Subdivided Module Catalogue
for the Subject

FOKUS Pharmacy
as a Master’s with 1 major
with the degree "Master of Science"
(60 ECTS credits)

Examination regulations version: 2012
Responsible: Faculty of Chemistry and Pharmacy
Course of Studies - Contents and Objectives

no translation available
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

11-Sep-2012 (2012-152)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Electives (30 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-MS3PBF1-102-m01</td>
<td>Pharmaceutical Biology (Practical Course and Seminar 1)</td>
<td>10</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>08-MCM1-102-m01</td>
<td>Practical course medicinal chemistry</td>
<td>10</td>
<td>B/NB</td>
<td>12</td>
</tr>
<tr>
<td>08-PTF1-122-m01</td>
<td>Practical research course pharmaceutical technology</td>
<td>10</td>
<td>B/NB</td>
<td>17</td>
</tr>
<tr>
<td>08-BCFP-VPSB-102-m01</td>
<td>Practical course "Structural Biology" for advanced</td>
<td>10</td>
<td>NUM</td>
<td>22</td>
</tr>
<tr>
<td>08-BCFP-VPMM-102-m01</td>
<td>Practical course Molecular Machines for advanced students</td>
<td>10</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>Subfield Lab Courses (10 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-ACM2-102-m01</td>
<td>Bioinorganic Chemistry</td>
<td>5</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>08-OCM-SYNT-102-m01</td>
<td>Modern Synthetic Method</td>
<td>5</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>08-OCM-NAT-102-m01</td>
<td>Modern Aspects of Natural Product Chemistry and Biological Chemistry</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>08-HKM1-102-m01</td>
<td>Organo- and Biocatalysis</td>
<td>5</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>08-SCM3-102-m01</td>
<td>Bioorganic Chemistry</td>
<td>5</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>08-TCM1-102-m01</td>
<td>Theoretical Chemistry</td>
<td>5</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>08-MCM3-102-m01</td>
<td>Principles of drug design</td>
<td>5</td>
<td>NUM</td>
<td>23</td>
</tr>
<tr>
<td>07-MS3-112-m01</td>
<td>Current Methods in Plant Biology (Lecture)</td>
<td>10</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>08-PTF3-122-m01</td>
<td>Current research topics in pharmaceutical sciences</td>
<td>5</td>
<td>NUM</td>
<td>5</td>
</tr>
<tr>
<td>08-PTF2-122-m01</td>
<td>Drug Product Development, Quality assurance and industrialization</td>
<td>5</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>Subfield Theoretical Courses (15-20 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-WRM1-102-m01</td>
<td>Tutoring 1 (practical course)</td>
<td>5</td>
<td>B/NB</td>
<td>9</td>
</tr>
<tr>
<td>08-FPM1-122-m01</td>
<td>Pharmacy-related courses outside of the Natural Sciences</td>
<td>5</td>
<td>B/NB</td>
<td>19</td>
</tr>
<tr>
<td>08-FPM2-122-m01</td>
<td>Pharmacy-related courses within the Natural Sciences</td>
<td>5</td>
<td>B/NB</td>
<td>20</td>
</tr>
<tr>
<td>Subfield Additional Qualifications (max. 5 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-MA-FP-122-m01</td>
<td>Masterthesis FOKUS Pharmazie</td>
<td>30</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>Thesis (30 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module title: Current research topics in pharmaceutical sciences
Abbreviation: 08-PTF3-122-m01

Module coordinator: degree programme coordinator FOKUS Pharmazie (Pharmacy)
Module offered by: Institute of Pharmacy and Food Chemistry

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
This module deals with selected topics in current research in pharmaceutical science.

Intended learning outcomes
Students have developed an advanced knowledge of selected current topics in the pharmaceutical sciences. They are able to explore and discuss current problems.

