Subdivided Module Catalogue
for the Subject

FOKUS Physics - Nanostructuring Technology
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2006
Responsible: Faculty of Physics and Astronomy
Course of Studies - Contents and Objectives

No translation available.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

frei

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

15-May-2008 (2008-16)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Compulsory Courses (46 ECTS credits)</th>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-PFM-072-m01</td>
<td>Advanced Practical Course Master</td>
<td>6</td>
<td>B/NB</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>11-FPN-072-m01</td>
<td>FOKUS Project Practical Course Nanostructuring Technology</td>
<td>10</td>
<td>NUM</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11-PS-NF-072-m01</td>
<td>Professional Specialization FOKUS Nanostructuring Technology 1</td>
<td>15</td>
<td>NUM</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11-MP-NF-072-m01</td>
<td>Scientific Methods and Project Management FOKUS Nanostructuring Technology 1</td>
<td>15</td>
<td>NUM</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compulsory Electives (44 ECTS credits)</th>
<th>Compulsory Electives Nanomatrix (12 ECTS credits)</th>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-NM-AW-MA-072-m01</td>
<td>Nanomatrix Inorganic Materials Chemistry (Master)</td>
<td>6</td>
<td>NUM</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-NM-NS-MA-072-m01</td>
<td>Nanoparticle Synthesis and Structuring Technologies (Master)</td>
<td>6</td>
<td>NUM</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NM-WP-MA-072-m01</td>
<td>Nanomatrix Heat Insulating Systems and Photovoltaics</td>
<td>6</td>
<td>NUM</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NM-HM-MA-072-m01</td>
<td>Nanomatrix Semiconductor Materials (Master)</td>
<td>6</td>
<td>NUM</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NM-HP-MA-072-m01</td>
<td>Nanomatrix Semiconductor Processing (Master)</td>
<td>6</td>
<td>NUM</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NM-MB-MA-072-m01</td>
<td>Nanomatrix Micro/Nano- and Optoelectronic Devices (Master)</td>
<td>6</td>
<td>NUM</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02-NM-BW-MA-072-m01</td>
<td>Nanomatrix Biomedical Materials (Master)</td>
<td>6</td>
<td>NUM</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-NM-BS-MA-072-m01</td>
<td>Nanomatrix Biocompatible Structuring Technologies (Master)</td>
<td>6</td>
<td>NUM</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NM-BV-MA-072-m01</td>
<td>Nanomatrix Biophysical Analyzing Systems and Processes (Master)</td>
<td>6</td>
<td>NUM</td>
<td>73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compulsory Electives Specialisation Nanostructure Technology (50 ECTS credits)</th>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-SF-4E-072-m01</td>
<td>Module Type 4E Special Training Experimental Physics</td>
<td>4</td>
<td>NUM</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>11-SF-4I-072-m01</td>
<td>Module Type 4I Special Training Interdisciplinary Research Fields</td>
<td>4</td>
<td>NUM</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>11-SF-4T-072-m01</td>
<td>Module Type 4T Special Training Theoretical Physics</td>
<td>4</td>
<td>NUM</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>11-SF-5E-072-m01</td>
<td>Module Type 5E Special Training Experimental Physics</td>
<td>5</td>
<td>NUM</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>11-SF-5I-072-m01</td>
<td>Module Type 5I Special Training Interdisciplinary Research Fields</td>
<td>5</td>
<td>NUM</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>11-SF-5T-072-m01</td>
<td>Module Type 5T Special Training Theoretical Physics</td>
<td>5</td>
<td>NUM</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>11-SF-6E-072-m01</td>
<td>Module Type 6E Special Training Experimental Physics</td>
<td>6</td>
<td>NUM</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>11-SF-6I-072-m01</td>
<td>Module Type 6I Special Training Interdisciplinary Research Fields</td>
<td>6</td>
<td>NUM</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>11-SF-6T-072-m01</td>
<td>Module Type 6T Special Training Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11-SF-8E-072-m01</td>
<td>Module Type 8E Special Training Experimental Physics</td>
<td>8</td>
<td>NUM</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>11-SF-8I-072-m01</td>
<td>Module Type 8I Special Training Interdisciplinary Research Fields</td>
<td>8</td>
<td>NUM</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>11-SF-8T-072-m01</td>
<td>Module Type 8T Special Training Theoretical Physics</td>
<td>8</td>
<td>NUM</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>11-SF-4N-072-m01</td>
<td>Module Type 4N Special Training Nanostructure Technology</td>
<td>4</td>
<td>NUM</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>11-SF-5N-072-m01</td>
<td>Module Type 5N Special Training Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>11-SF-6N-072-m01</td>
<td>Module Type 6N Special Training Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>11-SF-8N-072-m01</td>
<td>Module Type 8N Special Training Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Modules Nanostructure Technology (16 ECTS credits)</th>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-FM-VKB8E-072-m01</td>
<td>FOKUS Research Module Type VK8E Experimental Physics</td>
<td>8</td>
<td>NUM</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Fields</td>
<td>NUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK8I-072-m01</td>
<td>FOKUS Research Module Type VK8I Interdisciplinary Research Fields</td>
<td>8</td>
<td>NUM</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK8T-072-m01</td>
<td>FOKUS Research Module Type VK8T Theoretical Physics</td>
<td>8</td>
<td>NUM</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK9E-072-m01</td>
<td>FOKUS Research Module Type VK9E Experimental Physics</td>
<td>9</td>
<td>NUM</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK9I-072-m01</td>
<td>FOKUS Research Module Type VK9I Interdisciplinary Research Fields</td>
<td>9</td>
<td>NUM</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK9T-072-m01</td>
