Subdivided Module Catalogue
for the Subject

Physics
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2010
Responsible: Faculty of Physics and Astronomy
Course of Studies - Contents and Objectives

The Master of Science programme prepares the students for their later scientific work in the field of experimental or theoretical physics. Qualified graduates may pursue doctoral work (degree Dr. rer. nat.) at doctorate-granting institutions. The objective of the education is to impart deepened knowledge of physical principles and of scientific working in research and applied physics. By training physical and analytical thinking skills the students are enabled to use their knowledge self-consistently and to transfer it to new challenges. Completing their Master thesis the graduates demonstrate their ability to solve an experimental or theoretical assignment within limited time using known scientific methods.
Abbreviations used

Course types: **E** = field trip, **K** = colloquium, **O** = conversatorium, **P** = placement/lab course, **R** = project, **S** = seminar, **T** = tutorial, **Ü** = exercise, **V** = lecture

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2007

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

21-Sep-2010 (2010-59)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses (40 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-OSP-072-m01</td>
<td>Advanced Seminar Experimental/Theoretical Physics</td>
<td>4</td>
<td>NUM</td>
<td>119</td>
</tr>
<tr>
<td>11-PFM-072-m01</td>
<td>Advanced Practical Course Master</td>
<td>6</td>
<td>B/NB</td>
<td>65</td>
</tr>
<tr>
<td>11-FS-P-072-m01</td>
<td>Professional Specialization Physics</td>
<td>15</td>
<td>NUM</td>
<td>59</td>
</tr>
<tr>
<td>11-MP-P-072-m01</td>
<td>Scientific Methods and Project Management Physics</td>
<td>15</td>
<td>NUM</td>
<td>86</td>
</tr>
<tr>
<td>Compulsory Electives (50 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Physics and Metrology (max. 40 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MOE-092-m01</td>
<td>Opto-electronic Material Properties</td>
<td>5</td>
<td>NUM</td>
<td>121</td>
</tr>
<tr>
<td>11-OHL-092-m01</td>
<td>Organic Semiconductor</td>
<td>5</td>
<td>NUM</td>
<td>122</td>
</tr>
<tr>
<td>11-A2-081-m01</td>
<td>Electronics</td>
<td>6</td>
<td>NUM</td>
<td>56</td>
</tr>
<tr>
<td>11-ASI-092-m01</td>
<td>Reproducing Sensors in Infrared</td>
<td>3</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>11-ASL-092-m01</td>
<td>Applied Superconduction</td>
<td>6</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>11-EBV-092-m01</td>
<td>Principles of Image Processing</td>
<td>3</td>
<td>NUM</td>
<td>46</td>
</tr>
<tr>
<td>11-ENT-092-m01</td>
<td>Principles of Energy Technologies</td>
<td>6</td>
<td>NUM</td>
<td>48</td>
</tr>
<tr>
<td>11-EPP-092-m01</td>
<td>Introduction to Plasmathysics</td>
<td>6</td>
<td>NUM</td>
<td>50</td>
</tr>
<tr>
<td>11-HLF-092-m01</td>
<td>Semiconductor Lasers - Principles and Current Research</td>
<td>6</td>
<td>NUM</td>
<td>72</td>
</tr>
<tr>
<td>11-KVM-092-m01</td>
<td>Principles of Classification of Patterns</td>
<td>3</td>
<td>NUM</td>
<td>68</td>
</tr>
<tr>
<td>11-LWV-092-m01</td>
<td>Introduction to LabVIEW</td>
<td>6</td>
<td>NUM</td>
<td>52</td>
</tr>
<tr>
<td>11-TDO-092-m01</td>
<td>Thermodynamics and Economics</td>
<td>6</td>
<td>NUM</td>
<td>154</td>
</tr>
<tr>
<td>11-ZDR-111-m01</td>
<td>Principles of two- and threedimensional Röntgen imaging</td>
<td>6</td>
<td>NUM</td>
<td>69</td>
</tr>
<tr>
<td>11-TDOE-141-m01</td>
<td>Thermodynamics and Economics</td>
<td>3</td>
<td>B/NB</td>
<td>156</td>
</tr>
<tr>
<td>11-BSV-122-m01</td>
<td>Image and Signal Processing in Physics</td>
<td>6</td>
<td>NUM</td>
<td>31</td>
</tr>
<tr>
<td>11-BMS-121-m01</td>
<td>Imaging Methods at the Synchrotron</td>
<td>4</td>
<td>NUM</td>
<td>29</td>
</tr>
<tr>
<td>11-BMS-131-m01</td>
<td>Imaging Methods at the Synchrotron</td>
<td>4</td>
<td>NUM</td>
<td>30</td>
</tr>
<tr>
<td>11-BSV-131-m01</td>
<td>Image and Signal Processing in Physics</td>
<td>6</td>
<td>NUM</td>
<td>32</td>
</tr>
<tr>
<td>11-QUI-132-m01</td>
<td>Quantum Information Technology</td>
<td>6</td>
<td>NUM</td>
<td>129</td>
</tr>
<tr>
<td>Solid State Physics and Nanostructures (max. 40 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MOE-092-m01</td>
<td>Opto-electronic Material Properties</td>
<td>5</td>
<td>NUM</td>
<td>121</td>
</tr>
<tr>
<td>11-CRP-131-m01</td>
<td>Critical Phenomena</td>
<td>6</td>
<td>NUM</td>
<td>78</td>
</tr>
<tr>
<td>11-ASL-092-m01</td>
<td>Applied Superconduction</td>
<td>6</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>11-HLF-092-m01</td>
<td>Semiconductor Lasers - Principles and Current Research</td>
<td>6</td>
<td>NUM</td>
<td>72</td>
</tr>
<tr>
<td>11-AHL-092-m01</td>
<td>Applied Semiconductor Physics</td>
<td>6</td>
<td>NUM</td>
<td>19</td>
</tr>
<tr>
<td>11-FK2-092-m01</td>
<td>Solid State Physics 2</td>
<td>8</td>
<td>NUM</td>
<td>61</td>
</tr>
<tr>
<td>11-FKS-092-m01</td>
<td>Solid State Spectroscopy</td>
<td>6</td>
<td>NUM</td>
<td>62</td>
</tr>
<tr>
<td>11-FKT-092-m01</td>
<td>Transport Phenomena in Solids</td>
<td>6</td>
<td>NUM</td>
<td>160</td>
</tr>
<tr>
<td>11-HLP-092-m01</td>
<td>Semiconductor Physics</td>
<td>6</td>
<td>NUM</td>
<td>74</td>
</tr>
<tr>
<td>11-HNS-092-m01</td>
<td>Semiconductor Nanostructures</td>
<td>6</td>
<td>NUM</td>
<td>73</td>
</tr>
</tbody>
</table>
Lithography in Semiconductor Technology and Theory of Quantum Transport
- Code: 11-LHQ-092-m01
- ECTS: 6
- NUM: 82

Magnetism
- Code: 11-MAG-092-m01
- ECTS: 6
- NUM: 83

Magnetism and Spin Transport
- Code: 11-MST-092-m01
- ECTS: 6
- NUM: 84

Nanoanalytics
- Code: 11-NAN-092-m01
- ECTS: 6
- NUM: 109

Low-Dimensional Structures
- Code: 11-NDS-092-m01
- ECTS: 4
- NUM: 113

Nanoanalytics
- Code: 11-NEL-092-m01
- ECTS: 6
- NUM: 110

Nano-Optics
- Code: 11-NOP-092-m01
- ECTS: 4
- NUM: 111

Quantum Mechanics II
- Code: 11-QM2-092-m01
- ECTS: 8
- NUM: 132

Quantum Phenomena in electronic correlated Materials
- Code: 11-QPM-092-m01
- ECTS: 6
- NUM: 134

Many Body Quantum Theory
- Code: 11-QVTP-092-m01
- ECTS: 8
- NUM: 164

Relativistic Effects in Mesoscopic Systems
- Code: 11-RMS-092-m01
- ECTS: 5
- NUM: 137

Theoretical Solid State Physics
- Code: 11-TFK-092-m01
- ECTS: 8
- NUM: 151

Theory of Superconduction
- Code: 11-TSL-092-m01
- ECTS: 5
- NUM: 153

Renormalization Group Methods in Field Theory
- Code: 11-RMFT-102-m01
- ECTS: 6
- NUM: 140

SpINTRoNs
- Code: 11-SPI-102-m01
- ECTS: 6
- NUM: 143

Methods in Surface Spectroscopy
- Code: 11-MSS-102-m01
- ECTS: 4
- NUM: 87

Electron Electron Interaction
- Code: 11-EEW-102-m01
- ECTS: 4
- NUM: 55

Theoretical Solid State Physics 2
- Code: 11-TFK2-111-m01
- ECTS: 8
- NUM: 152

Introduction to Electron Microscopy
- Code: 11-IEM-111-m01
- ECTS: 4
- NUM: 75

Field Theory in Solid State Physics
- Code: 11-FTFK-112-m01
- ECTS: 8
- NUM: 60

Density Functional Theory and the Physics of Oxide Heterostructure
- Code: 11-DFT-142-m01
- ECTS: 4
- NUM: 41

Computational Materials Science
- Code: 11-CMS-122-m01
- ECTS: 8
- NUM: 35

Computational Materials Science
- Code: 11-CMS-131-m01
- ECTS: 8
- NUM: 37

Disordered Systems
- Code: 11-UGS-131-m01
- ECTS: 4
- NUM: 162

Solid State Spectroscopy 2
- Code: 11-FKS2-132-m01
- ECTS: 6
- NUM: 63

Physics of Advanced Materials
- Code: 11-PMM-132-m01
- ECTS: 6
- NUM: 124

Topological Order
- Code: 11-TOPO-132-m01
- ECTS: 6
- NUM: 159

Topology in Solid State Physics
- Code: 11-TFP-132-m01
- ECTS: 6
- NUM: 158

Astrophysics and Particle Physics (max. 40 ECTS credits)

Astrophysics
- Code: 11-A4-072-m01
- ECTS: 6
- NUM: 23

Astronomical Methods
- Code: 11-ASM-131-m01
- ECTS: 6
- NUM: 22

Introduction to Plasmaphysics
- Code: 11-EPP-092-m01
- ECTS: 6
- NUM: 50

Cosmology
- Code: 11-AKM-092-m01
- ECTS: 6
- NUM: 77

Plasma-Astrophysics
- Code: 11-APL-092-m01
- ECTS: 6
- NUM: 125

Introduction to Space Physics
- Code: 11-ASP-092-m01
- ECTS: 6
- NUM: 51

Atmosphere and Space Physics
- Code: 11-AWP-092-m01
- ECTS: 6
- NUM: 25

Group Theory
- Code: 11-GRT-092-m01
- ECTS: 6
- NUM: 70

Numerical Methods in Astrophysics
- Code: 11-NMA-092-m01
- ECTS: 6
- NUM: 118

Quantum Field Theory II
- Code: 11-QFT2-092-m01
- ECTS: 6
- NUM: 128

Renormalization Theory
- Code: 11-RNT-092-m01
- ECTS: 6
- NUM: 141

Relativistical Quantumfield Theory
- Code: 11-RQFT-092-m01
- ECTS: 8
- NUM: 138

Theory of Relativity
- Code: 11-RTT-092-m01
- ECTS: 6
- NUM: 139

Theoretical Elementary Particle Physics
- Code: 11-TEP-092-m01
- ECTS: 8
- NUM: 150

