

Subdivided Module Catalogue for the Subject

Physics

as a Master's with 1 major with the degree "Master of Science" (120 ECTS credits)

Examination regulations version: 2020 Responsible: Faculty of Physics and Astronomy

Learning Outcomes

German contents and learning outcome available but not translated yet.

Nach erfolgreichem Abschluss des Studiums verfügen die Absolventinnen und Absolventen über die folgenden Kompetenzen:

- Die Absolventen bzw. Absolventinnen besitzen hohes Abstraktionsvermögen, die Fähigkeit zu analytischem Denken, hohe Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventen bzw. Absolventinnen verfügen über einen breiten Überblick über die Teilgebiete der Physik und interdisziplinäre Zusammenhänge.
- Sie verfügen über vertiefte Kenntnisse der mathematischen und theoretischen Grundlagen der Physik sowie fundiertes Wissen über die theoretischen und experimentellen Methoden zur Erlangung neuer Erkenntnisse.
- Sie sind in der Lage, ihre F\u00e4higkeiten und Kenntnisse in Projekten umzusetzen und verf\u00fcgen \u00fcber Kenntnisse des aktuellen Forschungsstandes in mindestens einem Spezialgebiet der Physik.
- Sie sind in der Lage, sich anhand von Primärliteratur, insbesondere in englischer Sprache, in den aktuellen Forschungsstand eines Spezialgebiets einzuarbeiten
- Sie sind in der Lage, physikalische und mathematische Methoden selbstständig auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Sie sind in der Lage, auch bei unvollständig vorliegenden Informationen physikalische Probleme unter Anwendung der wissenschaftlichen Arbeitsweise und unter Beachtung der Regeln guter wissenschaftlicher Praxis selbstständig zu bearbeiten und die Ergebnisse und Folgen ihrer Arbeit darzustellen, zu bewerten und zu vertreten.
- Sie sind in der Lage, mit Fachvertretern auf dem aktuellen Stand der Forschung physikalische Fragestellungen zu diskutieren und auch Nichtwissenschaftlern physikalische Zusammenhänge zu erläutern.
- Sie besitzen die Fähigkeit, als Physiker bzw. Physikerin in interdisziplinär und international zusammengesetzten Teams aus (Natur-) Wissenschaftlern bzw. (Natur-) Wissenschaftlerinnen und/oder Ingenieuren bzw. Ingenieurinnen in Forschung, Industrie und Wirtschaft mitzuwirken oder diese zu leiten.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen verfügen über vertiefte Kenntnisse der mathematischen, experimentellen und theoretischen Grundlagen der Physik.
- Die Absolventinnen und Absolventen können auf ein fundiertes Wissen über die theoretischen und experimentellen Methoden zur Erlangung neuer Erkenntnisse zurückgreifen.
- Die Absolventen bzw. Absolventinnen verfügen über einen breiten Überblick über die Teilgebiete der Physik.
- Die Absolventen und Absolventinnen kennen angrenzende Gebiete der Physik und erkennen interdisziplinäre Zusammenhänge.
- Die Absolventinnen und Absolventen besitzen hohes Abstraktionsvermögen, analytisches Denken, hohe Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen wenden ihre F\u00e4higkeiten und Kenntnisse in Projekten an und verf\u00fcgen \u00fcber Kenntnisse des aktuellen Forschungsstandes in mindestens einem Spezialgebiet der Physik.
- Die Absolventinnen und Absolventen sind in der Lage, mit Fachvertretern auf dem aktuellen Stand der Forschung physikalische Fragestellungen zu diskutieren.

- Die Absolventinnen und Absolventen sind in der Lage, physikalische und mathematische Methoden selbstständig auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen sind in der Lage, sich anhand von Primärliteratur, insbesondere in englischer Sprache, in den aktuellen Forschungsstand eines Spezialgebiets einzuarbeiten.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen sind in der Lage, auch bei unvollständig vorliegenden Informationen physikalische Probleme wissenschaftlich und unter Beachtung der Regeln guter wissenschaftlicher Praxis selbstständig zu bearbeiten und die Ergebnisse und Folgen ihrer Arbeit darzustellen, zu bewerten und zu vertreten.
- Die Absolventinnen und Absolventen besitzen die Fähigkeit, als Physiker bzw. Physikerin in interdisziplinär und international zusammengesetzten Teams aus (Natur-) Wissenschaftlerin bzw. (Natur-) Wissenschaftlerinnen und/oder Ingenieuren bzw. Ingenieurinnen in Forschung, Industrie und Wirtschaft mitzuwirken oder diese zu leiten.
- Die Absolventinnen und Absolventen sind in der Lage, physikalische und mathematische Methoden selbstständig auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen sind in der Lage, ihre F\u00e4higkeiten und Kenntnisse in Projekten umzusetzen und verf\u00fcgen \u00fcber Kenntnisse des aktuellen Forschungsstandes in mindestens einem Spezialgebiet der Physik.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen sind in der Lage, auch bei unvollständig vorliegenden Informationen physikalische Probleme wissenschaftlich selbstständig zu bearbeiten und die Ergebnisse und Folgen ihrer Arbeit darzustellen, zu bewerten und zu vertreten.
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.

Befähigung zum gesellschaftlichen Engagement

- Die Absolventinnen und Absolventen können naturwissenschaftliche Entwicklungen kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt erfassen. (Technikfolgenabschätzung).
- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, naturwissenschaftlicher, kultureller etc. Fragestellungen erweitert und können begründet Position beziehen.
- Die Absolventinnen und Absolventen sind in der Lage auf dem aktuellen Stand der Forschung physikalische Fragestellungen zu diskutieren und Nichtwissenschaftlern physikalische Zusammenhänge zu erläutern.
- Die Absolventinnen und Absolventen haben die Bereitschaft und Fähigkeit entwickelt, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

14-Nov-2019 (2019-57)
09-Jun-2021 (2021-64)
22-Dec-2021 (2021-88)
06-Sep-2022 (2022-54)
12-Jun-2024 (2024-76)
14-Nov-2024 (2024-96)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-spe-

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 4 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

cific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

The subject is divided into

Abbreviation	Module title	ECTS credits	Method of grading	page		
Compulsory Electives (60	Compulsory Electives (60 ECTS credits)					
Subfield Physics (55 ECT	S credits)					
Advanced Laboratory C	ourse (9 ECTS credits)					
11-P-FM1-161-m01	Advanced Laboratory Course Master Part 1	3	B/NB	159		
11-P-FM2-161-m01	Advanced Laboratory Course Master Part 2	3	B/NB	160		
11-P-FM3-161-m01	Advanced Laboratory Course Master Part 3	3	B/NB	161		
11-P-FM4-161-m01	Advanced Laboratory Course Master Part 4	3	B/NB	162		
Advanced Seminar (5 E	CTS credits)	Į.	L			
11-OSP-A-161-mo1	Advanced Seminar Physics A	5	NUM	157		
11-OSP-B-161-mo1	Advanced Seminar Physics B	5	NUM	158		
Experimental Physics (10 ECTS credits)	Į.	L			
11-BSV-161-m01	Image and Signal Processing in Physics	6	NUM	78		
11-OHL-161-m01	Organic Semiconductors	6	NUM	154		
11-PMM-161-m01	Physics of Advanced Materials	6	NUM	165		
11-SPI-161-m01	Spintronics	6	NUM	187		
11-BMT-161-m01	Biophysical Measurement Technology in Medical Science	6	NUM	74		
11-FK2-201-m01	Solid State Physics 2	8	NUM	123		
11-FKS-161-m01	Solid State Spectrocopy	6	NUM	125		
11-MAG-161-m01	Magnetism	6	NUM	142		
11-HNS-161-m01	Optical Properties of Semiconductor Nanostructures	6	NUM	134		
11-HPH-201-m01	Semiconductor Physics	6	NUM	136		
11-QTR-201-m01	Quantum Transport	6	NUM	177		
11-QIC-201-m01	Advanced Theory of Quantum Computing and Quantum Information	6	NUM	173		
11-NOP-161-mo1	Nano-Optics	6	NUM	152		
11-PTS-201-m01	Phenomenology and Theory of Superconductivity	6	NUM	167		
o8-PCM4-161-mo1	Ultrafast spectroscopy and quantum-control	5	NUM	13		
11-CSFM-161-m01	Advanced Topics in Solid State Physics	6	NUM	88		
11-ASM-161-mo1	Methods of Observational Astronomy	6	NUM	64		
11-TPE-161-m01	Experimental Particle Physics	6	NUM	205		
11-ASP-161-m01	Introduction to Space Physics	6	NUM	66		
11-MAS-161-mo1	Multi-wavelength Astronomy	6	NUM	145		
11-CSAM-161-mo1	Advanced Topics in Astrophysics	6	NUM	86		
11-MRI-171-m01	Advanced Magnetic Resonance Imaging	6	NUM	148		
11-SSC-172-m01	Surface Science	6	NUM	191		
11-FPA-161-m01	Visiting Research	10	NUM	127		
11-EXE5-161-m01	Current Topics in Experimental Physics	5	NUM	96		
11-EXE6-161-m01	Current Topics in Experimental Physics	6	NUM	98		
11-EXE7-161-m01	Current Topics in Experimental Physics	7	NUM	102		
11-EXE8-161-m01	Current Topics in Experimental Physics	8	NUM	104		
11-EXE6A-161-mo1	Current Topics in Experimental Physics	6	NUM	100		
11-EXP6-161-m01	Current Topics in Physik	6	NUM	107		

11-EIM-211-m01	Electron and Ion Microscopy	6	NUM	92
11-AAI-212-m01	Advanced Astro Imaging	6	NUM	54
11-CTA-212-m01	-CTA-212-mo1 Advanced Computer Tomography		NUM	90
11-SPT-211-m01	Scanning Probe Technologies	6	NUM	189
Theory of Physics (10 I	CTS credits)			
11-QM2-161-m01	Quantum Mechanics II	8	NUM	175
11-TQO-221-m01	Theoretical Quantum Optics	8	NUM	211
11-RTT-161-m01	Theory of Relativity	6	NUM	183
11-RMFT-161-m01	Renormalization Group Methods in Field Theory	8	NUM	18
11-PKS-161-m01	Physics of Complex Systems	6	NUM	16
11-QIC-201-m01	Advanced Theory of Quantum Computing and Quantum Information	6	NUM	17
11-TFK-161-m01	Theoretical Solid State Physics	8	NUM	20
11-TFK2-161-m01	Theoretical Solid State Physics 2	8	NUM	20
11-TEFK-201-m01	Topological Effects in Solid State Physics	8	NUM	19
11-FFK-201-m01	Field Theory in Solid State Physics	8	NUM	12
11-AKTF-201-m01	Selected Topics of Theoretical Solid State Physics	6	NUM	58
11-CMS-161-mo1	Computational Materials Science (DFT)	8	NUM	8
11-KFT-161-mo1	Conformal Field Theory	6	NUM	13
11-KFT2-161-m01	Conformal Field Theory 2	6	NUM	14
11-GRTM-201-m01	Group Theory	6	NUM	13
11-TPSM-201-m01	Particle Physics (Standard Model)	6	NUM	20
11-CRP-161-mo1	Renormalization Group and Critical Phenomena	6	NUM	8
11-BWW-161-mo1	Bosonisation and Interactions in One Dimension	6	NUM	8
11-GGD-161-mo1	Introduction to Gauge/Gravity Duality	8	NUM	12
11-AKM-161-mo1	Cosmology	6	NUM	5
11-AST-161-m01	Theoretical Astrophysics	6	NUM	6
11-EPP-161-m01	Introduction to Plasma Physics	6	NUM	<u> </u>
11-APL-161-m01	High Energy Astrophysics	6	NUM	9
11-NMA-161-mo1	Computational Astrophysics	6	NUM	-
11-QFT1-201-m01	Quantum Field Theory I	8	NUM	15 16
11-QFT2-161-m01	Quantum Field Theory II	8	NUM	
11-QF12-161-1101 11-TEP-161-m01	Theoretical Elementary Particle Physics	8		17
	Selected Topics of Theoretical Elementary Particle Physics		NUM	19
11-ATTP-161-m01	· · · · · · · · · · · · · · · · · · ·	6	NUM	7
11-BSM-161-m01	Models Beyond the Standard Model of Elementary Particle Physics	6	NUM	7
11-STRG1-171-m01	String Theory 1	8	NUM	19
11-STRG2-171-m01	String Theory 2	6	NUM	19
11-FPA-161-m01	Visiting Research	10	NUM	12
11-EXT5-161-m01	Current Topics of Theoretical Physics	5	NUM	11
11-EXT6-161-m01	Current Topics of Theoretical Physics	6	NUM	11
11-EXT7-161-m01	Current Topics of Theoretical Physics	7	NUM	11
11-EXT8-161-m01	Current Topics of Theoretical Physics	8	NUM	11
11-EXT6A-161-m01	Current Topics of Theoretical Physics	6	NUM	11
11-EXP6A-161-m01	Current Topics in Physik	6	NUM	10
11-RAI-211-m01	Radio Astronomical Interferometry	6	NUM	17

