

Subdivided Module Catalogue for the Subject

Computer Science and Sustainability

as a Bachelor's with 1 major with the degree "Bachelor of Science" (180 ECTS credits)

Examination regulations version: 2021 Responsible: Faculty of Mathematics and Computer Science

Responsible: Institute of Computer Science

Learning Outcomes

German contents and learning outcome available but not translated yet.

Nach erfolgreichem Abschluss verfügen die Studierenden über folgende Fähigkeiten:

- die Methoden algorithmischen Denkens und Arbeitens,
- analytisches Denken, Abstraktionsvermögen und die Fähigkeit, komplexe Zusammenhänge zu strukturieren,
- fundierte Grundkenntnisse, Methodenkenntnisse und die Entwicklung der für die Informatik typischen Denkstrukturen sowie
- aktuelle Methodenkenntnisse für nachhaltige IT-Systeme und in der IT für Nachhaltigkeit.

Das Ziel des Studienganges ist es, Studierende mit hervorragenden Berufsperspektiven für "Informatik und Nachhaltigkeit" auszubilden. Die Studierenden sollten technisch-informatisches Interesse mitbringen und sich für interdisziplinäre Fragestellungen im Themenbereich Nachhaltigkeit interessieren. Sie erwartet eine fundierte Ausbildung, die informatische Berufsfelder öffnet und gleichzeitig gesellschaftliche Fragen zur Nachhaltigkeit diskutiert. Der Studiengang schafft die Voraussetzungen, um disziplinübergreifend mit Expertinnen und Experten aus anderen Bereichen zu arbeiten (T-Shaped Future Careers).

Der erfolgreiche Abschluss des Bachelorstudiums "Informatik und Nachhaltigkeit" qualifiziert auch für die Master-Studiengänge in Informatik an der Universität Würzburg.

In den in den Modulbeschreibungen erläuterten Lernergebnissen erlernen die Studierenden zudem die im Leitbild der Universität sowie den Qualitäts- und Qualifikationszielen der Fakultät für Mathematik und Informatik formulierten Elemente:

- zur Entwicklung ihrer Persönlichkeit
- Sie haben sich wissenschaftliches Denken und Arbeiten als fachliche Expertinnen und Experten auf der ihnen entsprechenden Niveaustufe 6 des Hochschulqualifikationsrahmens angeeignet.
- Sie wenden die Regeln guter Wissenschaftlicher Praxis auch in fachfremden Bereichen an und können als fachliche Expertinnen und Experten zielgruppenspezifisch fachkundig fundierte komplexere Zusammenhänge verständlich darstellen.
- Sie wissen um ihre gesellschaftspolitische Verantwortung als in der Informatik und Nachhaltigkeit gebildete Akademikerinnen und Akademiker und können fachlich begründete Bewertungen einer breiteren Öffentlichkeit vermitteln.
- Sie werden zu forschungsbasiertem Fachwissen aber auch kritischem Denken hingeführt, um Lösungen für Probleme aus gesellschaftlicher, ethischer und nachhaltiger Sicht zu hinterfragen.
- Sie erwerben multidisziplinäre Kompetenzen für interdisziplinäre Zusammenarbeit, um Fragestellungen zwischen verschiedenen Wissensbereichen hinsichtlich Nachhaltigkeit zu bearbeiten.

Berufsziele

Den Absolventinnen und Absolventen des Studienfachs Bachelor Informatik und Nachhaltigkeit bieten sich hervorragende Berufsperspektiven. Das Studium "Informatik und Nachhaltigkeit" macht die Studierenden mit den wichtigsten Teilgebieten der Informatik sowie Nachhaltigkeit in einem der Vertiefungsbereiche des Studiums vertraut. Die Studentinnen und Studenten lernen, nachhaltige IT-Systeme zu entwickeln – zum Beispiel energieeffiziente Systeme (Green IT). Zusätzlich erfahren sie, wie die Informatik im Umweltbereich zu nachhaltigen Ansätzen führen kann.

Berufseinstieg in einem Unternehmen oder einer öffentlichen Institution: Informatik und Nachhaltigkeit sowie die damit verbundene Digitalisierung sind hochrelevante Themen in Gesellschaft und Wirtschaft (national, international).

- Das Berufsfeld beinhaltet gängige Methoden aus dem Bereich Informatik mit vielfältigen beruflichen Möglichkeiten in nahezu jeder Branche, siehe Berufsziele des Bachelorstudiengangs Informatik.
- Informatiker und Informatikerinnen sind Mangelware in fast allen Bereichen der Wirtschaft.

Durch die Verankerung von Nachhaltigkeit im Studiengang ergeben sich Aufgabenbereiche insbesondere im Umweltschutz, Umweltmanagement und -technik, in der Geographie, in der Geologie und in der Biologie. Das Berufsfeld umfasst z.B.

- Softwareentwicklung (Cloud, Server, Mobile Systeme),
- Entwicklung von nachhaltigen und wirtschaftlichen IT-Systemen,
- Aufgaben im Bereich Umweltinformatik, Umweltmanagement, Geoinformatik,
- Beratung hinsichtlich Simulationssoftware, Data Management, Nachhaltigkeit in IT-Systemen,
- Administration von Netzen und Systemen, IT-Management sowie
- IT-Projektmanagement, Aufgaben eines Digital Officer.

Qualifikationsziele

Nach erfolgreichem Abschluss des Studiums verfügen die Absolventinnen und Absolventen über die folgenden Kompetenzen:

1. Allgemeine Kompetenzen

- Kritische Reflexion und Einordnung von wissenschaftlichen Erkenntnissen.
- Schriftliche und mündliche Präsentation erworbener Kenntnisse.
- Durchführung eigener wissenschaftlicher & angewandter Projekte.
- Verfassen wissenschaftlicher Texte nach fachlichen Standards.
- Projekt- und Teamarbeit.
- Ethik und professionelles Selbstverständnis.
- Gesellschaftliche, ökologische, ethische Verantwortung zu Informatik und Nachhaltigkeit.

2. Methodische Kompetenzen

- Methoden algorithmischen Denkens und Arbeitens.
- Analytisches Denken und Abstraktionsvermögen.
- Fähigkeit, komplexe Zusammenhänge zu verstehen und zu strukturieren.
- Fundierte Grundkenntnisse, Methodenkenntnisse und die Entwicklung der für die Informatik typischen Denkstrukturen.
- Aktuelle Methodenkenntnisse für nachhaltige IT-Systeme und der IT für Nachhaltigkeit.
- Analyse-, Design- und Bewertungsmethoden für nachhaltige IT-Systeme und für IT für Nachhaltigkeit.

3. Inhaltliche Kompetenzen

- Programmierung, programmiertechnische Verfahren, Algorithmen und Datenstrukturen.
- Softwareentwurf und Softwareanalyse.
- Speichern, Verarbeiten, Auswerten von Daten in (Umwelt-) Informationssystemen.
- Rechnernetze und Informationsübertragung, Umweltbeobachtung mit Sensorik.
- Modellbildung und Simulation für Nachhaltige IT und IT für Nachhaltigkeit.
- Nachhaltigkeitskonzepte und Bewertungen.
- Ressourcenbewusstes System Engineering und Ressourcen-Beschränkung von technischen Systemen.
- Herstellen interdisziplinärer Bezüge zu Anwendungsfeldern (Mensch-Umwelt-Beziehungen, Umwelt- und Erdbeobachtung, Klima, Ökosysteme).

