

Subdivided Module Catalogue for the Subject

Quantum Engineering

as a Master's with 1 major with the degree "Master of Science" (120 ECTS credits)

Examination regulations version: 2020 Responsible: Faculty of Physics and Astronomy

Learning Outcomes

After having successfully completed their studies the graduates fulfil the following

- The graduates have the ability to abstract, they are able to think analytically, they have a strong problem-solving competence and are able to structure complex issues.
- The graduates have a broad overview of the different areas of nanostructure engineering and of interdisciplinary synergies.
- They have profound knowledge of the physical and technical basics of nanostructure enginering
 as well as deep knowledge of the theoretical and experimental methods to gain new insights.
- They are able to apply their abilities and expertise to their own research projects and know the current state of research in at least one specialized field of nanostructure engineering.
- With the help of primary literature, especially in English, they are able to become acquainted
 with the current state of research in a specialist field and are able to apply physical and technical methods self-reliantly to concrete tasks, to develop solutions and to interpret and assess
 results
- Even with incomplete information they are in a position to work self-reliantly on problems of nanostructure engineering, applying scientific methods and following the rules of good scientific practice, and to present and assess the results and consequences of their work.
- They are able to discuss physical and technical topics on the current state of research with other nanostructure engineers/scientists and also to explain physical correlations to non-They are able to work as responsible scientists in interdisciplinary and international teams with (natural) scientists and/or engineers in research, industry and economy.

Scientific qualification

- The graduates have profound knowledge of the physical and technical basics of nanostructure engineering.
- The graduates can access profound knowledge of the theoretical and experimental methods to gain new insights.
- The graduates possess a broad overview of the complete area of nanostructure engineering.
- The graduates have an overview of the adjacent areas and interdisciplinary correlations.
- The graduates have the ability to abstract, they are able to think analytically, they have a high problem-solving competence and are able to structure complex correlations.
- The graduates transfer their abilities and expertise to their own research projects and know the current state of research in at least one specialist field of nanostructure engineering.
- The graduates are able to discuss physical and technical topics on the current state of research with other nanostructure engineers/scientists.
- The graduates are able to apply physical and technical methods self-reliantly to concrete experimental or theoretical tasks, to develop solutions and to interpret and assess the results.
- With the help of primary literature, especially in English, the graduates have the ability to become acquainted with the current state of research in a specialist field of nanostructure engineering.

Qualification to start a job

- Even with incomplete information the graduates are in a position to work self-reliantly on physical and technical problems, applying scientific methods and following the rules of good scientific practice, and to present, assess and attend to the results and consequences of their work.
- The graduates are able to work as responsible scientists in interdisciplinary and international teams with (natural) scientists and/or engineers in research, industry and economy.
- The graduates have the ability to apply physical and technical methods self-reliantly to concrete tasks, to develop solutions and to interpret and assess the results.

The graduates are in a position to transfer their abilities and expertise to their own research
projects and know the current state of research in at least one specialist field of nanostructure
engineering.

Self-development

- Even with incomplete information the graduates are able to work self-reliantly on problems of nanostructure engineering, applying scientific methods, and to present, assess and attend to the results and consequences of their work.
- The graduates know the rules of good scientific practice and take them into account.

Qualification for social commitment

- The graduates are able to critically reflect natural scientific and technical developments and to capture their impact on economy, society and environment. (technological impact assessment).
- The graduates have deepened their knowledge concerning economic, social, natural scientific or cultural questions (to name but a few) and are able to attend to their views reasonably.
- The graduates are able to discuss physical and technical topics on the current state of research with other nanostructure engineers/scientists and also to explain physical correlations to nonscientists.
- The graduates have developed the willingness and ability to show their skills in participative processes and actively contribute to decisions.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

o6-Feb-2020 (2020-15)

o6-Sep-2022 (2022-56)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

The subject is divided into

Abbreviation	Module title	ECTS credits	Method of grading	page			
Electives Field (60 ECTS cr	edits)						
Subfield Quantum Engine	Subfield Quantum Engineering (55 ECTS credits)						
Advanced Laboratory Courses (9 ECTS credits)							
11-P-FM1-Int-201-m01	Advanced Laboratory Course Master Part 1	3	B/NB	70			
11-P-FM2-Int-201-m01	Advanced Laboratory Course Master Part 2	3	B/NB	71			
11-P-FM3-Int-201-m01	11-P-FM3-Int-201-m01 Advanced Laboratory Course Master Part 3		B/NB	72			
11-P-FM4-Int-201-m01	Advanced Laboratory Course Master Part 4	3	B/NB	73			
Advanced Seminar (5 EC	TS credits)			•			
11-OSN-A-Int-201-m01	Advanced Seminar Quantum Engineering A	5	NUM	68			
11-OSN-B-Int-201-m01	Advanced Seminar Quantum Engineering B	5	NUM	69			
Specialization Quantum	Engineering			•			
11-HNS-Int-201-m01	Optical Properties of Semiconductor Nanostructures	6	NUM	55			
11-HPH-Int-201-m01	Semiconductor Physics	6	NUM	57			
11-QTR-Int-201-m01	Quantum Transport	6	NUM	81			
11-NOP-Int-201-m01	Nano-Optics	6	NUM	65			
11-SPI-Int-201-m01	Spintronics	6	NUM	83			
11-BSV-Int-201-m01	Image and Signal Processing in Physics	6	NUM	30			
11-PMM-Int-201-m01	Physics of Advanced Materials	6	NUM	74			
11-0HL-Int-201-m01	Organic Semiconductors	6	NUM	67			
08-FU-SAM-161-m01	Sensor and Actor Materials - Functional Ceramics and Magnetic Particles	5	NUM	11			
o8-PCM4-161-mo1	Ultrafast spectroscopy and quantum-control	5	NUM	12			
08-FU-EEW-152-m01	Electrochemical Energy Storage and Conversion	5	NUM	8			
08-FU-MW-161-m01	Structure and Properties of Modern Materials: Experiments vs. Simulations	5	NUM	10			
11-EXN5-Int-201-m01	Current Topics in Nanostructure Technology	5	NUM	35			
11-EXN6-Int-201-m01	Current Topics in Nanostructure Technology	6	NUM	37			
11-EXN7-Int-201-m01	Current Topics in Nanostructure Technology	7	NUM	38			
	Current Topics in Nanostructure Technology	8	NUM	39			
11-EXN6A-Int-201-m01	Current Topics in Nanostructure Technology	6	NUM	36			
	Advanced Topics in Solid State Physics	6	NUM	32			
	Advanced Topics in Nanostructure Technology	6	NUM	33			
11-FK2-Int-201-m01	Solid State Physics 2	8	NUM	50			
11-CSPM-Int-201-m01	Advanced Topics in Physics	6	NUM	34			
11-FKS-Int-201-m01	Solid State Spectrocopy	6	NUM	52			
11-TEFK-Int-201-m01	Topological Effects in Solid State Physics	8	NUM	86			
11-FFK-Int-201-m01			NUM	48			
11-AKTF-Int-201-m01	Selected Topics of Theoretical Solid State Physics	8 6	NUM	25			
11-MAG-Int-201-m01	Magnetism	6	NUM	59			
11-QM2-Int-201-m01	Quantum Mechanics II	8	NUM	79			
11-TQO-Int-221-m01	Theoretical Quantum Optics	8	NUM	90			
11-TFK-Int-201-m01	Theoretical Solid State Physics	8	NUM	88			

