Subdivided Module Catalogue
for the Subject

Computer Science
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2010
Responsible: Institute of Computer Science
Course of Studies - Contents and Objectives

The objective of the Master of Computer Science degree program is to impart in-depth knowledge of scientific research, fields of application and principles in computer science, in particular with regard to algorithmic thinking and mathematical reasoning.

Based on the foundation that the student has acquired in a bachelor's degree program, these abilities permit him/her to work independently, broaden and deepen his/her area of expertise, and transfer his/her expertise to new tasks. The student will thus be prepared to face the diverse tasks that he/she will be confronted with by society. The student will further prove his/her methodological competence, creativity and flexibility by solving problems using methods in computer science. A degree in this course of studies allows the student to pursue a scientific career, for example, at a doctoral level.

The master's program focuses on enhancing the capacity for abstraction, for precise analytical thinking, for the ability to structure complex connections, and for an independent application of methods in computer science to address specific problems, for perseverance in solving difficult problems and for qualified scientific research. The student demonstrates these abilities in the master's exam. Passing the exam, the student is awarded a higher professional degree. With his/her master's thesis, the student demonstrates his/her ability to work independently on a restricted computer science problem by applying established or adapted methods in accordance with scientific standards.

In particular, students of the master's program in Computer Science have the possibility of specialising in one of the following areas:

1. Algorithms and Theory,
2. Software Engineering,
3. Internet Technology,
4. Intelligent Systems,
5. Embedded Systems and

By focusing on one of these areas, the student augments his/her expertise in the respective area.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