Wissenschaftliche Befähigung

• Die Absolventinnen und Absolventen können die mathematischen, technischen, theoretischen und praktischen Grundlagen der Kerninformatik sowie in den Anwendungsfächern (Biologie und Geographie) anwenden.

- Die Absolventinnen und Absolventen verstehen die wesentlichen Zusammenhänge und Konzepte der einzelnen Teilgebiete der Informatik und Nachhaltigkeit.
- Die Absolventinnen und Absolventen k\u00f6nnen tiefergehende Kenntnisse in mindestens einem Teilgebiet abrufen
- Die Absolventinnen und Absolventen können unter Anleitung softwaregetriebene Experimente durchführen, analysieren, auswerten und die erhaltenen Ergebnisse darstellen.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten und die Ergebnisse zu interpretieren und zu bewerten. Sie können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, interdisziplinäre Problemlösungskompetenz und die Fähigkeit, Zusammenhänge zu strukturieren
- Die Absolventinnen und Absolventen sind in der Lage, Methoden der Informatik und Nachhaltigkeit unter Anleitung auf konkrete praktische oder theoretische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen sind in der Lage, eine Forschungsarbeit zu gestalten, in der sie gelerntes Wissen von Forschungsmethoden benutzen und damit eine abgeleitete Forschungsfrage (auch in den Anwendungsfächern) beantworten.
- Die Studierenden kennen und verstehen Konzepte zum Erreichen von Nachhaltigkeit, Ansätze zur Bewertung der Nachhaltigkeit von technischen Systemen, Konflikte und Trade-offs zur Erreichung von Nachhaltigkeit. Die Studierenden schaffen ein Bewusstsein für Zielkonflikte in der Nachhaltigkeitsdiskussion. Sie können ihre Erkenntnisse auf Praxisbeispiele übertragen, um Nachhaltigkeitskonzepte anzuwenden und zu bewerten.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Kommunikationskompetenz: Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten. Außerdem beherrschen sie die Fachsprache der Expertinnen und Experten der Anwendungsfächer.
- Teamfähigkeit, Konfliktkompetenz: Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem Team zusammenzuarbeiten und auftretende Konflikte zu lösen. Sie können ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in international zusammengesetzten Teams anwenden.
- Praxisbezug: Die Absolventinnen und Absolventen kennen wichtige Anforderungen und Arbeitsweisen im gewerblichen Umfeld, in Forschung und Entwicklung sowie in den Anwendungsfächern des Studiengangs.
- Problemlösungskompetenz: Die Absolventinnen und Absolventen sind befähigt, Probleme zu analysieren und zu lösen und sich in weniger vertraute, insbesondere interdisziplinäre Themenkomplexe einzuarbeiten.

Persönlichkeitsentwicklung

- Eigenverantwortlichkeit, Selbstständigkeit: Entwicklung der Bereitschaft und Befähigung zum selbstständigen und selbstverantwortlichen Lernen und Arbeiten und damit des lebenslangen Lernens.
- Wissenschaftliche Praxis: Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Diskussionskultur: Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Kritikfähigkeit und verantwortliches Handeln: Die Absolventinnen und Absolventen erlangen die Fähigkeit zur Kritik und Reflexion von Lösungen aus unterschiedlichen Sichtweisen (technisch, gesellschaftlich, ethisch, nachhaltig) auf Basis des erworbenen Wissens, um zu eigenständigem Denken und begründeten selbstbestimmten Entscheidungen zu gelangen.

Befähigung zum gesellschaftlichen Engagement

- Ethisches Handeln: Die Absolventinnen und Absolventen können naturwissenschaftliche Entwicklungen kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt in Ansätzen erfassen. Sie haben gelernt, was Nachhaltigkeit und Nachhaltigkeitsziele sind, welche direkten und indirekten Auswirkungen Informationstechnik auf Umwelt und Gesellschaft hat und wie Informatik dazu beitragen kann, Umweltprobleme und Herausforderungen der Nachhaltigkeit zu lösen.
- Kritikfähigkeit und verantwortliches Handeln: Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, naturwissenschaftlicher, kultureller etc. Fragestellungen erweitert und können begründet Position beziehen und verantwortlich handeln.
- Kultur der Partizipation: Die Absolventinnen und Absolventen entwickeln die Bereitschaft und Fähigkeit, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

09-Jun-2021 (2021-69)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

The subject is divided into

Abbreviation	Module title	ECTS credits	Method of grading	page
Compulsory Courses (115	ECTS credits)			ļ
	Sustainability (90 ECTS credits)			
10-I-GdP-172-m01	Fundamentals of Programming	5	NUM	56
10-I-ADS-152-m01	Algorithms and data structures	10	NUM	41
10-I-ST-152-m01	Software Technology	10	NUM	95
10-I-SWP-152-m01	Practical course in software	10	B/NB	97
10-I-PP-191-m01	Practical Course in Programming	10	B/NB	81
10-l-RIÜ-191-m01	Computer Networks and Information Transmission	10	NUM	87
10-I-DB-152-m01	Databases	5	NUM	51
04-Geo-GIS-152-m01	Geographical Information Systems (GIS)	5	NUM	15
10-I-NIT-212-m01	Sustainability and IT	5	NUM	76
10-I-UB-212-m01	Environmental Monitoring	5	NUM	104
10-I-NuB-212-m01	Sustainability Concepts and Assessment	5	NUM	80
10-l-MuS-212-m01	Modeling and Simulation	5	NUM	75
10-I-EnAE-212-m01	Energy-Aware Engineering	5	NUM	55
Mathematics (25 ECTS o	redits)	•		·
10-M-INF1-152-m01	Mathematics 1 for students in Computer Science	10	NUM	110
10-M-INF2-152-m01	Mathematics 2 for students in Computer Science	10	NUM	111
10-I-GudO-212-m01	Graphs and Discrete Optimization	5	NUM	59
Compulsory Electives (35	ECTS credits)	•		
Interdisciplinary princip	oles of sustainability (5 ECTS credits)			
04-Geo-EGI-212-m01	Introduction to Geography for Computer Scientists	5	NUM	10
07-GBio-212-m01	Basics in Biology	5	NUM	27
Sustainable computer s	cience (5 ECTS credits)			
Subfield Computer Sci	ence (5 ECTS credits)			
10-I-SEC-191-m01	IT Security	5	NUM	90
10-l-MCS-191-m01	Introduction into Human-Computer Interaction	5	NUM	72
10-I-HWP-152-m01	Practical course in hardware	10	B/NB	60
10-l-lCG-152-m01	Interactive Computer Graphics	5	NUM	62
10-I-RAL-152-m01	Digital computer systems	10	NUM	84
10-I-WBS-152-m01	Knowledge-based Systems	5	NUM	105
10-I-DM-152-m01	Data Mining	5	NUM	53
10-I-APR-172-m01	Advanced Programming	5	NUM	45
10-I-KT-191-m01	Computational Complexity	5	NUM	67
10-I-KD-191-m01	Cryptography and Data Security	5	NUM	65
10-I-AR-152-m01	Automation and Control Technology	8	NUM	47
10-l-BS-191-m01	Operating Systems	5	NUM	49
10-I-RAK-152-m01	Computer Architecture	5	NUM	82
10-I-RK-212-m01	Control Principles of Modern Communication Systems	5	NUM	89
10-l-Gl-152-m01	Selected Basics of Computer Science	5	NUM	58
10-l-LOG-152-m01	Logic for informatics	5	NUM	70
10-I-TIV-152-m01	Theoretical Informatics	5	NUM	99