11-PTS-Int-201-m01	Phenomenology and Theory of Superconductivity	6	NUM	75			
11-QIC-Int-201-m01	Advanced Theory of Quantum Computing and Quantum Infor-	6	NUM	77			
11-QiC-iii(-201-iii01	mation			77			
11-MRI-Int-201-m01	Advanced Magnetic Resonance Imaging	6	NUM	63			
11-SSC-Int-201-m01	Surface Science	6	NUM	84			
11-FPA-Int-201-m01	Visiting Research	10	NUM	53			
11-EXP5-Int-201-m01	Current Topics in Physics	5	NUM	41			
11-EXP6-Int-201-m01	Current Topics in Physics	6	NUM	43			
11-EXP7-Int-201-m01	Current Topics in Physics	7	NUM	44			
11-EXP8-Int-201-m01	Current Topics in Physics	8	NUM	45			
11-EXP6A-Int-201-m01	Current Topics in Physics	6	NUM	42			
Subfield Nontechnical Mi	nors			•			
10-M-VAN-152-m01	Advanced Analysis	7	NUM	24			
10-M=VDIMin-152-m01	Discrete Mathematics	5	NUM	23			
10-I=PA-161-m01	Analysis and Design of Programs	5	NUM	17			
10-I-APR-172-m01	Advanced Programming	5	NUM	19			
10-I=DB-161-m01	Databases	5	NUM	14			
10-I-BS-191-m01	Operating Systems	5	NUM	21			
10-l=Kl1-161-m01	Artificial Intelligence 1	5	NUM	15			
02-N-Ö-W2-05-152-m01	Environmental Law	3	NUM	7			
11-AP-Int-201-m01	Astrophysics	6	NUM	26			
11-ASM-Int-201-m01	Methods of Observational Astronomy	6	NUM	27			
11-ASP-Int-201-m01	Introduction to Space Physics	6	NUM	28			
11-EXZ5-Int-201-m01	Nontechnical Special Topics	5	NUM	46			
11-EXZ6-Int-201-m01	Nontechnical Special Topics	6	NUM	47			
11-EXNT6-Int-201-m01	Nontechnical Minor Subject	6	NUM	40			
Master Project Modules (6	Master Project Modules (60 ECTS credits)						
11-FS-N-Int-201-m01	Professional Specialization Quantum Engineering	15	B/NB	54			
11-MP-N-Int-201-m01	Scientific Methods and Project Management Quantum Engi-		B/NB	62			
11-MA-N-Int-201-m01	Master Thesis Quantum Engineering	30	NUM	61			

Module title Abbreviation					Abbreviation	
Environmental Law					02-N-Ö-W2-05-152-m01	
Module coordinator Module offered by						
Dean o	of Studi	es Faculty of Law		Faculty of Law		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
3	nume	rical grade				
Duratio	Duration Module level Other prerequisites					
1 semester undergraduate Prior completi			Prior completion of	the following modul	e is recommended: o2-N-Ö-V	
Conten	Contents					

The subject of the lecture is both general and special environmental law in Germany and the EU. In addition to the main features, the general principles, the constitutional position and the various instruments of environmental law at German and European level, the course will focus in particular on the influence of European environmental law on German environmental law and the interaction between the two legal systems.

Intended learning outcomes

Students will have gained a comprehensive overview of the development, systematics and key legal provisions of German and European environmental law. They know the basic features, general principles, constitutional requirements and instruments of environmental law and have also dealt with the influence of European environmental law on the German legal system and the interaction between the two legal systems in this area.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 120 minutes) or
- b) oral examination (approx. 15 minutes)

Assessment offered: Usually every two years, winter semester

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major, 1 minor) Public Law (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Public Law (Minor, 2017)

Bachelor's degree (1 major, 1 minor) Public Law (Minor, 2019)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Module title	Abbreviation
Electrochemical Energy Storage and Conversion	08-FU-EEW-152-m01

Module coordinator Module offered by

holder of the Chair of Chemical Technology of Material Synthesis thesis

ECTS	CTS Method of grading		Only after succ. compl. of module(s)
5	5 numerical grade		
Duratio	n	Module level	Other prerequisites
1 seme	ster	undergraduate	

Contents

Chemistry and application of: battery systems (aqueous and non-aqueous systems such as lead, nickel cadmium and nickel metal hydride, sodium sulphur, sodium nickel chloride, lithium ion accumulators), electrochemical double layer capacitors, redox-flow batteries, fuel cell systems (AFC, PEMFC, DMFC, PAFC, SOFC), solar cells (Si, CIS, CIGS, GaAs, organic and dye solar cell), thermoelectric devices.

Intended learning outcomes

Students have developed a knowledge of electrochemical energy storage and conversion and are able to apply that knowledge to research problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + P(1) + E(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) assessment and b) Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations), weighted 7:3

Language of assessment: German and/or English Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Nanostructure Technology (2015)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Quantum Technology (2021)

Module title	Abbreviation
Structure and Properties of Modern Materials: Experiments vs. Simulations	08-FU-MW-161-m01

Module coordinatorModule offered bydegree programme coordinator Funktionswerkstoffe (Functional Matrierials)Chair of Chemical Technology of Material Synthesis

ECTS	TS Method of grading		Only after succ. compl. of module(s)
5	5 numerical grade		
Duratio	on	Module level	Other prerequisites
1 seme	ester	graduate	

Contents

Material properties of metals and ceramics: correlation of structure/property relations through experiments and simulations.

Intended learning outcomes

Students gain an insight into the properties of modern materials: aerospace aluminium alloys and high-performance ceramics. They are introduced to measuring methods and calculation methods using numerical simulation. A special focus is on the relation between the micro/nanoscopic structure of materials and the resulting properties.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) talk (approx. 30 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes total)

Language of assessment: German and/or English

Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title		Abbreviation
Sensor and Actor Materials - Functional Ceramics and Magn	etic Particles	08-FU-SAM-161-m01
	AA 1 1 CC 11	

Module coordinator Module offered by

degree programme coordinator Funktionswerkstoffe (Functional Matrierials) Chair of Chemical Technology of Material Synthesis

ECTS	TS Method of grading		Only after succ. compl. of module(s)
5	5 numerical grade		
Duratio	n	Module level	Other prerequisites
1 seme	ster	graduate	

Contents

Fabrication, effects and applications of sensory and actuatory materials such as piezoelectrics, shape memory materials and magnetostrictive materials. Electrorheological and magnetorheological fluids, magnetofluids.