Topological Order
- Code: 11-TPE-092-m01
- ECTS: 6
- NUM: 58
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-TPS-092-m01</td>
<td>Particle Physics (Standard Model)</td>
<td>8</td>
<td>NUM</td>
<td>148</td>
</tr>
<tr>
<td>11-SUS-092-m01</td>
<td>Supersymmetry I and II</td>
<td>6</td>
<td>NUM</td>
<td>146</td>
</tr>
<tr>
<td>11-AST-092-m01</td>
<td>Theoretical Astrophysics</td>
<td>6</td>
<td>NUM</td>
<td>149</td>
</tr>
<tr>
<td>11-WWB-102-m01</td>
<td>Strong Interaction in Accelerator Experiments</td>
<td>3</td>
<td>NUM</td>
<td>144</td>
</tr>
<tr>
<td>11-APP-111-m01</td>
<td>Practical Course Astrophysics</td>
<td>6</td>
<td>B/NB</td>
<td>24</td>
</tr>
<tr>
<td>11-DTS-111-m01</td>
<td>Particle Radiation Detectors</td>
<td>4</td>
<td>NUM</td>
<td>42</td>
</tr>
<tr>
<td>11-MAS-111-m01</td>
<td>Modern Astrophysics</td>
<td>4</td>
<td>NUM</td>
<td>88</td>
</tr>
<tr>
<td>11-ETT-111-m01</td>
<td>Introduction to Elementary Particle Theory</td>
<td>4</td>
<td>NUM</td>
<td>47</td>
</tr>
<tr>
<td>11-QSG-102-m01</td>
<td>Quantum Loop Gravity</td>
<td>4</td>
<td>NUM</td>
<td>135</td>
</tr>
<tr>
<td>11-ATT-111-m01</td>
<td>Concepts of Theoretical Astroparticle physics</td>
<td>4</td>
<td>NUM</td>
<td>76</td>
</tr>
<tr>
<td>11-ART-112-m01</td>
<td>General Theory of Relativity</td>
<td>4</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>11-SRT-112-m01</td>
<td>Special Theory of Relativity</td>
<td>4</td>
<td>NUM</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Complex Systems, Quantum Control and Biophysics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NOP-092-m01</td>
<td>Nano-Optics</td>
<td>4</td>
<td>NUM</td>
<td>111</td>
</tr>
<tr>
<td>11-BMT-092-m01</td>
<td>Biophysical Measurement Technology in Medical Science</td>
<td>6</td>
<td>NUM</td>
<td>33</td>
</tr>
<tr>
<td>11-LMB-092-m01</td>
<td>Laboratory and Measurement Technology in Biophysics</td>
<td>6</td>
<td>NUM</td>
<td>80</td>
</tr>
<tr>
<td>11-PKS-092-m01</td>
<td>Physics of Complex Systems</td>
<td>6</td>
<td>NUM</td>
<td>123</td>
</tr>
<tr>
<td>11-QIC-092-m01</td>
<td>Quantum Information and Quantum Computing</td>
<td>5</td>
<td>NUM</td>
<td>130</td>
</tr>
<tr>
<td>11-SDC-092-m01</td>
<td>Statistics, Data Analysis and Computer Physics</td>
<td>4</td>
<td>NUM</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Other Modules Specialisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-SF-4A-072-m01</td>
<td>Module Type 4A Special Training Astronomy</td>
<td>4</td>
<td>NUM</td>
<td>89</td>
</tr>
<tr>
<td>11-SF-4D-072-m01</td>
<td>Module Type 4D Special Training Didactics</td>
<td>4</td>
<td>NUM</td>
<td>90</td>
</tr>
<tr>
<td>11-SF-4E-072-m01</td>
<td>Module Type 4E Special Training Experimental Physics</td>
<td>4</td>
<td>NUM</td>
<td>91</td>
</tr>
<tr>
<td>11-SF-4l-072-m01</td>
<td>Module Type 4l Special Training Interdisciplinary Research Fields</td>
<td>4</td>
<td>NUM</td>
<td>92</td>
</tr>
<tr>
<td>11-SF-4T-072-m01</td>
<td>Module Type 4T Special Training Theoretical Physics</td>
<td>4</td>
<td>NUM</td>
<td>93</td>
</tr>
<tr>
<td>11-SF-5A-072-m01</td>
<td>Module Type 5A Special Training Astronomy</td>
<td>5</td>
<td>NUM</td>
<td>94</td>
</tr>
<tr>
<td>11-SF-5D-072-m01</td>
<td>Module Type 5D Special Training Didactics</td>
<td>5</td>
<td>NUM</td>
<td>95</td>
</tr>
<tr>
<td>11-SF-5E-072-m01</td>
<td>Module Type 5E Special Training Experimental Physics</td>
<td>5</td>
<td>NUM</td>
<td>96</td>
</tr>
<tr>
<td>11-SF-5l-072-m01</td>
<td>Module Type 5l Special Training Interdisciplinary Research Fields</td>
<td>5</td>
<td>NUM</td>
<td>97</td>
</tr>
<tr>
<td>11-SF-5T-072-m01</td>
<td>Module Type 5T Special Training Theoretical Physics</td>
<td>5</td>
<td>NUM</td>
<td>98</td>
</tr>
<tr>
<td>11-SF-6A-072-m01</td>
<td>Module Type 6A Special Training Astronomy</td>
<td>6</td>
<td>NUM</td>
<td>99</td>
</tr>
<tr>
<td>11-SF-6D-072-m01</td>
<td>Module Type 6D Special Training Didactics</td>
<td>6</td>
<td>NUM</td>
<td>100</td>
</tr>
<tr>
<td>11-SF-6E-072-m01</td>
<td>Module Type 6E Special Training Experimental Physics</td>
<td>6</td>
<td>NUM</td>
<td>101</td>
</tr>
<tr>
<td>11-SF-6l-072-m01</td>
<td>Module Type 6l Special Training Interdisciplinary Research Fields</td>
<td>6</td>
<td>NUM</td>
<td>102</td>
</tr>
<tr>
<td>11-SF-6T-072-m01</td>
<td>Module Type 6T Special Training Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
<td>103</td>
</tr>
<tr>
<td>11-SF-8A-072-m01</td>
<td>Module Type 8A Special Training Astronomy</td>
<td>8</td>
<td>NUM</td>
<td>104</td>
</tr>
<tr>
<td>11-SF-8D-072-m01</td>
<td>Module Type 8D Special Training Didactics</td>
<td>8</td>
<td>NUM</td>
<td>105</td>
</tr>
<tr>
<td>11-SF-8E-072-m01</td>
<td>Module Type 8E Special Training Experimental Physics</td>
<td>8</td>
<td>NUM</td>
<td>106</td>
</tr>
<tr>
<td>11-SF-8l-072-m01</td>
<td>Module Type 8l Special Training Interdisciplinary Research Fields</td>
<td>8</td>
<td>NUM</td>
<td>107</td>
</tr>
<tr>
<td>11-SF-8T-072-m01</td>
<td>Module Type 8T Special Training Theoretical Physics</td>
<td>8</td>
<td>NUM</td>
<td>108</td>
</tr>
<tr>
<td>11-FPA-112-m01</td>
<td>Visiting Research Project</td>
<td>10</td>
<td>NUM</td>
<td>64</td>
</tr>
<tr>
<td>11-EXE5-111-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>5</td>
<td>NUM</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes:
- **Credits** and **ECTS** columns represent the credit hours and European Credit Transfer System values, respectively.
- **Type** column indicates the type of module or specialization.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-EXE6-111-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>6</td>
<td>NUM 10</td>
</tr>
<tr>
<td>11-EXE7-111-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>7</td>
<td>NUM 11</td>
</tr>
<tr>
<td>11-EXE8-111-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>8</td>
<td>NUM 12</td>
</tr>
<tr>
<td>11-EXT5-111-m01</td>
<td>Current Topics in Theoretical Physics</td>
<td>5</td>
<td>NUM 13</td>
</tr>
<tr>
<td>11-EXT6-111-m01</td>
<td>Current Topics in Theoretical Physics</td>
<td>6</td>
<td>NUM 14</td>
</tr>
<tr>
<td>11-EXT7-111-m01</td>
<td>Current Topics in Theoretical Physics</td>
<td>7</td>
<td>NUM 15</td>
</tr>
<tr>
<td>11-EXT8-111-m01</td>
<td>Current Topics in Theoretical Physics</td>
<td>8</td>
<td>NUM 16</td>
</tr>
<tr>
<td>08-SAM-092-m01</td>
<td>Technology of Sensor and Actor Materials including Smart Fluids</td>
<td>5</td>
<td>NUM 147</td>
</tr>
<tr>
<td>08-EEW-101-m01</td>
<td>Electrochemical Energy Storage and Conversion</td>
<td>5</td>
<td>NUM 54</td>
</tr>
<tr>
<td>10-M-NM1-082-m01</td>
<td>Numerical Mathematics 1</td>
<td>8</td>
<td>NUM 116</td>
</tr>
<tr>
<td>10-M-NM2-082-m01</td>
<td>Numerical Mathematics 2</td>
<td>5</td>
<td>NUM 117</td>
</tr>
<tr>
<td>10-M-PRG-082-m01</td>
<td>Programming course for students of Mathematics and other subjects</td>
<td>3</td>
<td>B/NB 126</td>
</tr>
<tr>
<td>10-M-COM-082-m01</td>
<td>Computer oriented Mathematics</td>
<td>3</td>
<td>B/NB 38</td>
</tr>
<tr>
<td>10-M-VAN-082-m01</td>
<td>Advanced Analysis</td>
<td>8</td>
<td>NUM 163</td>
</tr>
<tr>
<td>08-CP1-072-m01</td>
<td>General Chemistry for Physics and Engineers</td>
<td>10</td>
<td>NUM 34</td>
</tr>
<tr>
<td>10-I-EIN-072-m01</td>
<td>Introduction to Computer Science for Students of all Faculties</td>
<td>10</td>
<td>NUM 49</td>
</tr>
<tr>
<td>11-EXNP6-112-m01</td>
<td>Non-Physical Minor Subject</td>
<td>6</td>
<td>NUM 112</td>
</tr>
<tr>
<td>10-I-DB-102-m01</td>
<td>Databases</td>
<td>5</td>
<td>NUM 39</td>
</tr>
<tr>
<td>10-I-OOP-102-m01</td>
<td>Object-oriented Programming</td>
<td>5</td>
<td>NUM 120</td>
</tr>
<tr>
<td>10-I-AR-102-m01</td>
<td>Automation and Control Technology</td>
<td>8</td>
<td>NUM 27</td>
</tr>
<tr>
<td>10-I-BS-102-m01</td>
<td>Operating Systems</td>
<td>5</td>
<td>NUM 28</td>
</tr>
<tr>
<td>10-I-RAK-102-m01</td>
<td>Computer Architecture</td>
<td>5</td>
<td>NUM 136</td>
</tr>
<tr>
<td>10-I=PVS-102-m01</td>
<td>Programming of Distributed Systems</td>
<td>8</td>
<td>NUM 127</td>
</tr>
<tr>
<td>10-I=KI-102-m01</td>
<td>Artificial Intelligence</td>
<td>8</td>
<td>NUM 79</td>
</tr>
<tr>
<td>10-I=DB2-102-m01</td>
<td>Databases II</td>
<td>5</td>
<td>NUM 40</td>
</tr>
<tr>
<td>10-I=PA-102-m01</td>
<td>Program Design and Analysis</td>
<td>5</td>
<td>NUM 57</td>
</tr>
<tr>
<td>10-M=AAAN-102-m01</td>
<td>Applied Analysis</td>
<td>10</td>
<td>NUM 18</td>
</tr>
<tr>
<td>10-M=ADGM-102-m01</td>
<td>Differential Geometry</td>
<td>10</td>
<td>NUM 43</td>
</tr>
<tr>
<td>10-M=AFTH-102-m01</td>
<td>Complex Analysis</td>
<td>10</td>
<td>NUM 66</td>
</tr>
<tr>
<td>10-M=ALTH-102-m01</td>
<td>Lie Theory</td>
<td>10</td>
<td>NUM 81</td>
</tr>
<tr>
<td>10-M=ATOP-102-m01</td>
<td>Topology</td>
<td>10</td>
<td>NUM 157</td>
</tr>
<tr>
<td>10-M=AZTH-102-m01</td>
<td>Number Theory</td>
<td>10</td>
<td>NUM 166</td>
</tr>
<tr>
<td>10-M=VGDS-102-m01</td>
<td>Groups and their Representations</td>
<td>10</td>
<td>NUM 71</td>
</tr>
<tr>
<td>10-M=VGEM-102-m01</td>
<td>Geometrical Mechanics</td>
<td>10</td>
<td>NUM 67</td>
</tr>
<tr>
<td>10-M=VNPE-102-m01</td>
<td>Numeric of Partial Differential Equations</td>
<td>10</td>
<td>NUM 115</td>
</tr>
<tr>
<td>10-M=VDIM-102-m01</td>
<td>Discrete Mathematics</td>
<td>5</td>
<td>NUM 44</td>
</tr>
<tr>
<td>10-M=VMPH-102-m01</td>
<td>Selected Topics in Mathematical Physics</td>
<td>5</td>
<td>NUM 26</td>
</tr>
<tr>
<td>10-M=VQKC-102-m01</td>
<td>Quantum Control and Quantum Computing</td>
<td>5</td>
<td>NUM 131</td>
</tr>
<tr>
<td>08-PCM4-PHY-111-m01</td>
<td>Ultrafast Spectroscopy and Quantum Control</td>
<td>5</td>
<td>NUM 161</td>
</tr>
<tr>
<td>08-MW-PHY-111-m01</td>
<td>Structure and Properties of Modern Materials: Experiments and Simulations</td>
<td>5</td>
<td>NUM 45</td>
</tr>
<tr>
<td>11-MA-P-072-m01</td>
<td>Master Thesis Physics</td>
<td>30</td>
<td>NUM 85</td>
</tr>
</tbody>
</table>