		1	,	
10-I-TIT-191-m01	Tutorial Theoretical Informatics	5	B/NB	98
10-I-SEM1-152-m01	Seminar - Selected Topics in Computer Science 1	5	NUM	92
Subfield Aerospace Com	puter Science			
10-I-LFS-172-m01	Introduction to Aviation Systems	5	NUM	69
10-I-RFS-172-m01	Introduction to Space Systems	5	NUM	86
10-I-MEC-172-m01	Fundamentals and Programming of Avionics	10	NUM	74
10-InNa-LRLA-212-m01	Aerospace Laboratory	10	NUM	78
Subfield Mathematics				
10-M-DIMaf-152-m01	Introduction to Discrete Mathematics for students of other subjects	10	NUM	10
10-M-NUM1af-152-m01	Numerical Mathematics 1 for students of other subjects	10	NUM	11
10-M-STO-1af-152-mo1	Stochastics 1 for students of other subjects	10	NUM	11
	Ordinary Differential Equations for students of other subjects	10	NUM	10
	Operations Research for students of other subjects	10	NUM	11
	tainability (20 ECTS credits)			
	on climate (20 ECTS credits)			
	Special Problems of Physical Geography 1 (Earth System: Man			1
0/-(160-5P(11-152-m01	and Environment)	5	NUM	2
	Methods of Physical Geography 1	5	NUM	1
	Applied physical geography	10	NUM	10
	Selected Basics of Sustainability in Geography	5	NUM	4
	on remote sensing (20 ECTS credits)			1 7
o4-Geo-FER-				1
NE-152-mo1	Introduction to Geographical Remote Sensing	5	NUM	1
04-Geo-FER-				+
NA-152-mo1	Applications of Remote Sensing in Geography	5	NUM	1
	Methods for Analysing Remote Sensing Data	5	NUM	1
	Methods of Physical Geography 1	5	NUM	13
	Selected Basics of Sustainability in Geography	5	NUM	+
Biology (20 ECTS credits)	NOW	4
		6	L NILIAA	1 2
	Plant and Animal Ecology		NUM	2
	Computational Biology - from Genom to Ecosystem	5	NUM	3
	Mathematical Biology and Biostatistics	4	NUM	3
	Interdisciplinary Project I	5	NUM	3
	Evolutionary Ecology	5	NUM	2
	Ecology and Nature Conservation	5	NUM	2
	Selected Basics of Sustainability in Biology	5	NUM	4
(ey Skills Area (20 ECTS cr				
General Key Skills (5 ECT:	S credits) s listed below, students may also take modules offered by JMU	as part of t	he pool of gen	ieral
transferable skills (ASQ).				
	ect-specific)		1	,
transferable skills (ASQ). General Key Skills (subj	ect-specific) Tutor activity 1	2	B/NB	10
transferable skills (ASQ). General Key Skills (subj		2	B/NB B/NB	10

10-l-SFM-lnNa-212-m01	Seminar - Selected Topics in Computer Science and Sustainability	5	NUM	94		
10-I-IuE-212-m01 Computer Science and Ethics		5	NUM	64		
10-InNa-PV-212-m01	10-InNa-PV-212-mo1 Project Presentation		NUM	79		
Thesis (10 ECTS credits)	Thesis (10 ECTS credits)					
10-InNa-BA-212-mo1 Bachelor's Thesis Computer Science and Sustainability		10	NUM	77		

Module	e title		Abbreviation			
Introduction to Geography for Computer Scientists					04-Geo-EGI-212-m01	
Module	e coord	inator		Module offered by		
holder	holder of the Professorship of Climatology			Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 semester undergraduate						
Conten	Contents					

The lecture gives an overview of the basics of geography and geology for computer scientists with a focus on sustainability. In particular, an overview of the relevant subject areas such as physical geography like climate geography, geographical remote sensing and human geography is given.

Intended learning outcomes

The students learn the basics of geography as well as its diverse problems and tasks.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) term paper (approx. 20 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Module title					Abbreviation		
Applications of Remote Sensing in Geography			Geography		04-Geo-FERNA-152-m01		
Module coordinator				Module offered by			
holder	of the	Professorship of Rem	ote Sensing	Institute of Geogra	stitute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)			
5	nume	rical grade					
Duration Module level Other prerequisites			Other prerequisit	es			
1 semester undergraduate							
Contor	Contents						

The lecture imparts basic knowledge about the analysis of remote sensing data for geographical questions. First, fundamental understanding of remotely sensed data as geoinformation and later geoinformation in general (geographical data, metadata, spatial overlaying of geodata, geographical information systems) is given. Following topics are analogue, visual image interpretation, digital image processing (calibration, transformation, filter) and atmospheric correction. A focus lies on the digital remote sensing based mapping, i.e. spectral analysis, classification and change detection. Furthermore, basics in modelling of remote sensing parameters is conveyed.

Intended learning outcomes

The students explain applications of earth observation and remote sensing. They explain geographical data and reflect their essential characteristics. They summarise fundamental aspects of (digital) image processing and assess different methodological approaches for the evaluation of remote sensing data for geographical questions.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Geography (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Introduction to Geographical Remote Sensing			ote Sensing		04-Geo-FERNE-152-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Professorship of Rem	ote Sensing	Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level Other prere		Other prerequisite	?S			
1 semester undergraduate						
Contor	Contents					

The lecture gives an overview of the principles of remote sensing, that are: theoretical basics, history of remote sensing / physical principles (energy and radiation, interactions radiation - atmosphere, interactions radiation - surfaces, objects under investigation: soils, vegetation, water) / thermal remote sensing: radiation laws, radiant temperature, emissivity / detectors: characterisation of remote sensing data, platforms and sensors (passive and active systems, e.g. hyperspectral and LiDAR) / radar remote sensing / radar interferometry / basics for remote sensing parameters (land, atmosphere, oceans).