Intended learning outcomes

Students have developed fundamental knowledge in the area of sensory and actuatory materials.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + P(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Once a year, summer semester

P: creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module title					Abbreviation
Ultrafast spectroscopy and quantum-control			m-control		08-PCM4-161-m01
Module coordinator				Module offered by	
lecture	lecturer of the seminar "Nanoskalige Materialien" Institute of Physical and Theoretical Chemis			l and Theoretical Chemistry	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level Other prerequisites				
1 semester graduate Prior			Prior completion of	modules o8-PCM1a	and o8-PCM1b recommended.
Contor	Contants				

Contents

This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes

Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $S(2) + \ddot{U}(1)$

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) talk (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Chemistry (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Chemistry (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation	
Databases					10-l=DB-161-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5 numerical grade						
Duration Module level Other prerequisite			Other prerequisite	<u></u>		
1 semester graduate						
Conto	Contonts					

Contents

Relational algebra and complex SQL statements; database planning and normal forms, XML data modelling; transaction management.

Intended learning outcomes

The students possess knowledge about data modelling and queries in SQL, transactions as well as about easy data modelling in XML.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Separate written examination for Master's students.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IS, HCI, GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Digital Humanities (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module title					Abbreviation	
Artificial Intelligence 1					10-l=Kl1-161-m01	
Module coordinator				Module offered by		
holder of the Chair of Computer Science VI Institute of Computer Science			ter Science			
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level Other prerequisite			Other prerequisite	s		
1 semester graduate						
Conto	Contents					

Contents

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence in the area of agents, search and logic and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IS, HCI

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Aerospace Computer Science (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title					Abbreviation
Analysis and Design of Programs					10-l=PA-161-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester graduate				
Contents					

Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes

The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IS,ES,GE

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Module title					Abbreviation
Advanced Programming					10-I-APR-172-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate				
Contents					

Contents

With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes

Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title				Abbreviation	
Operating Systems					10-I-BS-191-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science II			nce II	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. co	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester undergraduate					
Contents					

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title					Abbreviation
Discrete Mathematics					10-M=VDIMin-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 seme	1 semester graduate				
Contents					

Advanced methods and results in a selected field of discrete mathematics (e.g. coding theory, cryptography, graph theory or combinatorics)

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Discrete Mathematics" is required.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Master's degree (1 major) Mathematics International (2025)

Module title					Abbreviation	
Advanced Analysis					10-M-VAN-152-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	Only after succ. compl. of module(s)		
7	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conten	Contents					

Continuation of analysis in several variables, integration theorems.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

210 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

Modul	Module title				Abbreviation	
Selected Topics of Theoretical Solid State Physics				_	11-AKTF-Int-201-m01	
Modul	e coord	inator		Module offered by		
	Managing Director of the Institute of Theoretical F and Astrophysics		f Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Contents						

In this lecture, selected topics of condensed matter theory are addressed. We intend to present new developments to bring the students in touch with actual research topics. Possible subjects are many-body localization and dynamic quantum matter.

Intended learning outcomes

The students learn how to describe condensed matter systems in presence of disorder and interactions from a theoretical point of view. This happens on the basis of analytical and numerical methods. Therefore, we envisage a smooth crossover of these students to the next step of becoming a researcher.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module	e title				Abbreviation	
Astrophysics					11-AP-Int-201-m01	
Module	e coord	inator		Module offered by		
Manag and As	_	ector of the Institute of sics	Theoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conten	Contents					

History of Astronomy, Coordinates and Time Measurement, the Solar System, Exoplanets, Astronomical Scales, Telescopes and Detectors, Stellar Structure and Atmospheres, Stellar Evolution and their End Stages, Interstellar Medium, Molecular Clouds, Structure of the Milky Way, the Local Universe, the Expanding Universe, Galaxies, Active Galactic Nuclei, Large-Scale Structures, Cosmology.

Intended learning outcomes

The student is familiar with the modern astrophysical world view. He/She knows the methods and instruments of astrophysical research. He/She is able to plan and interpret his/her own observations. He/She is familiar with the physics and evolution of the most important astrophysical objects, e.g., stars and galaxies.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title				Abbreviation	
Methods of Observational Astronomy			ny		11-ASM-Int-201-m01
Module coordinator				Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
6	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 seme	ester	graduate			
Conter	Contents				

Methods of observational Astronomy across the electromagnetic spectrum; Extraction and reduction of observational data from radio, optical, X-ray and gamma-ray telescopes.

Intended learning outcomes

Overview over the methods used in observational astronomy in various parts of the electromagnetic spectrum (radio, optical, X-ray and gamma-ray energies). Knowledge of principles and applications of these methods and ability to conduct astronomical observations.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module	e title			Abbreviation		
Introduction to Space Physics					11-ASP-Int-201-m01	
Module	e coord	inator		Module offered by		
_	Managing Director of the Institute of Theoretical and Astrophysics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate -					
Conten	Contents					

- 1. Overview
- 2. Dynamics of charged particles in magnetic and electric fields
- 3. Elements of space physics
- 4. The sun and heliosphere
- 5. Acceleration and transport of energetic particles in the heliosphere
- 6. Instruments to measure energetic particles in extraterrestrial space

Intended learning outcomes

Basic knowledge in space physics, in particular of the characterzation of the dynamics of charged particles in space and the heliosphere. Knowledge of the relevant parameters, the theoretical concepts and the methods of their measurements.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

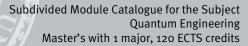
__

Workload

180 h

Teaching cycle

--


Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's with 1 major Quantum Engineering (2020)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 28 / 91
	ta record Master (120 ECTS) Quantum Engineering - 2020	

Master's degree (1 major) Quantum Engineering (2020) exchange program Physics (2023)
Master's degree (1 major) Quantum Engineering (2024)
Master's degree (1 major) Physics International (2024)

Modul	e title				Abbreviation	
Image and Signal Processing in Physics			hysics		11-BSV-Int-201-m01	
Modul	e coord	inator		Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
6	nume	rical grade				
Durati	Duration Module level		Other prerequisit	Other prerequisites		
1 seme	1 semester graduate					
Contents						

Contents

Periodic and aperiodic signals; basic principles of the discrete and exact Fourier transformation; basic principles of the digital signal and image processing; discretization of signals/Shannon sampling theorem; Parsival theorem, correlation and energy consideration; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes

Advanced knowledge about digital image and signal processing. Familiarity with the physical principles of image processing and various methods of signal processing. Capability of describing the various methods and in particular of applying them to tomography.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module	title			Abbreviation		
Advanced Topics in Solid State Physics					11-CSFM-Int-201-m01	
Module	coord	inator		Module offered by		
Managing Director of the Institute of Theoretical Physic and Astrophysics			f Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester graduate Approval from		Approval from exan	xamination committee required.		
Conten	Contents					

This module will enable the lecturers of condensed matter physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes

In-depth knowledge and understanding of an advanced topic in condensed matter physics. Insight into the interface between teaching and research.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Module title					Abbreviation	
Advanced Topics in Nanostructure Technology					11-CSNM-Int-201-m01	
Module coordinator Modu				Module offered by		
Managing Director of the Institute of Theoretical Physics and Astrophysics			of Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	Method of grading Only after succ. c		Only after succ. co	mpl. of module(s)		
6	numerical grade					
Duration Module level		Module level	Other prerequisites	Other prerequisites		
1 semester		graduate	Approval from exan	Approval from examination committee required.		
Contents						
This module allows lecturers of the papetechnology study programme to give lectures on advanced topics that						

This module allows lecturers of the nanotechnology study programme to give lectures on advanced topics that can not be covered by any other module. These lectures may either reflect new developments in research or deal with topics that are not included in the regular teaching cycle.