11-SLQ-232-m01	Black Holes	6	NUM	185
11-APM-242-m01	11-APM-242-mo1 Astrophysics		NUM	62
11-ATP-242-m01	11-ATP-242-mo1 Atmospheric Physics		NUM	70
11-0QS-242-m01	Open Quantum Systems	6	NUM	156
11-TPSM-211-m01	Particle Physics (Standard Model)	8	NUM	209
Subfield Non-physical M	inor			
10-M-ORSaf-152-m01	Operations Research for students of other subjects	10	NUM	52
10-M-VAN-152-m01	Advanced Analysis	7	NUM	53
10-M=AAAN-161-m01	Applied Analysis	10	NUM	26
10-M=ADGM-161-m01	Differential Geometry	10	NUM	28
10-M=AFTH-161-m01	Complex Analysis	10	NUM	30
10-M=ALTH-161-m01	Lie Theory	10	NUM	32
10-M=ATOP-161-m01	Topology	10	NUM	34
10-M=AZTH-161-m01	Number Theory	10	NUM	36
10-M=VGDS-161-m01	Groups and their Representations	10	NUM	40
10-M=VGEM-161-m01	Geometrical Mechanics	10	NUM	42
10-M=VNPE-161-m01	Numeric of Partial Differential Equations	10	NUM	46
10-M=VDIM-161-m01	Discrete Mathematics	5	NUM	38
10-M=VMPH-161-m01	Selected Topics in Mathematical Physics	10	NUM	44
10-M=VPDP-161-m01	Partial Differential Equations of Mathematical Physics	10	NUM	48
10-M=VPRG-161-m01	Pseudo Riemannian and Riemannian Geometry	10	NUM	50
10-l=DB-161-m01	Databases	5	NUM	15
10-l=PA-161-m01	Analysis and Design of Programs	5	NUM	18
10-l-RAK-152-m01	Computer Architecture	5	NUM	24
10-I-APR-172-m01	Advanced Programming	5	NUM	20
10-l-BS-191-m01	Operating Systems	5	NUM	22
10-l=Kl1-161-m01	Artificial Intelligence 1	5	NUM	16
08-FU-SAM-161-m01	Sensor and Actor Materials - Functional Ceramics and Magnetic Particles	5	NUM	12
08-FU-EEW-152-m01	Electrochemical Energy Storage and Conversion	5	NUM	9
08-FU-MW-161-mo1 Structure and Properties of Modern Materials: Experiments vs. Simulations		5	NUM	11
11-EXNP6-161-m01	Nonphysical Minor Subject	6	NUM	106
Thesis (60 ECTS credits)	1		ı	
11-FS-P-161-m01	Professional Specialization Physics	15	B/NB	128
11-MP-P-161-m01	Scientific Methods and Project Management Physics	15	B/NB	147
11-MA-P-161-m01	Master Thesis Physics	30	NUM	144
	· · · · · · · · · · · · · · · · · · ·	-	L	

Module title	Abbreviation
Electrochemical Energy Storage and Conversion	08-FU-EEW-152-m01

Module coordinator Module offered by

holder of the Chair of Chemical Technology of Material Synthesis thesis

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
5	nume	rical grade	
Duratio	n	Module level	Other prerequisites
1 seme	ster	undergraduate	

Contents

Chemistry and application of: battery systems (aqueous and non-aqueous systems such as lead, nickel cadmium and nickel metal hydride, sodium sulphur, sodium nickel chloride, lithium ion accumulators), electrochemical double layer capacitors, redox-flow batteries, fuel cell systems (AFC, PEMFC, DMFC, PAFC, SOFC), solar cells (Si, CIS, CIGS, GaAs, organic and dye solar cell), thermoelectric devices.

Intended learning outcomes

Students have developed a knowledge of electrochemical energy storage and conversion and are able to apply that knowledge to research problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + P(1) + E(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) assessment and b) Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations), weighted 7:3

Language of assessment: German and/or English Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Nanostructure Technology (2015)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 9 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Quantum Technology (2021)

Module title	Abbreviation
Structure and Properties of Modern Materials: Experiments vs. Simulations	08-FU-MW-161-m01

Module coordinator Module offered by

degree programme coordinator Funktionswerkstoffe (Functional Matrierials) Chair of Chemical Technology of Material Synthesis

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
5 numerical grade		rical grade	
Duration Module level		Module level	Other prerequisites
1 seme	ster	graduate	

Contents

Material properties of metals and ceramics: correlation of structure/property relations through experiments and simulations.

Intended learning outcomes

Students gain an insight into the properties of modern materials: aerospace aluminium alloys and high-performance ceramics. They are introduced to measuring methods and calculation methods using numerical simulation. A special focus is on the relation between the micro/nanoscopic structure of materials and the resulting properties.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) talk (approx. 30 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes total)

Language of assessment: German and/or English

Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title	Abbreviation
Sensor and Actor Materials - Functional Ceramics and Magnetic Particles	08-FU-SAM-161-m01

Module coordinator Module offered by

degree programme coordinator Funktionswerkstoffe (Functional Matrierials) Chair of Chemical Technology of Material Synthesis

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
5 numerical grade		rical grade	
Duration Module level		Module level	Other prerequisites
1 seme	ster	graduate	

Contents

Fabrication, effects and applications of sensory and actuatory materials such as piezoelectrics, shape memory materials and magnetostrictive materials. Electrorheological and magnetorheological fluids, magnetofluids.

Intended learning outcomes

Students have developed fundamental knowledge in the area of sensory and actuatory materials.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + P(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Once a year, summer semester

P: creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Modul	e title				Abbreviation
Ultrafast spectroscopy and quantum-control			08-PCM4-161-m01		
Modul	e coord	inator		Module offered by	
lecture	lecturer of the seminar "Nanoskalige Materialien" Institute of Physical and Theoretical Chemi			l and Theoretical Chemistry	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level Other prerequisites				
1 semester graduate Pric		Prior completion of	modules o8-PCM1a a	and o8-PCM1b recommended.	
Contracts					

This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes

Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $S(2) + \ddot{U}(1)$

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) talk (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Chemistry (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Chemistry (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 13 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Modul	e title				Abbreviation
Databases					10-l=DB-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Informatik (Computer Science)		Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. o	ompl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisi		es			
1 semester graduate					
Contor	ntc	•			

Relational algebra and complex SQL statements; database planning and normal forms, XML data modelling; transaction management.

Intended learning outcomes

The students possess knowledge about data modelling and queries in SQL, transactions as well as about easy data modelling in XML.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Separate written examination for Master's students.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IS, HCI, GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Digital Humanities (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Modul	e title				Abbreviation
Artificial Intelligence 1					10-l=Kl1-161-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science VI			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisite		<u> </u>			
1 semester graduate					
Contor	at c	•	•		

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence in the area of agents, search and logic and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,IS,HCI

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 16 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Aerospace Computer Science (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Modul	e title	·			Abbreviation
Analysis and Design of Programs					10-l=PA-161-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer S	cience II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
5	nume	rical grade			
Duration Module level (Other prerequisite	es		
1 semester graduate					
Conter	nts				

Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes

The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IS,ES,GE

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Modul	e title				Abbreviation
Advan	Advanced Programming				10-I-APR-172-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Sci	ence II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequi		Other prerequisite	<u> </u>		
1 semester undergraduate					
Conter	nts				

With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes

Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 20 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Modul	e title				Abbreviation
Operating Systems					10-I-BS-191-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science II			ience II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequ		Other prerequisite	S		
1 semester undergraduate					
Conte	nte		,		

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 22 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modul	e title				Abbreviation
Computer Architecture					10-I-RAK-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Informatik (Compu	ter Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other pre		Other prerequisite	<u>!</u> S		
1 semester undergraduate					
Conter	nts		•		

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

§ 69 | Nr. 1 c): Rechnerarchitektur

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 24 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Modul	e title				Abbreviation
Applied Analysis				-	10-M=AAAN-161-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level Ot		Other prerequisites	Other prerequisites		
1 semester graduate					
Conter	nte				

In-depth study of functional analysis and operator theory, Sobolev spaces and partial differential equations, theory of Hilbert spaces and Fourier analysis, spectral theory and quantum mechanics, numerical methods (in particular FEM methods), principles of functional analysis, function spaces, embedding theorems, compactness, theory of elliptic, parabolic and hyperbolic partial differential equations with methods from functional analysis.

Recommended previous knowledge:

Familiarity with the contents of the module "Functional Analysis" is strongly recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Modul	e title				Abbreviation
Differential Geometry					10-M=ADGM-161-m01
Modul	e coord	linator		Module offered by	
Dean of Studies Mathematik (Mathema			hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level			Other prerequisite	·s	
1 semester graduate					
Conte	nte		<u>,</u>		

Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Recommended previous knowledge:

Basic knowledge from the modules "Introduction to Differential Geometry", "Introduction to Topology" and "Geometric Analysis" is recommended.

Intended learning outcomes

The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geome-

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 28 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation
Complex Analysis				-	10-M=AFTH-161-m01
Modul	e coord	inator		Module offered by	
Dean c	f Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	rading Only after succ. con		
10	nume	rical grade			
Duratio	on	Module level	Other prerequisite	<u> </u>	
1 semester graduate					
Contents					

In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e. g. elliptic functions).

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Complex Analysis" is recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 30 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title	"			Abbreviation
Lie Theory					10-M=ALTH-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	S		
1 semester graduate					
Conte	nts				

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e. g. in physics and control theory.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Functional Analysis" and "Introduction to Topology" is recommended. Furthermore, basic knowledge of the contents of the module "Introduction to Differential Geometry" is useful.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 32 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation
Topology					10-M=ATOP-161-m01
Modul	e coord	linator		Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
10	nume	rical grade			
Durati	Duration Module level		Other prerequisite	es	
1 semester graduate					
Conto	ntc		·		

Set-theoretic topology, topological invariants (e. g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 34 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Number Theory					10-M=AZTH-161-m01
Modul	e coord	linator		Module offered by	
Dean	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	nod of grading Only after succ. cor		mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	es		
1 semester graduate					
Conto	ntc	•	•		

Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Recommended previous knowledge:

Basic knowledge of algebra and number theory is assumed, such as can be acquired in the modules "Introduction to Algebra", "Introduction to Number Theory" and "Applied Algebra".

Intended learning outcomes

The student is acquainted with the fundamental methods of analytics number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 36 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Discre	te Math	nematics			10-M=VDIM-161-m01
Modul	e coord	linator		Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisite	<u></u>		
1 semester graduate					
Conto	nte		•		

Advanced methods and results in a selected field of discrete mathematics (e. g. coding theory, cryptography, graph theory or combinatorics)

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Discrete Mathematics" is required.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 38 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title				Abbreviation	
Group	s and th	neir Representation	s		10-M=VGDS-161-m01
Modul	e coord	linator		Module offered by	
Dean o	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	!S		
1 semester graduate					
Conto	ntc				

Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

__

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 40 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title	'			Abbreviation
Geometrical Mechanics					10-M=VGEM-161-m01
Modul	e coord	inator		Module offered by	
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisit	tes		
1 semester graduate					
Conter	nts				

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: symplectic geometry, cotangent bundles and other examples of symplectic manifolds, symmetries and Noether theorem, phase space reduction, normal forms, introduction to Poisson geometry.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the module "Introduction to Topology" is also recommended. Knowledge of theoretical mechanics can also be useful.

Intended learning outcomes

The student is acquainted with selected advanced applications of differential geometry to geometric mechanics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 42 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Select	Selected Topics in Mathematical Physics			-	10-M=VMPH-161-m01
Modul	e coord	inator		Module offered by	
Dean c	f Studi	es Mathematik (Mather	natics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	i		
1 semester graduate					
Conter	nte		<u>.</u>		

Selected topics in mathematical physics, for example continuum mechanics, fluid dynamics, mathematical material sciences, geometric field theory, advanced topics in quantum theory.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with an advanced topic in mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 44 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Numer	ic of Pa	rtial Differential Eq	uations		10-M=VNPE-161-m01
Modul	e coord	linator		Module offered by	
Dean o	of Studi	es Mathematik (Mat	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	S		
1 semester graduate					
Conte	nte				

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and partial differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Applied Analysis".

