA, GMVA, EHT
4. The Future: SKA

Intended learning outcomes

The goal of the course is the transfer of knowledge and competence in the radio interferometrical method, providing a foundation for independent research. Concepts are taught in connection to practical examples from modern astronomy including recent measurements of radio interferometers.

Students shall gain the following specific competences:

- Understanding of the concept of radio interferometrical observations and their calibration.
- Processing and interpretation of raw data, data reduction and analysis, applications and understanding of established algorithms.
- Handling of large data volumes. The course makes use of general concepts and teaches special programming concepts that are of wide use beyond astronomy.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Teaching cycle: Course offered every year, after announcement

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statitical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate). Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

§ 69 I Nr. 1c: Rechnerarchitektur
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renormalization Group and Critical Phenomena</td>
<td>11-CRP-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Phase transitions
2. Mean field theory
3. The concept of the renormalization group (RG)
4. Phase diagrams and fixed points
5. Perturbation-theoretical renormalization group
6. Low-dimensional systems
7. Conformal symmetry

Intended learning outcomes

Profound knowledge of the principles of scale invariance and the renormalization group (RG) in statistical physics. Understanding of the concept of the RG flow with respect to effective field theories in both statistical and quantum field theory.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes). If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest. Language of assessment: English Assessment offered: In the semester in which the course is offered and in the subsequent semester</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Renormalization Group Methods in Field Theory
Abbreviation: 11-RMFT-Int-201-m01

Module coordinator:
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
This course is complementary to the discussion of Wilson’s renormalization group (RG) as covered in the course „Renormalization Group and Critical Phenomena“ (11-CRP). This course focuses on the diagrammatic formulation of RG flow equations and its relation to diagrammatic perturbation expansions. For interacting fermion systems, this is of particular relevance in the context of the functional renormalization group. A possible outline of the course is:
1. Wilson’s RG
2. Path integral formulation of interacting fermions
3. Bethe-Salpeter-equation
4. RG flow equations for the one-particle and the two-particle vertex
5. Comparison of flow equations with diagrammatic resummation schemes (such as the „random phase approximation“)
6. RG flow equations for spin systems

Intended learning outcomes
Familiarity with modern diagram based techniques for interacting many-body systems. In-depth understanding of the theoretical framework addressing a range of phenomena in correlated electron systems including superconductivity, charge and spin density waves, and nematic instabilities.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: Once a year as announced

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Scanning Probe Technologies | 11-SPT-Int-201-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Basic theoretical principles of scanning force, tunneling, and near-field optical microscopy; basic principles of surface science; tip-sample interactions; design principles and material considerations; fundamentals of control engineering; measurement modes, e.g., contact and non-contact, Kelvin probe, friction force microscopy, etc; basic principles of processing and presenting microscopy data; measurement techniques and their application: lock-in, phase-lock loop, etc.

Intended learning outcomes
Student acquires specific knowledge in scanning probe microscopy. He/she knows the basic theoretical principles, is aware of basic design principles, knows pros and cons of various materials, and is familiar of measurement modes, contrast mechanisms, and their application. He/she is aware of recent development in the field.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Methods and Project Management Physics International</td>
<td>11-MP-P-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to the scientific approach and practice, including project planning within a current experimental or theoretical research topic in physics. Establishment of a scientific project plan for the planned master thesis.

Intended learning outcomes

Knowledge of the scientific approach and practice, including project planning in a current experimental or theoretical research topic of relevance to the topic chosen for the master thesis. Ability to establish a research plan for the master thesis, and to plan the required experimental or theoretical work. Ability to present the project in a seminar talk.

Courses (type, number of weekly contact hours, language — if other than German)

R (4)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk with discussion (30 to 45 minutes)
Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Mathematical Physics</td>
<td>10-M=VMPHin-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in mathematical physics, for example continuum mechanics, fluid dynamics, mathematical material sciences, geometric field theory, advanced topics in quantum theory.