Intended learning outcomes

The students deepen their knowledge and understanding of an advanced topic in nanostructure technology, thereby gaining insights into the interface between research and teaching.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module title					Abbreviation
Advanced Topics in Physics					11-CSPM-Int-201-m01
Module	coord	inator		Module offered by	
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Metho	thod of grading Only after		succ. compl. of module(s)	
6	nume	merical grade			
Duration		Module level	Other prerequisites	Other prerequisites	
1 semester		graduate	Approval from exan	Approval from examination committee required.	
Contents					

This module allows lecturers of the physics study programme to give lectures on advanced topics that can not be covered by any other module. These lectures may either reflect new developments in research or deal with topics that are not included in the regular teaching cycle.

Intended learning outcomes

The students deepen their knowledge and understanding of an advanced topic in physics, thereby gaining insights into the interface between research and teaching.

 ${f Courses}$ (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Current Topics in Nanostructure Technology					11-EXN5-Int-201-m01	
Module coordinator				Module offered by		
chairperson of examination committee			ittee	Faculty of Physics and Astronomy		
ECTS	Metho	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
5	nume	rical grade				
Duration Module level C			Other prerequisites	Other prerequisites		
1 semester		graduate	Approval from exar	Approval from examination committee required.		
Contents						
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.						
Intended learning outcomes						

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module title				Abbreviation	
Current Topics in Nanostructure Technology				•	11-EXN6A-Int-201-m01
Modul	e coord	inator		Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	erical grade			
Duration Module le		Module level	Other prerequisites		
1 semester		graduate	Approval from examination committee required.		
Contents					

Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title		Abbreviation				
Curren	t Topic	s in Nanostructure Techn	11-EXN6-Int-201-m01				
Module	e coord	inator		Module offered by			
chairpe	erson o	f examination committee	!	Faculty of Physics a	and Astronomy		
ECTS	Metho	ethod of grading Only after succ. cor		mpl. of module(s)			
6	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ester	graduate	Approval from exam	ination committee r	equired.		
Conten	Contents						
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad							

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module	Module title Abbreviation					
Curren	t Topics	s in Nanostructure 1	Technology		11-EXN7-Int-201-m01	
Module	coord	inator		Module offered by		
chairpe	erson of	f examination comn	nittee	Faculty of Physics a	and Astronomy	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)		
7	numei	rical grade				
Duratio	n	Module level	Other prerequisite	s		
1 seme	ster	graduate	Approval from exa	mination committee r	equired.	
Conten	ts		·			
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.						
Intend	ad laarr	ning outcomes				

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

Additional information

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Module	e title		Abbreviation			
Current Topics in Nanostructure Technology					11-EXN8-Int-201-m01	
Module	e coord	inator		Module	offered by	
chairpe	erson of	f examination comm	nittee	Faculty o	of Physics and Astronomy	
ECTS	Metho	od of grading	Only after suc	c. compl. of mo	mpl. of module(s)	
8	numei	rical grade				
Duratio	n	Module level	Other prerequ	isites		
1 seme	ster	graduate	Approval from	examination co	ommittee required	
Contents						
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.						

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Modul	e title			Abbreviation	
Nontechnical Minor Subject					11-EXNT6-Int-201-m01
Modul	e coord	linator		Module offered by	
chairpe	erson o	f examination comm	nittee	Faculty of Physics	and Astronomy
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)	
6	nume	rical grade		•	
Duratio	on	Module level	Other prerequisit	es	
1 seme	ester	graduate	Approval from exa	mination committee	required.
Conter	ıts		•		
Non-te	chnica	l minor. Crediting for	academic achievement	s, e.g. from university	change or study abroad

The student posseses advanced knowledge on Master's level meeting the requirements of a module in the field of a non physical minor subject (mathematics, chemistry, computer science, legal science, economics,...).

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title			Abbreviation		
Curren	t Topic	s in Physics		-	11-EXP5-Int-201-m01	
Module	e coord	inator		Module offered by		
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites	;		
1 seme	1 semester graduate Approval from			nination committee r	equired.	
Conten	Contents					

Intended learning outcomes

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title		Abbreviation			
Curren	t Topic	s in Physics			11-EXP6A-Int-201-m01	
Module	e coord	inator		Module offered by		
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level Other p			;		
1 seme	1 semester graduate Approval from exa			nination committee r	equired.	
Conten	Contents					

Intended learning outcomes

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Module	e title	Abbreviation				
Curren	t Topic	s in Physics	11-EXP6-Int-201-m01			
Module	e coord	inator		Module offered by		
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)		
6	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	1 semester graduate Approval from ex			ination committee r	equired.	
Conten	Contents					

Intended learning outcomes

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

__

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Modul	e title		Abbreviation			
Curren	t Topics	in Physics			11-EXP7-Int-201-m01	
Modul	e coordi	nator		Module offered	by	
chairpe	erson of	examination comm	nittee	Faculty of Physi	cs and Astronomy	
ECTS	Method	d of grading	Only after succ. c	ompl. of module(s)	mpl. of module(s)	
7	numeri	ical grade				
Duratio	on	Module level	Other prerequisit	S		
1 seme	ester	graduate	Approval from exa	amination committe	ee required.	
Conten	ıts		,			
Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.						
Intended learning outcomes						

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

Additional information

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title		Abbreviation			
Current Topics in Physics					11-EXP8-Int-201-m01	
Module	e coord	inator		Module offered by		
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
8	nume	rical grade				
Duratio	on	Module level	Other prerequisites	i		
1 seme	1 semester graduate Approval from ex			ination committee r	equired.	
Conten	Contents					

Intended learning outcomes

The student posseses advanced knowledge meeting the requirements of a module in theoretical or experimental physics on Master's level in the study programme Nanostructure Technology. He/She commands knowledge in a current field in physics and insight into the measuring and calculating methods which are necessary to acquire this knowledge. He/She is able to classify and to link the learnt. He/She knows about fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title				Abbreviation	
Nonted	hnical	Special Topics			11-EXZ5-Int-201-m01	
Module	e coord	inator		Module offered by		
chairpe	erson o	f examination committee		Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 semester graduate Approval from example 1			Approval from exam	ination committee r	equired.	
Conten	Contents					
Additional qualifications for engineers. Credited academic achievements, e.g. in case of change of university or						

study abroad. Intended learning outcomes

The student possesses advanced knowledge meeting the requirements of a module on Master's level in the study program Nanostructure Technology. He/She commands knowledge qualifying him/her for a job in industry respective industrial research and development.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title	·		Abbreviation			
Nonted	hnical	Special Topics			11-EXZ6-Int-201-m01		
Module	e coord	linator		Module offered by			
chairpe	erson o	f examination committ	ee	Faculty of Physics a	and Astronomy		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)			
6	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate	Approval from exam	nination committee r	equired.		
Conten	Contents						
	Additional qualifications for engineers. Credited academic achievements, e.g. in case of change of university or study abroad.						