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 46 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Partial	Differe	ential Equations of Ma	thematical Physics	-	10-M=VPDP-161-m01
Modul	e coord	inator		Module offered by	
Dean c	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisite	S		
1 semester graduate					
Conter	Contents				

Elliptic, parabolic, and hyperbolic equations; Laplace equation, heat equation and wave equation as standard examples; initial and boundary value problems; well-posed and ill-posed problems; solution methods; extensions and generalisations; Hilbert space methods; Sobolev spaces and Fourier transforms.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student is acquainted with fundamental concepts and solution methods in the theory of partial differential equations, as well as standard examples from mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 48 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title	•	Abbreviation			
Pseudo Riemannian and Riemannian Geometry					10-M=VPRG-161-m01	
Module coordinator Module offered by						
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisit	Other prerequisites		
1 semester graduate						
Conto	ntc		.			

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Riemannian and pseudo-Riemannian manifolds, Levi-Civita connection and curvature, geodesics and the exponential map, Jacobi fields, comparison theorems in Riemannian geometry, submanifolds, integration, d'Alembert and Laplace operators, causal structure of Lorenz manifolds, Einstein equations and applications in general relativity theory.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Introduction to Topology", "Geometric Mechanics" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is acquainted with advanced topics in differential geometry on Riemannian and pseudo-Riemannian manifolds. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 50 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module	e title	,	Abbreviation			
Operations Research for students of other subjects					10-M-ORSaf-152-m01	
Module	Module coordinator N				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Method of grading Only after succ.		Only after succ. com	npl. of module(s)		
10	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 semester undergraduate						
Conten	Contents					

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Master's degree (1 major) Physics (2016)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Module title					Abbreviation
Advanced Analysis					10-M-VAN-152-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
7	nume	rical grade			
Duration Module level			Other prerequisite	Other prerequisites	
1 semester undergraduate					
Contents					

Continuation of analysis in several variables, integration theorems.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Advanced Astro Imaging				_	11-AAI-212-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other pres			Other prerequisites	5	
1 seme	1 semester graduate				
Contents					

- 1) Image Acquisition: a) Motivation: History of Astronomical Imaging From the Eye to the Detector; b) Atmospheric Transmission: Ground Based vs. Space Based Imaging; c) Observing Techniques and Instruments; d) Optical Detector Types and CCD Properties; e) Imaging in Other Bands of the Electromagnetic Spectrum
- 2) Image Processing: a) Data Formats and Imaging Software; b) Basic Methods: Pixel Operations and Statistics;
- c) Basic Methods II: Image Operations; d) Image Reduction- / Calibration; e) Imaging in Color f) Image Processing Algorithms
- 3) Advanced Processing: a) FITS File Format; b) Image Reconstruction; c) Fourier Analysis; d) Speckle Interferometry; e) Maximum Entropy Methods; f) Interferometry; g) Image Classification, Machine Learning Methods
- 4) Outlook: a) Future Challenges: Scientific Questions / Instruments / Data Processing; b) Future Facilities Radio to Gamma-rays; c) Imaging in Other Scientific Fields

Intended learning outcomes

The aim of the module is to convey a fundamental understanding of imaging methods using examples from modern astronomy, incorporating measurements from ground- and space-based instruments. The students acquire the following qualifications: ability to process and interpret raw-image data, to perfom data reduction, image analysis, application and improvement of processing algorithms. The concepts and methods are not limited to the field of astronomy but applicable to many other areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
Additional information
Workload
180 h

Teaching cycle
-
Referred to in LPO I (examination regulations for teaching-degree programmes)
Module appears in
Master's degree (1 major) Physics (2020)
exchange program Physics (2023)

Module title Abbreviation					Abbreviation
Cosmology					11-AKM-161-mo1
Module coordinator Module offered by					
Managing Director of the Institute of Theoretica and Astrophysics			Theoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level			Other prerequisite	S	
1 semester graduate					
Contents					

Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, galaxies and galaxy clusters, intergalactic medium, cosmological parameters.

Intended learning outcomes

The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to process scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 56 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title Abbreviation					
Selected Topics of Theoretical Solid State Physics					11-AKTF-201-m01	
Modul	e coord	inator		Module offered by		
	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duration Module level Other pr			Other prerequisites	i		
1 semester graduate						
Contents						

In this lecture, selected topics of condensed matter theory are addressed. We intend to present new developments to bring the students in touch with actual research topics. Possible subjects are many-body localization and dynamic quantum matter.

Intended learning outcomes

The students learn how to describe condensed matter systems in presence of disorder and interactions from a theoretical point of view. This happens on the basis of analytical and numerical methods. Therefore, we envisage a smooth crossover of these students to the next step of becoming a researcher.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 58 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Mathematical Physics (2022)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation
High Energy Astrophysics					11-APL-161-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequis			Other prerequisites		
1 semester graduate					
Contents					

Radiative processes, interaction of light with matter, particle acceleration processes, pair creation, nuclear processes, pion production, astrophysical shock waves, kinetic equations

Intended learning outcomes

The student gains knowledge in fundamentals of High-Energy Astrophysics, such as particle acceleration and non-thermal radiative processes in astrophysical objects

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 60 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation
Astrop	hysics			-	11-APM-242-m01
Modul	e coord	inator		Module offered by	
Managing Director of the Institute of Theoretical Physiand Astrophysics		Theoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other p		Other prerequisites	S		
1 semester graduate					
Conter	ıts		,		

History of Astronomy, Coordinates and Time Measurement, the Solar System, Exoplanets, Astronomical Scales, Telescopes and Detectors, Stellar Structure and Atmospheres, Stellar Evolution and their End Stages, Interstellar Medium, Molecular Clouds, Structure of the Milky Way, the Local Universe, the Expanding Universe, Galaxies, Active Galactic Nuclei, Large-Scale Structures, Cosmology.

Intended learning outcomes

The student has achieved a deepened of the modern astrophysical world view. He/She is familiar with the methods and instruments of astrophysical research. He/She is able to interpret astronomical observations of various object classes in the context of theoretical astrophysical models.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Approval from examination committee required.

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 62 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematical Physics (2020) Master's degree (1 major) Mathematical Physics (2022) exchange program Physics (2023)

Module title					Abbreviation
Methods of Observational Astronomy					11-ASM-161-m01
Module	e coord	inator		Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics			heoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequi		Other prerequisites	•		
1 semester graduate					
Contonto					

Methods of observational astronomy across the electromagnetic spectrum. Evaluation of observational data from radio, optical, X-ray and gamma-ray telescopes.

Intended learning outcomes

Overview of the methods used in observational astronomy in various parts of the electromagnetic spectrum (radio, optical, X-ray and gamma-ray energies). Knowledge of principles and applications of these methods and ability to conduct astronomical observations.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 64 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Introduction to Space Physics			-	11-ASP-161-m01	
Module	Module coordinator			Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		eoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6 numerical grade					
Duration Module level Other prerequisit		Other prerequisites	•		
1 semester graduate					

- 1. Overview
- 2. Dynamics of charged particles in magnetic and electric fields
- 3. Elements of space physics
- 4. The sun and heliosphere
- 5. Acceleration and transport of energetic particles in the heliosphere
- 6. Instruments to measure energetic particles in extraterrestrial space

Intended learning outcomes

The students acquire basic knowledge of Space Physics, in particular regarding the characterisation of the dynamics of charged particles in space and the heliosphere. They know relevant parameters and theoretical concepts and corresponding measuring methods.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 66 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title Abb					Abbreviation
Theoretical Astrophysics					11-AST-161-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequis		Other prerequisite	S		
1 semester graduate					
Conten	Contents				

Topics in theoretical astrophysics such as e.g. white dwarfs, neutron stars and black holes, supernovae, pulsars, accretion and jets, shock waves, radiation transport, and gravitational lensing

Intended learning outcomes

Knowledge of basic processes and methods of Theoretical Astrophysics. Ability to formulate theoretical models.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 68 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title	,		Abbreviation	
Atmospheric Physics					11-ATP-242-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of Theoretical Physics and Astrophysics		of Theoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prered		Other prerequisite	S		
1 semester graduate					
Conter	Contents				

Formation of atmospheres. Planetary atmospheres in the solar system: chemical composition and thermodynamics. Radiative transfer and radiative balance. Fluid mechanics. Greenhouse effect. Climate Models: Equilibrium and Runaway. Physics of clouds. Electric and magnetic fields. Solar wind and interplanetary medium. Meteorites, asteroids, cosmic rays. Atmospheres of exoplanets.

Intended learning outcomes

Students have knowledge of the physics of planetary atmospheres, especially the Earth's atmosphere and near-Earth space. They are able to use the acquired knowledge in the planning of space missions and in the exploration of exoplanets. They are able to model the physical mechanisms of the terrestrial climate and interpret the effects of global warming.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 70 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2020) Master's degree (1 major) Mathematical Physics (2020) Master's degree (1 major) Mathematical Physics (2022) exchange program Physics (2023)

Module title					Abbreviation
Selected Topics of Theoretical Elementary Particle Physics					11-ATTP-161-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duratio	Duration Module level Other prerequisites				
1 semester graduate					
Conter	Contents				

A selection of topics from the following fields will be covered in different years:

- 1. Advanced techniques for precision calculations of scattering amplitudes
- 2. Phenomenology of particle accelerators
- 3. Higgs physics
- 4. Top quark physics

Intended learning outcomes

The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 72 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation	
Biophysical Measurement Technology in Medical Science					11-BMT-161-m01	
Modul	Module coordinator			Module offered by	Module offered by	
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
6	nume	rical grade				
Duration Module level Other p		Other prerequisite	es			
1 semester graduate						
Contar	ntc	*	,			

Contents

The lecture covers the physical principles of imaging techniques and their application in Biomedicine. The main topics are conventional X-ray technique, computer tomography, imaging techniques of nuclear medicine, ultrasound and MR-tomography. The lecture additionally addresses the systems theory of imaging systems and digital image processing.

Intended learning outcomes

The students know the physical principles of imaging techniques and their application in Biomedicine. They understand the principles of image generation and are able to explain different techniques and interpret simple images.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 74 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Functional Materials (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module	e title		Abbreviation		
Models Beyond the Standard Model of Elementary Particle Physics				Physics	11-BSM-161-m01
Module	e coord	linator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		heoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other p		Other prerequisites	1		
1 semester graduate					
Conten	nts	,			

- 1. Principles of the standard model of Elementary Particle Physics
- 2. Tests of the standard model in low energy experiments and at high energy colliders
- 3. Neutrino physics
- 4. Higgs physics.

In addition, a selection of topics from the following fields will be covered in different years:

- Phenomenology of experiments at the LHC,
- particle cosmology,
- extended gauge theories.
- models with extended Higgs sectors.
- supersymmetry,
- models with additional space-time dimensions

Intended learning outcomes

The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 76 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Image and Signal Processing in Physics			hysics		11-BSV-161-m01
Modul	e coord	inator		Module offered by	
Managing Director of the Institute of Applied			of Applied Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. c	ompl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisit	es		
1 semester graduate					
Conter	nts				

Periodic and aperiodic signals; principles of discreet and exact Fourier transformation; principles of digital signal and image processing; discretisation of signals/sampling theorem (Shannon); homogeneous and linear filters, convolution product; tapering functions and interpolation of images; the Parsival theorem, correlation and energetic observation; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes

The students have advanced knowledge of digital image and signal processing. They know the physical principles of image processing and are familiar with different methods of signal processing. They are able to explain different methods and to implement them, especially in the field of tomography.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 78 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Modul	e title			,	Abbreviation
Bosonisation and Interactions in One Dimension					11-BWW-161-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of Theore and Astrophysics			Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites	5		
1 semester graduate					
Conter	nts		,		

- 1.Instability of Fermi systems in one dimension (1D)
- 2. Abelian bosonisation and Luttinger liquids (spinless fermions, correlation functions, models with spin, renormalization group, and the sine-Gordon model).