Thesis (30 ECTS credits)
Module title	Abbreviation
Reproducing Sensors in Infrared | 11-ASI-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Duration | Module level |
1 semester | undergraduate |

Contents

Infrared cameras are important experimental and technical tools, e.g. for measuring temperatures. The spectral range of infrared ranges from the visible spectrum, where the Sun is dominating as the natural source of light, up to microwaves and radiowaves with artificial emitters. There is distinct and sometimes dominating emission from bodies with ambient temperature in the infrared spectrum. The lecture provides an introduction to the physical optics of this spectral range and discusses: Peculiarities of infrared cameras and thermal images, different types of sensors (bolometer, quantum well, superlattice) as well as the evaluation of such sensors on the basis of neurophysiological aspects.

Intended learning outcomes

The students have specific and advanced knowledge in the field of infrared spectral imaging. They know various technologies and detector structures as well as their application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE5-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master’s programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE6-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Current Topics in Experimental Physics | 11-EXE7-111-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents
Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master’s programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE8-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master’s programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Theoretical Physics</td>
<td>11-EXT5-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master’s programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Theoretical Physics</td>
<td>11-EXT6-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chairperson of examination committee</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Current Topics in Theoretical Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Theoretical Physics</td>
<td>11-EXT7-111-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS | Method of grading | Only after succ. compl. of module(s) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents
Current topics of Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Theoretical Physics</td>
<td>11-EXT8-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
General Theory of Relativity

Abbreviation: 11-ART-112-m01

ECTS

- **ECTS**: 4
- **Method of grading**: numerical grade
- **Duration**: 1 semester
- **Module level**: graduate

Course Information

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Mathematical foundations of the theory of relativity; differential forms; brief summary of special relativity; elements of differential geometry; electrodynamics as an example of a relativistic gauge theory; field equations of general relativity; stellar models; introduction to cosmology; Hamiltonian formulation

Intended learning outcomes

The students are familiar with the basic physical and mathematical concepts of general relativity. They have a mathematical understanding of the formulation of general relativity on the basis of differential forms. They are able to apply the acquired knowledge to problems of Astrophysics and cosmology.

Method of assessment

- **a)** written examination (approx. 90 minutes) or
- **b)** oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or
- **c)** project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or
- **d)** presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

- --

Additional information

- --

Referred to in LPO I (examination regulations for teaching-degree programmes)

- --
Applied Analysis

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Analysis</td>
<td>10-M=AAAN-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Applied Semiconductor Physics

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The lecture discusses the principles of Semiconductor Physics and provides an exemplary overview of the main components of electronics, optoelectronics and photonics.

Intended learning outcomes
The students know the characteristics of semiconductors, they have gained an overview of the electronic and phonon band structures of important semiconductors and the resulting electronic, optical and thermal properties. They know the principles of charge transport as well as the Poisson, Boltzmann and continuity equation for the solution of questions. They have gained insights into the methods of semiconductor production and are familiar with the theories of planar technology and recent developments in this field, they have a basic understanding of component production. They understand the structure and way of functioning of the main components of electronics (diode, transistor, field-effect transistor, thyristor, diac, triac), of microwave applications (tunnel, Impatt, Baritt or Gunn diode) and of optoelectronics (photo diode, solar cell, light-emitting diode, semiconductor injection laser), they know the realisation possibilities of low-dimensional charge carrier systems on the basis of semiconductors and their technological relevance, they are familiar with current developments in the field of components.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--
<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Applied Superconduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have a basic understanding of superconductivity as a macroscopic quantum phenomenon. They are able to evaluate the contributions of materials sciences to the development of superconductivity. They are able to discuss questions on superconductivity in a scientific manner and to critically question developments of energy technology. Furthermore, they can deal with practical mathematical questions.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: once a year, winter semester
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomical Methods</td>
<td>11-ASM-131-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Methods of observational astronomy across the electromagnetic spectrum. Extraction and reduction of observational data from radio, optical, X-ray and gamma-ray telescopes.

Intended learning outcomes

Overview of the methods used in observational astronomy in various parts of the electromagnetic spectrum (radio, optical, X-ray and gamma-ray energies). Knowledge of principles and applications of these methods and ability to conduct astronomical observations.

Courses

- V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics</td>
<td>11-A4-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
History of astronomy, coordinates and time measurement, the solar system, size scales in outer space, telescopes and detectors, stellar structure, stellar atmospheres, stellar evolution, interstellar medium, structure of the Milky Way, local universe, expanding space-time, galaxies, active galactic nuclei, large-scale structure of the universe, Friedmann World Models, thermodynamics of the early universe, primordial nucleosynthesis, cosmic microwave background radiation, structure formation, inflation

Intended learning outcomes
The students are familiar with the modern world view of Astrophysics. They know methods and tools for astrophysical observations and evaluations. They are able to use these methods to plan and analyse own observations. They know the structure of the universe, e.g. of stars and galaxies and understand the process of their development.

Courses
(type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus

written examination (approx. 120 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 15 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Practical Course Astrophysics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course Astrophysics</td>
<td>11-APP-111-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Astrophysical experiments in the fields of detectors, telescopes, methodology, analysis and astronomic observations.

Intended learning outcomes
The students have mastered experimental methods of Astrophysics and are able to analyse and interpret the measuring data and present the results. They are familiar with the working methods of observational Astronomy and with basic techniques of detecting electromagnetic radiation. They are able to plan and evaluate observations and measurements and to present the results.

Courses
(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. Experiments that were not successfully completed can be repeated once. Or b) discussion to test the candidate's understanding of the physics-related contents and results of the experiment (approx. 20 minutes).

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Atmosphere and Space Physics

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 6

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: Graduate

Intended learning outcomes: The students have knowledge of the physics of planetary atmospheres, especially of the atmosphere of the Earth and near-Earth space. They are able to apply the acquired knowledge to the solution of problems of interplanetary space missions.

Courses: (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment: (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German or English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Module title: Selected Topics in Mathematical Physics
Abbreviation: 10-M=VMPH-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Selected topics in mathematical physics (e.g. differential equations of mathematical physics, probability theory, hydrodynamics, hyperbolic conservation equations, mathematical materials science, quantum mechanics).

Intended learning outcomes:
The student is acquainted with advanced results in a field in mathematical physics. He/She knows mathematical methods in mathematical physics and can apply them to solve problems in physics.

Courses (type, number of weekly contact hours, language — if other than German):
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Automation and Control Technology

Abbreviation
10-I-AR-102-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Admission prerequisite to assessment:
Exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Overview of automation systems, fundamental principles of control technology, Laplace transformation, transfer function, plant, controller types, basic feedback loop, fundamental principles of control engineering, automata, structure of Petri nets, Petri nets for automisation, machine-related structure of processing computation machines, communication between process computers and periphery devices, software for automation systems, process synchronisation, process communication, real-time operating systems, real-time planning.

Intended Learning Outcomes
The students master the fundamentals of automation and control.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Written examination (approx. 80 to 90 minutes). If announced by the lecturer four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>10-I-BS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Batch, time sharing, real-time virtual machines, system calls, processes and threads, cooperating processes, schedulers, process synchronisation, semaphores, monitors, critical regions, deadlocks, dynamic memory management, segmentation, paging, file systems, interfaces, directory structure, network file systems, hard drive organisation, basics of MS operating systems.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
Module title: Imaging Methods at the Synchrotron
Abbreviation: 11-BMS-121-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 4
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:

Intended learning outcomes:
The students have advanced knowledge of synchrotron radiation and X-ray optics. They know the physical principles of imaging techniques at the synchrotron and their application for crystalline materials and other materials. They understand the principles of image generation and are able to explain different techniques and interpret simple images.

Courses:
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Methods at the Synchrotron</td>
<td>11-BMS-131-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semesters.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have advanced knowledge of synchrotron radiation and X-ray optics. They know the physical principles of imaging techniques at the synchrotron and their application for crystalline materials and other materials. They understand the principles of image generation and are able to explain different techniques and interpret simple images.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image and Signal Processing in Physics</td>
<td>11-BSV-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Periodic and aperiodic signals; principles of discreet and exact Fourier transformation; principles of digital signal and image processing; discretisation of signals/sampling theorem (Shannon); homogeneous and linear filters, convolution product; tapering functions and interpolation of images; the Parsival theorem, correlation and energetic observation; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes

The students have advanced knowledge of digital image and signal processing. They know the physical principles of image processing and are familiar with different methods of signal processing. They are able to explain different methods and to implement them, especially in the field of tomography.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Image and Signal Processing in Physics

Abbreviation
11-BSV-131-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semesters.