<td>FOKUS Research Module Type VK9T Theoretical Physics</td>
<td>9</td>
<td>NUM</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK10E-072-m01</td>
<td>FOKUS Research Module Type VK10E Experimental Physics</td>
<td>10</td>
<td>NUM</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK10I-072-m01</td>
<td>FOKUS Research Module Type VK10I Interdisciplinary Research Fields</td>
<td>10</td>
<td>NUM</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK12E-072-m01</td>
<td>FOKUS Research Module Type VK12E Experimental Physics</td>
<td>12</td>
<td>NUM</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK12I-072-m01</td>
<td>FOKUS Research Module Type VK12I Interdisciplinary Research Fields</td>
<td>12</td>
<td>NUM</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK12T-072-m01</td>
<td>FOKUS Research Module Type VK12T Theoretical Physics</td>
<td>12</td>
<td>NUM</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK12E-072-m01</td>
<td>FOKUS Research Module Type VMK12E Experimental Physics</td>
<td>12</td>
<td>NUM</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK12I-072-m01</td>
<td>FOKUS Research Module Type VMK12I Interdisciplinary Research Fields</td>
<td>12</td>
<td>NUM</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK12T-072-m01</td>
<td>FOKUS Research Module Type VMK12T Theoretical Physics</td>
<td>12</td>
<td>NUM</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK13E-072-m01</td>
<td>FOKUS Research Module Type VMK13E Experimental Physics</td>
<td>13</td>
<td>NUM</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK13I-072-m01</td>
<td>FOKUS Research Module Type VMK13I Interdisciplinary Research Fields</td>
<td>13</td>
<td>NUM</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK13T-072-m01</td>
<td>FOKUS Research Module Type VMK13T Theoretical Physics</td>
<td>13</td>
<td>NUM</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK14E-072-m01</td>
<td>FOKUS Research Module Type VMK14E Experimental Physics</td>
<td>14</td>
<td>NUM</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK14I-072-m01</td>
<td>FOKUS Research Module Type VMK14I Interdisciplinary Research Fields</td>
<td>14</td>
<td>NUM</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK14T-072-m01</td>
<td>FOKUS Research Module Type VMK14T Theoretical Physics</td>
<td>14</td>
<td>NUM</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK16E-072-m01</td>
<td>FOKUS Research Module Type VMK16E Experimental Physics</td>
<td>16</td>
<td>NUM</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK16I-072-m01</td>
<td>FOKUS Research Module Type VMK16I Interdisciplinary Research Fields</td>
<td>16</td>
<td>NUM</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK16T-072-m01</td>
<td>FOKUS Research Module Type VMK16T Theoretical Physics</td>
<td>16</td>
<td>NUM</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK8N-072-m01</td>
<td>FOKUS Research Module Type VK8N</td>
<td>8</td>
<td>NUM</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK9N-072-m01</td>
<td>FOKUS Research Module Type VK9N</td>
<td>9</td>
<td>NUM</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK10N-072-m01</td>
<td>FOKUS Research Module Type VK10N Nanostructure Technology</td>
<td>10</td>
<td>NUM</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11-FM-VK12N-072-m01</td>
<td>FOKUS Research Module Type VK12N Nanostructure Technology</td>
<td>12</td>
<td>NUM</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK12N-072-m01</td>
<td>FOKUS Research Module Type VMK12N Nanostructure Technology</td>
<td>12</td>
<td>NUM</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK13N-072-m01</td>
<td>FOKUS Research Module Type VMK13N Nanostructure Technology</td>
<td>13</td>
<td>NUM</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK14N-072-m01</td>
<td>FOKUS Research Module Type VMK14N Nanostructure Technology</td>
<td>14</td>
<td>NUM</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>11-FM-VMK16N-072-m01</td>
<td>FOKUS Research Module Type VMK16N Nanostructure Technology</td>
<td>16</td>
<td>NUM</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Electives Non-technical (6 ECTS credits)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-IK-NW1-072-m01</td>
<td>Basic module: Competence for Acquiring Information - for students of natural sciences</td>
<td>1</td>
<td>B/NB</td>
<td>8</td>
</tr>
<tr>
<td>41-IK-NW2-072-m01</td>
<td>Second module: Competence for Acquiring Information - for students of natural sciences</td>
<td>2</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>42-FS3-EN_N-W1-072-m01</td>
<td>Fachsprache Englisch Naturwissenschaften (1)</td>
<td>11</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>42-FS3-EN_N-W2-072-m01</td>
<td>Fachsprache Englisch Naturwissenschaften (2)</td>
<td>8</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>42-FS3-FR_N-W1-072-m01</td>
<td>Fachsprache Französisch Naturwissenschaften (1)</td>
<td>11</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>42-FS3-FR_N-W2-072-m01</td>
<td>Fachsprache Französisch Naturwissenschaften (2)</td>
<td>8</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>Thesis (30 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MA-NF-072-m01</td>
<td>Master Thesis FOKUS Nanostructuring Technology</td>
<td>30</td>
<td>NUM</td>
<td>52</td>
</tr>
</tbody>
</table>
Module title
Second module: Competence for Acquiring Information - for students of natural sciences

Abbreviation
41-IK-NW2-072-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of University Library</td>
<td>University Library</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Information literacy in an academic context:
- More in-depth discussion of selected topics that were covered in the level one module, e.g. searching subject-specific databases.
- Publishing and information practices in the natural sciences.
- Subject-specific information retrieval tools, e.g. classifications and thesauri.
- New web-based information and communication technologies.
- Searching for subject-specific facts (e.g. substances and physical data).
- Information search skills for the workplace.
- Copyright and citations.
- Electronic publishing. Some sessions will focus on particular disciplines (wherever possible, on disciplines in the natural sciences).