The below mentioned topics will be presented in different years:

- 3.Interacting fermions on a lattice (Hubbard model, t/J model, transport properties)
- 4.Bethe ansatz
- 5.Spin-1/2 chains
- 6.Disordered systems
- 7.Non-abelian bosonisation and the WZW model (Kac-Moody algebras, Sugawara construction, Knizhnik-Zamolodchikov equation, applications of the WZW model)

Intended learning outcomes

The students become familiar with the peculiarities of one-dimensional (1D) electron systems and acquire the theoretical tools to understand phenomena relevant to experiments, including disorder effects and transport in 1D.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 80 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

._

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
Computational Materials Science (DFT)					11-CMS-161-m01
Module	e coord	linator		Module offered by	
_	Managing Director of the Institute of Theoretic and Astrophysics			Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Oth		Other prerequisite	S		
1 semester graduate -					
Contents					

- 1. Density functional theory (DFT)
- 2. Wannier functions and localized basis functions
- 3. Numerical evaluation of topological invariants
- 4. Hartree-Fock and static mean-field theory
- 5. Many-body methods for solid state physics
- 6. Anderson impurity model (AIM) and Kondo physics
- 7. Dynamical mean-field theory (DMFT)
- 8. DFT + DMFT methods for realistic modeling of solids
- 9. Strongly correlated electrons

Intended learning outcomes

Aside from the theoretical discussion of these topics, the students carry out hands-on exercises from the CIP pool. The participants are introduced to the use of DFT software packages such as VASP or Wien2k and to the construction of maximally localised Wannier functions through the projection of DFT results on atom orbitals with the software wanniergo. Furthermore, the students learn how to construct many-particle solutions of AIM and observe border cases such as the Kondo regime. Impurity solvers such as exact diagonalisation or continuous-time quantum Monte Carlo are utilised to solve the self consistency equations of dynamic molecular field theory (DMFT). These steps are necessary to reach the peak of the lecture: a DFT-DMFT calculation of a strongly correlated transition metal oxide such as SrVO3.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

240 h

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 82 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Modul	e title				Abbreviation
Renorr	malizat	ion Group and Critical Ph	nenomena		11-CRP-161-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theorand Astrophysics		neoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites	3		
1 semester graduate					
Conter	nts				

- 1. Phase transitions
- 2. Mean field theory
- 3. The concept of the renormalization group (RG) Phase diagrams and fixed points
- 4. Perturbation-theoretical renormalization group
- 5. Low-dimensional systems
- 6. Conformal symmetry

Intended learning outcomes

The students acquire profound knowledge of the principles of scale invariance and of the renormalisation group (RG) in Statistical Physics. They understand the concept of RG flow with respect to effective field theories in both statistical and quantum field theory.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 84 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title	,	Abbreviation			
Advand	Advanced Topics in Astrophysics			-	11-CSAM-161-m01	
Module	e coord	inator		Module offered by		
Managing Director of the Institute of Theoretical Physics and Astrophysics			heoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
6	nume	rical grade				
Duration Module level Other prerequisit		Other prerequisites	•			
1 semester graduate Approval from ex		Approval from exam	nination committee r	equired.		
Conten	Contents					

In-depth study of particular current topics of Astrophysics. The concepts of Astrophysics which will be discussed include: Stellar structure, formation and development, radiation transport, gas dynamics, heating and cooling processes of the interstellar medium, astrochemistry, accretion and jets, galaxy formation or similar topics.

Intended learning outcomes

The students have advanced knowledge of the subdisciplines of Astrophysics and are able to work on current scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 86 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation	
Advanced Topics in Solid State Physics					11-CSFM-161-m01	
Module	e coord	inator		Module offered by		
Managing Director of the Institute of Theoretical Physi and Astrophysics		of Theoretical Physics	Faculty of Physics and Astronomy			
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duration Module level Other prereq		Other prerequisites	3			
1 semester graduate Approval from e		Approval from exan	nination committee r	equired.		
Conten	Contents					

This module will enable the lecturers of Condensed Matter Physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes

The students advance their knowledge and understanding of an advanced topic of Condensed Matter Physics and acquire insights into the connections between research and teaching.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 88 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Module studies (Master) Quantum Technology (2021)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Advan	Advanced Computer Tomography				11-CTA-212-m01
Module coordinator				Module offered by	
Manag	Managing Director of the Institute of Applied			Faculty of Physics and Astronomy	
ECTS	ECTS Method of grading Only after su		Only after succ. con	npl. of module(s)	
6	numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					
C 4	Combonito				

Contents

This advanced course focuses on the details of modern computed tomography (CT), which is employed both in medical and industrial imaging applications. In addition to the technicalities of CT systems and their application to various tasks in engineering and medical science, this lecture emphasizes on the mathematics of "inverting the Radon transform". Starting with the simple Filtered Back Projection method which is applied to a variety of standard recording geometries (parallel, fan, cone, helix) the advanced course lays out the strategies for algebraic reconstruction techniques (ART) along with many types of regularization schemes which may accompany these methods. Students will have the opportunity to see how Radon data is recorded and how different error sources as well as the corresponding correction schemes influence the outcome of the reconstructed volume images. Finally, the most common tools for volume image analysis are presented, such as distance transforms, watersheds, labelling and fiber orientation analysis.

Intended learning outcomes

The student know the concept of Computed tomography (CT) and its applications. From the formulation of the basic inverse problem posed by this technique the students are able to derive strategies for different numerical solutions, based on Fourier analysis and/or based on probability theory. Most importantly the students have a firm impression (first-hand experience) of the various sources of measurement errors in CT which can impede any wellprepared reconstruction.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places -Additional information -Workload 180 h Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

..

Module appears in

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Functional Materials (2022)

exchange program Physics (2023)

Master's degree (1 major) Functional Materials (2025)

Module title					Abbreviation
Electron and Ion Microscopy					11-EIM-211-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applie			pplied Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
6	6 numerical grade				
Duration Module level (Other prerequisites		
1 semester graduate					
Contents					

Theoretical Foundations. Electron and ion sources, optics of charged particles, interaction of matter with electrons and charged particles, detectors, measurement principles: SEM, STEM, TEM, sample preparation, advanced contrast mechanisms: EBSD, EELS, EDS, cathodoluminescence.

Intended learning outcomes

The student has specific and immersed knowledge in electron and ion microscopy. He/she knows the theoretical and instrumental basics and principles of detectors and contrast mechanisms. He/she knows different modi of electron microscopy and their applications. He/she knows ongoing developments in this field.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Teaching cycle: annually, after announcement

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Functional Materials (2022)

exchange program Physics (2023)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 92 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Functional Materials (2025)

Modul	Module title				Abbreviation
Introd	Introduction to Plasma Physics				11-EPP-161-m01
Module coordinator Module offered by			<u> </u>		
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		of Theoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequ		Other prerequisite	s		
1 semester graduate					
Conter	nts		<u> </u>		

Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, magnetohydrodynamics, transport equations for energetic particles, properties of magnetic turbulence, propagation of solar particles within the solar wind, particle acceleration via shock waves and via interaction with plasma turbulence, particle acceleration and transport in galaxies and other astrophysical objects, cosmic radiation.

Intended learning outcomes

The students have knowledge of the basic processes of Plasma Astrophysics.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 94 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Current Topics in Experimental Physics			hysics		11-EXE5-161-m01
Module coordinator				Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	5 numerical grade				
Duration Module level Other			Other prerequisite	S	
1 semester graduate A		Approval from exa	nination committee r	equired.	
Contents					

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 96 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation		
Current Topics in Experimental Physics			hysics	-	11-EXE6-161-m01
Module coordinator				Module offered by	
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	6 numerical grade				
Duration Module level Ot			Other prerequisites	S	
1 semester graduate A			Approval from exar	nination committee r	equired.
Conter	Contents				

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 98 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Current Topics in Experimental Physics			hysics		11-EXE6A-161-m01
Modul	e coord	linator		Module offered by	
chairperson of examination committee		Faculty of Physics and Astronomy			
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisites		S			
1 semester graduate Approval from exam		mination committee r	equired.		
Conte	nts		,		

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 100 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Current Topics in Experimental Physics			hysics	-	11-EXE7-161-m01
Modul	e coord	linator		Module offered by	
chairp	chairperson of examination committee		Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
7	nume	rical grade			
Duration Module level Other prerequisites		S			
1 semester graduate Approval from exam		mination committee re	equired.		
Conter	nts		,		

Current topics in Experimental Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 102 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation	
Current Topics in Experimental Physics			hysics	11-EXE8-161-m01
Modul	e coord	linator		Module offered by
chairperson of examination committee		nittee	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)
8	nume	erical grade		
Duration Module level Other prerequisite		Other prerequisit	es	
1 semester graduate Approval from exa		Approval from exa	amination committee required.	
Conter	nts		<u>, </u>	

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 104 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation
Nonph	Nonphysical Minor Subject			-	11-EXNP6-161-m01
Module	e coord	inator		Module offered by	
chairpe	chairperson of examination committee Fa		Faculty of Physics a	and Astronomy	
ECTS	Metho	hod of grading Only after succ. compl		npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisites					
1 semester graduate Approval from examination comm			nination committee r	equired.	
Conten	ıts		,		

Non-technical minor. Crediting for academic achievements, e.g. from university change or study abroad

Intended learning outcomes

The students have advanced competencies on the Master's level which correspond to the requirements of a module in the field of a non-physical minor (mathematics, chemistry, informatics...).

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Physics (2020)

Modul	e title				Abbreviation
Current Topics in Physik				-	11-EXP6-161-m01
Modul	e coord	linator		Module offered by	
chairperson of examination committee		nittee	Faculty of Physics and Astronomy		
ECTS	Method of grading Only after succ. co		npl. of module(s)		
6	nume	rical grade			
Duration Module level Other prerequisite		<u> </u>			
1 semester graduate Approval from exa		nination committee r	equired.		
Contor	at c		·		

Contents

Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 107 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Module studies (Master) Quantum Technology (2021)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Curren	Current Topics in Physik			-	11-EXP6A-161-m01
Module coordinator				Module offered by	
chairperson of examination committee			tee	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level (Other prerequisites		
1 semester graduate			Approval from exam	nination committee r	equired.
Conten	Contents				

Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 109 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Module studies (Master) Quantum Technology (2021)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation
Curren	Current Topics of Theoretical Physics			-	11-EXT5-161-m01
Modul	e coord	linator		Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisite	S		
1 semester graduate			Approval from exar	nination committee r	equired.
Conto	nte		·		

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 111 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Current Topics of Theoretical Physics			rsics	_	11-EXT6-161-m01
Modul	e coord	linator		Module offered by	
chairperson of examination committee			nittee	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level (Other prerequisite	S		
1 semester graduate			Approval from exar	nination committee r	equired.
Conte	nts		<u>, </u>		

Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 113 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Current Topics of Theoretical Physics			rsics	_	11-EXT6A-161-mo1
Modul	e coord	inator		Module offered by	
chairperson of examination committee			nittee	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level O			Other prerequisite	s	
1 semester graduate			Approval from exa	nination committee r	equired.
Conte	nts				

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 115 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Curren	Current Topics of Theoretical Physics			-	11-EXT7-161-m01
Module coordinator				Module offered by	
chairpe	erson o	f examination committ	ee	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
7	nume	rical grade			
Duration Module level Other prere			Other prerequisites	;	
1 semester graduate Approval from ex			Approval from exam	nination committee r	equired.
Conten	Contents				

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 117 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Curren	t Topic	s of Theoretical Phy	rsics	-	11-EXT8-161-m01
Modul	e coord	linator		Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
8	nume	rical grade			
Duration Module level Other prerequisit			Other prerequisites	<u> </u>	
1 semester graduate Approval from e			Approval from exan	nination committee r	equired.
Contor	at c		·		

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Module studies (Master) Physics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 119 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
Field Theory in Solid State Physics					11-FFK-201-m01
Modul	e coord	linator		Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics			of Theoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Other pre		Other prerequisite	S		
1 semester graduate					
Contents					

This will usually be a course on quantum many particle physics approached by the perturbative methods using Green's functions

An outline could be:

- 1. Single-particle Green's function
- 2. Review of second quantization
- 3. Diagrammatic method using many particle Green's functions at temperature T=o
- 4. Diagrammatic method for finite T
- 5. Landau theory of Fermi liquids
- 6. Superconductivity
- 7. One-dimensional systems and bosonization

Intended learning outcomes

Working knowledge of the methods of quantum field theory in a non-relativistic context. Ability to study properties of Fermi liquids (and bosonic systems) beyond the one-particle picture. Acquisition of methods which are essential for the understanding the effects of interactions, including superconductivity and the Kondo effect.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

 $\begin{tabular}{ll} \textbf{Method of assessment} (type, scope, language-if other than German, examination offered-if not every semester, information on whether module can be chosen to earn a bonus) \\ \end{tabular}$