Intended learning outcomes

The student is acquainted with an advanced topic in mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Selected Topics of Theoretical Elementary Particle Physics

Abbreviation: 11-ATTP-Int-201-m01

Module Coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
A selection of topics from the following fields will be covered:
1. Advanced Techniques for Precision Calculations of Scattering Amplitudes
2. Phenomenology of Collider Experiments
3. Higgs Physics
4. Top-Quark Physics

Intended learning outcomes

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Selected Topics of Theoretical Solid State Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics of Theoretical Solid State Physics</td>
<td>11-AKTF-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In this lecture, selected topics of condensed matter theory are addressed. We intend to present new developments to bring the students in touch with actual research topics. Possible subjects are many-body localization and dynamic quantum matter.

Intended learning outcomes

The students learn how to describe condensed matter systems in presence of disorder and interactions from a theoretical point of view. This happens on the basis of analytical and numerical methods. Therefore, we envisage a smooth crossover of these students to the next step of becoming a researcher.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester. Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Physics</td>
<td>11-HPH-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

The lecture deals with the fundamental properties of semiconductors. It begins with an analysis of the crystal structure, leading to methods for describing band structures. These form a basis for discussing optical and electronic properties of monolithic semiconductors. It then turns to examining semiconductor heterostructures, and studies how these can be used to modify and design optical and electrical properties, especially in the case of lowered dimensionality systems. Examples are selected from current research activities.

Intended learning outcomes

To provide the student with a working knowledge of semiconductors pertaining to crystal structure, symmetries, and band structures, as well as electrical and optical properties. This establishes a solid basis preparing him for the more targeted specially lectures in the program.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor and Actor Materials - Functional Ceramics and Magnetic Particles</td>
<td>08-FU-SAM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students acquire fundamental knowledge in sensoric and actoric materials.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate)

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

P: creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject
Physics International
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics 2</td>
<td>11-FK2-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

1. Electrons in a periodic potential – the band structure
 a. Electrical and thermal transport
 b. Bloch theorem
 c. Electrons
2. Semi-classical models of dynamic processes
 a. Electrical transport in partially and completely filled bands
 b. Fermi surfaces; measurement techniques
 c. Electrical transport in external magnetic fields
 d. Boltzmann-equations of transport
3. The dielectric function and ferroelectrics
 a. Macroscopic electrodynamics and microscopic theory
 b. Polarizability of solids, of lattices, of valence electrons and quasi-free electrons; optical phonons, polaritons, plasmons, inter-band transitions, Wannier-Mott excitons
 c. Ferromagnetism
4. Semiconductors
 a. Characteristics
 b. Intrinsic semiconductors
 c. Doped semiconductors
 d. Physics and applications of p-n junctions
 e. Heterostructures
5. Magnetism
 a. Atomic dia- and paramagnetism
 b. Dia- and paramagnetism in metals
 c. Ferromagnetism
6. Superconductivity
 a. Phenomena
 b. Models of superconductivity
 c. Tunnel experiments und applications

Intended learning outcomes

Knowledge of effects, concepts and models in advanced solid state physics. Familiarity with the theoretical principles and with applications of experimental methods.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Solid State Spectroscopy</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

Specific and in-depth knowledge of solid-state spectroscopy. Knowledge of different methods of spectroscopy and their applications. Understanding of the theoretical principles and modern developments in the related science.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spintronics</td>
<td>11-SPI-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>of Applied Physics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In this lecture, the basic principles of spin transport are taught, with a particular emphasis on the phenomena of giant magnetoresistance and tunnel magnetoresistance. New phenomena from the fields of spin dynamics and current-induced spin phenomena are discussed.

Intended learning outcomes

Knowledge of basic principles of spin transport models and of applications of spin transport in information technology. Overview over the state-of-the-art findings in this field (giant magnetoresistance, tunnel magnetoresistance).

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

String Theory 1

Abbreviation

11-STRG1-Int-201-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>ECTS</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>8</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Classical and quantum theory of the relativistic bosonic string, in particular the Nambu-Goto action and Polyakov action, Quantization of the closed bosonic string and emergent graviton, Quantum Lorentz invariance and critical dimension, Quantization of the open bosonic string, D-Branes, Gauge Fields and Yang-Mills Theories, Relativistic Conformal Field Theory, String Path Integral, BRST Quantization, String Interactions, Effective Actions and Gravity.