Courses (type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk with discussion (approx. 30 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Current Methods in Plant Biology (Lecture)
Abbreviation: 07-MS3-112-m01

Module coordinator: Module offered by: holder of the Chair of Plant Physiology and Biophysics Faculty of Biology

ECTS: 10
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses
(type, number of weekly contact hours, language — if other than German)
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinorganic Chemistry</td>
<td>08-ACM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Anorganische Aspekte der Biochemie and Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes

Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioorganic Chemistry</td>
<td>08-SCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Bioorganische Chemie" (Bioorganic Chemistry)</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses topics at the interface of organic chemistry, biology and medicine. It focuses on molecular interactions and recognition, molecular diversity, active agent development, new aspects of DNA, RNA, proteins and carbohydrates.

Intended learning outcomes

Students are able to describe molecular interactions and detection mechanisms of bioorganic chemistry. They can explain the molecular diversity of biological systems. They can characterise the fabrication of agents. They can describe modern aspects of DNA, RNA, proteins and carbohydrates.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutoring 1 (practical course)</td>
<td>08-WRM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Chemie (Chemistry)</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after sucess. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module offers the opportunity to learn correct presenting and mediating scientific questions by giving a tutorial attendant to a lecture at the faculty of chemistry and pharmacy.

Intended learning outcomes

The students are able to adequately prepare and present scientific questions, and to guide students in lower semesters.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

preparation of materials for demonstrations and exercises

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug Product Development, Quality assurance and industrialization</td>
<td>08-PTF2-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator FOKUS Pharmazie (Pharmacy)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in drug product development, quality assurance and industrialisation.

Intended learning outcomes

Students have developed an advanced knowledge relating to drug product development, quality assurance and industrialisation and are able to apply that knowledge to research problems.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Master thesis FOKUS Pharmazie

Abbreviation: 08-MA-FP-122-m01

Module coordinator

degree programme coordinator FOKUS Pharmazie (Pharmacy)

Module offered by

Institute of Pharmacy and Food Chemistry

ECTS: 30

Method of grading: numerical grade

Only after succ. compl. of module(s): 08-MCM1 or 08-PTF1 or 07-MS3PBF1 or 08-BC-VPSB or 08-BC-VPMM (module components *-1 only)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
The module enables the processing of a defined problem within a specified period by applying the scientific methods learned in the course of study.

Intended learning outcomes:
The student has the ability to deal with a defined problem/issue using scientific methods and to document the results.

Courses:

No courses assigned

Method of assessment:

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written thesis

Language of assessment: German or English

Allocation of places:

--

Additional information:

Additional information on module duration: 6 months.

Referred to in LPO I:

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course medicinal chemistry</td>
<td>08-MCM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Selected methods and topics in medicinal chemistry (synthesis, testing, analysis, theory, pharmacokinetics).

Intended learning outcomes
Students have developed a knowledge of medicinal chemistry and are able to apply it to practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 20 minutes), assessment of practical performance, written report (approx. 30 to 50 pages)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Modern Aspects of Natural Product Chemistry and Biological Chemistry

Abbreviation
08-OCM-NAT-102-m01

Module coordinator
借者 of the seminar

Module offered by
Institute of Organic Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module discusses advanced topics in natural product chemistry and biological chemistry.

Intended learning outcomes
Students are able to discuss advanced topics in natural product chemistry and biological chemistry.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places
Chemistry Master's: no restrictions. Biochemistry Master's: 20 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Synthetic Method</td>
<td>08-OCM-SYNT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

This module discusses modern stereoselective synthesis methods. It focuses on selected total syntheses, organometallic chemistry and catalysis.

Intended learning outcomes

Students are able to stereoselectively plan complex chemical syntheses and to stereochemically analyse them. They can explain total syntheses. They can describe aspects of organometallic chemistry and catalysis in synthesis chemistry.