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 121 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title A					Abbreviation
Solid State Physics 2					11-FK2-201-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics			e of Applied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Other prerequipment			Other prerequisite	?S	
1 semester graduate			Approval from exa	Approval from examination committee required.	
Contor	at c		·		

- 1. Electrons in a periodic potential the band structure
- a. Electrical and thermal transport
- b. Bloch theorem
- c. Electrons
- 2. Semi-classical models of dynamic processes
- a. Electrical transport in partially and completely filled bands
- b. Fermi surfaces; measurement techniques
- c. Electrical transport in external magnetic fields
- d. Boltzmann-equations of transport
- 3. The dielectric function and ferroelectrics
- a. Macroscopic electrodynamics and microscopic theory
- b. Polarizability of solids, of lattices, of valence electrons and quasi-free electrons; optical phonons, polaritons, plasmons, inter-band transitions, Wannier-Mott excitons
- c. Ferromagnetism
- 4. Semiconductors
- a. Characteristics
- b. Intrinsic semiconductors
- c. Doped semiconductors
- d. Physics and applications of p-n junctions
- e. Heterostructures
- 5. Magnetism
- a. Atomic dia- and paramagnetism
- b. Dia- and paramagnetism in metals
- c. Ferromagnetism
- 6. Superconductivity
- a. Phenomena
- b. Models of superconductivity
- c. Tunnel experiments und applications

Intended learning outcomes

Knowledge of effects, concepts and models in advanced solid state physics. Familiarity with the theoretical principles and with applications of experimental methods.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 123 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module title					Abbreviation	
Solid S	State Sp	pectrocopy			11-FKS-161-m01	
Module coordinator M				Module offered by		
Managing Director of the Institute of Applie			e of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6	nume	rical grade				
Duration Module level		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

Single- and many-particle pictures of electrons in solids, light-matter interaction, optical spectroscopy, electron microscopy, X-ray spectroscopy.

Intended learning outcomes

The students have specific and advanced knowledge in the field of solid-state spectroscopy. They know different types of spectroscopy and their fields of application. They understand the theoretical principles and the current developments in research.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 125 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Visiting Research					11-FPA-161-m01
Module coordinator				Module offered by	
chairperson of examination committee				Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. compl. of module(s)		
10	nume	rical grade			
Duratio	n	Module level	Other prerequisites		
graduate Approval from examina			ination committee r	equired.	
Conten	Contents				

Independent work on a current research topic of Experimental and Theoretical Physics. Implementation of scientific experiments including analysis and documentation of the results, especially in the context of research visits to other universities or research institutes.

Intended learning outcomes

The students are able to independently work on a current research area of Experimental or Theoretical Physics, to conduct and analyse scientific experiments and to document the results.

Courses (type, number of weekly contact hours, language — if other than German)

R (o)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

project report (10 to 20 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title Abbreviation					
Profes	sional	Specialization Physics			11-FS-P-161-m01	
Modul	e coord	linator		Module offered by		
chairperson of examination committee			!	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
15	(not)	successfully completed				
Durati	on	Module level	Other prerequisites			
1 seme	ester	graduate				
Conte	Contents					
					of Physics with special relevance tal topics in a seminar presentati-	
Intend	ed lear	ning outcomes				
a spec area a	ial rele	vance to the intended top able to summarise their k	pic of the Master's the nowledge in an oral p	esis. They know the presentation.	I subdiscipline of Physics with current state of research in this	
	es (type	, number of weekly conta	act hours, language –	- if other than Germa	an)	
S (4) Modul	e taugh	t in: German or English				
		sessment (type, scope, la ion on whether module c			ation offered — if not every seme-	
		ussion (30 to 45 minutes) assessment: German and				
Alloca	tion of	places				
Additio	onal inf	ormation				
Workload						
450 h						
Teaching cycle						
Referre	ed to in	LPO I (examination regu	lations for teaching-	degree programmes))	

Module appears in

Master's degree (1 major) Physics (2016) Master's degree (1 major) Physics (2020)

exchange program Physics (2023)

Module title					Abbreviation
Introduction to Gauge/Gravity Duality					11-GGD-161-mo1
Module coordinator				Module offered by	
Managing Director of the Institute of Theoretic and Astrophysics			heoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
8	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

- 1. Elements of quantum field theory:
 - Quantisation of the free field
 - Interactions
 - Renormalisation Group
 - Gauge Fields
 - Conformal Symmetry
 - Large N expansion
 - Supersymmetry
- 2. Elements of gravity
 - Manifolds, coordinate covariance and metric
 - Riemann curvature
 - Maximally symmetric spacetimes
 - · Black holes
- 3. Elements of string theory
 - Open and closed strings
 - Strings in background fields
 - Type IIB String Theory
 - D-Branes
- 4. The AdS/CFT correspondence
 - Statement of the correspondence
 - Near-horizon limit of D3-Branes
 - Field-operator correspondence
 - Tests of the correspondence: Correlation functions
 - Tests of the correspondence: Conformal anomaly
 - Holographic principle
- 5. Extensions to non-conformal theories
 - Holographic renormalisation group
 - Holographic C-Theorem
- 6. Applications I: Thermo- and hydrodynamics
 - Quantum field theory at finite temperature
 - Black holes
 - Holographic linear response formalism
 - Transport coefficients: Shear viscosity and conductivities
- 7. Applications II: Condensed matter physics
 - · Finite charge density and Reissner-Nordström black holes
 - Quantum critical behaviour
 - Holographic fermions
 - Holographic superconductors
 - Entanglement entropy
- 8. Applications III: Particle physics
 - Gravity dual of confinement
 - · Gravity dual of chiral symmetry breaking
 - Quark-gluon plasma

Intended learning outcomes

The students acquire a thorough understanding of the foundations of gauge/gravity duality and the ability to carry out basic tests. Depending on the pre-existing knowledge and interests of the students, the module addresses a selection of the aforementioned topics. Knowledge of quantum mechanics and classical electrodynamics is a prerequisite for this course. Knowledge of quantum field theory and general relativity is useful, but not a prerequisite.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

__

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Group Theory				-	11-GRTM-201-m01	
Module coordinator				Module offered by		
Managing Director of the Institute of Theoret and Astrophysics			neoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duration Module level (Other prerequisites				
1 semester graduate		Approval from examination committee required.		equired.		
Conton	Contonto					

German contents available but not translated yet.

Gruppentheorie. Endliche Gruppen. Lie-Gruppen. Lie-Algebren. Darstellungen. Tensoren. Klassifikationstheorem. Anwendungen

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Die Studierenden beherrschen die Grundlagen der Gruppentheorie, insbesondere der Lie-Gruppen. Sie sind in der Lage, Problemstellungen der Gruppentheorie zu erkennen und mit Hilfe der erlernten Methoden zu lösen. Sie können die Gruppentheorie zur Formulierung und Bearbeitung physikalischer Probleme anwenden.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 132 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Optical Properties of Semiconductor Nanostructures				-	11-HNS-161-m01
Module	e coord	inator		Module offered by	
Manag	Managing Director of the Institute of Applied Physi			Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. con	nly after succ. compl. of module(s)	
6	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	graduate			
Contents					

Semiconductor nanostructures are frequently referred to as "artificial materials". In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored by changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, oD). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks

for quantum communication and quantum computing architectures.

Intended learning outcomes

The students know the theoretical principles and characteristics of semiconductor nanostructures. They have knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices. They are able to apply their knowledge to problems in this field of research.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 134 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module title					Abbreviation
Semiconductor Physics					11-HPH-201-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics			e of Applied Physics	Faculty of Physics and Astronomy	
ECTS Method of grading Only after succ. con		ompl. of module(s)			
6 numerical grade					
Duration Module level Other prerequisi		es			
1 semester graduate					
Conto	nt c				

The lecture deals with the fundamental properties of semiconductors. It begins with an analysis of the crystal structure, leading to methods for describing band structures. These form a basis for discussing optical and electronic properties of monolithic semiconductors. It then turns to examining semiconductor heterostructures, and studies how these can be used to modify and design optical and electrical properties, especially in the case of lowered dimensionality systems. Examples are selected from current research activities.

Intended learning outcomes

To provide the student with a working knowledge semiconductors pertaining to crystal structure, symmetries, and band structures, as well as electrical and optical properties. This establishes a solid basis preparing him for the more targeted specially lectures in the program.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 136 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module title					Abbreviation
Conformal Field Theory					11-KFT-161-m01
Module	e coord	linator		Module offered by	
Managing Director of the Institute of Theoretical Phand Astrophysics		Theoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequis		Other prerequisite	S		
1 semester graduate					
Conten	Contents				

Conformal field theory (CFT) was developed in the 1980s and found immediate application in string theory and two-dimensional statistical mechanics, where critical exponents and correlation functions for many models (Ising, tricritical Ising, 3-state Potts, etc.) could be exactly calculated. The physical idea is that the principle of scale invariance is elevated from a global to a local invariance, which, for reasons of consistency, amounts to invariance under conformal transformations. This, in turn, yields a rich and fascinating mathematical structure for two dimensional systems (either two space dimensions or one time and one space dimension). CFT has become relevant to many interesting areas of condensed matter physics, including Abelian and non-Abelian bosonisation, quantised Hall states (where the bulk wave function is described in terms of conformal correlators, and the edge in terms of 1+1 dimensional CFTs), the two-channel Kondo effect, fractional topological insulators, and in particular fault-tolerant topological quantum computers involving non-Abelian anyons (Ising and Fibonacci anyons, for example, owe their names to the fusion rules of the associated conformal fields.) A potential syllabus for the first term of the course is:

- o. Introduction (scale and conformal invariance, critical exponents, the transverse Ising model at the self-dual point)
- 1. Conformal theories in D dimensions (conformal group, conformal algebra in 2D, constraints on correlation functions)
- 2. Conformal theories in D=2 (primary fields and correlation functions, quantum field theory, canonical quantisation and Noether's theorem, radial quantisation and Polyakov's theorem, time ordering and functional integration, the free boson and vertex operators, conformal Ward identities)
- 3. Central charge and Virasoro algebra (central charge, the Schwarzian derivative, free fermion, (Abelian) bosonisation, mode expansions and Virasoro algebra, cylinder geometry and Casimir effect, in- and out-states, highest weight states, descendant fields and operator product expansions, conformal blocks, duality and bootstrap)
- 4. Kac determinant and unitarity (Verma modules and null states, Kac determinant formula, non-unitarity proof, conformal grids, minimal models in general).

Intended learning outcomes

The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 138 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

__

Additional information

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Conformal Field Theory 2				-	11-KFT2-161-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physi and Astrophysics		f Theoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequ		Other prerequisite	S		
1 semester graduate					
Conten	Contents				

- 5. Minimal models (critical statistical mechanics models (Ising, tricritical Ising, 3 state Potts model, restricted solid-on-solid models), correlation functions of the critical Ising model, fusion rules and Verlinde algebra, Landau-Ginzburg description of minimal models, modified Coulomb gas method and its application to the Ising model, superconformal models)
- 6. Free bosons and fermions (mode expansions, twist fields, fermionic zero modes and fermion parity)
- 7. Free fermions on the torus (operator implementation of the partition function, vacuum energies, representations of Virasoro algebra, modular group and fermionic spin structures, Virasoro characters, critical Ising model on the torus, Jacobi theta function identities)
- 8. Free bosons on the torus (Lagrangian formulation of the partition function, fermionisation, orbifolds in general, S_1/Z_2 orbifold, Gaussian and Askhin-Teller models, duality between original and orbifold theories, marginal operators, the space of c=1 theories)

Intended learning outcomes

The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 140 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title Abbro					Abbreviation
Magnetism					11-MAG-161-m01
Modul	e coord	linator		Module offered by	
Managing Director of the Institute of Applied Physics			e of Applied Physics	Faculty of Physics and Astronomy	
ECTS Method of grading Only after succ. cor		ompl. of module(s)			
6 numerical grade					
Duration Module level Other		Other prerequisite	es		
1 semester graduate					
Contor	nte	•			

Dia- and paramagnetism, exchange interaction, ferromagnetism, antiferromagnetism, anisotropy, domain structure, nanomagnetism, superparamagnetism, experimental methods to measure magnetic properties, Kondo effect.