The student possesses advanced knowledge meeting the requirements of a module on Master's level in the study program Nanostructure Technology. He/She commands knowledge qualifying him/her for a job in industry respective industrial research and development.

 ${f Courses}$ (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Allocation of places

--

Additional information

__

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

Module	e title				Abbreviation	
Field Theory in Solid State Physics					11-FFK-Int-201-m01	
Module	e coord	inator		Module offered by		
	Managing Director of the Institute of Theoretic and Astrophysics			Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	ompl. of module(s)		
8	nume	rical grade				
Duration Module level C		Other prerequisites	Other prerequisites			
1 seme	1 semester graduate					
Conten	Contents					

This will usually be a course on quantum many particle physics approached by the perturbative methods using Green's functions

An outline could be:

- 1. Single-particle Green's function
- 2. Review of second quantization
- 3. Diagrammatic method using many particle Green's functions at temperature T=o
- 4. Diagrammatic method for finite T
- 5. Landau theory of Fermi liquids
- 6. Superconductivity
- 7. One-dimensional systems and bosonization

Intended learning outcomes

Working knowledge of the methods of quantum field theory in a non-relativistic context. Ability to study properties of Fermi liquids (and bosonic systems) beyond the one-particle picture. Acquisition of methods which are essential for the understanding the effects of interactions, including superconductivity and the Kondo effect.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

..

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title			Abbreviation			
Solid State Physics 2					11-FK2-Int-201-m01	
Module coordinator				Module offered by		
Managing Director of the Institute of Applied Physics			Applied Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
8	nume	rical grade				
Duration Module level		Other prerequisites	,			
1 semester graduate		Approval from examination committee required.				
Contracts						

- 1. Electrons in a periodic potential the band structure
- a. Electrical and thermal transport
- b. Bloch theorem
- c. Electrons
- 2. Semi-classical models of dynamic processes
- a. Electrical transport in partially and completely filled bands
- b. Fermi surfaces; measurement techniques
- c. Electrical transport in external magnetic fields
- d. Boltzmann-equations of transport
- 3. The dielectric function and ferroelectrics
- a. Macroscopic electrodynamics and microscopic theory
- b. Polarizability of solids, of lattices, of valence electrons and quasi-free electrons; optical phonons, polaritons, plasmons, inter-band transitions, Wannier-Mott excitons
- c. Ferromagnetism
- 4. Semiconductors
- a. Characteristics
- b. Intrinsic semiconductors
- c. Doped semiconductors
- d. Physics and applications of p-n junctions
- e. Heterostructures
- 5. Magnetism
- a. Atomic dia- and paramagnetism
- b. Dia- and paramagnetism in metals
- c. Ferromagnetism
- 6. Superconductivity
- a. Phenomena
- b. Models of superconductivity
- c. Tunnel experiments und applications

Intended learning outcomes

Knowledge of effects, concepts and models in advanced solid state physics. Familiarity with the theoretical principles and with applications of experimental methods.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method

of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title			Abbreviation			
Solid State Spectrocopy					11-FKS-Int-201-m01	
Module coordinator				Module offered by		
Manag	ing Dir	ector of the Institute	of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
6	nume	rical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester graduate						
Conter	Contents					

Single and many particle picture of electrons in solids, Light-matter interaction, Optical spectroscopy, Electron spectroscopy, X-ray spectroscopies.

Intended learning outcomes

Specific and in-depth knowledge of solid-sate spectroscopy. Knowledge of different methods of spectroscopy and their applications. Understanding of the theoretical principles and modern developments in the related science.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title Abbreviation					Abbreviation
Visiting Research 11-FPA-Int-201-m01					
Module	Module coordinator			Module offered by	
chairpe	erson o	f examination committee	2	Faculty of Physics a	and Astronomy
ECTS		od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
	-	graduate	Approval from exam	ination committee r	equired.
Conten	ts				
	is and o	documentation of the res			sics. Experimental work including visits to other universities or re-
Intend	ed lear	ning outcomes			
		th current research topic yze and document scien		neoretical physics. V	Vithin experimental physics, the
Course	s (type	, number of weekly conta	act hours, language –	- if other than Germa	an)
R (o) Module	e taugh	t in: English			
		sessment (type, scope, la ion on whether module c	-		ation offered — if not every seme-
		(approx. 10 to 20 pages)			
Allocat	ion of	places			
Additional information					
Workload					
300 h					
Teaching cycle					
	<u> </u>				

Module appears in

Master's degree (1 major) Physics International (2020)

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Modul	Module title Abbreviation				
Profes	Professional Specialization Quantum Engineering				11-FS-N-Int-201-m01
Module	Module coordinator			Module offered by	
module coordinator				Faculty of Physics a	and Astronomy
ECTS	Metho	od of grading	Only after succ. con		ind Astronomy
15		successfully completed		ipu oi modute(o)	
Duratio	on	Module level	Other prerequisites		
1 seme	ster				
Conter	ıts				
Intend	ed lear	ning outcomes			
Course	s (type	, number of weekly conta	ıct hours, language –	- if other than Germa	ın)
S (4)		,			
Module	e taugh	t in: English			
					ition offered — if not every seme-
ster, in	formati	on on whether module c	an be chosen to earn	a bonus)	
		ussion (30 to 45 minutes)			
	ion of p	ssessment: English			
Allocal	ן וט ווטוו	Jiaces			
Additio	nal inf	ormation			
	_				
Worklo	ad				
450 h					
Teachi	ng cycl	e			
Referred to in LPO I (examination regulations for teaching-degree programmes)					
-					
Module appears in					
	Master's degree (1 major) Quantum Engineering (2020)				
Master	Master's degree (1 major) Quantum Engineering (2024)				

Module	e title		Abbreviation			
Optica	Optical Properties of Semiconductor Nanostructures				11-HNS-Int-201-m01	
Module	Module coordinator			Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate						
Conten	Contents					

Semiconductor Nanostructures are frequently referred to as 'artificial materials'. In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored via changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, oD). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks for quantum communication and quantum computing architectures

Intended learning outcomes

Familiarity with the fundamental properties of semiconductor nanostructures as well as with their theoretical foundations. Knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

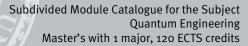
Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload


180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's with 1 major Quantum Engineering (2020)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 55 / 91
	ta record Master (120 ECTS) Quantum Engineering - 2020	

Master's degree (1 major) Quantum Engineering (2020) exchange program Physics (2023)
Master's degree (1 major) Quantum Engineering (2024)
Master's degree (1 major) Physics International (2024)

Module title					Abbreviation	
Semiconductor Physics					11-HPH-Int-201-m01	
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6	nume	rical grade				
Duration Module level Otl		Other prerequisit	Other prerequisites			
1 semester graduate						
Contents						

The lecture deals with the fundamental properties of semiconductors. It begins with an analysis of the crystal structure, leading to methods for describing band structures. These form a basis for discussing optical and electronic properties of monolithic semiconductors. It then turns to examining semiconductor heterostructures, and studies how these can be used to modify and design optical and electrical properties, especially in the case of lowered dimensionality systems. Examples are selected from current research activities.