Intended learning outcomes

The students describe basics of earth observation. They outline and explain the radiation path through the atmosphere to the object under investigation and back to the sensor. They emphasise essential characteristics of remote sensing data, sensors and platforms.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 I Nr. 2

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Geography (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

First state examination for the teaching degree Gymnasium Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Geographical Information Systems (GIS)					04-Geo-GIS-152-m01	
Module	e coord	inator		Module offered by		
holder	holder of the Professorship of Physical Geograp			Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conten	Contents					

Introduction to GIS; application examples from Geography, earth and environmental sciences; introduction to GIS ArcGIS; data models to GIS: factual and geometrical data (vector and grid data); geometrical, topological and topical data modelling; data administration with ArcGIS (ArcCatalog); conception and structure of a GIS project (ArcGIS); plain principle, meta data, data format, attribute data; relational data model; software components of ArcGIS (ArcMap, ArcToolbox, ArcInfo Workstation); data acquisition and preparation of geometrical and factual data (digitisation, measurement; administration of geometrical and factual data (introduction to structure of a geodata base); geographical analysis of geodata (linkage, intersection, topical and geographical queries, geographical interpolation, terrain analysis from digital elevation data); interpretation, visualisation and result presentation of geodata (signatures, diagrams and map design, topical maps)

Intended learning outcomes

Students achieve knowledge of the type and development, management, processing and presenting of geographical data. They acquire skills in dealing with GIS and in the organisation of GIS projects as well as in the processing and interpretation of spatial analysis of GIS (GIS software).

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

portfolio (approx. 20 pages, including 3 maps, 2 logs) Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

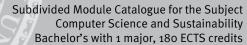
Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)


Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Geography (2023)

Bachelor's with 1 major Computer Science and Sustainability (2021)

JMU Würzburg • generated 02-Aug-2025 • exam. reg. data record Bachelor (180 ECTS) Informatik und Nachhaltigkeit - 2021

Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Module title					Abbreviation	
Methods for Analysing Remote Sensing Data			ng Data	-	04-Geo-MFD-152-m01	
Module coordinator				Module offered by		
holder	holder of the Professorship of Remote Sensing			Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level Other prerequisite		Other prerequisites	;			
1 semester undergraduate						

This module essentially conveys methodological basics: geometric corrections / radiometric corrections (calculation of reflectances, atmospheric correction and correction of viewing and illumination angles) / spatial and spectral filters / image enhancement for visual image interpretation / analysis of spectral profiles / information extraction (rationing, indices, transformations) / classification of remote sensing data and accuracy assessment / pixel based vs. object-oriented analysis / multi-temporal data analysis (time series generation, change detection) / joint usage of remote sensing data with other geoinformation in geographical information systems (raster and vector data).

Intended learning outcomes

The students apply fundamental methods for the processing and analysis of mainly optical earth observation data. They create maps from remotes sensing data self-reliantly and interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)

S(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation (approx. 45 minutes) with related term paper (approx. 15 pages)

Language of assessment: German and/or English Assessment offered: Once a year, winter semester

Allocation of places

max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters with the individual student's progression through their degree programme being taken into account. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Geography (2015)

Module studies (Bachelor) Geography (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Geography (2023)

Module title					Abbreviation	
Metho	Methods of Physical Geography 1			-	04-Geo-MPG1-152-m01	
Module coordinator				Module offered by		
holder	holder of the Professorship of Climatology			Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level Other prerequisite			Other prerequisite	s		
1 semester undergraduate						
Conto	Contonts					

This module is dedicated to an advanced methodical knowledge of data analysis in "Physical Geography". There are several alternative courses, e.g. dealing with climatological measurements, climate modelling, geophysical methods, pedologic field methods, remote sensing and advanced GIS applications.

Intended learning outcomes

The students improve their methodical skills in terms of cartography, data analysis, statistics, lab techniques, modelling and IT techniques, exemplified by means of scientific projects.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) presentation (approx. 30 minutes) or
- d) portfolio (approx. 20 pages, including 3 maps, 2 logs) or
- e) term paper (approx. 20 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 I Nr. 2

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Module title					Abbreviation	
Applied physical geography					04-Geo-PPG-152-m01	
Module coordinator				Module offered by		
holder	holder of the Professorship of Climatology			Institute of Geography and Geology		
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)		
10	nume	rical grade				
Duration Module level Other pro		Other prerequisites				
2 seme	2 semester undergraduate					
Contor	Contonte					

This module consists of an applied project dealing with a specific issue in "Physical Geography" and comprising the following procedures: data collection, data analysis and presentation of results.

Intended learning outcomes

The studients learn how to practically implement a given objective in Physical Geography. They also gain experience in independent an autonomous teamwork.

Courses (type, number of weekly contact hours, language — if other than German)

S (4)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) project (approx. 30 pages) or
- b) presentation (approx. 30 minutes) or
- c) term paper (approx. 20 pages)

Language of assessment: German and/or English Assessment offered: Once a year, summer semester

Allocation of places

max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters with the individual student's progression through their degree programme being taken into account. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Modul	e title		Abbreviation			
Special Problems of Physical Geography 1 (Earth System: Man and Environment)					04-Geo-SPG1-152-m01	
Modul	e coord	inator		Module offered by		
holder of the Chair of Soil Geography				Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level Other prerequisite			Other prerequisites			
1 seme	ster	undergraduate	e			

The module focuses the geofactors bedrock, topography, climate, soils, water, and plants and their relevance for landscape forming processes as well as for land-use. Basic geofactors of natural landscapes related to anthropogenic impact (land-use, settlements, infrastructure, etc.) wil be discussed.

Intended learning outcomes

The students learn synthesis and integration of their knowledge on geofactors. They are able to consider natural and cultural aspects for site-specific and planning assessment.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 I Nr. 2

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

First state examination for the teaching degree Gymnasium Geography (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Module title					Abbreviation	
Plant a	Plant and Animal Ecology				07-3A30EKO-152-m01	
Modul	e coord	inator		Module offered by		
Dean o	of Studi	es Biologie (Biology)		Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
6	nume	rical grade				
Duration Module level Other prerequ			Other prerequisites	<u> </u>		
1 semester undergraduate						
Canta	Contants					

This module will provide students with an overview of the interactions of plants and animals with their abiotic and biotic environments. The module will focus on the functional adaptation to environmental conditions as well as on the structure and dynamics of populations, communities and ecosystems. Students will be introduced to fundamental model concepts of ecology, will become familiar with examples of research findings and will acquire the fundamental knowledge necessary to develop an understanding of current ecological problems.

Intended learning outcomes

Students are familiar with the fundamental principles of research in the field of ecology and with the most important abiotic and biotic factors that influence the distribution and frequency of occurrence of organisms in their environment. In addition, they understand the scientific relevance ecology has to the assessment of environmental issues.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 | Nr. 4

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

First state examination for the teaching degree Gymnasium Biology (2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Biosciences (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation
Evolutionary Ecology					07-4S1EVO-171-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Animal Ecology and Tropical Biology			Faculty of Biology	
ECTS	Meth	Method of grading Only after succ. co		npl. of module(s)	
5	nume	numerical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester		undergraduate			
Contants					

Every organism survives and reproduces in an environment defined by its con-specifics, members of other species, and the abiotic attributes of the world around it. In this course, we explore mechanisms of evolutionary adaptation to these conditions and thus why individuals, populations, or species differ from each other. Important principles of phenotypic adaptation will be introduced and explained with examples from areas like "life-history evolution", evolution of morphological and behavioural traits, or the coevolution between hosts and parasites. The course includes a lecture as well as exercises on theoretical and empirical issues.