Intended learning outcomes

The students know basic terms, concepts and phenomena of magnetism and measuring methods for magnetic experiments; they are skilled in simple model building and in the formulation of mathematical-physical approaches and are able to apply them to tasks in the stated areas; they have competencies in independently working on problems of these areas; they are able to evaluate the accuracy of observations and analyses.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 142 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Master Thesis Physics					11-MA-P-161-m01
Modul	e coord	inator		Module offered by	<u> </u>
chairp	erson o	f examination committee		Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	pl. of module(s)	
30	nume	rical grade			
Duration	on	Module level	Other prerequisites		
1 seme	ester	graduate			
Conter	nts				
		work on an experimental nd according to scientific			s, in particular using state-of-the-
Intend	ed lear	ning outcomes			
		are able to independently own methods and scienti	•		ask from Physics, especially acsin a final paper.
Course	es (type	, number of weekly conta	ct hours, language –	if other than Germa	in)
Νο cou	ırses as	signed to module			
		sessment (type, scope, la ion on whether module c			ition offered — if not every seme-
Master's thesis (750 to 900 hours total) Language of assessment: German and/or English					
Allocation of places					
Additio	onal inf	ormation			
Time to complete: 6 months.					

Workload

900 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Physics (2020)

Module title			Abbreviation		
Multi-wavelength Astronomy					11-MAS-161-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisit		Other prerequisites			
1 semester graduate					
Conten	Contents				

- 1. Phenomenology of active galactic nuclei and extragalactic jets
- 2. Jet-emission processes
- 3. VLBI observations of jets
- 4. High-energy observations of jets
- 5. Multimessenger signatures of jets

Intended learning outcomes

The students acquire knowledge of multiwavelength astronomy by studying the observations of active galactic nuclei and their extragalactic jets. They gain insights into a special, not yet solved astrophysical question and practice writing an observational proposal.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 145 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title Abbreviation				Abbreviation
Scienti	ific Met	thods and Project Manag	ement Physics		11-MP-P-161-m01
Module	e coord	linator		Module offered by	
chairpe	erson o	f examination committee	!	Faculty of Physics a	and Astronomy
ECTS		od of grading	Only after succ. con	· · · · · · · · · · · · · · · · · · ·	,
15	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	graduate			
Conten	its				
					project planning. Application to plan for the planned Master's
Intend	ed lear	ning outcomes			
thods o topic o experir	of a cur f the M mental	rent experimental and th aster's thesis. They are a or theoretical work. They	eoretical subdisciplir ble to draft a project are able to describe	ne of Physics with sp plan for the Master's their projects in oral	<u>'</u>
Course	s (type	, number of weekly conta	ict hours, language –	- if other than Germa	an)
R (4) Module	e taugh	it in: German or English			
		sessment (type, scope, la ion on whether module ca			ation offered — if not every seme-
		ussion (30 to 45 minutes) assessment: German and			
Allocat	ion of	places			
Additio	nal inf	ormation			
Worklo	Workload				
450 h					
Teaching cycle					
Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module	Module appears in				
		ee (1 major) Physics (201	6)		

Master's degree (1 major) Physics (2020) exchange program Physics (2023)

Module title				Abbreviation	
Advanced Magnetic Resonance Imaging				-	11-MRI-171-m01
Modul	Module coordinator Module offered by				
Manag	Managing Director of the Institute of Applied F			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level O		Other prerequisites	i		
1 semester graduate					
C 1	Combando				

Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon that, through magnetic resonance imaging (MRI), has played a major role in the revolution of medical imaging over the last 30 years. Based on the fundamental principles of nuclear magnetic resonance (resonance principle, relaxation times, chemical shift) this course covers:

- 1) the NMR signal theory and signal evolution (Bloch equations),
- 2) the principles of spatial encoding, magnetic resonance imaging (MRI) and corresponding imaging sequences and measurement parameters,
- 3) the concept of k-space and Fourier imaging, and
- 4) the physical, methodological and technical possibilities and limits of MRI. As a last point, exemplary application fields of MRI of biomedical research, clinical imaging and non-destructive testing are introduced.

Intended learning outcomes

The students have advanced knowledge of the mathematical-theoretical and physical principles of modern imaging magnetic resonance, image generation and processing. They gain a broad overview of the field of modern MRI and its interdisciplinary contexts and applications.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 148 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation
Computational Astrophysics					11-NMA-161-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of Theoretical Physics and Astrophysics		e of Theoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequis		Other prerequisite	S		
1 semester graduate					
Conter	Contents				

Various methods used in astrophysical simulations with special emphasis on their applications. N-body algorithms (tree- and polynomial codes). Particle-mesh methods (particle-in-cell methods). Vlasow methods (e.g., Lattice-Boltzmann). Hyperbolic conservation laws (fluid dynamics, finite difference method, Riemann solver, ENO). Methods of high-performance computing. Message-passing interface (MPI). GPGPU programming (OPEN-CL).

Intended learning outcomes

The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

-

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 150 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title Abbreviation					
Nano-Optics					11-NOP-161-m01	
Module coordinator Module offered by						
Managing Director of the Institute of Applied			e of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6 numerical grade						
Duration Module level		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

The lecture conveys theoretical fundamentals, experimental techniques, and applications of nano-optics starting from the discussion of the focusing of light. Based on this, the fundamentals of modern far-field optical microscopy are discussed. In the following, the near-field optical microscopy is introduced and discussed. As a further basis, quantum emitters are introduced and their light emission in nano-environments is derived. Plasmons in 2D, 1D and o dimensions are introduced and discussed in detail. This finally leads to the concept of optical antennas.

Intended learning outcomes

The students have specific and advanced knowledge in the field of nano-optics. They are familiar with the theoretical principles and application areas of nano-optics and with current developments in this field.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 152 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title Abbreviation				Abbreviation	
Organic Semiconductors					11-OHL-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Applied			Applied Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level O			Other prerequisites		
1 semester graduate					
Contents					

Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applicati-

Intended learning outcomes

The students have advanced knowledge of organic semiconductors.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 154 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Functional Materials (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module	e title			Abbreviation
Open Quantum Systems				11-0QS-242-m01
Module	Module coordinator Module offered by			
	ing Director of the Institute of Th trophysics	heoretical Physics Faculty of Physics and Astronomy		
ECTS	Method of grading	Only after succ. compl. of module(s)		
6	numerical grade			

1 semester Contents

Duration

density matrix theory, stochastic processes in Hilbert space, non-Markovian processes, relativistic quantum processes

Intended learning outcomes

development of a theoretical understanding of quantum system coupled to their environment

Other prerequisites

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Module level

graduate

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 156 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module title				Abbreviation		
Advanced Seminar Physics A				11-OSP-A-161-mo1		
Module coordinator				Module offered by		
Manag	Managing Director of the Institute of Applied Physics			Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. o	mpl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisit	tes		
1 semester graduate		Admission prerec	Admission prerequisite to assessment: regular attendance (minimum			
			85% of sessions)	85% of sessions).		

Seminar on current topics in theoretical and experimental physics

Intended learning outcomes

The students have advanced knowledge of a current specialist field of Experimental or Theoretical Physics. They are able to extract knowledge from professional publications and to summarise this knowledge and present it to a professional audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk with discussion (30 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the seminar and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Physics (2020)

Module title				Abbreviation		
Advanced Seminar Physics B				11-OSP-B-161-m01		
Module coordinator				Module offered by		
Managing Director of the Institute of Applied Physics			of Applied Physics	Faculty of Physics and Astronomy		
ECTS	Metho	d of grading	Only after succ. o	mpl. of module(s)		
5	numer	ical grade				
Duratio	on	Module level	Other prerequisit	tes		
1 semester graduate		Admission prerec	Admission prerequisite to assessment: regular attendance (minimum			
			85% of sessions)	85% of sessions).		

Seminar on current issues of Theoretical or Experimental Physics.

Intended learning outcomes

The students have advanced knowledge of a current specialist field of Experimental or Theoretical Physics. They are able to extract knowledge from professional publications and to summarise this knowledge and present it to a professional audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk with discussion (30 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the seminar and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Physics (2020)

Modul	Module title				Abbreviation
Advanced Laboratory Course Master Part 1			art 1		11-P-FM1-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics			oplied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
3	(not)	successfully completed			
Duration Module level Other prerequisites			Other prerequisites		
1 semester graduate Pre		Preparation and safety briefing.			
Contants					

Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect - superconductivity - laser - solid-state optics

Intended learning outcomes

Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems. The students are familiar with modern experimental methods. They are able to work on a task on the basis of publications, to conduct and evaluate an experiment and to present and discuss their results in a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title					Abbreviation
Advanced Laboratory Course Master Part 2			art 2	.	11-P-FM2-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics			oplied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
3	(not)	successfully completed			
Duration Module level Other prerequisites		3			
1 semester graduate Prepar		Preparation and saf	ety briefing.		
Contents					

Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect superconductivity - laser - solid-state optics

Intended learning outcomes

Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems. The students are familiar with modern experimental methods. They are able to work on a task on the basis of publications, to conduct and evaluate an experiment and to present and discuss their results in a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

90 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title					Abbreviation
Advanced Laboratory Course Master Part 3			art 3	-	11-P-FM3-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied P			oplied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
3	(not)	successfully completed			
Duration Module level Other prerequi		Other prerequisites	;		
1 semester graduate		Preparation and safety briefing.			
Contor	Contents				

Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect - superconductivity - laser - solid-state optics

Intended learning outcomes

Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems. The students are familiar with modern experimental methods. They are able to work on a task on the basis of publications, to conduct and evaluate an experiment and to present and discuss their results in a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title					Abbreviation
Advanced Laboratory Course Master Part 4			art 4	-	11-P-FM4-161-m01
Module coordinator				Module offered by	
Manag	ing Dire	ector of the Institute of Ap	oplied Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
3	(not)	successfully completed			
Duration Module level Other prerequisite			Other prerequisites	;	
1 semester graduate Prepara			Preparation and saf	ety briefing.	
Conter	Contents				

Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect superconductivity - laser - solid-state optics

Intended learning outcomes

Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems. The students are familiar with modern experimental methods. They are able to work on a task on the basis of publications, to conduct and evaluate an experiment and to present and discuss their results in a scientific publication.

Courses (type, number of weekly contact hours, language — if other than German)

P(3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination

Students must successfully prepare, perform, document (lab notebook) and evaluate (in the form of a scientific publication) an experiment to be considered to have successfully completed this experiment. Students must successfully complete two experiments to be considered to have successfully completed this module. Detailed regulations are laid down in the respective module description.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

90 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title					Abbreviation
Physics of Complex Systems					11-PKS-161-m01
Module	e coord	linator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	ompl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisit		Other prerequisites	3		
1 semester graduate					
Contents					

- 1. Theory of critical phenomena in thermal equilibriumt
- 2. Introduction into the physics out of equilibriumt
- 3. Entropy production and fluctuationst
- 4. Phase transitions away from equilibriumt
- 5. Universalityt
- 6. Spin glassest
- 7. Theory of neural networks

Intended learning outcomes

The students acquire in-depth knowledge of a wide variety of concepts and methods essential for a thorough understanding of cooperative phenomena in complex many-particle systems. The main focus includes a thorough understanding of the concepts of entropy, entropy production and universality. The students are prepared for research activities in different areas of physics of complex systems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 163 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Physics of Advanced Materials					11-PMM-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics			Applied Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequipment		Other prerequisite	S		
1 semester graduate					
Contents					

General properties of various material groups such as liquids, liquid crystals and polymers; magnetic materials and superconductors; thin films, heterostructures and superlattices. Methods of characterising these material groups; two-dimensional layer materials.

Intended learning outcomes

The students know the properties and characterization methods of some modern materials.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 165 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Modul	Module title				Abbreviation
Phenomenology and Theory of Superconductivity			conductivity	-	11-PTS-201-m01
Modul	Module coordinator			Module offered by	
Manag	Managing Director of the Institute of Applied Physics and Managing Director of the Institute of Theoretical Physics and Astrophysics		Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisite		Other prerequisites	3		
1 semester graduate					
Conter	Contents				

Basic Properties of Superconductors and their Applications, Development of technological platforms, Methods of material science for calculating temperature profiles in superconductors. Overview of the phenomenology of conventional and unconventional superconductivity. Review of BCS theory and its applicability for different types of superconductors. Extension of Ginzburg-Landau theory to a quantum field theory formalism using Feynman diagrams and functional integrals. Theoretical formalism of Ward identities and response functions. Goldstone modes, phase fluctuations, and coupling to the electromagnetic field. Interpretation of the Meissner effect in terms of the Higgs mechanism. Interplay of magnetism and conventional/unconventional superconductivity. Discussion of current research topics and perspective on room-temperature superconductivity.