14-Jul-2010 (2010-32)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis (30 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-I=MA-102-m01</td>
<td>Master Thesis</td>
<td>30</td>
<td>NUM</td>
<td>38</td>
</tr>
<tr>
<td>Compulsory Courses (15 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-I=SEM3-102-m01</td>
<td>Seminar</td>
<td>5</td>
<td>B/NB</td>
<td>49</td>
</tr>
<tr>
<td>10-I=PRAK-102-m01</td>
<td>Practical Course</td>
<td>10</td>
<td>B/NB</td>
<td>41</td>
</tr>
<tr>
<td>Compulsory Electives (75 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-I-GT-102-m01</td>
<td>Algorithmic Graph Theory</td>
<td>5</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>10-I-DB-102-m01</td>
<td>Databases</td>
<td>5</td>
<td>NUM</td>
<td>25</td>
</tr>
<tr>
<td>10-I-WBS-102-m01</td>
<td>Knowledge-based Systems</td>
<td>5</td>
<td>NUM</td>
<td>54</td>
</tr>
<tr>
<td>10-I-DM-102-m01</td>
<td>Data Mining</td>
<td>5</td>
<td>NUM</td>
<td>24</td>
</tr>
<tr>
<td>10-I-OOP-102-m01</td>
<td>Object-oriented Programming</td>
<td>5</td>
<td>NUM</td>
<td>40</td>
</tr>
<tr>
<td>10-I-KT-102-m01</td>
<td>Theory of Complexity</td>
<td>5</td>
<td>NUM</td>
<td>33</td>
</tr>
<tr>
<td>10-I-AR-102-m01</td>
<td>Automation and Control Technology</td>
<td>8</td>
<td>NUM</td>
<td>19</td>
</tr>
<tr>
<td>10-I-BS-102-m01</td>
<td>Operating Systems</td>
<td>5</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>10-I-RAK-102-m01</td>
<td>Computer Architecture</td>
<td>5</td>
<td>NUM</td>
<td>44</td>
</tr>
<tr>
<td>10-I-RK-102-m01</td>
<td>Computer Networks and Communication Systems</td>
<td>8</td>
<td>NUM</td>
<td>46</td>
</tr>
<tr>
<td>07-BI-102-m01</td>
<td>Bioinformatics</td>
<td>5</td>
<td>NUM</td>
<td>22</td>
</tr>
<tr>
<td>10-I=DK-102-m01</td>
<td>Data Compression</td>
<td>8</td>
<td>NUM</td>
<td>27</td>
</tr>
<tr>
<td>10-I=PV5-102-m01</td>
<td>Programming of Distributed Systems</td>
<td>8</td>
<td>NUM</td>
<td>42</td>
</tr>
<tr>
<td>10-I=IR-102-m01</td>
<td>Information Retrieval</td>
<td>5</td>
<td>NUM</td>
<td>32</td>
</tr>
<tr>
<td>10-I=STM-102-m01</td>
<td>Natural Language Processing and Text Mining</td>
<td>5</td>
<td>NUM</td>
<td>52</td>
</tr>
<tr>
<td>10-I=PR-102-m01</td>
<td>Advanced Space Project</td>
<td>8</td>
<td>NUM</td>
<td>43</td>
</tr>
<tr>
<td>10-I=ES-102-m01</td>
<td>Embedded Systems</td>
<td>8</td>
<td>NUM</td>
<td>29</td>
</tr>
<tr>
<td>10-I=KI-102-m01</td>
<td>Artificial Intelligence</td>
<td>8</td>
<td>NUM</td>
<td>36</td>
</tr>
<tr>
<td>10-I=EL-102-m01</td>
<td>E-Learning</td>
<td>5</td>
<td>NUM</td>
<td>30</td>
</tr>
<tr>
<td>10-I=MI-102-m01</td>
<td>Medical Informatics</td>
<td>5</td>
<td>NUM</td>
<td>39</td>
</tr>
<tr>
<td>10-I=RO-102-m01</td>
<td>Robotics</td>
<td>8</td>
<td>NUM</td>
<td>47</td>
</tr>
<tr>
<td>10-I=SSD-102-m01</td>
<td>Spacecraft Systems Design</td>
<td>8</td>
<td>NUM</td>
<td>51</td>
</tr>
<tr>
<td>10-I=AA-102-m01</td>
<td>Advanced Automation</td>
<td>8</td>
<td>NUM</td>
<td>6</td>
</tr>
<tr>
<td>10-I=RO2-102-m01</td>
<td>Robotics II: Networked Robots</td>
<td>8</td>
<td>NUM</td>
<td>48</td>
</tr>
<tr>
<td>10-I=DB2-102-m01</td>
<td>Databases II</td>
<td>8</td>
<td>NUM</td>
<td>28</td>
</tr>
<tr>
<td>10-I=LVS-102-m01</td>
<td>Analytical Performance Evaluation of Distributed Systems</td>
<td>8</td>
<td>NUM</td>
<td>37</td>
</tr>
<tr>
<td>10-I=ST-102-m01</td>
<td>Simulation Techniques for Performance Evaluation</td>
<td>8</td>
<td>NUM</td>
<td>50</td>
</tr>
<tr>
<td>10-I=AFS-102-m01</td>
<td>Automata Theory and Formal Languages</td>
<td>8</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>10-I=BL-102-m01</td>
<td>Computability Theory and Mathematical Logic</td>
<td>8</td>
<td>NUM</td>
<td>20</td>
</tr>
<tr>
<td>10-I=KT2-102-m01</td>
<td>Advanced Topics in Computational Complexity</td>
<td>8</td>
<td>NUM</td>
<td>34</td>
</tr>
<tr>
<td>10-I=KD-102-m01</td>
<td>Cryptography and Data Security</td>
<td>5</td>
<td>NUM</td>
<td>35</td>
</tr>
<tr>
<td>10-I=AG-102-m01</td>
<td>Computational Geometry</td>
<td>5</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>10-I=APA-102-m01</td>
<td>Approximation Algorithms</td>
<td>5</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>10-I=VG-102-m01</td>
<td>Visualization of Graphs</td>
<td>5</td>
<td>NUM</td>
<td>53</td>
</tr>
<tr>
<td>10-I=AGIS-102-m01</td>
<td>Algorithms for Geographic Information Systems</td>
<td>5</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
<td>Credits</td>
<td>Module Type</td>
<td>Credit Points</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>10-I=CB-102-m01</td>
<td>Compiler Construction</td>
<td>8</td>
<td>NUM</td>
<td>23</td>
</tr>
<tr>
<td>10-I=PA-102-m01</td>
<td>Program Design and Analysis</td>
<td>5</td>
<td>NUM</td>
<td>31</td>
</tr>
<tr>
<td>10-I=RAM-102-m01</td>
<td>Computer Arithmetic</td>
<td>5</td>
<td>NUM</td>
<td>45</td>
</tr>
<tr>
<td>10-I=AKAT-102-m01</td>
<td>Selected Topics in Algorithms and Theory</td>
<td>5</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>10-I=AKSE-102-m01</td>
<td>Selected Topics in Software Engineering</td>
<td>5</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>10-I=AKIT-102-m01</td>
<td>Selected Topics in Internet Technologies</td>
<td>5</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>10-I=AKIS-102-m01</td>
<td>Selected Topics in Intelligent Systems</td>
<td>5</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>10-I=AKES-102-m01</td>
<td>Selected Topics in Embedded Systems</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>10-I=AKLR-102-m01</td>
<td>Selected Topics of Aerospace Engineering</td>
<td>5</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>10-I=AKI-102-m01</td>
<td>Selected Topics in Computer Science</td>
<td>5</td>
<td>NUM</td>
<td>11</td>
</tr>
</tbody>
</table>
Module title
Advanced Automation