Intended learning outcomes

Familiarity with the classical and quantum theory of relativistic bosonic strings, in particular with the two classical actions for relativistic bosonic strings, the Nambu-Goto action and the Polyakov action. Ability to quantize the closed bosonic string and to understand the emergence of the massless graviton in the spectrum of the closed bosonic string. Knowledge of the the quantum Lorentz anomaly and the derivation of the critical dimension of the bosonic string. Understanding of the boundary conditions for the open string and its connection to D-branes. Knowledge of open string quantization and the spectrum of massless gauge fields, as well as of Yang-Mills fields for coincident branes. In-depth knowledge of relativistic conformal field theory, the string path integral and its BRST quantization and the calculation of string interactions. Thorough understanding of the low-energy effective actions in target space and the emergence of Einstein gravity.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>String Theory 2</td>
<td>11-STRG2-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Superstring Theories and M Theory, in particular a short introduction to bosonic string theory, the theory of fermionic fields and representations of Clifford algebra in diverse dimensions, a review of supersymmetry in two and higher dimensions, the classical and quantum version of the Ramond-Neveu-Schwarz Superstring, type 2 A/B Superstrings, the Gliozzi-Scherck-Olive Projection and Space-Time Supersymmetry in 10 dimensions, the type 1 Superstring, heterotic string theories, anomaly cancellation and restrictions on gauge groups, dualities between the five superstring theories as well as their relation to M Theory in 11D, D-Branes and supersymmetric gauge theories, supergravity and the AdS/CFT Correspondence.

Intended learning outcomes

In-depth knowledge of supersymmetric string theories and M Theory. Familiarity with the main features of bosonic string theory, as well as with the theory of fermionic fields and representations of Clifford algebra in different dimensions. Knowledge of supersymmetry in two and higher dimensions, as relevant for the understanding of superstring theory. Working knowledge of the classical and quantum version of the Ramond-Neveu-Schwarz Superstring, Understanding of the emergence of type II A/B Superstrings upon imposing the Gliozzi-Scherck-Olive Projection, which in particular enforces Space-Time Supersymmetry in 10D. Familiarity with the type 1 and heterotic superstring theories, as well as with anomaly cancellation in these theories and the restrictions it imposes on the allowed gauge groups. Knowledge of dualities between the five superstring theories as well as their relation to M Theory in 11D. Knowledge of the properties of D-Branes in type I and II superstring theories and the supersymmetric gauge theories they carry, of the supergravity actions in ten and eleven dimensional space-time and of the AdS/CFT Correspondence.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Surface Science | 11-SSC-Int-201-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Relevance of surfaces and interfaces, distinction from bulk phases, classical description, continuum models, Atomic structure: reconstructions and adsorbates, surface orientation and symmetries, Microscopic processes at surface, thermodynamics, adsorption and desorption, Experimental characterization, Electronic structure of surfaces, chemical bonding, surface states, spin-orbit coupling, Rashba effects, topological surface states, magnetism

Intended learning outcomes

The students have an overview over the diverse aspects of surface science and they are familiar with the physical characteristic of surfaces and interfaces. The students know the most important experimental techniques for the investigation of surfaces, as well as their specific fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Theoretical Astrophysics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Astrophysics</td>
<td>11-AST-Int-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

ECTS Method of grading Only after succ. compl. of module(s)
6 numerical grade

Duration Module level Other prerequisites
1 semester graduate

Contents
Topics in theoretical astrophysics such as e.g. white dwarfs, neutron stars and black holes, supernovae, pulsars, accretion and jets, shock waves, radiation transport, and gravitational lensing.

Intended learning outcomes
Knowledge of basic processes and methods of theoretical astrophysics. Ability to formulate theoretical models.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes)
- b) oral examination of one candidate each (approx. 30 minutes)
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate)
- d) project report (approx. 8 to 10 pages)
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Elementary Particle Physics</td>
<td>11-TEP-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
</table>
| 1. Fundamental Forces and Particles
2. Groups and Symmetries
3. Quark Model of Hadrons
4. Parton Model and Deep Inelastic Scattering
5. Basics of Quantum Field Theory
6. Gauge Theories
7. Spontaneous Symmetry Breaking
8. Electro-Weak Standard Model
9. Quantum Chromo Dynamics
10. Extensions of the Standard Model |

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarity with the mathematical methods of elementary particle physics. Understanding of the structure of the standard model and its construction from symmetry principles and experimental observations. Knowledge of the calculational methods for scattering and decay processes, tests of the standard models and there are limitations. Familiarity with the basics of extended theories.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
</table>
| V (4) + R (2)
Module taught in: English |

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
</table>
| a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester |

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO 1 (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title: Theoretical Solid State Physics
Abbreviation: 11-TFK-Int-201-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
The contents of this two-term course will depend on the choice of the lecturer, and may include parts of the syllabus which could alternatively be offered as "Quantum Many Body Physics" (11-QVTP).