Intended learning outcomes

Students will understand fundamental principles and drivers of phenotypic evolution. They know important theoretical concepts and exemplary methods for studying the evolution of certain attributes and understanding their adaptive value. Students thus gain an insight into tight interactions between environment (ecology) and trait evolution.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + V(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

20 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subjects Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation
Ecology and Nature Conservation				-	07-4S1NAT-171-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Animal Ecology and Tropical Biology			Faculty of Biology	
ECTS	Meth	Method of grading Only after succ. co		npl. of module(s)	
5	nume	umerical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester		undergraduate			
Contants					

Global environmental change due to the destruction and fragmentation of natural habitats, climate change, intensive land use and invasive species have significant impacts on ecological communities and ecosystem functions. This course discusses essentials of community ecology, landscape ecology, agroecology and forest ecology and provides knowledge on the diversity and biotic interaction of different animal groups. A focus is on the application of ecological mechanisms for sustainable use of biological resources and nature conservation. The course comprises lectures as well as field exercises in various terrestrial habitats.

Intended learning outcomes

Participants are familiar with fundamental ecological principles and mechanisms as well as ecological field methods and have developed taxonomical skills. They are able to independently investigate issues relating to global change and nature conservation, applying theoretical concepts and empirical methods.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + S(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

20 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation
Basics in Biology				-	07-GBi0-212-m01
Module coordinator				Module offered by	
Ricard	Ricarda Scheiner			Faculty of Biology	
ECTS	Meth	lethod of grading Only after succ. o		npl. of module(s)	
5	nume	rical grade	de		
Duration		Module level	Other prerequisites	;	
1 semester		undergraduate			
Contents					

Introduction into basic aspects in biology

Intended learning outcomes

Students are able to understand basic concepts in biology and are able to describe biological principles in the fields of cytology, morphology, physiology, developmental biology, evolution, genetics, microbiology and ecology using selected examples. They understand basic biological principles and rules and can recognize them in biological examples.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 minutes)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

First state examination for the teaching degree Grundschule English (2009)

First state examination for the teaching degree Grundschule Biology (2009)

First state examination for the teaching degree Grundschule Chemistry (2009)

First state examination for the teaching degree Grundschule Geography (2009)

First state examination for the teaching degree Grundschule Protestant Theology (2009)

First state examination for the teaching degree Grundschule German (2009)

First state examination for the teaching degree Grundschule History (2009)

First state examination for the teaching degree Grundschule History (2015)

First state examination for the teaching degree Grundschule Catholic Theology (2009)

First state examination for the teaching degree Grundschule Mathematics (2009)

First state examination for the teaching degree Grundschule Music (2009)

First state examination for the teaching degree Grundschule Physics (2009)

First state examination for the teaching degree Grundschule Social Science (2009)

First state examination for the teaching degree Grundschule Science of Sport (2009) First state examination for the teaching degree Hauptschule English (2009)

First state examination for the teaching degree Hauptschule Biology (2009)

First state examination for the teaching degree Hauptschule Chemistry (2009) First state examination for the teaching degree Hauptschule Geography (2009) First state examination for the teaching degree Hauptschule Protestant Theology (2009) First state examination for the teaching degree Hauptschule German (2009) First state examination for the teaching degree Hauptschule History (2009) First state examination for the teaching degree Hauptschule Catholic Theology (2009) First state examination for the teaching degree Hauptschule Mathematics (2009) First state examination for the teaching degree Hauptschule Music (2009) First state examination for the teaching degree Hauptschule Physics (2009) First state examination for the teaching degree Hauptschule Social Science (2009) First state examination for the teaching degree Hauptschule Science of Sport (2009) First state examination for the teaching degree Realschule English (2009) First state examination for the teaching degree Realschule Biology (2009) First state examination for the teaching degree Realschule Chemistry (2009) First state examination for the teaching degree Realschule Geography (2009) First state examination for the teaching degree Realschule Protestant Theology (2009) First state examination for the teaching degree Realschule French Studies (2009) First state examination for the teaching degree Realschule German (2009) First state examination for the teaching degree Realschule History (2009) First state examination for the teaching degree Realschule Computer Science (2012) First state examination for the teaching degree Realschule Catholic Theology (2009) First state examination for the teaching degree Realschule Mathematics (2009) First state examination for the teaching degree Realschule Music (2009) First state examination for the teaching degree Realschule Physics (2009) First state examination for the teaching degree Realschule Science of Sport (2009) First state examination for the teaching degree Gymnasium English (2009) First state examination for the teaching degree Gymnasium Biology (2009) First state examination for the teaching degree Gymnasium Chemistry (2009) First state examination for the teaching degree Gymnasium Geography (2009) First state examination for the teaching degree Gymnasium French Studies (2009) First state examination for the teaching degree Gymnasium German (2009) First state examination for the teaching degree Gymnasium History (2009) First state examination for the teaching degree Gymnasium Greek Philology (2009) First state examination for the teaching degree Gymnasium Computer Science (2009) First state examination for the teaching degree Gymnasium Italian Studies (2009) First state examination for the teaching degree Gymnasium Catholic Theology (2009) First state examination for the teaching degree Gymnasium Latin Philology (2009) First state examination for the teaching degree Gymnasium Mathematics (2012) First state examination for the teaching degree Gymnasium Mathematics (2009) First state examination for the teaching degree Gymnasium Music (2009) First state examination for the teaching degree Gymnasium Physics (2009) First state examination for the teaching degree Gymnasium Russian (2009) First state examination for the teaching degree Gymnasium Social Science (2009) First state examination for the teaching degree Gymnasium Spanish Studies (2009) First state examination for the teaching degree Gymnasium Science of Sport (2009) First state examination for the teaching degree Gymnasium Music Education, Advanced Studies (2009) First state examination for the teaching degree Sonderpädagogik Pedagogy of Secondary Education (2009) First state examination for the teaching degree Sonderpädagogik Pedagogy of Primary Education (2009) First state examination for the teaching degree Sonderpädagogik Teaching at the German Mittelschule (2013) First state examination for the teaching degree Mittelschule English (2013) First state examination for the teaching degree Mittelschule Biology (2013) First state examination for the teaching degree Mittelschule Chemistry (2013) First state examination for the teaching degree Mittelschule Geography (2013)


```
First state examination for the teaching degree Mittelschule Protestant Theology (2013)
First state examination for the teaching degree Mittelschule German (2013)
First state examination for the teaching degree Mittelschule History (2013)
First state examination for the teaching degree Mittelschule Catholic Theology (2013)
First state examination for the teaching degree Mittelschule Mathematics (2013)
First state examination for the teaching degree Mittelschule Physics (2013)
First state examination for the teaching degree Mittelschule Social Science (2013)
First state examination for the teaching degree Mittelschule Science of Sport (2013)
First state examination for the teaching degree Grundschule English (2015)
First state examination for the teaching degree Grundschule Biology (2015)
First state examination for the teaching degree Grundschule Chemistry (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Grundschule German (2015)
First state examination for the teaching degree Grundschule Catholic Theology (2015)
First state examination for the teaching degree Grundschule Mathematics (2015)
First state examination for the teaching degree Grundschule Pedagogy of Primary Education (2015)
First state examination for the teaching degree Grundschule Physics (2015)
First state examination for the teaching degree Grundschule Social Science (2015)
First state examination for the teaching degree Grundschule Didactics in English (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Biology (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Chemistry (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Geography (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in German (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in History (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Catholic Theology (Primary School)
(2015)
First state examination for the teaching degree Grundschule Art Education in Primary School (2015)
First state examination for the teaching degree Grundschule Didactics in Science of Sport (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Mathematics (Primary School) (2015)
First state examination for the teaching degree Grundschule Music Education in Primary School (2015)
First state examination for the teaching degree Grundschule Didactics in Physics (Primary School) (2015)
First state examination for the teaching degree Grundschule Didactics in Social Science (Primary School) (2015)
First state examination for the teaching degree Grundschule Science of Sport (2015)
First state examination for the teaching degree Realschule English (2015)
First state examination for the teaching degree Realschule Biology (2015)
First state examination for the teaching degree Realschule Chemistry (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Realschule Protestant Theology (2015)
First state examination for the teaching degree Realschule French Studies (2015)
First state examination for the teaching degree Realschule German (2015)
First state examination for the teaching degree Realschule History (2015)
First state examination for the teaching degree Realschule Computer Science (2015)
First state examination for the teaching degree Realschule Catholic Theology (2015)
First state examination for the teaching degree Realschule Mathematics (2015)
First state examination for the teaching degree Realschule Physics (2015)
First state examination for the teaching degree Realschule Science of Sport (2015)
First state examination for the teaching degree Gymnasium English (2015)
First state examination for the teaching degree Gymnasium Biology (2015)
First state examination for the teaching degree Gymnasium Chemistry (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Gymnasium French Studies (2015)
First state examination for the teaching degree Gymnasium German (2015)
First state examination for the teaching degree Gymnasium History (2015)
```