Abbreviation
10-I=AA-102-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Advanced topics in automation systems as well as instrumentation and control engineering, for example from the field of sensor data processing, actuators, cooperating systems, mission and trajectory planning.

Intended learning outcomes
The students have an advanced knowledge of selected topics in automation systems. They are able to implement advanced automation systems.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject Computer Science

Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms for Geographic Information Systems</td>
<td>10-I=AGIS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Algorithmic foundations of geographic information systems and their application in selected problems of acquisition, processing, analysis and presentation of spatial information. Processes of discrete and continuous optimisation. Applications such as the creation of digital height models, working with GPS trajectories, tasks of spatial planning as well as cartographic generalisation.

Intended learning outcomes

The students are able to formalise algorithmic problems in the field of geographic information systems as well as to select and improve suitable approaches to solving these problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Geometry</td>
<td>10-I=AG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator and Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
</table>
| 1 semester | graduate | Where applicable, prerequisites as specified by the lecturer at the begin-
| | | ning of the course (e. g. completion of exercises). |

Contents

In many areas of computer science -- for example robotics, computer graphics, virtual reality and geographic information systems -- it is necessary to store, analyse, create or manipulate spatial data. This class is about the algorithmic aspects of these tasks: We will acquire techniques that are needed to plan and analyse geometric algorithms and data structures. Every technique will be illustrated with a problem in the practical areas listed above.

Intended learning outcomes

The students are able to decide which algorithms or data structures are suitable for the solution of a given geometric problem. The students are able to analyse new problems and to come up with their own efficient solutions based on the concepts and techniques acquired in the lecture.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Algorithmic Graph Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>10-I-GT-102-m01</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Dean of Studies Informatik (Computer Science)</td>
</tr>
<tr>
<td>Module offered by</td>
<td>Institute of Computer Science</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Method of grading</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module level</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Other prerequisites</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes

The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation Algorithms</td>
<td>10-I=APA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

The task of finding the optimal solution for a given problem is omnipresent in computer science. Unfortunately, there are many problems without an efficient algorithm for an optimal solution. As a result, in practice, methods are used which do not always give the optimal solution but always give good solutions. This lecture will discuss drafting and analysing techniques for algorithms which have a proven approximation quality. With the help of practical optimisation problems, the lecture will introduce students to important drafting techniques such as greedy, local search, scaling as well as methods based on linear programming.

Intended learning outcomes

The students are able to analyse easy approximation methods in terms of their quality. They understand fundamental drafting techniques such as greedy, local search and scaling as well as methods based on linear programming and are able to apply these to new problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Computer Science</td>
<td>10-I=AKI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents
Selected topics in computer science.

Intended learning outcomes
The students are able to understand the solutions to complex problems in computer science and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Selected Topics in Algorithms and Theory | 10-I=AKAT-102-m01

Module coordinator	Module offered by
holder of the Chair of Computer Science I | Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Selected topics in algorithmics and theory.

Intended learning outcomes
The students understand the basic approach of algorithmic and theoretical computer science. They are able to understand the solutions to complex problems in this area and to apply them to similar questions.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Embedded Systems</td>
<td>10-I=AKES-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Selected topics in embedded systems.

Intended learning outcomes

The students possess specialised knowledge in the area of embedded systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Intelligent Systems</td>
<td>10-I=AKIS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Selected topics in intelligent systems.

Intended learning outcomes

The students possess an advanced knowledge in the area of intelligent systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses

(type, number of weekly contact hours, language — if other than German)

\[V + Ü \] (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Selected Topics in Internet Technologies

Module title: Selected Topics in Internet Technologies
Abbreviation: 10-I=AKIT-102-m01

Module coordinator: holder of the Chair of Computer Science III
Module offered by: Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e. g. completion of exercises).