Intended learning outcomes
Students have developed a differentiated understanding of the publishing and information practices in their discipline and are familiar with the possibilities offered by electronic publishing. They are able to use electronic tools to locate subject-specific facts in a variety of resources. Students are able to work with subject-specific information retrieval tools as well as to use new web-based technologies to share information. They have developed an understanding of the legal framework surrounding publications, information, and communication in an academic context and are able to use information responsibly.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic module: Competence for Acquiring Information - for students of natural sciences</td>
<td>41-IK-NW1-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
head of University Library

Module offered by
University Library

ECTS
1

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Information literacy in an academic context:
- Search strategies and tools.
- Using the library's electronic resources.
- Resources for natural sciences: databases and journals.
- Online searches and search engines.
- Overview of additional resources (eLearning etc.).
- Reference management. Some sections of the module will focus on particular disciplines (wherever possible, on disciplines in the natural sciences).

Intended learning outcomes

Students know what information is needed for what purpose. They are able to locate information that is relevant within their discipline and beyond in a variety of resources and to evaluate this information. They recognise the difference in quality between information they have retrieved from specific, restricted access resources (databases) and information they have found on the free web. Students are able to manage and process the information they have found, using reference management software and eLearning tools. The module aims to equip students with the skills needed to find information and literature that is relevant to the topics of their Bachelor’s theses.

Courses

Ú (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Specialization FOKUS Nanostructuring Technology 1</td>
<td>11-FS-NF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to current experimental, theoretical or engineering questions from a subdiscipline of nanostructure technology with special relevance to the planned topic of the Master's thesis. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes

The students have advanced scientific knowledge of the principles of a current experimental, theoretical or engineering subdiscipline of the current research on nanostructure technology with special relevance to the intended topic of the Master's thesis and are able to summarise their knowledge in an oral presentation.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 30 to 45 minutes) with discussion

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Fachsprache Englisch Naturwissenschaften (1)

Abbreviation
42-FS3-EN_NW1-072-m01

Module coordinator
head of Language Centre (ZFS)

Module offered by
Language Centre (ZFS)

ECTS
11

Method of grading
numerical grade

Only after succ. compl. of module(s)
42-UC2-EN or assessment test (at least 80 points)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module equips students with natural sciences-specific language skills that will allow them to communicate in the target language, both at university and in the workplace.

Intended learning outcomes
Students gain natural sciences-specific communication skills (written and oral) in the target language. They develop advanced subject-specific language skills - including subject-specific terminology and structures - that will allow them to communicate about selected topics in the natural sciences in corresponding situations.

Courses (type, number of weekly contact hours, language — if other than German)
This module has 3 components; information on courses listed separately for each component.
- 42-FS3-EN_V1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-EN_NW-1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-EN_NW-2-072: Ü + Ü (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following 3 assessment components. To pass the module as a whole students must pass the first assessment component and one of the remaining two.

Assessment component to module component 42-FS3-EN_V1-072: Vorbereitung auf die Fachsprache Englisch
- 3 ECTS credits, method of grading: numerical grade
- Option 1: written multi-component examination (60 minutes total) with 4 components (reading comprehension, listening, writing, communication skills) or option 2: oral assessment (approx. 5 minutes) and written multi-component examination (30 to 45 minutes total) with 3 components (reading comprehension, writing, communication skills) or option 3: 2 to 4 oral assessments (approx. 15 to 30 minutes total) as well as 2 to 4 written assessments (approx. 5 to 8 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1.
- Language of assessment: English

Assessment component to module component 42-FS3-EN_NW-1-072: Englisch III Fachsprache Naturwissenschaften intensiv
- 8 ECTS credits, method of grading: numerical grade
- Option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1.
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: English

Assessment component to module component 42-FS3-EN_NW-2-072: Englisch III Fachsprache Naturwissenschaften
- 8 ECTS credits, method of grading: numerical grade
- Option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30
to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at
the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title: Fachsprache Englisch Naturwissenschaften (2)
Abbreviation: 42-FS3-EN_NW2-072-m01

Module coordinator:
head of Language Centre (ZFS)

Module offered by:
Language Centre (ZfS)

ECTS: 8
Method of grading: numerical grade

Only after succ. compl. of module(s): 42-FS3-EN_V or assessment test (at least 85 points)

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
This module equips students with natural sciences-specific language skills that will allow them to communicate in the target language, both at university and in the workplace.

Intended learning outcomes:
Students gain natural sciences-specific communication skills (written and oral) in the target language. They develop advanced subject-specific language skills - including subject-specific terminology and structures - that will allow them to communicate about selected topics in the natural sciences in corresponding situations.