Intended learning outcomes

To provide the student with a working knowledge semiconductors pertaining to crystal structure, symmetries, and band structures, as well as electrical and optical properties. This establishes a solid basis preparing him for the more targeted specially lectures in the program.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024) Master's degree (1 major) Physics International (2024)

Module title					Abbreviation	
Magnetism					11-MAG-Int-201-m01	
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6	nume	rical grade				
Duration Module level O		Other prerequisit	Other prerequisites			
1 semester graduate						
Contents						

Dia- and paramagnetism, Exchange interaction, Ferromagnetism, Antiferromagnetism, Anisotropy, Domain structure, Nanomagnetism, Superparamagnetism, Experimental methods to measure magnetic properties. Kondo effect.

Intended learning outcomes

Knowledge of the basic terminology, concepts and phenomena of magnetism and the experimental methods to measure them. Skills in constructing simple models and describing the mathematical formalism, and the ability to apply these skills to the mentioned fields of magnetism. Competence to independently solve problems in these fields. Capability of assessing the precision of observations and of their analysis.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

11-MA-N-Int-201-m01				
Module offered by				
Faculty of Physics and Astronomy				
r succ. compl. of module(s)				
- Caracian Company Com				
requisites				
anguage — if other than German)				
,				
if other than German, examination offered $-$ if not every seme-				
en to earn a bonus)				
Teaching cycle				
Defermed to in IRO I (evention tion we evolution of such as ability of				
Referred to in LPO I (examination regulations for teaching-degree programmes)				
Module appears in				
Master's degree (1 major) Quantum Engineering (2020) Master's degree (1 major) Quantum Engineering (2024)				
la				

Module	Module title Abbreviation				
Scienti	ific Met	hods and Project Manag	ement Quantum Eng	ineering	11-MP-N-Int-201-m01
Module	e coord	inator		Module offered by	
				Faculty of Physics a	and Astronomy
ECTS	Metho	od of grading	Only after succ. con		,
15	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 seme	ster				
Conten	ts				
Intend	ed lear	ning outcomes			
Course	s (type	, number of weekly conta	act hours, language –	- if other than Germa	ın)
R (4)	,				
Module	e taugh	t in: English			
					tion offered — if not every seme-
-	-	ion on whether module c	-	a bonus)	
		ussion (30 to 45 minutes) ssessment: English			
	ion of p				
		- Staces			
Additio	nal inf	ormation			
Additio	Ziiat iiii	omation	,		
Worklo	ad ad				
450 h	,uu				
	ng cycl	P			
	s cycl				
Referred to in LPO I (examination regulations for teaching-degree programmes)					
Referred to in Li O I (examination regulations for teaching-degree programmes)					
Module appears in					
Module appears in Mactor's degree (4 major) Quantum Engineering (2020)					
	Master's degree (1 major) Quantum Engineering (2020) Master's degree (1 major) Quantum Engineering (2024)				
master 5 degree (2 major) Quantum Engineering (2024)					

Module title					Abbreviation	
Advan	Advanced Magnetic Resonance Imaging				11-MRI-Int-201-m01	
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Method of grading Only after succ. co		Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duration Module level Oth		Other prerequisites	.			
1 semester graduate						

Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon that, through magnetic resonance imaging (MRI), has played a major role in the revolution in medical imaging over the last 30 years. Starting from the fundamentals of nuclear magnetic resonance (resonance principle, relaxation times, chemical shift) this course covers

- 1) the NMR signal theory and signal evolution (Bloch equations)
- 2) the principles of spatial encoding, magnetic resonance imaging (MRI) and corresponding imaging sequences and measurement parameters,
- 3) the concept of k-space and Fourier imaging,
- 4) the physical, methodological and technical possibilities and limitations of MRI. Finally, typical application fields of MRI in biomedical research, clinical imaging and non-destructive testing will be covered.

Intended learning outcomes

The students are familiar with the basics and the deepened aspects of NMR and MRI including the mathematical-theoretical description and the physical basics of modern MRI, MRI-instrumentation and image-formation/image-processing principles. The students gain a deep insight into the area of modern MRI and its interdisciplinary relations and applications.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

Teaching cycle: In the semester in which the course is offered and in the subsequent semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

..

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title				Abbreviation	
Nano-Optics					11-NOP-Int-201-m01
Module coordinator				Module offered by	
Manag	ing Dire	ector of the Institute of A	pplied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
C 4	Containt				

The lecture conveys theoretical fundamentals, experimental techniques, and applications of nano-optics starting from the discussion of the focusing of light. Based on this, the fundamentals of modern far-field optical microscopy are discussed. In the following, the near-field optical microscopy is introduced and discussed. As a further basis, quantum emitters are introduced and their light emission in nano-environments is derived. Plasmons in 2D, 1D and o dimensions are introduced and discussed in detail. This finally leads to the concept of optical antennas.

Intended learning outcomes

Specific and in-depth knowledge of the topic of nano-optics. Familiarity with the basic theoretical description and applications of nano-optics as well as the current developments of the topic.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024) Master's degree (1 major) Physics International (2024)

Modul	e title				Abbreviation	
Organic Semiconductors					11-OHL-Int-201-m01	
Modul	e coord	inator		Module offered by		
Manag	ing Dir	ector of the Institute	of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	ethod of grading Only after succ. co		ompl. of module(s)		
6	nume	rical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester		graduate				
Conter	Contents					

Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applicati-

Intended learning outcomes

In-depth knowledge of the properties of organic semiconductor materials and their applications.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Advan	ced Ser	ninar Quantum Engineeri		11-OSN-A-Int-201-m01		
Modul	e coord	inator		Module offered by		
Managing Director of the Institute of Applied Physics			oplied Physics	Faculty of Physics and Astronomy		
ECTS				· · · · · · · · · · · · · · · · · · ·	,	
5	numerical grade					
Duration Module level Other prerequisite		Other prerequisites				
1 seme	ester	graduate				
Conter	nts					
Semin	ar on cu	irrent issues in theoretica	al or experimental ph	ysics.		
Intend	ed lear	ning outcomes				
		rledge about a current to rizing them and presenting			. Ability to read scientific publica	
Course	es (type	, number of weekly conta	ct hours, language –	- if other than Germa	n)	
S (2) Modul	e taugh	t in: English				
		sessment (type, scope, la on on whether module ca			tion offered — if not every seme-	
		ussion (30 to 45 minutes) ssessment: English				
Alloca	tion of	olaces				
Additio	onal inf	ormation				
Worklo	oad					
150 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Modul	Module appears in					
Mastei	Master's degree (1 major) Quantum Engineering (2020) exchange program Physics (2023)					