A possible syllabus may be:
1. Band structure (Sommerfeld theory of metals, Bloch theorem, k.p approach and effective Hamiltonians for topological insulators (TIs), bulk-surface correspondence, general properties of TIs)
2. Electron–electron interactions in solids (path integral method for weakly interacting fermions, mean field theory, random phase approximation (RPA), density functional theory)
3. Application of mean field theory and the RPA to magnetism
4. BCS theory of superconductivity

Intended learning outcomes:
In-depth knowledge of the topics listed above. In-depth understanding of the concepts involved and ability to apply the methods listed. This provides a thorough working knowledge of a large number of topics treated in the standard textbooks on theoretical solid state physics.

Courses (type, number of weekly contact hours, language — if other than German):
V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Solid State Physics 2</td>
<td>11-TFK2-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A possible continuation of „11-TFK“ is the following syllabus:
5. Advanced topics of the theory of superconductivity (Bogoliubov-de Gennes equations, effective field theory, Anderson-Higgs description of the Meissner effect)
6. Unconventional superconductors (e.g. copper-oxide high-Tc superconductors)
7. Green's function methods and Feynman diagrammatic technique
8. The Kondo Effect (Anderson’s “poor mans scaling”, renormalization group)

Intended learning outcomes

Advanced knowledge of the topics listed above. In-depth understanding of both the concepts involved and ability to apply the methods listed. This provides a thorough working knowledge of a large number of topics treated in the standard textbooks on theoretical solid state physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	**Abbreviation**
Theory of Relativity | 11-RTT-Int-201-m01

Module coordinator	**Module offered by**
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Mathematical Foundations
2. Differential forms
3. Brief Summary of the special relativity
4. Elements of differential geometry
5. Electrodynamics as an example of a relativistic gauge theory
6. Field equations of the fundamental structure of general relativity
7. Stellar equilibrium and other astrophysical applications
8. Introduction to cosmology

Intended learning outcomes

Familiarity with the basic physical and mathematical concepts of general relativity. Mathematical understanding of the formulation in terms of differential forms. Understanding of the formal similarity between electrodynamics and the theory of general relativity, viewing both of them as gauge theories. Application of the theory to simple models of stellar equilibrium. First contact with elements of cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological Effects in Solid State Physics</td>
<td>11-TEFK-Int-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Geometric phase in quantum systems
2. Mathematical basics of topology
3. Time-reversal symmetry
4. Hall conductance and Chern numbers
5. Bulk-boundary correspondence
6. Graphene (as a topological insulator)
7. Quantum Spin Hall insulators
8. Z2 invariants
9. Topological superconductors

Intended learning outcomes

In-depth theoretical understanding of the topological concepts in quantum physics related to solid state systems. Ability to connect their knowledge with different research activities at the Department of Physics and Astronomy at Würzburg University.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Topology

Abbreviation
10-M=ATOPin-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Set-theoretic topology, topological invariants (e.g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes
The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast spectroscopy and quantum-control</td>
<td>08-PCM4-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Nanoskalige Materialien"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Prior completion of modules 08-PCM1a and 08-PCM1b recommended.</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes
Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

Courses (type, number of weekly contact hours, language — if other than German)
S (2) + Ü (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Analysis</td>
<td>10-M-VAN-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Continuation of analysis in several variables, integration theorems.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Visiting Research

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visiting Research</td>
<td>11-FPA-Int-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator: Chairperson of examination committee

Module offered by: Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>numerical grade</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Independent work in a current research topic in experimental or theoretical physics. Experimental work including analysis and documentation of the results, especially in the context of research visits to other universities or research institutes.

Intended learning outcomes

Familiarity with current research topics in experimental or theoretical physics. Within experimental physics, the ability to analyze and document scientific experiments.

Courses (type, number of weekly contact hours, language — if other than German)

R (0)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Project report (10 to 20 pages)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--