Contents

Selected topics in computer communication, for example design aspects of future internet structures: setup and control structures of the internet, multicast protocols, protocols for multimedia communication, optical networks, control mechanisms for redundant and real-time communication networks, p2p networks, ad-hoc networks, or -- new concepts and technologies in mobile communication: digital modulation, signal propagation, channel coding, modern transmission technologies (adaptive modulation and coding, hybrid ARQ, OFDM, MIMO), mac layer, mobileIP, routing in ad-hoc networks, vertical handover, UMTS IP multimedia subsystem, or -- planning and management methods in telecommunication networks: planning methods (forward engineering, reverse engineering), network management paradigms (central and decentral), framework for network management (IETF traffic engineering, ITU-T TMN, OSI management), planning and management methods (IP management mechanisms, network design, measurement, acquisition and evaluation of traffic and performance data, visualisation, result handling, simulation and analysis of networks), management tools, outlook and perspectives, or -- other current topics.

Intended learning outcomes

The students have a knowledge of advanced and current topics in the management and design of modern wired and wireless communication systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics of Aerospace Engineering</td>
<td>10-I=AKLR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VIII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Selected topics in aerospace engineering, for example: satellite communication, rocket science, propulsion systems, sensors and actuators for orientation control, perturbation of orbits, interplanetary orbits, rendezvous and docking, design of space ships, design of planetary bases, life support systems, special aspects of operations, payloads, optical systems, RADAR, earth monitoring, thermo management, structure of space ships, special areas of navigation, space environment, environment simulation, verification and test of space faring systems, space astronomy and planet missions, space medicine and biology, material science, quality management, space law, aeroflight topics, avionics for airplanes, air traffic control, areal navigation, pilot interfaces, air traffic control, air traffic management.

Intended learning outcomes

The students possess an advanced knowledge about the respective topic of the selected area and are able to consider these foundations in their future plans of air or spaceborne systems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title:
Selected Topics in Software Engineering

Abbreviation:
10-l=AKSE-102-m01

Module coordinator:
holder of the Chair of Computer Science II

Module offered by:
Institute of Computer Science

ECTS:
5

Method of grading:
numerical grade

Only after succ. compl. of module(s):
--

Duration:
1 semester

Module level:
graduate

Other prerequisites:
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents:
Selected topics in software engineering.

Intended learning outcomes:
The students possess an advanced knowledge about selected aspects of software engineering.

Courses (type, number of weekly contact hours, language — if other than German):
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Automata Theory and Formal Languages

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automata Theory and Formal Languages</td>
<td>10-I=AFS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science IV</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Chomsky's theories of grammar and language classes, grammar normal forms, finite automata, pushdown automata, linear bound automaton, closure properties of language classes, decidability questions, minimisation of finite automata, regular sets, star-free languages, language acceptance by monoids, logic description of regular languages.

Intended learning outcomes

The students have a fundamental and applicable knowledge in the areas of Chomsky's grammar and language classes, of grammar normal forms, finite automata, push-down automata, linear bound automata, closure properties of language classes, decidability questions, minimising of finite automata, regular sets, star-free languages, language acceptance by monoids and logic descriptions of regular languages.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation and Control Technology</td>
<td>10-I-AR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Overview of automation systems, fundamental principles of control technology, Laplace transformation, transfer function, plant, controller types, basic feedback loop, fundamental principles of control engineering, automata, structure of Petri nets, Petri nets for automisation, machine-related structure of processing computation machines, communication between process computers and periphery devices, software for automation systems, process synchronisation, process communication, real-time operating systems, real-time planning.