Contents
Periodic and aperiodic signals; principles of discreet and exact Fourier transformation; principles of digital signal and image processing; discretisation of signals/sampling theorem (Shannon); homogeneous and linear filters, convolution product; tapering functions and interpolation of images; the Parsival theorem, correlation and energetic observation; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes
The students have advanced knowledge of digital image and signal processing. They know the physical principles of image processing and are familiar with different methods of signal processing. They are able to explain different methods and to implement them, especially in the field of tomography.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Biophysical Measurement Technology in Medical Science

Abbreviation
11-BMT-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The lecture covers the physical principles of imaging techniques and their application in Biomedicine. The main topics are conventional X-ray technique, computer tomography, imaging techniques of nuclear medicine, ultrasound and MR-tomography. The lecture additionally addresses systems theory of imaging systems and digital image processing.

Intended learning outcomes
The students know the physical principles of imaging techniques and their application in Biomedicine. They understand the principles of image generation and are able to explain different techniques and interpret simple images.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

General Chemistry for Physics and Engineers

| Abbreviation | 08-CP1-072-m01 |

Module coordinator

lecturer of the course

Module offered by

Institute of Inorganic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses the fundamental principles of both inorganic and organic chemistry. The lab course gives students the opportunity to learn essential methods and perform simple experiments.

Intended learning outcomes

Students are able to explain the principles of the periodic table and to extract information from it. They are able to explain basic models of the structure of matter. They have developed the ability to use the language of chemical formulas to describe chemical reactions and to interpret them by identifying the type of reaction. They are able to identify fundamental problems in chemistry and perform experiments to solve them.

Courses

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- **08-IOC-1-072**: V (no information on SWS (weekly contact hours) and course language available)
- **08-CP1-1-072**: V (no information on SWS (weekly contact hours) and course language available)
- **08-CP1-3-072**: P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-IOC-1-072: Organic Chemistry for students of medicine, biomedicine, dental medicine, engineering and natural science

- **3 ECTS**, Method of grading: numerical grade
- written examination (approx. 60 minutes)

Assessment in module component 08-CP1-1-072: Basics of General an Inorganic Chemistry

- **5 ECTS**, Method of grading: numerical grade
- written examination (60 minutes)

Assessment in module component 08-CP1-3-072: General and Analytical Chemistry (lab)

- **2 ECTS**, Method of grading: (not) successfully completed
- for each experiment: Vortestate (pre-experiment exams, approx. 10 minutes each), assessment of practical performance (log, 2 to 5 pages), Nachtestate (post-experiment exams, approx. 10 minutes each)
- Assessment offered: once a year, summer semester
- Only after successful completion of module components: Successful completion of module component 08-CP1-1 is a prerequisite for participation in module component 08-CP1-3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Computational Materials Science

Abbreviation: 11-CMS-122-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 8

Method of grading: Only after succ. compl. of module(s)

Numerical grade: --

Duration: 1 semester

Module level: Graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Density functional theory (DFT)/local-density approximation (exercise with "Wien2k"; band structure programme, Green’s functions, quantum dots, Anderson impurity model (exercise, implementation of the exact diagonalisation/Lanczos), introduction to continuous-time quantum Monte Carlo (exercise), crystal field symmetry, Coulomb interaction, dynamic mean field theory (DMFT exercise). Lecture + 4-5 exercises in the CIP pool. The exercises implement the basic ideas of different algorithms, either based on template programmes or on completely self-written programmes. Electronic submission of all exercises and approx. 20 minutes presentation about one of the 4-5 topics of the lecture/exercise (freely chosen by the student) with a little more elaboration on the topic than in the exercise.

Intended learning outcomes

Theoretical treatment of the above topics complemented by hands-on tutorials to be held in the CIP-Pool. Familiarity with DFT software packages such as VASP or Wien2k and and construction of maximally localized Wannier functions by projecting DFT results onto atomic orbitals using wannier90. Focus on applications to topological materials. Knowledge how to obtain many-body solutions of the AIM and explore some of its limiting cases such as the Kondo regime. Ability to use impurity solvers based on exact diagonalization or continuous-time quantum Monte Carlo for the solution of the DMFT self-consistency equations.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German or English

Allocation of places

--

Additional information

--
Subdivided Module Catalogue for the Subject
Physics
Master’s with 1 major, 120 ECTS credits

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Computational Materials Science
Abbreviation: 11-CMS-131-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semesters.

Contents
Density functional theory (DFT)/local-density approximation (exercise with "Wien2k"; band structure programme, Green’s functions, quantum dots, Anderson impurity model (exercise, implementation of the exact diagonalisation/Lanczos), introduction to continuous-time quantum Monte Carlo (exercise), crystal field symmetry, Coulomb interaction, dynamic mean field theory (DMFT exercise). Lecture + 4-5 exercises in the CIP pool. The exercises implement the basic ideas of different algorithms, either based on template programmes or on completely self-written programmes. Electronic submission of all exercises and approx. 20 minutes presentation about one of the 4-5 topics of the lecture/exercise (freely chosen by the student) with a little more elaboration on the topic than in the exercise.

Intended learning outcomes
The students have advanced knowledge of mathematical methods of material sciences. They are able to develop algorithms for the application of these methods and to implement them into programmes.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Computer-oriented Mathematics

Abbreviation

10-M-COM-082-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

3

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).

Contents

Introduction to modern mathematical software for symbolic computation (e.g., Mathematica or Maple) and numerical computation (e.g., Matlab) to supplement the basic modules in analysis and linear algebra ([10-M-ANA] or [10-M-ANL]) and [10-M-LNA]. Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Project in the form of programming exercises (as specified at the beginning of the course)

Assessment offered: once a year, summer semester

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title
Databases

Abbreviation
10-I-DB-102-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes
The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie
§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases II</td>
<td>10-l=DB2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents
Data warehouses and data mining; XML databases; web databases; introduction to Datalog.

Intended learning outcomes
The students have advanced knowledge about relational databases, XML and data mining.

Courses
(Full name, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(Full name, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densitiy Functional Theory and the Physics of Oxide Heterostructure</td>
<td>11-DFT-142-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students are familiar with the physical values of oxide heterostructures and with the principles and methods of density functional theory. They are able to model problems of Theoretical Physics with the help of important programmes such as Wien2k or VASP. They can make simple calculations with the help of density functional theory.

Intended learning outcomes

The students are familiar with the physical values of oxide heterostructures and with the principles and methods of density functional theory. They are able to model problems of Theoretical Physics with the help of important programmes such as Wien2k or VASP. They can make simple calculations with the help of density functional theory.

Courses *(type, number of weekly contact hours, language — if other than German)*

V + D *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: approx. 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Particle Radiation Detectors

Abbreviation

11-DTS-111-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Principles of interaction between particles and matter. Particle detectors for space and time measurement, determination of momentum, energy and particle identification. Conception of particle detectors in examples.

Intended learning outcomes

The students know the physical principles and the basic structure of particle detectors. They know the functions and applications of different types of detectors, they can explain the measurement of physical values and have basic knowledge of the conception of detector systems.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Differential Geometry

Abbreviation: 10-M=ADGM-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: numerical grade

Only after succ. compl. of module(s): --

Duration: 1 semester

Module level: graduate

Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Intended learning outcomes

The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geometry.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Discrete Mathematic | 10-M=VDIM-102-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Advanced methods and results in a selected field of discrete mathematics (e.g. coding theory, cryptography, graph theory or combinatorics)

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure and Properties of Modern Materials: Experiments and Simulations</td>
<td>08-MW-PHY-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Material properties of metals and ceramics: correlation of structure/property relations through experiments and simulations.

Intended learning outcomes

Students gain an insight into the properties of modern materials: aerospace aluminium alloys and high-performance ceramics. They are introduced to measuring methods and calculation methods using numerical simulation. A special focus is on the relation between the micro/nanoscopic structure of materials and the resulting properties.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Image Processing</td>
<td>11-EBV-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to image processing. Pictures as two-dimensional signals; digitalisation. Two-dimensional Fourier transform. Histogram equalisation (e.g. image brightening) and pixel connectivity (e.g. noise reduction). Automatic image recognition: Segmentation, classification. Technological image generation. Applications (e.g. motion tracking). Three-dimensional images.

Intended learning outcomes

The students have specific and advanced knowledge in the field of image processing. They know the principles and theory of signal processing for images and have corresponding knowledge of image generation. They are able to independently work with literature, they understand the characteristics of image processing with commercial software and are able to process images for the analysis of experiments with imaging measuring methods.

Courses

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(109) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Elementary Particle Theory</td>
<td>11-ETT-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have in-depth knowledge of Theoretical Elementary Particle Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Principles of Energy Technologies | 11-ENT-092-m01

Module coordinator	Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy |

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew. |

Contents

Intended learning outcomes

The students know the principles of different methods of energy technology, especially energy conversion, transport and storage. They understand the structures of corresponding installations and are able to compare them.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer Science for Students of all Faculties</td>
<td>10-I-EIN-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: academic requirements to be met in exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Foundations of computer science including representation of information and websites (HTML, XML, EBNF), databases, algorithms and data structures, programming (Java).

Intended learning outcomes

The students are familiar with the fundamentals of computer science, e.g. in the areas of representation of information and websites (HTML, XML, EBNF), databases, algorithms and data structures, programming in Java.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2: 30 minutes, groups of 3: 40 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Plasmaphysics</td>
<td>11-EPP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, Magnetohydrodynamics, Transport equations for energetic particles, Properties of magnetic turbulence, Propagation of solar particles within the solar wind, Particle acceleration via shock waves and via interaction with plasma turbulence, Particle acceleration and transport in galaxies and other astrophysical objects, Cosmic radiation.

Intended learning outcomes

The students know the principles of Plasma Physics, especially the description of transport phenomena in plasma. They are able to solve basic problems of Plasma Physics and to apply this knowledge to Astrophysics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Introduction to Space Physics

Abbreviation
11-ASP-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
1. Overview
2. Dynamics of charged particles in magnetic and electric fields
3. Elements of space physics
4. The sun and heliosphere
5. Acceleration and transport of energetic particles in the heliosphere
6. Instruments to measure energetic particles in extraterrestrial space

Intended learning outcomes
The students have basic knowledge of Space Physics, in particular of the characterisation of the dynamics of charged particles in space and in the heliosphere. They know relevant parameters, theoretical concepts and measuring methods.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Introduction to LabVIEW

Abbreviation
11-LVW-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The module comprises basic and advanced courses. The basic course "NI LabVIEW Basic 1" is the first level of each LabVIEW learning phase. LabVIEW Basic provides a systematic introduction to the functions and application fields of the development environment of LabVIEW. The students become acquainted with dataflow programming and with common LabVIEW architectures. They learn to develop LabVIEW applications for various application fields, from assessment and measurement applications up to data collection, device control, data recording and measurement analysis. In the advanced course "NI LabVIEW Core 2", the students learn to develop comprehensive standalone applications, including the graphical development environment LabVIEW. The course builds upon LabVIEW Basic 1 and provides an introduction to the most common development technologies, in order to enable the students to successfully implement and distribute LabVIEW applications for different application fields. Course topics include techniques and procedures for the optimisation of application performance, e.g. through an optimised reuse of existing codes, usage of file I/O functions, principles of data management, event computing and methods of error handling. After finishing the course, the students have the ability to apply LabVIEW functions according to individual requirements, which enables a fast and productive application development.