Courses:
This module has 2 components; information on courses listed separately for each component.
- 42-FS3-EN_NW-1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-EN_NW-2-072: Ü + Ü (no information on language and number of weekly contact hours available)

Method of assessment:
This module has the following 2 assessment components. To pass the module as a whole students must pass one of the two assessment components.

Assessment component to module component 42-FS3-EN_NW-1-072: Englisch III Fachsprache Naturwissenschaften intensiv
- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: English

Assessment component to module component 42-FS3-EN_NW-2-072: Englisch III Fachsprache Naturwissenschaften
- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: English

Allocation of places: --

Additional information: --
Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Fachsprache Französisch Naturwissenschaften (1)
Abbreviation: 42-FS3-FR_NW1-072-m01

Module coordinator: head of Language Centre (ZFS)
Module offered by: Language Centre (ZfS)

ECTS: 11
Method of grading: numerical grade
Only after succ. compl. of module(s): 42-UC2-FR or assessment test (at least 80 points)

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
This module equips students with natural sciences-specific language skills that will allow them to communicate in the target language, both at university and in the workplace.

Intended learning outcomes:
Students gain natural sciences-specific communication skills (written and oral) in the target language. They develop advanced subject-specific language skills - including subject-specific terminology and structures - that will allow them to communicate about selected topics in the natural sciences in corresponding situations.

Courses:
This module has 3 components; information on courses listed separately for each component.

- 42-FS3-FR_V-1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-FR_NW-1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-FR_NW-2-072: Ü + Ü (no information on language and number of weekly contact hours available)

Method of assessment:
This module has the following 3 assessment components. To pass the module as a whole students must pass the first assessment component and one of the remaining two.

Assessment component to module component 42-FS3-FR_V-1-072: Vorbereitung auf die Fachsprache Französisch
- 3 ECTS credits, method of grading: numerical grade
- Option 1: written multi-component examination (60 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 5 minutes) and written multi-component examination (30 to 45 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 15 to 30 minutes total) as well as 2 to 4 written assessments (approx. 5 to 8 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1.
- Language of assessment: French

Assessment component to module component 42-FS3-FR_NW-1-072: Französisch III Fachsprache Naturwissenschaften intensiv
- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1.
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: French

Assessment component to module component 42-FS3-FR_NW-2-072: Französisch III Fachsprache Naturwissenschaften
- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (rea-
Subdivided Module Catalogue for the Subject
FOKUS Physics - Nanostructuring Technology
Master's with 1 major, 120 ECTS credits

- Reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: French

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Fachsprache Französisch Naturwissenschaften (z)

Abbreviation
42-FS3-FR_NW2-072-m01

Module coordinator
head of Language Centre (ZFS)

Module offered by
Language Centre (ZfS)

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents

This module equips students with natural sciences-specific language skills that will allow them to communicate in the target language, both at university and in the workplace.

Intended learning outcomes

Students gain natural sciences-specific communication skills (written and oral) in the target language. They develop advanced subject-specific language skills - including subject-specific terminology and structures - that will allow them to communicate about selected topics in the natural sciences in corresponding situations.

Courses (type, number of weekly contact hours, language — if other than German)

This module has 2 components; information on courses listed separately for each component.

- 42-FS3-FR_NW-1-072: Ü (no information on language and number of weekly contact hours available)
- 42-FS3-FR_NW-2-072: Ü + Ü (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following 2 assessment components. To pass the module as a whole students must pass one of the two assessment components.

Assessment component to module component 42-FS3-FR_NW-1-072: Französisch III Fachsprache Naturwissenschaften intensiv

- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: French
- Other prerequisites: Assessment test to be successfully completed with a minimum score of 85 points.

Assessment component to module component 42-FS3-FR_NW-2-072: Französisch III Fachsprache Naturwissenschaften

- 8 ECTS credits, method of grading: numerical grade
- option 1: written multi-component examination (120 minutes total) with 4 components (reading comprehension, listening comprehension, writing, communication skills) or option 2: oral assessment (approx. 10 minutes) and written multi-component examination (60 to 90 minutes total) with 3 components (reading comprehension, listening comprehension, writing) or option 3: 2 to 4 oral assessments (approx. 30 to 60 minutes total) as well as 2 to 4 written assessments (approx. 10 to 15 pages total) as specified at the beginning of the course, all components/assessments each weighted 1:1
- Assessment offered once a year, dates to be announced at the beginning of the respective course.
- Language of assessment: French
- Other prerequisites: Assessment test to be successfully completed with a minimum score of 85 points.

Allocation of places

--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title

FOKUS Research Module Type VK10E Experimental Physics

Abbreviation

11-FM-VK10E-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

10

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have specific and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced

FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)

2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
FOKUS Research Module Type VK10I Interdisciplinary Research Fields

Abbreviation
11-FM-VK10I-072-m01

Module coordinator
Chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
Numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary subject, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g., experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary specialist field, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced.
- FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break).

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components:
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages).
2. Seminar: talk (approx. 30 to 45 minutes).