Module title					Abbreviation	
Advan	ced Se	minar Quantum Engineeri		11-OSN-B-Int-201-m01		
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	TS Method of grading Only after succ. com		npl. of module(s)			
5	nume	erical grade				
Durati	on	Module level	Other prerequisites	er prerequisites		
1 seme	ester	graduate				
Conte	nts					
Semin	ar on c	urrent issues in theoretica	al or experimental ph	ysics.		
Intend	ed lear	ning outcomes				
		wledge about a current to trizing them and presention			. Ability to read scientific publica	
Course	es (type	e, number of weekly conta	ct hours, language –	- if other than Germa	ın)	
S (2) Modul	S (2) Module taught in: English					
	Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)					
	talk with discussion (30 to 45 minutes) Language of assessment: English					
Alloca	Allocation of places					
Additional information						
Workle	Workload					
150 h	150 h					
	ing cyc					
· cacili	··································					

.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Modul	e title			,	Abbreviation	
Advanced Laboratory Course Master Part 1				-	11-P-FM1-Int-201-m01	
Modul	e coord	inator		Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	Method of grading Only after succ. cor		npl. of module(s)		
3	(not)	successfully completed				
Duration Module level		Other prerequisites				
1 semester		graduate	Preparation and safety briefing.			
Conter	Contents					

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

_

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Modul	e title				Abbreviation
Advanced Laboratory Course Master Part 2					11-P-FM2-Int-201-m01
Modul	e coord	inator		Module offered by	
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy	
ECTS	Meth	Method of grading Only after succ. cor		npl. of module(s)	
3	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester		graduate	Preparation and safety briefing.		
Contents					

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Advanced Laboratory Course Master Part 3					11-P-FM3-Int-201-m01	
Modul	e coord	inator		Module offered by		
Manag	Managing Director of the Institute of Applied Phys			Faculty of Physics and Astronomy		
ECTS	Meth	Method of grading Only after succ. co		npl. of module(s)		
3	(not)	successfully completed				
Duration Module level		Other prerequisites				
1 semester		graduate	Preparation and safety briefing.			
Conter	Contents					

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

_

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Advand	ced Lab	oratory Course Master P	art 4		11-P-FM4-Int-201-m01	
Module coordinator				Module offered by		
Manag	ing Dire	ector of the Institute of Ap	oplied Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. compl. of module(s)			
3	(not) successfully completed -					
Duration Module level		Other prerequisites				
1 semester		graduate	Preparation and safety briefing.			
Conten	Contents					

Foundations of particle, atomic and molecular physics, low-temperature experiments and correlated systems, solid state properties, surfaces and interfaces. Experiments covering the topics x-ray radiation, nuclear magnetic resonance (NMR), quantum Hall effect, optical pumping and spectroscopy with visible light, Hall effect, superconductivity, lasers, solid state optics

Intended learning outcomes

Solid skills in performing an experiment and analyzing and documenting the experimental outcome. Basic knowledge of how to prepare a scientific publication and use state-of-the-art analysis systems and software. Knowledge of experimental methods, of using scientific publications, of performing and evaluating an experiment, and presenting and discussing the results in the form of a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: English

Allocation of places

Additional information

Workload

90 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Physic	s of Ad	vanced Materials			11-PMM-Int-201-m01	
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Phy			Faculty of Physics and Astronomy		
ECTS	Metho	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 semester		graduate				
Contents						

General properties of various material groups such as liquids, liquid crystals and polymers; magnetic materials and superconductors; thin films, heterostructures and superlattices. Methods to characterize these material groups. Two-dimensional layered structures.

Intended learning outcomes

Familiarity with the properties and characterization methods of various groups of modern materials.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

__

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation
Pheno	menolo	gy and Theory of Superc	onductivity		11-PTS-Int-201-m01
Module coordinator				Module offered by	
Manag	Managing Director of the Institute of Applied Physics and Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6 numerical grade					
Duration Module level		Module level	Other prerequisites		
1 semester		graduate		_	
Conter	nts		,		

Basic Properties of Superconductors and their Applications, Development of technological platforms, Methods of material science for calculating temperature profiles in superconductors. Overview of the phenomenology of conventional and unconventional superconductivity. Review of BCS theory and its applicability for different types of superconductors. Extension of Ginzburg-Landau theory to a quantum field theory formalism using Feynman diagrams and functional integrals. Theoretical formalism of Ward identities and response functions. Goldstone modes, phase fluctuations, and coupling to the electromagnetic field. Interpretation of the Meissner effect in terms of the Higgs mechanism. Interplay of magnetism and conventional/unconventional superconductivity. Discussion of current research topics and perspective on room-temperature superconductivity.

Intended learning outcomes

Acquisition of basic knowledge about superconductivity as a macroscopic quantum phenomenon. Profound understanding of unconventional superconductivity and its interplay with magnetism in the context of current research. Knowledge of BCS mean-field theory, the quantum-field theory methods necessary to extend BCS theory, as well as the Meissner effect and the Higgs mechanism. Basic understanding of unconventional superconductors and their fascinating connection with competing magnetic phases.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places **Additional information** Workload 180 h **Teaching cycle**

Referred to in LPO I (examination regulations for teaching-degree programmes)

..

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Advanced Theory of Quantum Computing and Quantum Information				ormation	11-QIC-Int-201-m01	
Module	e coord	inator		Module offered by		
Managing Director of the Institute of Theoretical Physics and Astrophysics			eoretical Physics	Faculty of Physics and Astronomy		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
6	6 numerical grade					
Duration Mod		Module level	Other prerequisites			
1 semester graduate		graduate				
Conton	Contants					

- 1. Brief summary of classical information theory
- 2. Quantum theory seen from the perspective of information theory
- 3. Composite systems and the Schmidt decomposition
- 4. Entanglement measures
- 5. Quantum operations, POVMs, and the theorems of Kraus and Stinespring
- 6. Quantum gates and quantum computers
- 7. Elements of the theory of decoherence

Intended learning outcomes

Comprehensive understanding of quantum states and identity matrix beyond the usual textbook interpretation. Knowledge of handling tensor products and dealing with quantum effects in multipartite quantum systems. Indepth understanding of the phenomenon of entanglement. Knowledge of the fundamental mathematical concepts of quantum information theory. Ability to assess the limitations of quantum computing arising from decoherence.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

viaster's	with	1 major	Quantum	Engineering	(2020)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Modul	e title			,	Abbreviation	
Quanti	um Med	hanics II			11-QM2-Int-201-m01	
Modul	e coord	inator		Module offered by		
Managing Director of the Institute of Theoretical Phand Astrophysics			Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
8	numerical grade					
Duration Module level		Other prerequisites				
1 semester undergraduate						
Conter	Contents					

"Quantum mechanics 2" constitutes the central theoretical course to be taken within the international Master's program in physics. While the specific emphasis can be adjusted individually, the core topics that are supposed to be covered should include:

- 1. Second quantization: fermions and bosons
- 2. Band structures of particles in a crystal
- 3. Angular momentum, symmetry operators, Lie Algebras
- 4. Scattering theory: potential scattering, partial wave expansion
- 5. Relativistic quantum mechanics: Klein-Gordon equation, Dirac equation, Lorentz group, fine structure splitting of atomic spectra
- 6. Quantum entanglement
- 7. Canonical formalism

Intended learning outcomes

In-depth knowledge of advanced quantum mechanics. Thorough understanding of the mathematical and theoretical concepts of the listed topics. Ability to describe or model problems of modern theoretical quantum physics mathematically, to solve problems analytically or using approximation methods and to interpret the results physically. The course is pivotal to subsequent theory courses in astrophysics, high energy physics and condensed matter/solid state physics. The course is mandatory for all Master's students.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Quantum Transport					11-QTR-Int-201-m01	
Module coordinator				Module offered by	Module offered by	
Managing Director of the Institute of Applied Phy			e of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6	6 numerical grade					
Duration A		Module level	Other prerequisit	es		
1 semester		graduate				
Conto	ntc					

The lecture addresses the fundamental transport phenomena of electrons in solids where Electron-electron interaction and the wave nature are the determining factors. This includes the diffusive and ballistic transport regime as well as the Coulomb blockade. Observations of electron interference effects, conductance quantization and the quantum Hall effect will be discussed. Thermoelectric properties of electronic system and the phenomenon of superconductivity will be examined as well.