Intended learning outcomes
The students have specific and advanced knowledge in the application field of LabVIEW. They know the principles of working with LabVIEW and are able to develop applications, e.g. for recording and analysing measuring data.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes) or e) project (approx. 60 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
</tbody>
</table>

Module title
Electrochemical Energy Storage and Conversion

Abbreviation
08-EEW-101-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Chemistry and application of: battery systems (aqueous and non-aqueous systems like lead, nickel cadmium and nickel metal hydride, sodium sulfur, sodium nickel chloride, lithium ion accumulators), electrochemical double layer capacitors, redox-flow battery, fuel cell systems (AFC, PEMFC, DMFC, PAFC, SOFC), Solar cells (Si, CIS, CIGS, GaAs, organic and dye solar cell), thermoelectric devices.

Intended learning outcomes
The students possess comprehensive knowledge in the field of electrochemical energy storage and transformation and are able to apply this to scientific problems.

Courses
(type, number of weekly contact hours, language — if other than German)
V + P + E (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (90 minutes) and lab report (approx. 5 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title

<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Electron Interaction</td>
<td>11-EEW-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics
Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

1. Introduction, systems, Landau theory
2. Interacting electron gas
3. One-dimensional electron gas (without interaction)
4. Introduction to boson phase fields and interactions
5. Calculation of correlation functions
6. Method of functional integrals
7. Renormalisation groups
8. Consideration of spin
9. One-dimensional lattice models
10. Impurities in Luttinger liquids

Intended learning outcomes

The students know the principles of the theoretical description of electron-electron interactions in one dimension.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>11-A2-081-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Principles of passive and active electronic components and their application in analogous and digital circuit technology.

Intended learning outcomes

The students have knowledge of the practical setup of electronic circuits from the field of analogous and digital circuit technology.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Program Design and Analysis
Abbreviation: 10-I=PA-102-m01

Module coordinator:
holder of the Chair of Computer Science II

Module offered by:
Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents:
Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes:
The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Particle Physics</td>
<td>11-TPE-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physics with modern particle detectors at the LHC and at the Tevatron. Discovery of the Higgs boson. Search for supersymmetry and other physics beyond the standard model. Determination of the top quark mass and W mass as well as other parameters of the standard model. Introduction to modern methods of analysis and assessment of systematic errors.

Intended learning outcomes

The students are familiar with the principles of modern particle detector physics, especially with currently open questions of Particle Physics, which are examined by using these detectors. They know modern methods of analysis and are able to put results into context and to assess their systematic uncertainties.

Courses

(type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Professional Specialization Physics
Abbreviation: 11-FS-P-072-m01

Module coordinator: chairperson of examination committee
Module offered by: Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Introduction to current experimental or theoretical questions of a subdiscipline of Physics with special relevance to the planned topic of the Master's thesis. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes:
The students have advanced knowledge of a current experimental or theoretical subdiscipline of Physics with a special relevance to the intended topic of the Master's thesis. They know the current state of research in this area and are able to summarise their knowledge in an oral presentation.

Courses (type, number of weekly contact hours, language — if other than German):
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
talk (approx. 30 to 45 minutes) with discussion

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title	Abbreviation
Field Theory in Solid State Physics | 11-FTFK-112-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
This will usually be a course on quantum many particle physics using the method of functional integration. An outline could be:
1 Coherent states and review of second quantization
2 The functional integral formalism at finite temperatures T
3 Perturbation theory at T=0
4 Order parameters and broken symmetry
5 Green's functions
6 The Landau theory of Fermi liquids
7 Further developments

Intended learning outcomes
The students have mastered the principles of quantum field theory in many-particle systems. They are able to apply the acquired methods to current problems of Theoretical Solid-State Physics.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Solid State Physics 2

Abbreviation
11-FK2-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have specific and advanced knowledge in the field of Solid-State Physics. They are theoretically able to specialise in a sub-discipline of Solid-State Physics.

Courses
(R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Spectroscopy</td>
<td>11-FKS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have specific and advanced knowledge in the field of solid-state spectroscopy. They know different types of spectroscopy and their fields of application. They understand the theoretical principles and the current developments in research.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referenced in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Spectroscopy 2</td>
<td>11-FKS2-132-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Modern scattering methods; neutron scattering as a method to investigate the atomic and magnetic structure and excitations such as phonons and magnetic waves; resonant elastic X-ray scattering and absorption; investigation of magnetic, orbital and charge order; X-ray and neutron reflectometry; investigation of the structural, magnetic and electronic properties of thin films and superlattices; resonant inelastic X-ray scattering; investigation of excitations in solids and thin films; STEM ("scanning transmission electron microscopy"); further topics upon agreement.

Intended learning outcomes

The students know different modern scattering methods such as neutron scattering, resonant elastic X-ray scattering, modern scattering theory, X-ray and neutron reflectometry and resonant inelastic X-ray scattering. They are familiar with the theoretical principles and applications of these methods.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Visiting Research Project

Abbreviation
11-FPA-112-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents
Independent work on a current research topic of Experimental and Theoretical Physics. Implementation of scientific experiments including analysis and documentation of the results, especially in the context of research visits to other universities or research institutes.

Intended learning outcomes
The students are able to independently work on a current research area of Experimental or Theoretical Physics, to conduct and analyse scientific experiments and to document the results.

Courses (type, number of weekly contact hours, language — if other than German)
R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project report (approx. 10 to 20 pages)
Language of assessment: German, English

Allocation of places
--

Additional information
Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject Physics
Master's with 1 major, 120 ECTS credits

Module title	Abbreviation
Advanced Practical Course Master | 11-PFM-072-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | (not) successfully completed | 11-E1, 11-E2

Duration	Module level	Other prerequisites
1 semester | graduate | 11-A3

Contents
Principles of Nuclear, Atomic and Molecular Physics, experiments on cryogenic temperatures and correlated systems, properties of solids, surfaces and interfaces. Experiments on the following topics: X-rays - nuclear magnetic resonance (NMR) - quantum Hall effect - optical pumping and spectroscopy in the field of optics - Hall effect - superconductivity - laser - solid-state optics

Intended learning outcomes
Knowledge of conducting experiments, analysing and documenting experimental results, basic knowledge of issuing scientific publications, application of modern evaluation systems, working on a task based on publications and acquiring practical experimental methods.

Courses (type, number of weekly contact hours, language — if other than German)
Fortgeschrittenen-Praktikum Master (Advanced Practical Course Master) Part 1: P (3 weekly contact hours), German or English
Fortgeschrittenen-Praktikum Master (Advanced Practical Course Master) Part 2: P (3 weekly contact hours), German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Lab course in part 1 (Fortgeschrittenen-Praktikum Master/Advanced Practical Course Master Part 1): a) Preparing the experiment will be considered successfully completed if an oral test (approx. 30 minutes) is passed prior to the experiment. b) Performing and evaluating the experiment will be considered successfully completed if a test is passed. Students must prepare an experiment log (approx. 8 pages).
2. Lab course in part 2 (Fortgeschrittenen-Praktikum Master/Advanced Practical Course Master Part 2): a) Preparing the experiment will be considered successfully completed if an oral test (approx. 30 minutes) is passed prior to the experiment. b) Performing and evaluating the experiment will be considered successfully completed if a test is passed. Students must prepare an experiment log (approx. 8 pages).

Language of assessment: German or English
Students must register for assessment components 1 and 2 online (details to be announced).
Students will be offered one opportunity to retake element a) and/or element b) in the respective semester. To pass an assessment component, they must pass both elements (a and b) in the same semester.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Complex Analysis

Abbreviation
10-M=AFTH-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e.g. elliptic functions).

Intended learning outcomes
The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrical Mechanics</td>
<td>10-M=VGEM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to geometric mechanics: basic notions of differential geometry and symplectic geometry, Euler-Lagrange equations, Hamiltonian mechanics on manifolds.

Intended learning outcomes

The student is able to apply fundamental methods and concepts of geometry to problems in mechanics, and knows about the interrelation of these fields.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Classification of Patterns</td>
<td>11-KVM-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics
Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>numerical grade</td>
<td>...</td>
</tr>
</tbody>
</table>

Duration
1 semester
Module level
undergraduate
Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Signals such as images, but also acoustic records, spectra, electrical measurements often contain recurring patterns. These patterns are often classified and analysed by observers, e.g. by a doctor when analysing an ECG. More and more automatic procedures are adopted to take on these tasks and classify patterns. The lecture will discuss principles of different classifiers such as "minimum distance" and "maximum likelihood".

Intended learning outcomes
The students have specific and advanced knowledge in the field of pattern recognition. They know methods of classifying patterns in measuring data as well as ways to automatise these processes. They are able to apply these methods to practical problems.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of two- and three-dimensional Röntgen imaging</td>
<td>11-ZDR-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Physics of X-ray generation (X-ray tubes, synchrotron). Physics of the interaction between X-rays and matter (photon absorption, scattering), physics of X-ray detection. Mathematics of reconstruction algorithms (filtered rear projection, Fourier reconstruction, iterative methods). Image processing (image data pre-processing, feature extraction, visualisation,...). Applications of X-ray imaging in the industrial sector (component testing, material characterisation, metrology, biology, ...). Radiation protection and biological radiation effect (dose, ...).

Intended learning outcomes

The students know the principles of generating X-rays and of their interactions with matter. They know imaging techniques using X-rays and methods of image processing as well as application areas of these methods.

Courses

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Module title

Group Theory

Abbreviation

11-GRT-092-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes

The students know the basics of group theory, especially of Lie groups. They are able to identify problems of group theory and to solve them by using the acquired methods. They are able to apply group theory to the formulation and processing of physical problems.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Groups and their Representations

Abbreviation: 10-M=VGDS-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: numerical grade

Only after succ. compl. of module(s): --

Duration: 1 semester

Module level: graduate

Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:

Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Intended learning outcomes:

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses:

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places:

--

Additional information:

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Lasers - Principles and Current Research</td>
<td>11-HLF-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
This lecture discusses the principles of laser physics, based on the example of semiconductor lasers, and current developments regarding components. The principles of lasers are described on the basis of a general laser model, which will then be extended to special aspects of semiconductor lasers. Basic concepts such as threshold condition, characteristic curve and laser efficiency are derived from coupled rate equations for charge carriers and photons. Other topics of the lecture are optical processes in semiconductors, layer and ridge waveguides, laser resonators, mode selection, dynamic properties as well as technology for the generation of semiconductor lasers. The lecture closes with current topics of laser research such as quantum dot lasers, quantum cascade lasers, terahertz lasers or high-performance lasers.

Intended learning outcomes
The students have advanced knowledge of the principles of semiconductor-laser physics. They can apply their knowledge to modern questions and know the applications in the current development of components.