Intended learning outcomes

The students master the fundamentals of automation and control.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3. Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Computability Theory and Mathematical Logic

Module title
Computability Theory and Mathematical Logic

Abbreviation
10-I=BL-102-m01

Module coordinator
holder of the Chair of Computer Science IV

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Gödel numbering, decidable and countable sets, halting problem, m-reducibility and completeness, create and productive sets, relative computability, Turing reduction, countable degrees, theorem by Friedberg and Muchnik, arithmetic hierarchy, propositional logic, first-order predicate logic, proof and deduction, Gödel’s completeness theorem, Tarski theorem, Gödel’s incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Intended learning outcomes
The students possess a fundamental and applicable knowledge in the areas of Gödel numbering, decidable and countable sets, halting problem, m-reducibility and completeness, create and productive sets, relative computability, Turing reducibility, countable degrees, theorem by Friedberg and Muchnik, arithmetic hierarchy, propositional logic, first-order predicate logic, proof and deduction, Gödel’s completeness theorem, Tarski theorem, Gödel’s incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>10-I-BS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Batch, time sharing, real-time virtual machines, system calls, processes and threads, cooperating processes, schedulers, process synchronisation, semaphores, monitors, critical regions, deadlocks, dynamic memory management, segmentation, paging, file systems, interfaces, directory structure, network file systems, hard drive organisation, basics of MS operating systems.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses

(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes).

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics</td>
<td>07-BI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of bioinformatics.

Intended learning outcomes

Students are proficient in methods for the analysis of DNA and protein databases.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Compiler Construction

Abbreviation: 10-I=CB-102-m01

Module coordinator: holder of the Chair of Computer Science II

Module offered by: Institute of Computer Science

ECTS: 8

Method of grading: numerical grade

Only after succ. compl. of module(s):

Duration: 1 semester

Module level: graduate

Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents:
Lexical analysis, syntactic analysis, semantics, compiler generators, code generators, code optimisation.

Intended learning outcomes:
The students possess knowledge in the formal description of programming languages and their compilation. They are able to perform transformations between them with the help of finite automata, push-down automata and compiler generators.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title
Data Mining

Abbreviation
10-I-DM-102-m01

Module coordinator
holder of the Chair of Computer Science VI

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Foundations in the following areas: definition of data mining and knowledge discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e.g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes
The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
Module title
Databases

Abbreviation
10-I-DB-102-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes

The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses
(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie
§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
Module title
Databases II

Abbreviation
10-I=DB2-102-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Data warehouses and data mining; XML databases; web databases; introduction to Datalog.

Intended learning outcomes
The students have advanced knowledge about relational databases, XML and data mining.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Data Compression
Abbreviation: 10-I=DK-102-m01

Module coordinator: holder of the Chair of Computer Science II
Module offered by: Institute of Computer Science

ECTS: 8
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g., completion of exercises).

Contents:
Entropy coding, text compression, dictionary methods, block transformations, image compression, human visual system, bitplane techniques, predicative methods, hierarchical transformations, discrete cosine transform, wavelets, JPEG baseline, JPEG 200, subband coding, fractal compression, vector quantisation, video compression, MPEG standards, audio compression.

Intended learning outcomes:
The students possess the methodic knowledge and practical skills for the development and use of compression methods for text, image, video and audio data.

Courses (type, number of weekly contact hours, language — if other than German):
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.
Language of assessment: German, English if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title: Deductive Databases
Abbreviation: 10-I=DDB-102-m01

Module coordinator: Dean of Studies Informatik (Computer Science)
Module offered by: Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Syntax and semantics of logic programs; data structures, program structures and applications for Prolog; analytical methods for Datalog; negation and stratification; disjunctive logic programs.

Intended learning outcomes
The students possess expertise in working with Prolog and Datalog (including negation and disjunction).

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Systems</td>
<td>10-I=ES-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Models of embedded systems, implementation methods (ASIC, AISIP, micro controller), verification of embedded systems, implementation planning static, periodic and dynamic, binding problems, hardware synthesis, software synthesis.

Intended learning outcomes

The students are familiar with the technical possibilities for the design of embedded systems and master the most important techniques for the modelling, verification and optimisation of such systems in hardware and software.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Learning</td>
<td>10-I=EL-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Learning paradigms, learning system types, author systems, learning platforms, standards for learning systems, intelligent tutoring systems, student models, didactics, problem-oriented learning and case-based training systems, adaptive tutoring systems, computer-supported cooperative learning, evaluation of learning systems.