Intended learning outcomes

Acquisition of basic knowledge about superconductivity as a macroscopic quantum phenomenon. Profound understanding of unconventional superconductivity and its interplay with magnetism in the context of current research. Knowledge of BCS mean-field theory, the quantum-field theory methods necessary to extend BCS theory, as well as the Meissner effect and the Higgs mechanism. Basic understanding of unconventional superconductors and their fascinating connection with competing magnetic phases.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places -Additional information -Workload 180 h Teaching cycle --

Referred to in LPO I (examination regulations for teaching-degree programmes)

...

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title			Abbreviation			
Quantum Field Theory I				•	11-QFT1-201-m01		
Modul	e coord	inator		Module offered by			
Managing Director of the Institute of Theore and Astrophysics			heoretical Physics	Faculty of Physics a	and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
8	nume	rical grade					
Duration Module level			Other prerequisites				
1 semester graduate			Approval from examination committee required.				
Conter	Contents						

- 1. Symmetries.
- 2. Lagrange formalism for fields.
- 3. Field quantisation.
- 4. Asymptotic states, scattering theory and S-matrix
- 5. Gauge principle and interaction.
- 6. Perturbation theory.
- 7. Feynman rules.
- 8. Quantum elektrodynamical processees in Born approximation.
- 9. Radiative corrections (optional)
- 10. Renormalisation (optional).

Intended learning outcomes

The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 169 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

._

Module appears in

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title			Abbreviation		
Quantu	ım Fiel	d Theory II			11-QFT2-161-m01	
Module	e coord	inator		Module offered by		
Managing Director of the Institute of Theoretica and Astrophysics			eoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
8						
Duration Module level		Other prerequisites				
1 semester graduate						

- 1. Generating Functionals
- 2. Path Integrals
- 3. Renormalization
- 4. Renormalization group
- 5. Gauge theories
- 6. Spontaneous Symmetry Breaking
- 7. Effective Field Theory (optional)

Intended learning outcomes

The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve problems of quantum field theory by using the acquired calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 171 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation			
Advanced Theory of Quantum Computing and Quantum In				ormation	11-QIC-201-m01	
Module	e coord	inator		Module offered by		
Managing Director of the Institute of Theore and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
6						
Duration Module level			Other prerequisites			
1 semester graduate						
Conton	Contonto					

- 1. Brief summary of classical information theory
- 2. Quantum theory seen from the perspective of information theory
- 3. Composite systems and the Schmidt decomposition
- 4. Entanglement measures
- 5. Quantum operations, POVMs, and the theorems of Kraus and Stinespring
- 6. Quantum gates and quantum computers
- 7. Elements of the theory of decoherence

Intended learning outcomes

Comprehensive understanding of quantum states and identity matrix beyond the usual textbook interpretation. Knowledge of handling tensor products and dealing with quantum effects in multipartite quantum systems. Indepth understanding of the phenomenon of entanglement. Knowledge of the fundamental mathematical concepts of quantum information theory. Ability to assess the limitations of quantum computing arising from decoherence.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 173 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation	
Quanti	um Med	chanics II			11-QM2-161-m01	
Modul	e coord	linator		Module offered by		
_	Managing Director of the Institute of Theoretical Phyand Astrophysics			Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
8	nume	rical grade				
Duration Module level Other			Other prerequisite	S		
1 semester undergraduate						
Conten	Contents					

The contents of this lecture build upon and will be chosen in accordance with the topics of the Bachelor's degree course "Quantum Mechanics I". Topics might include:

- for QM:
- 1. Historical introduction
- 2. Single-particle states in a central potential
- 3. Principles of quantum mechanics
- 4. Spin and angular momentum
- 5. Approximations of energy eigenvalues
- 6. Approximations for time-dependent problems
- 7. Second quantisation
- 8. Potential scattering
- 9. General scattering theory
- 10. Canonical formalism
- 11. Charged particles in electromagnetic fields
- 12. Quantum theory of radiation
- 13. Quantum entanglement

Intended learning outcomes

The students acquire in-depth knowledge of advanced quantum mechanics. This knowledge is highly relevant to most of the theoretical Master's degree courses in Astrophysics, Particle Physics and Condensed Matter Physics. The completion of this course is highly recommended.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 175 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation	
Quantum Transport					11-QTR-201-m01	
Module coordinator Module offered by						
Manag	ging Dire	ector of the Institute	e of Applied Physics	Faculty of Physics a	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
6	nume	rical grade				
Duration Module level			Other prerequisit	Other prerequisites		
1 semester graduate						
Conto	Contents					

The lecture addresses the fundamental transport phenomena of electrons in solids where Electron-electron interaction and the wave nature are the determining factors. This includes the diffusive and ballistic transport regime as well as the Coulomb blockade. Observations of electron interference effects, conductance quantization and the quantum Hall effect will be discussed. Thermoelectric properties of electronic system and the phenomenon of superconductivity will be examined as well.Low dimensional electron systems and its quantum mechanical description are the basis of this lecture. Relevant material systems are semiconductor heterostructures as well as topological insulators, topological semimetals, and topological superconductors. The content will be guided by actual research results.

Intended learning outcomes

Working knowledge of basic transport experiments, its analysis and its interpretation which enables the student to discuss results critical.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 177 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title	<u>'</u>		Abbreviation		
Radio Astronomical Interferometry				_	11-RAI-211-m01	
Modul	Module coordinator Module offered by					
Managing Director of the Institute of Thand Astrophysics			heoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
6						
Duration Module level			Other prerequisites	S		
1 semester graduate						
Contor	Contents					

- 1) Motivation and Background
- a) History of radio astronomy
- b) The role and development of radio interferometry
- c) Applications of radio interferometry and scientific topics of special interest
- d) Summary of important concepts in radio astronomy
- II) Fundamental Concepts
- 1. Fourier optics
- a) The concept of telescope aperture
- b) Convolution and Fourier Theorems
- c) (Radio) telescopes as spatial filters
- 2. Interferometry
- a) The Michelson interferometer
- b) The two-element interferometer
- c) The visibility function
- d) The influence of limited bandwidth e) Spatial frequencies in interferometry
- f) Coordinate systems
- 3. Aperture Synthesis by Radio Interferometric Arrays
- a) The concept of (u,v) coverage
- b) Simple configurations and transit arrays
- c) Tracking arrays and Earth-rotation synthesis
- d) VLBI arrays
- e) Antenna separations and geometry
- 4. Receiver Response
- a) Heterodyne frequency conversion
- b) Interferometer sensitivity
- c) Sampling, weighting, gridding
- d) Bandwidth smearing
- c) Calibration
- 5.lmage reconstruction
- a) CLEAN and alternative imaging algorithms
- b) Image defects
- c) Seif calibration
- 6. Digital Beamforming
- II I. Special Applications and Challenges
- a) s.urveys and Wide-Field Imaging
- b) Very Long Baseline Interferometry
- c) Spectroscopy in Radio Interferometry
- d) Polarisation in Radio Interferometry
- e) Time-Domain Science in Radio Interferometry
- f) Low-frequency Challenges Interferometry
- g) Big Data in Radio Interferometry
- h) Interferometry and Geodesy
- IV) Technical realization: Current and Upcoming Radio Interferometers
- 1. Low-frequency arrays: LOFAR, GMRT, ASKAP, APERTIF/WSRT, LWA, MWA

- 2. Centimeter-Band Arrays: JVLA, MERLIN, ATCA, MeerKAT, VLBA, EVN, LBA, JVN, VERA, AVN
- 3. (Sub-) Mill imeter Arrays: ALMA, NOEMA, GMVA, EHT
- 4. The Future: SKA

Intended learning outcomes

The goal of the course is the transfer of knowwledge and competence in the radio interferometrical method, providing a foundation for independent research.

Concepts are taught in connection to practical examples from modern astronomy including recent measurements of radio interferometers.

Students shall gain the following specific competences: Understanding of the concept of radio interferometrical observations and their calibration.

Processing and interpretation of raw data. data reduction and analysis, applications and understanding of established algorithms.

Handling of large data volumes. The course makes use of general concepts and teaches special programming concepts that are of wide use beyond astronomy.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

Teaching cycle: every year, after announcement

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2020) exchange program Physics (2023)

Modul	e title				Abbreviation
Renorr	nalizat	ion Group Methods i	n Field Theory	_	11-RMFT-161-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretica and Astrophysics		of Theoretical Physics	Faculty of Physics	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Other pre		Other prerequisite	S		
1 semester graduate					
Conter	nts		·		

This course is complementary to the discussion of Wilson's renormalisation group (RG) as covered in the course "Renormalisation Group and Critical Phenomena" (11-CRP). It focuses on the diagrammatic formulation of RG flow equations and its relation to diagrammatic perturbation expansions. This is of particular relevance for interacting fermion systems in the context of functional renormalisation groups. An outline of the course might be:

- 1. Wilson's RG
- 2. Path integrals of interacting fermions
- 3. Bethe-Salpeter equation
- 4. RG flow equations for the one-particle and two-particle vertex
- 5. Comparison of flow equations with diagrammatic resummation schemes (such as the random phase approximation)
- 6. RG flow equations for spin systems.

Intended learning outcomes

The students become familiar with the modern diagram-based description of many-particle systems. This knowledge serves as a theoretical basis for the examination of phenomena such as superconductivity, charge and spin density waves, and nematic instabilities.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload 240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 181 / 212

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
Theory of Relativity					11-RTT-161-m01
Module	e coord	linator		Module offered by	
Managing Director of the Institute of Thand Astrophysics		heoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites	3		
1 semester graduate					
Conton					

- 1. Mathematical Foundations
- 2. Differential forms
- 3. Brief Summary of the special relativity
- 4. Elements of differential geometry
- 5. Electrodynamics as an example of a relativistic gauge theory
- 6. Field equations of the fundamental structure of general relativity
- 7. Stellar equilibrium and other astrophysical applications
- 8. Introduction to cosmology

Intended learning outcomes

The students become familiar with the principal physical and mathematical concepts of general relativity. The main topics include modern formulation on the basis of differential forms. Furthermore, the similarities between electrodynamics as a gauge theory and general relativity are emphasised. The students learn to apply the theory to simple models of stellar equilibrium and are introduced to basic elements of cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 183 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Black Holes				-	11-SLQ-232-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of The and Astrophysics		of Theoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisite	S		
1 semester graduate					
Conter	ıts				

PART 1 - Classical solutions

- 1. Vacuum solutions of Einstein's equation the Schwarzschild solution, Birkhoff's theorem, the Eddington-Finkelstein coordinates, Kruskal extension and eternal black holes, the Penrose diagram, conformal compactification and Carter-Penrose diagram
- 2. Gravitational collapse the Oppenheimer-Snyder solution
- 3. Charged and rotating black holes Cauchy horizons, ergosphere
- 4. ADM formalism energy and angular momentum
- 5. Black hole thermodynamics

PART 2 - Astrophysical observations of black holes

- 1. Spin and mass measurements of black holes
- 2. Black hole electromagnetism
- 3. Gravitational waves and their measurement

PART 3 – Quantum aspects of black hole

- 1. Introduction to QFT on curved spacetime: Rindler spacetime, Unruh effect
- 2. Derivation of Hawking radiation
- 3. Hawking's original formulation of the information paradox
- 4. The "holography of information" information paradox in AdS/CFT, the Page curve and Islands
- 5. Firewall, fuzzball, complementarity possible resolutions of information paradox
- 6. Wormholes and the factorization puzzle

Intended learning outcomes

This course plays a bridging role joining the basics on GR learnt in the GR I course and the active research directions in the fields of Astronomy, Astrophysics, General Relativity, String Theory and Gauge/Gravity Duality. Through this course, the students will gain sufficient commands over the applications of general relativity in connection with research directions in this area. This in turn will motivate them to pursue careers as a researcher in the aforementioned directions and help them to successful begin their Master and PhD projects.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 185 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation
Spintronics					11-SPI-161-m01
Modul	e coord	linator		Module offered by	
Manag	ging Dire	ector of the Institute	e of Applied Physics	plied Physics Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)	
6	nume	rical grade			
Durati	Duration Module level		Other prerequisit	es	
1 semester graduate					
Conto	ntc		<u>, </u>		

This lecture covers the basic principles of spin transport, with a particular emphasis on the phenomena of giant magnetoresistance and tunnel magnetoresistance. As a last point, we discuss new phenomena from the field of spin dynamics and current-induced spin phenomena.

Intended learning outcomes

The students know the basic principles of spin transport models and the applications of spin transport in information technology. They have gained an overview of current findings in this field (giant magnetoresistance, tunnel magnetoresistance).