Low dimensional electron systems and its quantum mechanical description are the basis of this lecture. Relevant material systems are semiconductor heterostructures as well as topological insulators, topological semimetals, and topological superconductors. The content will be guided by actual research results.

Intended learning outcomes

Working knowledge of basic transport experiments, its analysis and its interpretation which enables the student to discuss results critical.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

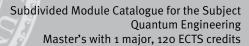
--

Additional information

Workload

180 h

Teaching cycle


--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's with 1 major Quantum Engineering (2020)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 81 / 91
	ta record Master (120 ECTS) Quantum Engineering - 2020	

Master's degree (1 major) Quantum Engineering (2020) exchange program Physics (2023)
Master's degree (1 major) Quantum Engineering (2024)
Master's degree (1 major) Physics International (2024)

Module title					Abbreviation	
Spintronics					11-SPI-Int-201-m01	
Module coordinator				Module offered by	Module offered by	
Managing Director of the Institute of Applied			e of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
6	nume	numerical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester		graduate				
Conto	ntc	•	·			

In this lecture, the basic principles of spin transport are taught, with a particular emphasis on the phenomena of giant magnetoresistance and tunnel magnetoresistance. New phenomena from the fields of spin dynamics and current-induced spin phenomena are discussed.

Intended learning outcomes

Knowledge of basic principles of spin transport models and of applications of spin transport in information technology. Overview over the state-of-the-art findings in this field (giant magnetoresistance, tunnel magnetoresistance).

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Modul	e title			Abbreviation		
Surface Science					11-SSC-Int-201-m01	
Module coordinator				Module offered by	Module offered by	
Managing Director of the Institute of Applied			e of Applied Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. o	ompl. of module(s)		
6	numerical grade					
Duration Module level		Other prerequisit	Other prerequisites			
1 semester		graduate				
Contor	Contents					

Relevance of surfaces and interfaces, distinction from bulk phases, classical description, continuum models, Atomic structure: reconstructions and adsorbates, surface orientation and symmetries, Microscopic processes at surface, thermodynamics, adsorption and desorption, Experimental characterization, Electronic structure of surfaces, chemical bonding, surface states, spin-orbit coupling, Rashba effects, topological surface states, magnetism

Intended learning outcomes

The students have an overview over the diverse aspects of surface science and they are familiar with the physical characteristic of surfaces and interfaces. The students know the most important experimental techniques for the investigation of surfaces, as well as their specific fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's with 1 major Quantum Engineering (2020)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 84 / 91
	ta record Master (120 ECTS) Quantum Engineering - 2020	

Master's degree (1 major) Quantum Engineering (2024) Master's degree (1 major) Physics International (2024)

Module title					Abbreviation
Topological Effects in Solid State Physics					11-TEFK-Int-201-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
8	8 numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					
Conton	Contonts				

- 1. Geometric phase in quantum systems
- 2. Mathematical basics of topology
- 3. Time-reversal symmetry
- 4. Hall conductance and Chern numbers
- 5. Bulk-boundary correspondence
- 6. Graphene (as a topological insulator)
- 7. Quantum Spin Hall insulators
- 8. Z2 invariants
- 9. Topological superconductors

Intended learning outcomes

In-depth theoretical understanding of the topological concepts in quantum physics related to solid state systems. Ability to connect their knowledge with different research activities at the Department of Physics and Astronomy at Würzburg University.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Ν	Naster's with 1 major Quantum	Engineering (2020)) JMU Würzburg • ;	generated 19)-/
1			to record Macter	(400 ECTS) O	

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Theoretical Solid State Physics				_	11-TFK-Int-201-m01	
Module coordinator				Module offered by		
Managing Director of the Institute of Theo and Astrophysics			of Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	CTS Method of grading Only after succ. o		Only after succ. co	ompl. of module(s)		
8 numerical grade						
Duration		Module level	Other prerequisite	Other prerequisites		
1 semester		graduate				
Contents						

The contents of this two-term course will depend on the choice of the lecturer, and may include parts of the syllabus which could alternatively be offered as "Quantum Many Body Physics" (11-QVTP).

A possible syllabus may be:

- 1. Band structure (Sommerfeld theory of metals, Bloch theorem, k.p approach and effective Hamiltonians for topological insulators (TIs), bulk-surface correspondence, general properties of TIs)
- 2. Electron-electron interactions in solids (path integral method for weakly interacting fermions, mean field theory, random phase approximation (RPA), density functional theory)
- 3. Application of mean field theory and the RPA to magnetism
- 4. BCS theory of superconductivity

Intended learning outcomes

In-depth knowledge of the topics listed above. In-depth understanding of the concepts involved and ability to apply the methods listed. This provides a thorough working knowledge of a large number of topics treated in the standard textbooks on theoretical solid state physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Quantum Engineering (2020)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-		
	ta record Master (120 ECTS) Quantum Engineering - 2020		

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module title					Abbreviation	
Theoretical Quantum Optics					11-TQO-Int-221-m01	
Module coordinator				Module offered by		
Managing Director of the Institute of Theoretical Physics and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy		
ECTS	ECTS Method of grading Only after succ. co		npl. of module(s)			
8 numerical grade						
Duration		Module level	Other prerequisites			
1 semester		graduate				

- 1. Semi-classical atom-field interactions
- 2. Interaction of atoms with quantized light fields and dressed-atom model
- 3. Master equation and open systems
- 4. Coherence and interference effects
- 5. Coherent light propagation in resonant media
- 6. Photon statistics and correlations
- 7. Quantum optics of many-body systems

Intended learning outcomes

Comprehensive understanding of phenomena involving light and its interaction with atoms at the microscopical level. Knowledge of density matrix formalism for quantum systems and the related mathematical concepts. In-depth understanding of quantum properties of light and their experimental signatures, including photon statistics and correlations. Knowledge of the theory of open systems and master equation description involving Lindblad superoperators. Understanding and modeling the role of coherence and interference in light propagation effects in resonant atomic media. Knowledge of cooperative effects in many-body systems: super- and subradiance, collective light shifts and their applications.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

Referred to in LPO I	examination reg	gulations for te	aching-degree	programmes)
Veletien folli FLO I	evannination ieš	guialions ioi le	aciiiig-uegiee	piugiaiiiiies)

..

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)