Intended learning outcomes

The students possess a theoretical and practical knowledge about eLearning and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Design and Analysis</td>
<td>10-I=PA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e. g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes

The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Retrieval</td>
<td>10-I=IR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>IR models (e.g. Boolean and vector space model, evaluation), processing of text (tokenising, text properties), data structures (e.g. inverted index), query elements (e.g. query operations, relevance feedback, query languages and paradigms, structured queries), search engine (e.g. architecture, crawling, interfaces, link analysis), methods to support IR (e.g. recommendation systems, text clustering and classification, information extraction).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V + Ü (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>(approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)</td>
</tr>
<tr>
<td>Language of assessment</td>
<td>German, English if agreed upon with the examiner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Referred to in LPO I (examination regulations for teaching-degree programmes) | |
|---| |</p>
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Complexity</td>
<td>10-I-KT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Topics in Computational Complexity</td>
<td>10-I=KT2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchy, complexity of probabilistic algorithms.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchies, complexity of probabilistic algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Cryptography and Data Security

Abbreviation: 10-I=KD-102-m01

Module coordinator: Dean of Studies Informatik (Computer Science)
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises)

Contents:
Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes:
The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Courses (type, number of weekly contact hours, language — if other than German):
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Artificial Intelligence

Abbreviation: 10-I=KI-102-m01

Module coordinator: holder of the Chair of Computer Science VI

Module offered by: Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester

Module level: graduate

Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation, planning, probabilistic closure and Bayesian networks, utility theory and decidability problems, learning from observations, knowledge while learning, neural networks and statistical learning methods, reinforcement learning.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence and are able to assess possibilities for its application.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (approx. 80 to 90 minutes); if announced by the lecturer four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Analytical Performance Evaluation of Distributed Systems

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Performance Evaluation of Distributed Systems</td>
<td>10-I=LVS-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science III

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Traffic theoretic models, fundamental concepts of theory of probability, transformation techniques, stochastic processes, methods for performance analysis of technical systems, queue-/traffic theory, analysis of Markov, non-Markov and time critical systems, matrix analytical method, practical examples for performance analysis of computer systems and networks: throughput and goodput analysis and other characteristics.

Intended learning outcomes
The students possess the methodic knowledge and the practical skills necessary to model technical systems by means of the theory of probability and mathematical statistics.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>10-I=MA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Researching and writing on a complex problem in computer science within a given time frame and adhering to the principles of good scientific practice.

Intended learning outcomes

The students are able to research and write on a complex topic in computer science, adhering to the principles of good scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

assessed written thesis

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Informatics</td>
<td>10-I=MI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Electronic patient folder, coding of medical data, hospital information systems, operation of computers in inpatient and functional units, medical decision making and assistance systems, statistics and data mining in medical research, case-based training systems in medical training.

Intended learning outcomes

The students possess theoretical and practical knowledge about the application of computer science methods in medicine.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-oriented Programming</td>
<td>10-I-OOP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Polymorphism, generic programming, meta programming, web programming, templates, document management.

Intended learning outcomes

The students are proficient in the different paradigms of object-oriented programming and have experience in their practical use.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course</td>
<td>10-I=PRAK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Completion of a practical task.

Intended learning outcomes
The practical allows participants to work on a problem in computer science in teams.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written elaboration, details to be specified by the lecturer at the beginning of the course
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
In seminars and lab courses, participants are not entitled to claim certain topics of seminars/lab courses.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming of Distributed Systems</td>
<td>10-I=PVS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e. g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Design and development of parallely and distributedly executed programs.

Intended learning outcomes

The students possess the methodic knowledge and practical skills for the design and development of parallely and distributedly running programs.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Space Project</td>
<td>10-I=PR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Model project for space flight systems, e.g. satellites, constellations, payloads, space stations, bases on other celestial bodies.

Intended learning outcomes

With the help of a specific example, students have acquired practically relevant knowledge about the workflow of a typical interdisciplinary spaceflight project. They have consolidated their knowledge about the specific topic of the project.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Arithmetic</td>
<td>10-l=RAM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Spaces of numerical computation, raster and rounding, definition and implementation of computational arithmetic and interval calculation.

Intended learning outcomes

The students possess knowledge about the spaces of numerical computation, raster and roundings, definition and implementation of computational arithmetic and interval calculation. They master the application of algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Networks and Communication Systems</td>
<td>10-I-RK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students possess an intricate knowledge of the structure of computer networks and communication systems as well as fundamental principles to rate these systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Robotics | 10-I=RO-102-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science VII | Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents

History, applications and properties of robots, direct kinematics of manipulators: coordinate systems, rotations, homogenous coordinates, axis coordinates, arm equation. Inverse kinematics: solution properties, end effector configuration, numerical and analytical approaches, examples of different robots for analytical approaches. Workspace analysis and trajectory planning, dynamics of manipulators: Lagrange-Euler model, direct and inverse dynamics. Mobile robots: direct and inverse kinematics, propulsion system, tricycle, Ackermann steering, holonomes and non-holonomic restrictions, kinematic classification of mobile robots, posture kinematic model. Movement control and path planning: roadmap methods, cell decomposition methods, potential field methods. Sensors: position sensors, speed sensors, distance sensors.