Courses
(type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Nanostructures</td>
<td>11-HNS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Semiconductor nanostructures are frequently referred to as "artificial materials". In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored by changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, 0D). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks for quantum communication and quantum computing architectures.

Intended learning outcomes

The students know the theoretical principles and characteristics of semiconductor nanostructures. They have knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices. They are able to apply their knowledge to problems in this field of research.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Subdivided Module Catalogue for the Subject Physics

Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Physics</td>
<td>11-HLP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have specific and advanced knowledge in the field of Semiconductor Physics. They know the physical principles of semiconductors and have gained an overview of the important characteristics of semiconductor materials.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Introduction to Electron Microscopy
Abbreviation: 11-IEM-111-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 4
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:

Intended learning outcomes:
The students have basic knowledge of modern research methods of electron microscopy up to an atomic level. They know microscoping procedures that are used in practice in labs and the industry as well as electron-microscopic methods for chemical analysis. They are able to evaluate the efficiency of different research methods.

Courses:
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Module title
Concepts of Theoretical Astroparticle physics

Abbreviation
11-ATT-111-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Concepts of Theoretical Astro-Particle Physics, e.g. Dark matter, cosmic radiation, neutrinos, baryogenesis, cosmic accelerators, dark energy, inflation.

Intended learning outcomes
The students have basic knowledge of the concepts of Theoretical Astroparticle Physics. They are able to describe phenomena of Astroparticle Physics on the basis of methods of Theoretical Physics and to find solution approaches for problems.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Cosmology

Module title: Cosmology
Abbreviation: 11-AKM-092-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, supercluster, galaxies and galaxy clusters, intergalactic medium, cosmological parameters

Intended learning outcomes

The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to work on scientific questions.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Contents

In Statistical Physics, critical phenomena refer to the universal behaviour in the proximity of continuous phase transitions. The theory, which can be explained through critical phenomena, is called renormalisation group and plays an important role in many areas of Physics. The lecture serves as an introduction to critical phenomena and to renormalisation group theory and discusses selected applications. Basic phenomenology: Universality, scaling relationships, critical exponents. Mean field theory. Renormalisation group theory. Duality and high-/low-temperature development. Finite size scaling theory. Exact solutions.

Intended learning outcomes

The students know the principles of the theory of critical phenomena and are able to apply the calculation methods to simple problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks), presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Master's with 1 major Physics (2010)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence</td>
<td>10-I=KI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation, planning, probabilistic closure and Bayesian networks, utility theory and decidability problems, learning from observations, knowledge while learning, neural networks and statistical learning methods, reinforcement learning.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence and are able to assess possibilities for its application.

Courses *(type, number of weekly contact hours, language — if other than German)*

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

written examination (approx. 80 to 90 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory and Measurement Technology in Biophysics</td>
<td>11-LMB-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>of Applied Physics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

The lecture covers relevant principles of molecular and cellular biology as well as the physical principles of biophysical procedures for the examination and manipulation of biological systems. The main topics are optical measuring techniques and sensors, methods of single-particle detection, special microscoping techniques and methods of structure elucidation of biomolecules.

Intended learning outcomes

The students know the principles of molecular and cellular biology as well as the physical principles of biophysical procedures for the examination and manipulation of biological systems. They have knowledge of optical measuring techniques and their applications and are able to apply techniques of structure elucidation to simple biomolecules.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module title
Lie Theory

Abbreviation
10-M=ALTH-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e.g. in physics and control theory.

Intended learning outcomes
The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Lithography in Semiconductor Technology and Theory of Quantum Transport

Abbreviation
11-LHQ-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to the lithographic techniques of semiconductor technology and discussion of the required theory on quantum transport.

Intended learning outcomes
The students have specific and advanced knowledge of semiconductor lithography and of the theory of quantum transport.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
Physics
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetism</td>
<td>11-MAG-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Dia- and paramagnetism, exchange interaction, ferromagnetism, antiferromagnetism, anisotropy, domain structure, nanomagnetism, superparamagnetism, experimental methods to measure magnetic properties, Kondo effect.

Intended learning outcomes

The students know basic terms, concepts and phenomena of magnetism and measuring methods for magnetic experiments; they are skilled in simple model building and in the formulation of mathematical-physical approaches and are able to apply them to tasks in the stated areas; they have competencies in independently working on problems of these areas; they are able to evaluate the accuracy of observations and analyses.

Courses

(R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetism and Spin Transport</td>
<td>11-MST-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Faculty offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
2 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The module spans two semesters. During the winter semester, the students become acquainted with the principles of magnetism (ranging from atoms to solids), properties of magnetic material (individual usage) and methods to characterise magnetic properties. During the summer semester, the students learn about spin transport in metallic systems in due consideration of giant magnetoresistance and tunnel magnetoresistance and its application in magnetic memory. As a last point, we discuss new phenomena from the field of spin dynamics and current-induced spin phenomena.

Intended learning outcomes
The students know the basic terms, concepts and phenomena of magnetism and measuring methods for magnetic experiments; they are familiar with spin transport applications of information technologies and have gained an overview of modern findings in this area (GMR, TMR). They are skilled in simple model building and in the formulation of mathematical-physical approaches and are able to apply them to tasks in the stated areas.

Courses
V + R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(Examination regulations for teaching-degree programmes)
Module Title: Master Thesis Physics

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-MA-P-072-m01</th>
</tr>
</thead>
</table>

Module Coordinator: Chairperson of examination committee

Module Offered by: Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester

Module Level: Graduate

Other Prerequisites: Registration for assessment to be carried out electronically. Deadlines will be announced separately. Please consult with your supervisor.

Contents

Mostly independent processing of an experimental or theoretical task in the field of Physics, especially according to known procedures and scientific aspects; writing of the thesis.

Intended Learning Outcomes

The students are able to independently work on an experimental or theoretical task from Physics, especially according to known methods and scientific aspects and to summarise their results in a final paper.

Courses

No courses assigned

Method of Assessment

- **Written thesis (approx. 75 pages)**

Allocation of Places

--

Additional Information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Methods and Project Management Physics</td>
<td>11-MP-P-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to the methods of scientific work, taking into account methods of project planning. Application to theoretical and experimental questions of Physics, writing of a scientific project plan for the planned Master's thesis.

Intended learning outcomes

The students have knowledge of scientific methods and methodological work, including project planning methods of a current experimental and theoretical subdiscipline of Physics with special relevance to the intended topic of the Master's thesis. They are able to draft a project plan for the Master's thesis and to plan the required experimental or theoretical work. They are able to describe their projects in oral presentations.

Courses (type, number of weekly contact hours, language — if other than German)

R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 30 to 45 minutes) with discussion

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods in Surface Spectroscopy</td>
<td>11-MSS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Boundary conditions of experiments: Ultra-high vacuum, surface sensibility, light-matter-interaction, principles of photoelectron spectroscopy (PES), one-particle image of PES, three step model, many-particle effects, line shape, satellites, Fermi liquid, quasiparticles, exemplary systems and spectra, measurements with synchrotron radiation, related experimental methods.

Intended learning outcomes

The students know the physical principles and experimental methods of surface spectroscopy. They are able to conduct, evaluate and interpret simple measurements.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Astrophysics</td>
<td>11-MAS-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to a field of modern Astrophysics, e.g. extra-galactic jets.

Intended learning outcomes

The students know the current state of research on the modern topic of Astrophysics. They know the physical values and are to plan and conduct observations in this area. This includes the ability to conceptualise a specific observational project and e.g. to apply for observation time at large telescopes.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Module Type 4A Special Training Astronomy

Abbreviation
11-SF-4A-072-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Astronomy.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Astronomy.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 4D Special Training Didactics</td>
<td>11-SF-4D-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>4</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific, advanced knowledge of one or more of the Faculty’s current research areas in the field of Didactics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Didactics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + R (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module Type 4E Special Training Experimental Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 4I Special Training Interdisciplinary Research Fields</td>
<td>11-SF-4I-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject
Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 4T Special Training Theoretical Physics</td>
<td>11-SF-4T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 8 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5A Special Training Astronomy</td>
<td>11-SF-5A-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Astronomy.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Astronomy.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5D Special Training Didactics</td>
<td>11-SF-5D-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Didactics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Didactics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Module Type 5E Special Training Experimental Physics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) talk (approx. 30 minutes) or (c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or (d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 5I Special Training Interdisciplinary Research Fields</td>
<td>11-SF-5I-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Module Type 5T Special Training Theoretical Physics

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-SF-5T-072-m01</th>
</tr>
</thead>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses
(type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6A Special Training Astronomy</td>
<td>11-SF-6A-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Astronomy.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Astronomy.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6D Special Training Didactics</td>
<td>11-SF-6D-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Didactics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Didactics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Module Type 6E Special Training Experimental Physics

Abbreviation
11-SF-6E-072-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes
The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)
--
Module title

Subdivided Module Catalogue for the Subject Physics

Master's with 1 major, 120 ECTS credits

Module Type 6I Special Training Interdisciplinary Research Fields

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics</td>
<td>11-SF-61-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + R (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 6T Special Training Theoretical Physics</td>
<td>11-SF-6T-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 8A Special Training Astronomy</td>
<td>11-SF-8A-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Astronomy.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Astronomy.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Subdivided Module Catalogue for the Subject

Physics

Master’s with 1 major, 120 ECTS credits

Module Type

8D Special Training Didactics

Abbreviation

11-SF-8D-072-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Didactics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Didactics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Type 8E Special Training Experimental Physics</td>
<td>11-SF-8E-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Experimental Physics.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Subdivided Module Catalogue for the Subject物理学

Master's with 1 major, 120 ECTS credits

Module Type

11-SF-8I-072-m01

Module coordinator

Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Specific, advanced knowledge of one or more of the Faculty's current research areas.

Intended learning outcomes

The students have specific and advanced knowledge of one or more current research areas of the faculty in an interdisciplinary field.

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + R</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Module title: Subdivided Module Catalogue for the Subject Physics Master's with 1 major, 120 ECTS credits

Module Type: 8T Special Training Theoretical Physics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents: Specific, advanced knowledge of one or more of the Faculty's current research areas in the field of Theoretical Physics.

Intended learning outcomes: The students have specific and advanced knowledge of one or more current research areas of the faculty in the field of Theoretical Physics.

Courses: (type, number of weekly contact hours, language — if other than German)
- V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment: (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
- a) written examination (approx. 90 minutes) or b) talk (approx. 30 minutes) or c) oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or d) project report (approx. 16 pages)

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes)
- --
Subdivided Module Catalogue for the Subject Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoanalytics</td>
<td>11-NAN-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes
The students have basic knowledge of modern research methods for different nanostructures up to an atomic level. They know microscoping procedures that are used in practice in labs and the industry as well as spectroscopic methods for the determination of electronic properties. They are able to evaluate the efficiency of different research methods.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Nanoelectronics
Abbreviation: 11-NEL-092-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The lecture and the corresponding exercises convey basic concepts of electronics of nanostructures. First, we discuss terms such as Fermi distribution, density of states and carrier concentration in view of small structures. Afterwards, we talk about application potentials of nanostructures in electronics. We examine the limits of the function of common switches and storages through miniaturisation and compare them to electronic properties of nanostructures. We gain an overview of nanoelectric amplifiers, rectifier, logic lattices and circuits and discuss the operating principle of quantum computers.