First state examination for the teaching degree Gymnasium Greek Philology (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

First state examination for the teaching degree Gymnasium Italian Studies (2015)

First state examination for the teaching degree Gymnasium Catholic Theology (2015)

First state examination for the teaching degree Gymnasium Latin Philology (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

First state examination for the teaching degree Gymnasium Physics (2015)

First state examination for the teaching degree Gymnasium Russian (2015)

First state examination for the teaching degree Gymnasium Social Science (2015)

First state examination for the teaching degree Gymnasium Spanish Studies (2015)

First state examination for the teaching degree Gymnasium Science of Sport (2015)

First state examination for the teaching degree Sonderpädagogik Pedagogy of Primary Education (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in German (Primary School) (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in Catholic Theology (Primary School) (2015)

First state examination for the teaching degree Sonderpädagogik Art Education in Primary School (2015)
First state examination for the teaching degree Sonderpädagogik Didactics in Science of Sport (Primary School)

First state examination for the teaching degree Sonderpädagogik Didactics in Mathematics (Primary School) (2015)

First state examination for the teaching degree Sonderpädagogik Music Education in Primary School (2015) First state examination for the teaching degree Sonderpädagogik Didactics in English (Middle School) (2015) First state examination for the teaching degree Sonderpädagogik Ergonomics (Teaching at the German Mittelschule) (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in Biology (Middle School) (2015)
First state examination for the teaching degree Sonderpädagogik Didactics in Chemistry (Middle School) (2015)
First state examination for the teaching degree Sonderpädagogik Didactics in Geography (Middle School) (2015)
First state examination for the teaching degree Sonderpädagogik Didactics in Protestant Theology (Middle School) (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in German (Middle School) (2015) First state examination for the teaching degree Sonderpädagogik Didactics in History (Middle School) (2015) First state examination for the teaching degree Sonderpädagogik Didactics in Catholic Theology (Middle School) (2015)

First state examination for the teaching degree Sonderpädagogik Art Education in Middle School (2015)
First state examination for the teaching degree Sonderpädagogik Didactics in Science of Sport (Middle School) (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in Mathematics (Middle School) (2015)

First state examination for the teaching degree Sonderpädagogik Music Education in Middle School (2015) First state examination for the teaching degree Sonderpädagogik Didactics in Physics (Middle School) (2015) First state examination for the teaching degree Sonderpädagogik Didactics in Social Science (Middle School) (2015)

First state examination for the teaching degree Sonderpädagogik Teaching at the German Mittelschule (2015)

First state examination for the teaching degree Mittelschule English (2015)

First state examination for the teaching degree Mittelschule Biology (2015)

First state examination for the teaching degree Mittelschule Chemistry (2015)

First state examination for the teaching degree Mittelschule Geography (2015)

First state examination for the teaching degree Mittelschule Protestant Theology (2015)

First state examination for the teaching degree Mittelschule German (2015)

First state examination for the teaching degree Mittelschule History (2015)

First state examination for the teaching degree Mittelschule Catholic Theology (2015)

First state examination for the teaching degree Mittelschule Mathematics (2015)

First state examination for the teaching degree Mittelschule Physics (2015)

First state examination for the teaching degree Mittelschule Social Science (2015)

First state examination for the teaching degree Mittelschule Didactics in English (Middle School) (2015)

First state examination for the teaching degree Mittelschule Ergonomics (Teaching at the German Mittelschule) (2015)

First state examination for the teaching degree Mittelschule Didactics in Biology (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Chemistry (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Geography (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Protestant Theology (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in German (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in History (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Catholic Theology (Middle School) (2015)

First state examination for the teaching degree Mittelschule Art Education in Middle School (2015)

First state examination for the teaching degree Mittelschule Didactics in Science of Sport (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Mathematics (Middle School) (2015)

First state examination for the teaching degree Mittelschule Music Education in Middle School (2015)

First state examination for the teaching degree Mittelschule Didactics in Physics (Middle School) (2015)

First state examination for the teaching degree Mittelschule Didactics in Social Science (Middle School) (2015)

First state examination for the teaching degree Mittelschule Science of Sport (2015)

First state examination for the teaching degree Mittelschule Teaching at the German Mittelschule (2015)

First state examination for the teaching degree Grundschule Protestant Theology (2015)

First state examination for the teaching degree Grundschule Music (2015)

First state examination for the teaching degree Grundschule Didactics in Protestant Theology (Primary School) (2015)

First state examination for the teaching degree Realschule Music (2015)

First state examination for the teaching degree Gymnasium Music (2015)

First state examination for the teaching degree Gymnasium Music Education, Advanced Studies (2015)

First state examination for the teaching degree Sonderpädagogik Didactics in Protestant Theology (Primary School) (2015)

First state examination for the teaching degree Mittelschule Music (2015)

First state examination for the teaching degree Gymnasium French Studies (2016)

First state examination for the teaching degree Gymnasium Italian Studies (2016)

First state examination for the teaching degree Gymnasium Spanish Studies (2016)

First state examination for the teaching degree Realschule French Studies (2016)

First state examination for the teaching degree Grundschule English (2016)

First state examination for the teaching degree Grundschule Didactics in English (Primary School) (2016)