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
FOKUS Research Module Type VK10N Nanostructure Technology | 11-FM-VK10N-072-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology): V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
FOKUS Research Module Type VK10T Theoretical Physics | 11-FM-VK10T-072-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses
| FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (3 weekly contact hours) | Ü/P (2 weekly contact hours), details on availability to be announced |
| FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break) |

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English. Students must register for assessment components 1 and 2 online (details to be announced). Details on when assessment components 1 and 2 will be offered to be announced. To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject

FOKUS Physics - Nanostructuring Technology

Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VK12E Experimental Physics</td>
<td>11-FM-VK12E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

FOKUS Research Module Type VK12I Interdisciplinary Research Fields

Abbreviation

11-FM-VK12I-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

12

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary subject, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary specialist field, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

(type, number of weekly contact hours, language — if other than German)

FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced

FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)

2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: FOKUS Research Module Type VK12N Nanostructure Technology

Abbreviation: 11-FM-VK12N-072-m01

Module coordinator: chairperson of examination committee

Module offered by: Faculty of Physics and Astronomy

ECTS: 12

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites:

Contents:
Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes:
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses:
- FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment:
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.
Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VK12T Theoretical Physics</td>
<td>11-FM-VK12T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.
Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject
FOKUS Physics - Nanostructuring Technology
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VK8E Experimental Physics</td>
<td>11-FM-VK8E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses
- FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.
Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
FOKUS Physics - Nanostructuring Technology
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VK8I Interdisciplinary Research Fields</td>
<td>11-FM-VK8I-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary subject, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary specialist field, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)
- FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced.
- FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break).

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components:
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages).
2. Seminar: talk (approx. 30 to 45 minutes).

Assessment components 1 and 2 will be offered in German or English. Students must register for assessment components 1 and 2 online (details to be announced). Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
FOKUS Research Module Type VK8N

Abbreviation
11-FM-VK8N-072-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses
- **FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology):** V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- **FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology):** S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
FOKUS Research Module Type VK8T Theoretical Physics

Abbreviation
11-FM-VK8T-072-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- **FOKUS Einführungsmodul Theoretische Physik** (FOKUS Introductory Module Theoretical Physics): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- **FOKUS Kompaktseminar Theoretische Physik** (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.
Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

FOKUS Research Module Type VK9E Experimental Physics

Abbreviation

11-FM-VK9E-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS Method of grading Only after succ. compl. of module(s)

9 numerical grade --

Duration Module level Other prerequisites

1 semester graduate --

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competences. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced

FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

FOKUS Research Module Type VKgI Interdisciplinary Research Fields

Abbreviation

11-FM-VKgI-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

9

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary subject, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in an interdisciplinary specialist field, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced

FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)

2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
FOKUS Research Module Type VK9N | 11-FM-VK9N-072-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
9 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)
- FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.
Students must register for assessment components 1 and 2 online (details to be announced).
Details on when assessment components 1 and 2 will be offered to be announced.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

FOKUS Research Module Type VK9T Theoretical Physics

Abbreviation

11-FM-VK9T-072-m01

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

9

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Type, number of weekly contact hours, language</th>
<th>if other than German</th>
<th>details on availability to be announced</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V</td>
<td>3 weekly contact hours + Ü/P (1 weekly contact hour)</td>
<td>German or English</td>
<td>block taught seminar (3 days), usually held during semester break</td>
</tr>
<tr>
<td>FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S</td>
<td>2 weekly contact hours</td>
<td>German or English</td>
<td>block taught seminar (3 days), usually held during semester break</td>
</tr>
</tbody>
</table>

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment components 1 and 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title

FOKUS Research Module Type VMK12E Experimental Physics

Abbreviation

11-FM-VMK12E-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

12

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

(type, number of weekly contact hours, language — if other than German)

FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced

FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

FOKUS Miniforschungsprojekt Experimentelle Physik (FOKUS Mini Research Project Experimental Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)

2. Seminar: talk (approx. 30 to 45 minutes)

3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VMK12I Interdisciplinary Research Fields</td>
<td>11-FM-VMK12I-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary subjects, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have specific and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary specialist fields, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Interdisziplinäre Fachgebiete (FOKUS Mini Research Project Interdisciplinary Research Fields): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English.

Students must register for assessment components 1 through 3 online (details to be announced).

Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VMK12N Nanostructure Technology</td>
<td>11-FM-VMK12N-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)
- FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Nanostrukturtechnik (FOKUS Mini Research Project Nanostructure Technology): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)
Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VKM12T Theoretical Physics</td>
<td>11-FM-VMK12T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Theoretische Physik (FOKUS Mini Research Project Theoretical Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

FOKUS Research Module Type VMK13E Experimental Physics

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-FM-VMK13E-072-m01</th>
</tr>
</thead>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced</td>
</tr>
<tr>
<td>FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)</td>
</tr>
<tr>
<td>FOKUS Miniforschungsprojekt Experimentelle Physik (FOKUS Mini Research Project Experimental Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)</td>
</tr>
</tbody>
</table>

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English.

Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title

FOKUS Research Module Type VMK13I Interdisciplinary Research Fields

Abbreviation

11-FM-VMK13I-072-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

13

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary subjects, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary specialist fields, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

(type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Interdisziplinäre Fachgebiete (FOKUS Mini Research Project Interdisciplinary Research Fields): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
FOKUS Research Module Type VMK13N Nanostructure Technology | 11-FM-VMK13N-072-m01

Module coordinator	Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
13 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)
- FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced.
- FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break).
- FOKUS Miniforschungsprojekt Nanostrukturtechnik (FOKUS Mini Research Project Nanostructure Technology): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time).

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages).
2. Seminar: talk (approx. 30 to 45 minutes).
3. Research project: project report (approx. 8 pages).