Intended learning outcomes
The students have mastered the basics of electronics of nanostructures in theory and practice. They know functions and applications of respective components.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Nano-Optics

Abbreviation
11-NOP-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have specific and advanced knowledge in the field of nano-optics. They are familiar with the theoretical principles and application areas of nano-optics and with current developments in this field.

Courses
(R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title

Non-Physical Minor Subject

Abbreviation

11-EXNP6-112-m01

Module coordinator

Chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Non-physical minor. Accredited academic achievements, e.g. in case of change of university or study abroad

Intended learning outcomes

The students have advanced competencies on the Master's level which correspond to the requirements of a module in the field of a non-physical minor (mathematics, chemistry, informatics...).

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Low-Dimensional Structures

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Low-dimensional structures: Crystal lattice symmetry. Lattice dynamics and growth techniques of low-dimensional structures. Comparison between these structures and volume solids. X-ray diffractometry. Molecular beam epitaxy.

Intended learning outcomes
The students have knowledge of the theoretical principles of the growth of low dimensional structures. They know methods of producing and analysing such structures. They know the bandstructures of the most important semiconductors as well as the fabrication and characteristics of semiconductor heterostructures and MOS-diodes. They are familiar with the subband structure of semiconductor heterostructures and MOS-diodes and can evaluate the importance of many-particle effects. They are able to solve problems related to potentials in one dimension by applying Poisson’s equation. They know the k*p perturbation theory and can deduce the 2D subband structure from the bulk band structure. They understand how an external magnetic field acts on the properties of a free electron gas in 2D. They have basic knowledge of the meaning of gauging, Landau-quantisation, filling factor and Landau degeneracy. They understand the dependence of various physical properties on the filling factor, and are able to solve implicit problems via numerical methods. They are familiar with elementary excitations in two-dimensional systems.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
</tbody>
</table>

Numeric of Partial Differential Equations

Abbreviation
10-M=VNPE-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 1</td>
<td>10-M-NM1-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title: Numerical Mathematics 2
Abbreviation: 10-M-NM2-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems.

Intended learning outcomes
The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title	Abbreviation
Numerical Methods in Astrophysics | 11-NMA-092-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Advanced Seminar Experimental/Theoretical Physics

Abbreviation
11-OSP-072-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Seminar on current issues of Theoretical or Experimental Physics.

Intended learning outcomes

The students have advanced knowledge of a current specialist field of Experimental or Theoretical Physics. They are able to extract knowledge from professional publications and to summarise this knowledge and present it to a professional audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk with discussion (approx. 30 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-oriented Programming</td>
<td>10-I-OOP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents
Polymorphism, generic programming, meta programming, web programming, templates, document management.

Intended learning outcomes
The students are proficient in the different paradigms of object-oriented programming and have experience in their practical use.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Opto-electronic Material Properties

Abbreviation
11-MOE-092-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Physical principles of optoelectronic material properties and applications.

Intended learning outcomes
The students know the principles of optoelectronic material characteristics.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Organic Semiconductor | 11-OHL-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Physical principles of organic semiconductors, molecular and polymer electronics and sensor technology, applications.

Intended learning outcomes
The students have advanced knowledge of organic semiconductors.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Complex Systems</td>
<td>11-PKS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

1. Theory of critical phenomena in thermal equilibrium
2. Introduction into the physics out of equilibrium
3. Entropy production and fluctuation
4. Phase transitions away from equilibrium
5. Universality
6. Spin glasses
7. Theory of neural networks

Intended learning outcomes

The students have specific and advanced knowledge in the field of physics of complex systems. They know the methods of Statistical Physics, Computational Physics and non-linear dynamics, which are used to describe such systems. They are able to work on current research problems in this area.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Advanced Materials</td>
<td>11-PMM-132-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

General properties of various material groups such as liquids, liquid crystals and polymers; magnetic materials and superconductors; thin films, heterostructures and superlattices. Methods of characterising these material groups; two-dimensional layer materials.

Intended learning outcomes

The students know the properties and characterising methods of some modern materials.

Courses

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma-Astrophysics</td>
<td>11-APL-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have basic knowledge of Plasma Astrophysics. They have mastered the theoretical description of motion and acceleration of charged particles in space, they know corresponding measuring methods and can compare and evaluate theory and experiments.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Programming course for students of Mathematics and other subjects

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>10-M-PRG-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Basics of a modern programming language (e.g. C or Fortran) taking into account the particular needs in mathematics.

Intended learning outcomes

The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

project in the form of programming exercises (as specified at the beginning of the course)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming of Distributed Systems</td>
<td>10-l=PVS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e. g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Design and development of parallely and distributedly executed programs.

Intended learning outcomes

The students possess the methodic knowledge and practical skills for the design and development of parallely and distributedly running programs.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Quantum Field Theory II | 11-QFT2-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve simple problems of quantum field theory by using the acquired calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Information Technology</td>
<td>11-QUI-132-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basic concepts of quantum mechanics, quantum bits and algorithms, quantal measurements, experimental approaches towards quantum computing (on the basis of photons, ions and nuclear spins), quantum operations and quantum noise, quantum information and communication.

Intended learning outcomes

The students are familiar with the basic quantum mechanical terms of quantum information technology. They know experimental approaches for the realisation of quantum computers and for the transfer of quantum information.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Quantum Information and Quantum Computing
Abbreviation: 11-QIC-092-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 5
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

The first part introduces the theoretical concepts of quantum information and quantum computers. It discusses the main quantum algorithms. The second part discusses experimental possibilities for the realisation of entangled states. One of the main topics is the production, controlling and manipulation of coherent two-electron spin states. The third part covers the description and explanation of decoherence of quantum mechanical states.

Intended learning outcomes

The students have an advanced understanding of quantum theory and basic knowledge of quantum calculation. They are able to solve simple problems of quantum information theory.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Quantum Control and Quantum Computing

Abbreviation: 10-M=VQKC-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 5

Method of grading: numerical grade

Only after succ. compl. of module(s): --

Duration: 1 semester

Module level: graduate

Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Basics in dynamics of quantum-mechanical systems (e.g. density operators, observables, Schrödinger equation, Liouville-von-Neumann equation), bilinear control systems in quantum mechanics (e.g. finite-dimensional spin systems and/or infinite-dimensional Schrödinger equations with external control), applications (e.g. in quantum computing or magnetic resonance spectroscopy).

Intended learning outcomes

The student is acquainted with advanced methods in quantum-mechanical control systems. He gains the ability to work on contemporary research questions in and applications of control systems in quantum mechanics.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Quantum Mechanics II | 11-QM2-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

"Quantum mechanics II" constitutes the central theoretical course of the international Master’s program in Physics. It builds upon basics which are acquired in the lecture "Quantum mechanics I" of the Bachelor’s degree. While the specific emphasis can be adjusted individually, the core topics that are supposed to be covered should include:

1. Second quantisation: Fermions and bosons
2. Band structures of particles in a crystal
3. Angular momentum, symmetry operators, Lie Algebras
4. Scattering theory: Potential scattering, partial wave expansion
5. Relativistic quantum mechanics: Klein-Gordon equation, Dirac equation, Lorentz group, fine structure splitting of atomic spectra
6. Quantum entanglement
7. Canonical formalism

Intended learning outcomes

The students acquire in-depth knowledge of advanced quantum mechanics and have a thorough understanding of the mathematical and theoretical concepts of the listed topics. They are able to describe or model problems of modern theoretical Quantum Physics mathematically, to solve problems analytically, to use approximation methods and to interpret the results physically. The course is pivotal to subsequent theory courses in Astrophysics, High-Energy Physics and Condensed Matter/Solid-State Physics. The course is mandatory for all Master’s students.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td>--</td>
</tr>
</tbody>
</table>

Master's with 1 major Physics (2010)
Module title
Quantum Phenomena in electronic correlated Materials

Abbreviation
11-QPM-092-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics
Module offered by
Faculty of Physics and Astronomy

Duration
1 semester
Module level
graduate
Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Quantum effects and phenomena in current solid-state research. Correlations. Free electron gas and Fermi liquid. Strongly correlated systems

Intended learning outcomes
The students have specific, advanced knowledge of the current research on Solid-State Physics, especially on quantum effects in strongly correlated systems. They are able to understand the connections between the theoretical description of such systems and the current experimental results.

Courses
(type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Quantum Loop Gravity

Abbreviation
11-QSG-102-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Aside from string theory, quantum loop gravity (QLG) is one of the most important approaches to a quantum mechanical description of gravity. General relativity is formulated in Hamiltonian formalism and the elemental variables are identified with the corresponding Poisson brackets. These variables are quantised in the typical manner on discretised graphs, so-called spin networks. In doing so, e.g. a quantisation of elemental volumes appears. Therefore, QLG belongs to the speculative theories which paint a picture of the constitution of space and time.

Intended learning outcomes
The students know the principles of quantum loop gravity. They have acquired advanced knowledge of a selected topic and have proved their knowledge in a seminar presentation.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Computer Architecture | 10-I-RAK-102-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science V | Institute of Computer Science

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes
The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 69 (1) 1. c) Informatik Technische Informatik
Module title
Relativistic Effects in Mesoscopic Systems

Abbreviation
11-RMS-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Relativistic effects in mesoscopic systems. - Spin-orbit coupling. - Dirac equation. - Quantum Hall effect. - Topological insulators. - Majorana fermions

Intended learning outcomes
The students have mastered the mathematical methods for the description of relativistic quantum systems, especially in the field of mesoscopic physics. They are able to apply their knowledge to simple systems.

Courses
(type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Relativistical Quantumfield Theory

Abbreviation
11-RQFT-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Theory of Relativity

Module title: Theory of Relativity
Abbreviation: 11-RTT-092-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Mathematical foundations of the theory of relativity; differential forms; brief summary of special relativity; elements of differential geometry; electrodynamics as an example of a relativistic gauge theory; field equations of general relativity; stellar models; introduction to cosmology; Hamiltonian formulation

Intended learning outcomes

The students are familiar with the basic physical and mathematical concepts of general relativity. They have a mathematical understanding of the formulation of general relativity on the basis of differential forms. They are able to apply the acquired knowledge to problems of Astrophysics and cosmology.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Renormalization Group Methods in Field Theory

Abbreviation: 11-RMFT-102-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 6

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Renormalisation group methods for non-linear partial differential equations, field theoretical contexts and non-analysed behaviour of cryogenic temperatures.

Intended learning outcomes
The students gain an overview of non-linearities in partial differential equations and their solution on the basis of the renormalisation group method.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Renormalization Theory

Abbreviation
11-RNT-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Numerical grade
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have gained an overview of renormalisation group methods for non-linear partial differential equations. They know important examples and corresponding solving methods and are able to apply them to specific tasks.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Special Theory of Relativity

Abbreviation
11-SRT-112-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Mathematical principles; differential forms; special relativity; Minkowski space; Lorentz transformation, Hamiltonian equation of motion; relativistic free particle

Intended learning outcomes
The students are familiar with the physical concepts and mathematical principles of special relativity. They are familiar with modern mathematical formulation of special relativity. They are able to apply the acquired knowledge to problems of special relativity.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Spintronics

Module title
Spintronics

Abbreviation
11-SPI-102-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

This lecture covers the basic principles of spin transport, with a particular emphasis on the phenomena of giant magnetoresistance and tunnel magnetoresistance. As a last point, we discuss new phenomena from the field of spin dynamics and current-induced spin phenomena.