First state examination for the teaching degree Realschule English (2016)

First state examination for the teaching degree Gymnasium English (2016)

First state examination for the teaching degree Mittelschule English (2016)

First state examination for the teaching degree Mittelschule Didactics in English (Middle School) (2016)

First state examination for the teaching degree Sonderpädagogik Didactics in English (Middle School) (2016)

First state examination for the teaching degree Gymnasium Greek Philology (2018)

First state examination for the teaching degree Grundschule Physics (2018)

First state examination for the teaching degree Grundschule Didactics in Physics (Primary School) (2018)

First state examination for the teaching degree Realschule Physics (2018)

First state examination for the teaching degree Gymnasium Physics (2018)

First state examination for the teaching degree Mittelschule Physics (2018)

First state examination for the teaching degree Sonderpädagogik Didactics in Physics (Middle School) (2018)

First state examination for the teaching degree Mittelschule Didactics in Physics (Middle School) (2018)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Module studies (Bachelor) Biology (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

First state examination for the teaching degree Mittelschule Biology (2020 (Prüfungsordnungsversion 2015)) First state examination for the teaching degree Sonderpädagogik Didactics in Biology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Didactics in Biology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Chemistry (2020 (Prüfungsordnungsversion 2015)) First state examination for the teaching degree Mittelschule Didactics in Chemistry (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule German (2020 (Prüfungsordnungsversion 2015)) First state examination for the teaching degree Mittelschule Didactics in German (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule English (2020 (Prüfungsordnungsversion 2016)) First state examination for the teaching degree Mittelschule Didactics in English (Middle School) (2020 (Prüfungsordnungsversion 2016))

First state examination for the teaching degree Mittelschule Protestant Theology (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Didactics in Protestant Theology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015)) First state examination for the teaching degree Mittelschule Didactics in Geography (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule History (2020 (Prüfungsordnungsversion 2015)) First state examination for the teaching degree Mittelschule Didactics in History (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Catholic Theology (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Didactics in Catholic Theology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Mathematics (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Didactics in Mathematics (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Art Education in Middle School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Science of Sport (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Didactics in Science of Sport (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Music (2020 (Prüfungsordnungsversion 2015))
First state examination for the teaching degree Mittelschule Music Education in Middle School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Mittelschule Teaching at the German Mittelschule (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in English (Middle School) (2020 (Prüfungsordnungsversion 2016))

First state examination for the teaching degree Sonderpädagogik Didactics in Chemistry (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Geography (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Protestant Theology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in German (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in History (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Catholic Theology (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Art Education in Middle School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Science of Sport (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Mathematics (Middle School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Music Education in Middle School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Teaching at the German Mittelschule (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Art Education in Primary School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Music Education in Primary School (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Science of Sport (Primary School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in German (Primary School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Mathematics (Primary School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Pedagogy of Primary Education (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Protestant Theology (Primary School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Didactics in Catholic Theology (Primary School) (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Grundschule Didactics in Physics (Primary School) (2020)

First state examination for the teaching degree Grundschule Physics (2020)

First state examination for the teaching degree Gymnasium Physics (2020)

First state examination for the teaching degree Realschule Physics (2020)

First state examination for the teaching degree Sonderpädagogik Didactics in Physics (Middle School) (2020)

First state examination for the teaching degree Mittelschule Didactics in Physics (Middle School) (2020)

First state examination for the teaching degree Mittelschule Physics (2020)

First state examination for the teaching degree Grundschule Political and Social Studies (2020)

First state examination for the teaching degree Grundschule Didactics in Political and Social Studies (Primary School) (2020)

First state examination for the teaching degree Sonderpädagogik MS-Didaktik Career and Economics (2020) First state examination for the teaching degree Sonderpädagogik Didactics in Political and Social Studies (Secondary School) (2020)

First state examination for the teaching degree Mittelschule MS-Didaktik Career and Economics (2020)
First state examination for the teaching degree Mittelschule Didactics in Political and Social Studies (Secondary School) (2020)

First state examination for the teaching degree Mittelschule Political and Social Studies (2020)

First state examination for the teaching degree Gymnasium Political and Social Studies (2020)

First state examination for the teaching degree Grundschule History (2021)

First state examination for the teaching degree Gymnasium History (2021)

First state examination for the teaching degree Realschule History (2021)

First state examination for the teaching degree Mittelschule History (2021)

First state examination for the teaching degree Grundschule Pedagogy of Primary Education (2021)

First state examination for the teaching degree Gymnasium English (2021)

First state examination for the teaching degree Gymnasium Philosophy and Ethics (2021)

First state examination for the teaching degree Sonderpädagogik Pedagogy of Primary Education (2021)

First state examination for the teaching degree Gymnasium Philosophy and Ethics (2022)

First state examination for the teaching degree Gymnasium Russian (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

First state examination for the teaching degree Gymnasium English (2023)

First state examination for the teaching degree Realschule English (2023)

First state examination for the teaching degree Grundschule English (2023)

First state examination for the teaching degree Grundschule Didactics in English (Primary School) (2023)

First state examination for the teaching degree Mittelschule English (2023)

First state examination for the teaching degree Mittelschule Didactics in English (Middle School) (2023)

First state examination for the teaching degree Sonderpädagogik Didactics in English (Middle School) (2023)

First state examination for the teaching degree Gymnasium Geography (2023)

First state examination for the teaching degree Realschule Geography (2023)

First state examination for the teaching degree Grundschule Geography (2023)

First state examination for the teaching degree Mittelschule Geography (2023)

First state examination for the teaching degree Grundschule German (2024)

First state examination for the teaching degree Gymnasium German (2024)

First state examination for the teaching degree Realschule German (2024)

First state examination for the teaching degree Sonderpädagogik Didactics in German (Middle School) (2024)

First state examination for the teaching degree Mittelschule Didactics in German (Middle School) (2024)

First state examination for the teaching degree Grundschule Didactics in German (Primary School) (2024)

First state examination for the teaching degree Sonderpädagogik Didactics in German (Primary School) (2024)

First state examination for the teaching degree Mittelschule German (2024)

First state examination for the teaching degree Grundschule Music Education in Primary School (2024)

First state examination for the teaching degree Sonderpädagogik Music Education in Primary School (2024)

First state examination for the teaching degree Mittelschule Music Education in Middle School (2024)

First state examination for the teaching degree Sonderpädagogik Music Education in Middle School (2024)

First state examination for the teaching degree Gymnasium Latin Philology (2024)

First state examination for the teaching degree Gymnasium English (2024)

First state examination for the teaching degree Mittelschule MS-Didaktik Career and Economics (2024)

First state examination for the teaching degree Sonderpädagogik MS-Didaktik Career and Economics (2024)

First state examination for the teaching degree Grundschule History (2024)

First state examination for the teaching degree Gymnasium History (2024)

First state examination for the teaching degree Realschule History (2024)

First state examination for the teaching degree Mittelschule History (2024)

First state examination for the teaching degree Mittelschule Didactics in History (Middle School) (2024)

First state examination for the teaching degree Sonderpädagogik Didactics in History (Middle School) (2024)

First state examination for the teaching degree Grundschule Didactics in History (Primary School) (2024)

First state examination for the teaching degree Gymnasium Greek Philology (2024)

First state examination for the teaching degree Grundschule Art Education in Primary School (2024)

First state examination for the teaching degree Sonderpädagogik Art Education in Primary School (2024)

First state examination for the teaching degree Sonderpädagogik Art Education in Middle School (2024)

First state examination for the teaching degree Mittelschule Art Education in Middle School (2024)

First state examination for the teaching degree Grundschule German (2025)

First state examination for the teaching degree Realschule German (2025)

First state examination for the teaching degree Gymnasium German (2025)

First state examination for the teaching degree Mittelschule German (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title				Abbreviation	
Mathematical Biology and Biostatistics				-	07-M-BST-152-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Bioinformatics			Faculty of Biology	
ECTS	Meth	ethod of grading Only after suc		npl. of module(s)	
4	nume	rical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		undergraduate			
Contents					

Fundamental principles of the most important mathematical and statistical methods in biology.