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
FOKUS Physics - Nanostructuring Technology
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VKM13T Theoretical Physics</td>
<td>11-FM-VMK13T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), details on availability to be announced
- FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Theoretische Physik (FOKUS Mini Research Project Theoretical Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VMK14E Experimental Physics</td>
<td>11-FM-VMK14E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Experimentelle Physik (FOKUS Mini Research Project Experimental Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

FOKUS Research Module Type VMK14I Interdisciplinary Research Fields

Abbreviation

11-FM-VMK14I-072-m01

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

14

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary subjects, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary specialist fields, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses

- **FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields):** V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced.
- **FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields):** S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break).
- **FOKUS Miniforschungsprojekt Interdisziplinäre Fachgebiete (FOKUS Mini Research Project Interdisciplinary Research Fields):** P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time).

Method of assessment

This module has the following assessment components:

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages).
2. Seminar: talk (approx. 30 to 45 minutes).
3. Research project: project report (approx. 8 pages).

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

FOKUS Research Module Type VMK14N Nanostructure Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- **FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology):** V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- **FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology):** S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- **FOKUS Miniforschungsprojekt Nanostrukturtechnik (FOKUS Mini Research Project Nanostructure Technology):** P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	FOKUS Research Module Type VKM14T Theoretical Physics
Abbreviation | 11-FM-VMK14T-072-m01

Module coordinator | chairperson of examination committee

Module offered by | Faculty of Physics and Astronomy

ECTS	Method of grading
14 | Only after succ. compl. of module(s)

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competences. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses
FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (3 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
FOKUS Miniforschungsprojekt Theoretische Physik (FOKUS Mini Research Project Theoretical Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
FOKUS Research Module Type VMK16E Experimental Physics

Abbreviation
11-FM-VMK16E-072-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
16

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Experimental Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Experimental Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

FOKUS Einführungsmodul Experimentelle Physik (FOKUS Introductory Module Experimental Physics): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced

FOKUS Kompaktseminar Experimentelle Physik (FOKUS Block Taught Seminar Experimental Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

FOKUS Miniforschungsprojekt Experimentelle Physik (FOKUS Mini Research Project Experimental Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced. To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
FOKUS Research Module Type VMK161 Interdisciplinary Research Fields

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VMK161 Interdisciplinary Research Fields</td>
<td>11-FM-VMK161-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>-</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary subjects, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in interdisciplinary specialist fields, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- **FOKUS Einführungsmodul Interdisziplinäre Fachgebiete (FOKUS Introductory Module Interdisciplinary Research Fields):** V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- **FOKUS Kompaktseminar Interdisziplinäre Fachgebiete (FOKUS Block Taught Seminar Interdisciplinary Research Fields):** S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- **FOKUS Miniforschungsprojekt Interdisziplinäre Fachgebiete (FOKUS Mini Research Project Interdisciplinary Research Fields):** P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

- -

Additional information

- -

Referred to in LPO I (examination regulations for teaching-degree programmes)

- -
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Research Module Type VMK16N Nanostructure Technology</td>
<td>11-FM-VMK16N-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of nanostructure technology, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses (type, number of weekly contact hours, language — if other than German)

- **FOKUS Einführungsmodul Nanostrukturtechnik (FOKUS Introductory Module Nanostructure Technology):** V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- **FOKUS Kompaktseminar Nanostrukturtechnik (FOKUS Block Taught Seminar Nanostructure Technology):** S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- **FOKUS Miniforschungsprojekt Nanostrukturtechnik (FOKUS Mini Research Project Nanostructure Technology):** P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.

To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title: FOKUS Research Module Type VKM16T Theoretical Physics

Abbreviation: 11-FM-VMK16T-072-m01

Module coordinator: chairperson of examination committee

Module offered by: Faculty of Physics and Astronomy

ECTS: 16

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
Specific and advanced knowledge of independent scientific work in a current research area, especially in the discipline of Theoretical Physics, reproduction of knowledge, acquisition of social and methodological competencies. Application of the acquired professional knowledge and methods to new scientific questions in a mini research project (e.g. experiments, case studies etc.).

Intended learning outcomes:
The students have special and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Theoretical Physics, and are able to reproduce the acquired knowledge, to apply the acquired methods, to summarise a sub-area of the current research area in an oral presentation and to successfully implement the acquired knowledge and methods in a mini research project.

Courses:
- FOKUS Einführungsmodul Theoretische Physik (FOKUS Introductory Module Theoretical Physics): V (4 weekly contact hours) + Ü/P (2 weekly contact hours), details on availability to be announced
- FOKUS Kompaktseminar Theoretische Physik (FOKUS Block Taught Seminar Theoretical Physics): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)
- FOKUS Miniforschungsprojekt Theoretische Physik (FOKUS Mini Research Project Theoretical Physics): P (2 weekly contact hours), German or English, details on availability to be announced (approx. 3 weeks, part time)

Method of assessment:
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)
3. Research project: project report (approx. 8 pages)

Assessment components 1 through 3 will be offered in German or English. Students must register for assessment components 1 through 3 online (details to be announced). Details on when assessment components 1 through 3 will be offered to be announced.
To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOKUS Project Practical Course Nanostructuring Technology</td>
<td>11-FPN-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independent work on a current research topic of nanostructure technology and implementation of scientific experiments including analysis and documentation of the results.