Intended learning outcomes

The students know the basic principles of spin transport models and the applications of spin transport in information technology. They have gained an overview of current findings in this field (giant magnetoresistance, tunnel magnetoresistance).

Courses

(V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Interaction in Accelerator Experiments</td>
<td>11-WWB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students know the basic organisation of QCD processes. They are able to interpret results of accelerator experiments. They have knowledge of methods of data analysis, understand the underlying theories and are able to apply them.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Statistics, Data Analysis and Computer Physics

Abbreviation

11-SDC-092-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

4

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Statistics, data analysis and computer physics.

Intended learning outcomes

The students have specific and advanced knowledge in the field of statistics, data analysis and Computational Physics.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Supersymmetry I and II

Abbreviation

11-SUS-092-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Supersymmetry II: Minimal supersymmetric standard model. Higgs sector. The spectrum of supersymmetric particles. Phenomenology of LEP, Tevatron and LHC, supersymmetric neutrino mass models. Violation of R-parity.

Intended learning outcomes

The students have knowledge of the mathematical and physical principles of supersymmetry and supersymmetric models. They understand the theory's formalism and recognise its connections to other models as well as its importance for phenomenology of elementary particles.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology of Sensor and Actor Materials including Smart Fluids</td>
<td>08-SAM-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Chemical Technology of Material Synthesis

Module offered by

Chair of Chemical Technology of Material Synthesis

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fabrication, effects and applications of sensory and actuator materials such as piezoelectrics, shape memory materials and magnetostrictive materials. Electrorheological and magnetorheological fluids, magnetofluids.

Intended learning outcomes

Students have developed fundamental knowledge in the area of sensory and actuator materials.

Courses (type, number of weekly contact hours, language — if other than German)

V + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (90 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Particle Physics (Standard Model)
Abbreviation: 11-TPS-092-m01

Module coordinator: Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --
Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to the theory of electroweak interaction and spontaneous symmetry breaking. Experiments on the standard model and determination of model parameters.

Intended learning outcomes
The students know the theoretical fundamental laws of the standard model of Particle Physics and the key experiments that have established and confirmed the standard model. They are able to interpret experimental or theoretical results in the framework of the standard model and know its validity and limits.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Astrophysics</td>
<td>11-AST-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Theoretical Astrophysics, models for the description of complex observation results, numeric simulations.

Intended learning outcomes

The students have basic knowledge of the methods of Theoretical Astrophysics. They are able to design complex observations and to test the models with the help of simulations.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Theoretical Elementary Particle Physics

Abbreviation
11-TEP-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses
(type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Solid State Physics</td>
<td>11-TFK-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the theoretical description of solid-state phenomena. They know the corresponding mathematical or theoretical methods and are able to apply them to basic problems of solid-state theory and to understand the connections to experimental results. The individual students have elaborated on an advanced topic of solid-state theory and have discussed this topic in a seminar presentation.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Theoretical Solid State Physics 2
11-TFK2-111-m01

Managing Director of the Institute of Theoretical Physics and Astrophysics
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
a) metal-insulators and topological insulators
b) transport phenomena
c) magnetic impurities in metals. Kondo effect and heavy fermions
d) electron-phonon interaction
e) one-dimensional conductors

Intended learning outcomes
The students have advanced knowledge of the theoretical description of solid-state phenomena. They know the mathematical or theoretical methods and are able to apply them to problems of solid-state theory and understand the connections to experimental results. The individual students have elaborated on an advanced topic of solid-state theory and have discussed this topic in a seminar presentation.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Superconduction</td>
<td>11-TSL-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the theoretical models for the description of superconductivity. They know the properties and application areas of these models and are able to apply calculation methods to simple problems.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamics and Economics</td>
<td>11-TDO-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Only after succ. compl. of module(s)</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Energy and economic growth, entropy production, emission reduction. Part I describes the role of energy conversion in the development of the universe, the evolution of life and the unfolding of civilisation. In non-equilibrium thermodynamics, the entropy production density shows the relevance of the second law of thermodynamics for ecological damage and resource consumption. Energy conversion, entropy production and natural resources define the technological and ecological boundaries of industrial economic growth. Part 2 analyses how the factors capital, work, energy and creativity produce the goods and services of a national economy and determine economic growth. The productive power of cheap energy by far exceeds that of expensive labour. Within the current system of taxes and social security contributions, this discrepancy between power and costs of production factors leads to job cuts, waste of resources, impoverishment of nations and growing social tensions. The course discusses how factor income taxation can counteract this development. Part 3 includes seminar presentations, comprises the techniques of rational energy use and non-fossil energy use, and introduces the optimisation programme deeco (Dynamic Energy, Emission and Cost Optimization).

Intended learning outcomes

The students understand that energy conversion and entropy production are going to play an important role in the world’s economic and social development. As an extension of economic theory, the students know the connections between thermodynamics and economy as well as the productive physical basis of modern economies. They are able to apply the acquired knowledge to particular problems.

NOTE: this is the module that was run by Prof. Dr. R. Kümmel, who has now retired. As the module was tailored to his own theory of economy, it has yet to be decided whether we will continue to offer this module.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>R + V</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td>--</td>
</tr>
</tbody>
</table>
Module title | Thermodynamics and Economics
---|---
Abbreviation | 11-TDOE-141-m01

Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Energy and economic growth, entropy production, emission reduction. Part I describes the role of energy conversion in the development of the universe, the evolution of life and the unfolding of civilisation. The entropy production density of non-equilibrium thermodynamics shows the relevance of the second law of thermodynamics for ecological damage and resource consumption. Energy conversion, entropy production and natural resources define the technological and ecological boundaries of industrial economic growth.

Part 2 analyses how the factors capital, work, energy and creativity produce the goods and services of a national economy and determine economic growth. The productive power of cheap energy by far exceeds that of expensive labour. Within the current system of taxes and social security contributions, this discrepancy between power and costs of production factors leads to job cuts, waste of resources, impoverishment of nations and growing social tensions. The course discusses how factor income taxation can counteract this development.

Part 3 includes seminar presentations, comprises the techniques of rational energy use and non-fossil energy use, and introduces the optimisation programme deeco (Dynamic Energy, Emission and Cost Optimization).

Intended learning outcomes

The students understand that energy conversion and entropy production are going to play an important role in the world’s economic and social development. As an extension of economic theory, the students know the connections between thermodynamics and economy as well as the productive physical basis of modern economies. They are able to apply the acquired knowledge to particular problems.

NOTE: this is the module that was run by Prof. Dr. R. Kümmel, who has now retired. As the module was tailored to his own theory of economy, it has yet to be decided whether we will continue to offer this module.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Topology

Abbreviation

10-M=ATOP-102-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Set-theoretic topology, topological invariants (e.g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Topology in Solid State Physics

Abbreviation

11-TFP-132-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

Method of grading

Only after succ. compl. of module(s)

6 numerical grade

Duration

Module level

Other prerequisites

1 semester graduate --

Contents

The students are familiar with the theory of topological effects in Solid-State Physics. They know the mathematical methods necessary for their description and are able to apply these methods to simple problems.

Intended learning outcomes

The students are familiar with the theory of topological effects in Solid-State Physics. They know the mathematical methods necessary for their description and are able to apply these methods to simple problems.

Courses

(V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Topological Order | 11-TOPO-132-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In modern Solid-State Physics, the concept of topologically ordered phases plays an increasingly important role. These phases possess no order in the conventional sense of a broken symmetry, but are characterised by topological quantum numbers. Examples of topological quantum numbers or phases include:

1) The fractional charge and statistics of quasiparticle excitation in quantum Hall fluids.
2) The fractional quantisation of spins in spin liquids and the accompanying split-up of spin and charge in antiferromagnets.
3) The topological anomalies of fractionally quantised systems on the torus (or generally on surfaces with genus $g > 0$).
4) Majorana fermion states at the interfaces between topological superconductors and topologically trivial regions. The lecture explains the fundamental concepts with the help of basic examples.

Intended learning outcomes

The students acquire in-depth knowledge of topological order in quantum condensates.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Transport Phenomena in Solids
Abbreviation: 11-FKT-092-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --
Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Transport phenomena in solids.

Intended learning outcomes
The students have specific and advanced knowledge in the field of transport phenomena in solids.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast Spectroscopy and Quantum Control</td>
<td>08-PCM4-PHY-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Ultrakurzzeitspektroskopie und Quantenkontrolle"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes
Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

Courses
- **S + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Disordered Systems
Abbreviation: 11-UGS-131-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 4
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semesters.

Contents
Part 1: Part 1 discusses systems of interacting electrons with random potentials or random interactions with the help of quantum statistical methods which are introduced in a separate lesson. The students learn to calculate transport properties, magnetic instabilities and phase transitions as well as competing orders. Part II: Part II covers non-linear partial differential equations, which also describe systems far beyond equilibrium and systems with random inhomogeneity. Where applicable, exact solubility in a space dimension will be covered; otherwise and in more than one space dimension, diagram methods and renormalisation groups are applied, which will be introduced separately. As a methodological development of the methods of the course Mathematics 3, the path integral method is derived for classical and quantum mechanical models and differential equations (e.g. Feynman-Kac method).

Intended learning outcomes
The students acquire insights into the calculability of the behaviour of physical and non-physical models with random parameters. They learn to construct diagram developments for specific models, both for Hamiltonian systems and non-equilibrium differential equations. They understand why physical laws describing the behaviour of non-ordered systems are often times simpler and how a new order arises from disorder. They learn to differentiate between quantum mechanical uncertainty and random uncertainty as well as between disorder and chaos.

Courses
(V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title
Advanced Analysis

Abbreviation
10-M-VAN-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Lebesgue integral in several variables, including theorems on convergence and Fubini’s theorem, L^p-spaces and elementary Fourier theory in L^2, Gauss’s theorem.

Intended learning outcomes
The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)
Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
Module title
Many Body Quantum Theory

Abbreviation
11-QVTP-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

ECTS 8
Method of grading numerical grade
Only after succ. compl. of module(s) --

Duration 1 semester
Module level graduate
Other prerequisites Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
This will usually be a course on quantum many particle physics approached by the perturbative methods using Green’s functions.
An outline could be:

1. Single-particle Green’s function
2. Review of second quantization
3. Diagrammatic method using many particle Green’s functions at temperature T=0
4. Diagrammatic method for finite T
5. Landau theory of Fermi liquids
6. Superconductivity
7. One-dimensional systems and bosonization

Intended learning outcomes
The students have mastered the principles of quantum field theory in many-particle systems. They are able to apply the acquired methods to current problems of Theoretical Solid-State Physics.

Courses
(type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Theory</td>
<td>10-M=AZTH-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Intended learning outcomes
The student is acquainted with the fundamental methods of analytics number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses (type, number of weekly contact hours, language — if other than German)
- V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--