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 187 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Scanning Probe Technologies				-	11-SPT-211-m01
Modul	e coord	inator		Module offered by	
Manag	Managing Director of the Institute of Ap		oplied Physics Faculty of Physics and Astronomy		and Astronomy
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites	i		
1 semester graduate					
C 4		-			

Basic theoretical principles of scanning force, tunneling, and near-field optical microscopy; basic principles of surface science; tip-sample interactions; design principles and material considerations; fundamentals of control engineering; measurement modes, e.g., contact and non-contact, Kelvin probe, friction force microscopy, etc; basic principles of processing and presenting microcopy data; measurement techniques and their application: lock-in, phase-lock loop, etc.

Intended learning outcomes

Student acquires specific knowledge in scanning probe microscopy. He/she knows the basic theoretical principles, is aware of basic design principles, knows pros and cons of various materials, and is familiar of measurement modes, contrast mechanisms, and their application. He/she is aware of recent development in the field.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

Teaching cycle: annually, after announcement

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 189 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

exchange program Physics (2023)

Modul	Module title				Abbreviation
Surface Science					11-SSC-172-m01
Modul	e coord	linator		Module offered by	
Manag	Managing Director of the Institute of Applied Ph			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisit	es		
1 semester graduate					
Conto	ntc				

Relevance of surfaces and interfaces, distinction between bulk phases, classical description, continuum models. Atomic structure: Reconstructions and adsorbates, surface orientation and symmetries. Microscopic processes involving surfaces. Thermodynamics of surfaces, adsorption and desorption, equilibria, thermodynamic phases, experimental characterisation. Electronic structure of surfaces, chemical bonding, surface conditions, spin-orbit coupling: Rashba effect and topological insulators. Magnetism on surfaces.

Intended learning outcomes

The students have gained an overview of the diverse aspects of surface physics and especially know the causes and contexts of physical peculiarities of surfaces and interfaces. Additionally, they know the most important experimental techniques and their specific application possibilities in the context of surface physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 191 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Quantum Technology (2021)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation
String Theory 1					11-STRG1-171-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physiand Astrophysics		of Theoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Other		Other prerequisite	S		
1 semester graduate					
Conten	Contents				

Classical and quantum theory of the relativistic bosonic string, in particular the Nambu-Goto action and Polyakov action; quantisation of the closed bosonic string and emergent graviton; quantum Lorentz invariance and critical dimension; quantisation of the open bosonic string, D-Branes, Gauge Fields and Yang-Mills theories; relativistic conformal field theory, string path integral, BRST quantisation, string interactions, effective actions and gravity.

Intended learning outcomes

The students are familiar with classical and quantum theory of relativistic bosonic strings. They know the classical actions for relativistic bosonic strings, the Nambu-Goto action and Polyakov action, they have quantised the bosonic string and understand the emergence of the massless graviton in the spectrum of the closed string. They have calculated Lorentz anomaly on quantum level to deduce the critical dimension of the bosonic string. They understand the boundary conditions for the open string and its connection to D-branes. They have knowledge of open string quantisation and of the spectrum of massless gauge fields, as well as of Yang-Mills fields for coincident branes. They are familiar with relativistic conformal field theory, the string path integral, its BRST quantisation and the calculation of string interactions. They understand the low-energy effective actions in target space and the emergence of Einstein gravity.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

 $\begin{tabular}{ll} \textbf{Method of assessment} (type, scope, language-if other than German, examination offered-if not every semester, information on whether module can be chosen to earn a bonus) \\ \end{tabular}$

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 193 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
String Theory 2				-	11-STRG2-171-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of The and Astrophysics		neoretical Physics	Faculty of Physics a	nd Astronomy
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level Ot		Other prerequisites	i		
1 semester graduate -					
Conten	Contents				

Superstring theories and M theory, in particular a short introduction to bosonic string theory, the theory of fermionic fields and representations of Clifford algebra in diverse dimensions, a review of supersymmetry in two and more dimensions, the classical and quantum version of the Ramond-Neveau-Schwarz superstring, type II A/B superstrings, the Gliozzi-Scherck-Olive projection and space-time supersymmetry in 10 dimensions, the type I superstring, heterotic string theories, anomaly cancellation and restrictions on gauge groups, dualities between the five superstring theories as well as their relation to M theory in 11D, D-Branes and supersymmetric gauge theories, supergravity and the AdS/CFT correspondence.

Intended learning outcomes

The students are familiar with supersymmetrical string theory and M theory. They know the basic characteristics of bosonic string theory and fermionic field theory as well as the depiction of Clifford algebra in different dimensions. They have studied the aspects of supersymmetry in two or more dimensions relevant to superstring theory. They are acquainted with classical and quantum theory of the Ramon-Neveau-Schwarz superstring, they understand the deduction of type IIA/B string theories and the ensuring of space-time supersymmetry on the basis of Gliozzi-Scherk-Olive projection. They have gained insights into type I and heterotic superstring theory and into the limiting effects of anomaly freedom on the permitted gauge groups of these theories. They have studied the dualities between the five superstring theories and their connections to M theory in 11 dimensions. They are familiar with the properties of supersymmetric D-branes in type I and II superstring theories and the corresponding supersymmetric gauge theories as well as the supergravity effects in 10 and 11 dimensions and the connection to AdS/CFT correspondence.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 195 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Topological Effects in Solid State Physics			sics		11-TEFK-201-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
8	nume	rical grade			
Duration Module level Other prerequi		Other prerequisites			
1 semester graduate					
Conton	+-				

- 1. Geometric phase in quantum systems
- 2. Mathematical basics of topology
- 3. Time-reversal symmetry
- 4. Hall conductance and Chern numbers
- 5. Bulk-boundary correspondence
- 6. Graphene (as a topological insulator)
- 7. Quantum Spin Hall insulators
- 8. Z2 invariants
- 9. Topological superconductors

Intended learning outcomes

In-depth theoretical understanding of the topological concepts in quantum physics related to solid state systems. Ability to connect their knowledge with different research activities at the Department of Physics and Astronomy at Würzburg University.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 197 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Theoretical Elementary Particle Physics			CS		11-TEP-161-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of The and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level		Other prerequisites	5		
1 semester graduate					
	_				

- 1. Fundamental particles and forces
- 2. Symmetries and groups
- 3. Quark model of hadrons
- 4. Quark parton model and deep inelastic scattering
- 5. Principles of quantum field theory
- 6. Gauge theories
- 7. Spontaneous symmetry breaking
- 8. Electroweak standard model
- 9. Quantum chrome dynamics
- 10. Extensions of the standard model.

Intended learning outcomes

The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 199 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

...

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title	<u>, </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Abbreviation
Theore	Theoretical Solid State Physics				11-TFK-161-m01
Modul	e coord	inator		Module offered by	
	Managing Director of the Institute of Theorem and Astrophysics		of Theoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level O		Other prerequisite	S		
1 semester graduate					
Conter	nts		,		

The contents of this two-term course will depend on the choice of the lecturer, and may include parts of the syllabus which could alternatively be offered as "Quantum Many Body Physics" (11-QVTP).

A possible syllabus may be:

- 1 Band structure (Sommerfeld theory of metals, Bloch theorem, k.p approach and effective Hamiltonians for topological insulators (TIs), bulk-surface correspondence, general properties of TIs)
- 2 Electron-electron interactions in solids (path integral method for weakly interacting fermions, mean field theory, random phase approximation (RPA), density functional theory)
- 3 Application of mean field theory and the RPA to magnetism
- 4 BCS theory of superconductivity

Intended learning outcomes

During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

 $\begin{tabular}{ll} \textbf{Method of assessment} (type, scope, language-if other than German, examination offered-if not every semester, information on whether module can be chosen to earn a bonus) \\ \end{tabular}$

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 201 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Theoretical Solid State Physics 2					11-TFK2-161-m01
Modul	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretica and Astrophysics		Theoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duration Module level Oth		Other prerequisite	5		
1 semester graduate					
Conter	nts				

A continuation of the first semester (11-TFK) might be the following syllabus:

- 5. Advanced topics of the theory of superconductivity (Bogoliubov-de Gennes equations, effective field theory, Anderson-Higgs description of the Meissner effect)
- 6. Unconventional superconductors (e.G. copper-oxide high-Tc superconductors)
- 7. Green's function methods and Feynman diagrammatic technique
- 8. The Kondo Effect (Anderson's "poor mans scaling", renormalization group)

Intended learning outcomes

During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 203 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title			,	Abbreviation	
Experi	mental	Particle Physics			11-TPE-161-mo1	
Module coordinator				Module offered by		
Managing Director of the Institute of Applied Physics			of Applied Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. o	ompl. of module(s)		
6	nume	rical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester graduate						
Contents						

Physics with modern particle detectors at the LHC and at the Tevatron. Discovery of the Higgs boson. Search for supersymmetry and other physics beyond the standard model. Determination of the top quark mass and W mass as well as other parameters of the standard model. Introduction to modern methods of analysis and assessment of systematic errors.

Intended learning outcomes

The students are familiar with the principles of modern particle detector physics, especially with currently open questions of Particle Physics, which are examined by using these detectors. They know modern methods of analysis and are able to put results into context and to assess their systematic uncertainties.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 205 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Particle	e Physi	ics (Standard Model)			11-TPSM-201-m01
Module	e coord	inator		Module offered by	
Managing Directors of the Institute of Applied Phy the Institute of Theoretical Physics and Astrophysics				Faculty of Physics a	and Astronomy
ECTS	S Method of grading Only after succ. co		Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate		Approval from exam	Approval from examination committee required.		
Conten	Contents				

Theoretical description of the Standard Model

Electroweak symmetry breaking through the Higgs mechanism

parity Violation

Bhabha scattering

Z-Line Shape and forward / reverse asymmetry

Higgs production and decay

Experimental setup and results of key experiments to test the Standard Model and for determining its parameters

Search for the Higgs boson

Intended learning outcomes

Students know the theoretical fundamental laws of the standard model of particle and the key experiments that have established and confirmed the standard model. They have basic knowledge in order to interpret experimental or theoretical results in the framework of the standard model can and knows its significance and limitations.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 207 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Module	e title				Abbreviation	
Particle	e Physi	cs (Standard Model)			11-TPSM-211-m01	
Module	e coord	inator		Module offered by		
Managing Directors of the Institute of Applied Phys the Institute of Theoretical Physics and Astrophysic		, ,	Faculty of Physics a	and Astronomy		
ECTS	Method of grading Only after succ. co		Only after succ. con	npl. of module(s)		
8	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate		Approval from examination committee required.				
Conten	Contents					

Theoretical description of the Standard Model

Electroweak symmetry breaking through the Higgs mechanism

parity Violation

Bhabha scattering

Z-Line Shape and forward / reverse asymmetry

Higgs production and decay

Experimental setup and results of key experiments to test the Standard Model and for determining its parameters

Search for the Higgs boson

Intended learning outcomes

Students know the theoretical fundamental laws of the standard model of particle and the key experiments that have established and confirmed the standard model. They have basic knowledge in order to interpret experimental or theoretical results in the framework of the standard model can and knows its significance and limitations.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 209 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Module appears in

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title			Abbreviation	
Theore	tical Q	uantum Optics			11-TQO-221-m01
Modul	e coord	linator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Method of grading Only after succ. co		npl. of module(s)		
8	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate		graduate			
Cantanta					

- 1. Semi-classical atom-field interactions
- 2. Interaction of atoms with quantized light fields and dressed-atom model
- 3. Master equation and open systems
- 4. Coherence and interference effects
- 5. Coherent light propagation in resonant media
- 6. Photon statistics and correlations
- 7. Quantum optics of many-body systems

Intended learning outcomes

Comprehensive understanding of phenomena involving light and its interaction with atoms at the microscopical level. Knowledge of density matrix formalism for quantum systems and the related mathematical concepts. In-depth understanding of quantum properties of light and their experimental signatures, including photon statistics and correlations. Knowledge of the theory of open systems and master equation description involving Lindblad superoperators. Understanding and modeling the role of coherence and interference in light propagation effects in resonant atomic media. Knowledge of cooperative effects in many-body systems: super- and subradiance, collective light shifts and their applications.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

Master's with 1 major Physics (2020)	JMU Würzburg • generated 19-Apr-2025 • exam.	page 211 / 212
	reg. data record Master (120 ECTS) Physik - 2020	

Referred to in LPO I (examination regulations for teaching-degree programmes)

..

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)