Intended learning outcomes

The students are able to independently work on a current research area of nanostructure technology, to conduct and analyse scientific experiments and to document the results.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) project report (approx. 20 pages) and b) talk (approx. 30 minutes) with discussion on topic researched in project

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Practical Course Master</td>
<td>11-PFM-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(not) successfully completed</td>
<td>11-E1, 11-E2</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
11-A3

Contents
Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect - superconductivity - laser - solid-state optics

Intended learning outcomes
Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems, working on a task based on publications and acquiring practical experimental methods.

Courses
(type, number of weekly contact hours, language — if other than German)
- Fortgeschrittenen-Praktikum Master (Advanced Practical Course Master) Part 1: P (3 weekly contact hours), German or English
- Fortgeschrittenen-Praktikum Master (Advanced Practical Course Master) Part 2: P (3 weekly contact hours), German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Lab course in part 1 (Fortgeschrittenen-Praktikum Master/Advanced Practical Course Master Part 1): a) Preparing the experiment will be considered successfully completed if an oral test (approx. 30 minutes) is passed prior to the experiment. b) Performing and evaluating the experiment will be considered successfully completed if a test is passed. Students must prepare an experiment log (approx. 8 pages).
2. Lab course in part 2 (Fortgeschrittenen-Praktikum Master/Advanced Practical Course Master Part 2): a) Preparing the experiment will be considered successfully completed if an oral test (approx. 30 minutes) is passed prior to the experiment. b) Performing and evaluating the experiment will be considered successfully completed if a test is passed. Students must prepare an experiment log (approx. 8 pages).

Language of assessment: German or English
Students must register for assessment components 1 and 2 online (details to be announced).
Students will be offered one opportunity to retake element a) and/or element b) in the respective semester. To pass an assessment component, they must pass both elements (a and b) in the same semester. To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis FOKUS Nanostructuring Technology</td>
<td>11-MA-NF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for assessment to be carried out electronically. Deadlines will be announced separately. Please consult with your supervisor.</td>
</tr>
</tbody>
</table>

Contents

Mostly independent processing of an experimental, theoretical or engineering task in a current research area of nanostructure technology, especially according to known procedures and scientific aspects; writing of the thesis.

Intended learning outcomes

The students are able to independently work on an experimental, theoretical and engineering task from the current research on nanostructure technology, especially in accordance with known methods and scientific aspects and to summarise their results in a final paper.

Courses

(type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written thesis (approx. 75 pages)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Methods and Project Management FOKUS Nanostructuring Technology 1</td>
<td>11-MP-NF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Introduction to the methods of scientific work, taking into account methods of project planning. Application to theoretical, experimental or engineering questions of nanostructure technology. Writing of a scientific project plan for the planned Master’s thesis.

Intended learning outcomes
The students have knowledge of the scientific methods, the methodological work and the methods of project planning of a current experimental, theoretical or engineering subdiscipline of nanostructure technology with special relevance to the intended topic of the Master’s thesis and are able to develop a project plan for the Master’s thesis, to plan the required work and to summarise their knowledge in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (approx. 30 to 45 minutes) with discussion

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 4E Special Training Experimental Physics</td>
<td>11-SF-4E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Module Type 4I Special Training Interdisciplinary Research Fields

| Abbreviation | 11-SF-4I-072-m01 |

Module coordinator

Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

| Method of grading | Only after succ. compl. of module(s) | 4 | numerical grade | -- |

Duration

| Module level | Other prerequisites | 1 semester | graduate | -- |

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 4N Special Training Nanostructure Technology</td>
<td>11-SF-4N-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of nanostructure technology.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of nanostructure technology.

Courses *(type, number of weekly contact hours, language — if other than German)*

V + R *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

a) written examination *(approx. 90 minutes)* or b) talk *(approx. 30 minutes)* or c) oral examination of one candidate each or oral examination in groups *(approx. 30 minutes)* or d) project report *(approx. 8 pages)*

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Module title

Module Type 4T Special Training Theoretical Physics

Abbreviation

11-SF-4T-072-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5E Special Training Experimental Physics</td>
<td>11-SF-5E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5I Special Training Interdisciplinary Research Fields</td>
<td>11-SF-5I-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5N Special Training Nanostructure Technology</td>
<td>11-SF-5N-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Nanostructure Technology.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of nanostructure technology.

Courses (type, number of weekly contact hours, language — if other than German)

- V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject
FOKUS Physics - Nanostructuring Technology
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5T Special Training Theoretical Physics</td>
<td>11-SF-5T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6E Special Training Experimental Physics</td>
<td>11-SF-6E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses

(V + R) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or (b) talk (approx. 30 minutes) or (c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or (d) project report (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title
Module Type 6I Special Training Interdisciplinary Research Fields

Abbreviation
11-SF-6I-072-m01

Module coordinator
Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
- a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6N Special Training Nanostructure Technology</td>
<td>11-SF-6N-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS | **Method of grading** | **Only after succ. compl. of module(s)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | **Module level** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of nanostructure technology.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of nanostructure technology.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6T Special Training Theoretical Physics</td>
<td>11-SF-6T-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject FOKUS Physics - Nanostructuring Technology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 8E Special Training Experimental Physics</td>
<td>11-SF-8E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Module Type 8I Special Training Interdisciplinary Research Fields

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses

(V + R) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) written examination (approx. 90 minutes) or
- b) talk (approx. 30 minutes) or
- c) oral examination of one candidate each or
- oral examination in groups (approx. 30 minutes) or
- d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 8N Special Training Nanostructure Technology</td>
<td>11·SF-8N-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of nanostructure technology.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of nanostructure technology.