Intended learning outcomes

The students master the fundamentals of robot manipulators and vehicles and are, in particular, familiar with their kinematics and dynamics as well as the planning of paths and task execution.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3. Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics II: Networked Robots</td>
<td>10-I=RO2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Foundations of dynamic systems, controllability and observability, controller design through pole assignment: feedback and feed-forward, state observer, feedback with state observer, time discrete systems, stochastic systems: foundations of stochastics, random processes, stochastic dynamic systems, Kalman filter: derivation, initialising, application examples, problems of Kalman filters, extended Kalman filter.

Intended learning outcomes

The students master all fundamentals that are necessary to understand Kalman filters and their use in applications of robotics. The students possess a knowledge of advanced controller and observer methods and recognise the connections between the dual pairs controllability - observability as well as controller design and observer design. They also recognise the relationship between the Kalman filter as a state estimator and an observer.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
 Seminar

Abbreviation
 10-I=SEM3-102-m01

Module coordinator
 Dean of Studies Informatik (Computer Science)

Module offered by
 Institute of Computer Science

ECTS
 5

Method of grading
 (not) successfully completed

Only after succ. compl. of module(s)
 --

Duration
 1 semester

Module level
 graduate

Other prerequisites
 --

Contents
 Independent review of a current topic in computer science based on literature and, where applicable, software with written and oral presentation.

Intended learning outcomes
 The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)
 S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
 Talk with written elaboration, details to be specified by the lecturer at the beginning of the course
 Language of assessment: German, English if agreed upon with the examiner

Allocation of places
 --

Additional information
 In seminars and lab courses, participants are not entitled to claim certain topics of seminars/lab courses.

Referred to in LPO I (examination regulations for teaching-degree programmes)
 --
Module title
Simulation Techniques for Performance Evaluation

Abbreviation
10-I=ST-102-m01

Module coordinator
holder of the Chair of Computer Science III

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents
Introduction to simulation techniques, statistical groundwork, creation of random numbers and random variables, random sample theory and estimation techniques, statistical analysis of simulation values, inspection of measured data, planning and evaluation of simulation experiments, special random processes, possibilities and limits of model creation and simulation, advanced concepts and techniques, practical execution of simulation projects.

Intended learning outcomes
The students possess the methodic knowledge and the practical skills necessary for the stochastic simulation of (technical) systems, the evaluation of results and the correct assessment of the possibilities and limits of simulation methods.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Systems Design</td>
<td>10-I=SSD-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Natural Language Processing and Text Mining

Abbreviation
10-I=STM-102-m01

Module coordinator
holder of the Chair of Computer Science VI

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Contents
Foundations in the following areas: definition of NLP and text mining, properties of text, sentence boundary detection, tokenisation, collocation, N-gram models, morphology, hidden Markov models for tagging, probabilistic parsing, word sense disambiguation, term extraction methods, information extraction, sentiment analysis.

The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing mostly for English. They are able to solve problems through the methods taught. They have gained experience in the application of text mining algorithms.

Intended learning outcomes
The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing. They are able to solve practical problems with the methods acquired in class. They have gained experience in the application of text mining algorithms.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	**Abbreviation**
Visualization of Graphs | 10-l=VG-102-m01

Module coordinator	**Module offered by**
holder of the Chair of Computer Science I | Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).</td>
</tr>
</tbody>
</table>

Contents

This course covers the most important algorithms to draw graphs. Methods from the course *Algorithmische Graphentheorie* (*Algorithmic Graph Theory*) such as divide and conquer, flow networks, integer programming and the planar separator theorem will be used. We will become familiar with measures of quality of a graph drawing as well as algorithms to optimise these measures.

Intended learning outcomes

The participants get an overview of graph visualisation and become familiar with typical tools. They consolidate their knowledge about the modelling and solving of problems with the help of graphs and graph algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge-based Systems</td>
<td>10-I-WBS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--