Courses

Type, number of weekly contact hours, language — if other than German

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organo- and Biokatalyse"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Biology (Practical Course and Seminar 1)</td>
<td>07-MS3PBF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

All organisms are able to reprogram their metabolism in response to various endogenous or exogenous perturbations. Reprogramming of metabolism is often correlated to phenotypic changes e. g. in disease development, physiology or behaviour. At the Chair of Pharmaceutical Biology, we apply metabolomics for gene function- or stress response analysis. Students can choose a topic from the variety of ongoing projects. Depending on the scientific question addressed by the research team at the Chair, the methodological approach involves techniques in the field of metabolomics/bioanalytics and/or molecular biology. In this module, students will be trained to use quantitative metabolite analysis methods (chromatography, mass spectrometry) and apply advanced molecular biology techniques. Depending on the project, different model organisms are studied. Prior knowledge in metabolite analysis or mass spectrometry is not required. Current scientific questions in the life sciences form the basis to impart scientific concepts and to train students in the laboratory. The module involves the experimental design, realisation and critical evaluation of scientific experiments as well as the documentation and presentation of the progress. More information is available on request or can be found at http://www.pbio.biocentrum.uni-wuerzburg.de/.

Intended learning outcomes

Students will be trained in using specific molecular biology methods and/or metabolomics approaches to address scientific questions, in the documentation of experimental procedures and results, and in the interpretation of data.

Courses (type, number of weekly contact hours, language — if other than German)

P + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical research course pharmaceutical technology</td>
<td>08-PTF1-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator

degree programme coordinator FOKUS Pharmazie (Pharmacy)

Module offered by

Institute of Pharmacy and Food Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides practical skills in the field pharmaceutical technological research.

Intended learning outcomes

Students have developed practical research skills for pharmaceutical technology.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 20 minutes), assessment of practical performance, written report (approx. 30 to 50 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Chemistry</td>
<td>08-TCM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Theoretische Chemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

The module introduces students to theoretical chemistry.

Intended learning outcomes

Students are able to describe the mathematical and physical principles underlying the quantum chemical and quantum dynamical approaches of theoretical chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Pharmacy-related courses outside of the Natural Sciences

Abbreviation
08-FPM1-122-m01

Module coordinator
Dean of Studies Pharmazie (Pharmacy)

Module offered by
Institute of Pharmacy and Food Chemistry

ECTS
5

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
Please consult with course advisory service.

Contents
This module gives students the opportunity to transfer credits from pharmacy-related courses that are offered by other Faculties and are not explicitly included in the academic regulations for their programmes. Students MUST consult with their course advisors in advance.

Intended learning outcomes
Students have developed the knowledge and skills taught in the courses attended by them.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes) or d) successful completion as certified by lecturer

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Pharmacy-related courses within the Natural Sciences | 08-FPM2-122-m01

Module coordinator | Module offered by
Dean of Studies Pharmazie (Pharmacy) | Institute of Pharmacy and Food Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Please consult with course advisory service.

Contents
This module gives students the opportunity to transfer credits from pharmacy-related courses that are offered by other Faculties and are not explicitly included in the academic regulations for their programmes. Students MUST consult with their course advisors in advance.

Intended learning outcomes
Students have developed the knowledge and skills taught in the courses attended by them.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes) or d) successful completion as certified by lecturer

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Practical course Molecular Machines for advanced students

Abbreviation
08-BCFP-VPMM-102-m01

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to explore a research topic. Selected methods and topics in molecular biology and biochemistry; cloning, mutagenesis, protein expression and purification, RNA-protein and protein-in-protein interactions, isolation and functional analysis of macromolecular complexes.

Intended learning outcomes
The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses
(P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Structural Biology" for advanced</td>
<td>08-BCFP-VPSB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses cloning and the expression of protein constructs for crystallisation. It teaches students the fundamental principles and techniques of crystallisation and crystal optimisation as well as crystallographic data collection.

Intended learning outcomes

Students have developed an understanding of the method of selecting protein constructs for crystallisation. They master fundamental skills and techniques for protein crystallisation as well as data collection and processing.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Principles of drug design

Abbreviation
08-MCM3-102-m01

Module coordinator
lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry)

Module offered by
Institute of Pharmacy and Food Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes
The student masters theoretical and experimental methods and aspects of drug design.

Courses
(S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
presentation with discussion (approx. 30 minutes)
Language of assessment: German or English

Allocation of places
Chemistry Master’s and Mathematics Master’s: no restrictions. Biochemistry Master’s: 10 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--