Courses
(V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 8T Special Training Theoretical Physics</td>
<td>11-SF-8T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Nanomatrix Inorganic Materials Chemistry (Master) | 08-NM-AW-MA-072-m01

Module coordinator	Module offered by
Dean of Studies Chemie und Pharmazie (Chemistry and Pharmacy) | Chair of Chemical Technology of Material Synthesis

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Fundamentals as well as specific knowledge and skills for engineering work in the application directions power engineering, electronics and photonics and biophysical applications and the technology fields of materials science, nano-structuring technologies and components and system development, in particular in the area of inorganic materials chemistry.

Intended learning outcomes
Students have developed advanced knowledge and skills in one or more application directions or technology fields of engineering work, in particular in the area of inorganic materials chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomatrix Biocompatible Structuring Technologies (Master)</td>
<td>07-NM-BS-MA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals as well as specific knowledge and skills for engineering work in the application directions power engineering, electronics and photonics, and biophysical applications and the technology fields of materials science, nano-structuring technologies and components and system development, in particular in the area of biocompatible structuring technologies.

Intended learning outcomes

Students have acquired advanced knowledge and skills in one or more application directions or technology fields of engineering work, in particular in the area of biocompatible structuring technologies.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Nanomatrix Biomedical Materials (Master)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomatrix Biomedical Materials (Master)</td>
<td>03-NM-BW-MA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee of the Master’s degree programme Human-Computer Interaction</td>
<td>Faculty of Medicine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals and specific knowledge for engineering work in the application areas power engineering, electronics and photonics and biophysical applications as well as the technology focuses materials science, nanostructuring technologies and components and system development, especially in the area of biomedical materials.

Intended learning outcomes

Students have developed an advanced knowledge in at least one application area or technology focus of engineering work, with a particular focus on biomedical materials.

Courses

V + R (no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Nanomatrix Biophysical Analyzing Systems and Processes (Master) | 11-NM-BV-MA-072-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level
1 semester | graduate |

Contents
Principles and specific knowledge of engineering work in the application fields of energy engineering, electronics, photonics and biophysics as well as in the technology-oriented materials sciences, technologies of nanostructuring, components and system development, especially in the field of biophysical analysis systems and procedures.

Intended learning outcomes
The students have advanced knowledge of one or more application or technology areas of engineering work, especially in the field of biophysical analysis systems and techniques.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomatrix Semiconductor Materials (Master)</td>
<td>11-NM-HM-MA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Principles and specific knowledge of engineering work in the application fields of energy engineering, electronics, photonics and biophysics as well as in the technology-oriented materials sciences, technologies of nano-structuring, components and system development, especially in the field of semiconductor materials.

Intended learning outcomes

The students have advanced knowledge of one or more application or technology areas of engineering work, especially in the field of semiconductor materials.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Nanomatrix Semiconductor Processing (Master)

Abbreviation
11-NM-HP-MA-072-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Principles and specific knowledge of engineering work in the application fields of energy engineering, electronics, photonics and biophysics as well as in the technology-oriented materials sciences, technologies of nano-structuring, components and system development, especially in the field of semiconductor processes.

Intended learning outcomes
The students have advanced knowledge of one or more application or technology areas of engineering work, especially in the field of semiconductor processes.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) talk (approx. 30 minutes) or (c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or (d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomatrix Micro/Nano- and Optoelectronic Devices (Master)</td>
<td>11-NM-MB-MA-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Principles and specific knowledge of engineering work in the application fields of energy engineering, electronics, photonics and biophysics as well as in the technology-oriented materials sciences, technologies of nano-structuring, components and system development, especially in the field of micro-/nano- and opto-electronic components.

Intended learning outcomes
The students have advanced knowledge of one or more application or technology areas of engineering work, especially in the field of micro-, nano- and optoelectronic components.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoparticle Synthesis and Structuring Technologies (Master)</td>
<td>08-NM-NS-MA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Chemie und Pharmazie (Chemistry and Pharmacy)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals as well as specific knowledge and skills for engineering work in the application directions power engineering, electronics and photonics and biophysical applications and the technology fields of material science, nano-structuring technologies and components and system development, in particular in the area of nanoparticle synthesis and structuring technologies.

Intended learning outcomes

The student has advanced knowledge in at least one application area or technology focus of engineering work, with a particular focus on nanoparticle analysis and structuring technologies.

Courses *(type, number of weekly contact hours, language — if other than German)*

V + R *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

a) written examination *(approx. 90 minutes)* or b) talk *(approx. 30 minutes)* or c) oral examination of one candidate each or oral examination in groups *(approx. 30 minutes)* or d) project report *(approx. 10 pages)*

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Module title
Nanomatrix Heat Insulating Systems and Photovoltaics

Abbreviation
11-NM-WP-MA-072-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Principles and specific knowledge of engineering work in the application fields of energy engineering, electronics, photonics and biophysics as well as in the technology-oriented materials sciences, technologies of nanostructuring, components and system development, especially in the field of thermal insulation systems and photovoltaics.

Intended learning outcomes
The students have advanced knowledge of one or more application or technology areas of engineering work, especially in the field of thermal insulation systems and photovoltaics.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)