Intended learning outcomes

Students will have acquired fundamental skills in the evaluation of experiments, the interpretation of readings and numbers as well as the mathematical description of biological processes.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Interdisciplinary Project I					07-S1-IP1-152-m01	
Module coordinator				Module offered by		
Coordinator BioCareers				Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	erical grade				
Duration Module level Othe			Other prerequisites	Other prerequisites		
1 semester undergraduate P			Please consult with	Please consult with course advisory service in advance.		
Contents						

Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

R (5)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

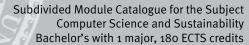
Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)


Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Modul	e title		Abbreviation			
Compu	Computational Biology - from Genom to Ecosystem				07-SQF-CB-171-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Bioinformatics		Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	ester	undergraduate				
C 4	Combants					

Introduction to methods in computational biology according to the various research areas of the Centre for Computational and Theoretical Biology. We will discuss a wide variety of topics from genomics through to cell biology and ecosystems. Participants will become familiar with current approaches and tools for reproducible research, such as image analysis, sequence data analysis or computer simulations, and will gain an insight into the fields of big data, high-performance computing and modern IT infrastructures.

Intended learning outcomes

The participants have gained proficiency in the essential tools and methods for data analysis, image processing and modelling of biological processes and can use quantitative computational methods to address biological questions.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Once a year

Allocation of places

20 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subjects Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their

average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation	
Algorithms and data structures					10-l-ADS-152-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 seme	1 semester undergraduate					
Conto	nt c		•			

Design and analysis of algorithms, recursion vs. iteration, sort and search methods, data structures, abstract data types, lists, trees, graphs, basic graph algorithms, programming in Java.

Intended learning outcomes

Students are proficient in independently designing, precisely describing and analyzing algorithms. The students know the basic paradigms for the design of algorithms and can implement them in practical programs. Students are able to estimate the runtime behavior of algorithms and prove the correctness of algorithms.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 a)

§ 69 | Nr. 1 a)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Human-Computer Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Selected Basics of Sustainability in Biology					10-I-AGBN-211-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Contents						

Selected Basics of Sustainability in Biology

Intended learning outcomes

The students are able to understand solutions to fundamental problems in biology in the context of sustainability and to transfer them to related topics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Course type: alternatively S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours)

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Module	title				Abbreviation
Selected	d Basic	cs of Sustainability in G	eography	-	10-I-AGGN-211-m01
Module	coordi	inator		Module offered	by
Dean of	Studie	es Informatik (Computer	Science)	Institute of Com	puter Science
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
5	numer	rical grade			
Duration	n	Module level	Other prerequisites	,	
1 semes	ter	undergraduate			
Content	S				
Selected	d Basio	cs of Sustainability in Ge	ography		
Intende	d learr	ning outcomes			
The stud	dents a	are able to understand s	olutions to fundamer	ıtal problems in g	eography in the context of sustaina-
		ansfer them to related to			
Courses	type,	number of weekly conta	act hours, language –	- if other than Ge	rman)
V (2) + Ü	j (2)				
Course t	type: a	lternatively S (2)			
		essment (type, scope, la on on whether module c			nination offered — if not every seme-
b) term if annou examina prox. 15	paper Inced lation o minut		sentation (30 to 45 m ginning of the course, oprox. 20 minutes) or	the written exam	sequent discussion iination may be replaced by an oral tion in groups of 2 candidates (ap-
Allocation	on of p	laces			
Addition	nal info	ormation			
			_		
Workloa	ad				
150 h					
Teachin:	a cycle	2			

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Module title					Abbreviation
Advanced Programming					10-I-APR-172-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Sc	ience II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate				
Conto	ntc				

With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes

Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's with 1 major Computer Science and Su-	JMU Würzburg • generated 02-Aug-2025 • exam. reg. data re-	page 45 / 115
stainability (2021)	cord Bachelor (180 ECTS) Informatik und Nachhaltigkeit - 2021	

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation
Automation and Control Technology				_	10-I-AR-152-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Sci	ence VII	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
8	nume	rical grade			
Duratio	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate				
Contents					

Overview of automation systems, foundations of control technology, simple design methods, model creation,

differential equations, nomenclature, transfer function, step response and realising of easy linear controllers, structure images and structure image reduction, locus curves and Bode diagrams, frequency characteristic, persistent control deviation, controller design through parameter optimisation, basics of fuzzy control, scanning systems, eigenvalue based system analysis, classification of automation and control systems, examples.

Intended learning outcomes

The students master the fundamentals of automation and control.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

__

Workload

240 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation
Operating Systems					10-I-BS-191-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Sc	ience II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate				
Conto	nt c				

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modul	e title				Abbreviation
Databases				.	10-I-DB-152-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Informatik (Compute	r Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					

Relational algebra and complex SQL statements; database planning and normal forms; transaction manage-

Intended learning outcomes

The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b) § 69 | Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's degree (1 major) Physics (2016)

Bachelor's degree (1 major) Business Information Systems (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Data Mining					10-l-DM-152-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester undergraduate						
Contor	Contents					

Foundations in the following areas: definition of data mining and knowledge, discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e. g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

 $Language\ of\ assessment:\ German\ and/or\ English$

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Master's degree (1 major) Information Systems (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Energy-Aware Engineering				-	10-l-EnAE-212-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science XI			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conten	Contents					

In this module we learn about methods and metrics to evaluate energy demand and energy efficiency of technical systems. We study energy-aware mechanisms for transmitting data (for example, sensor data in the Internet of Things) and for operating technical systems (such as data centers and computer clouds).

Intended learning outcomes

The students are able to analyze and optimize technical systems with respect to their energy demands.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Module title					Abbreviation	
Fundamentals of Programming					10-l-GdP-172-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science II			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Conto	Contents					

Data types, control structures, foundations of procedural programming, selected topics of C, introduction to object orientation in Java, selected topics of C++, further Java concepts, digression: scripting languages.

Intended learning outcomes

The students possess a fundamental knowledge about programming languages (in particular Java, C and C++) and are able to independently develop average to high level Java programs.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b) § 69 | Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Select	ed Basi	cs of Computer Scienc	e		10-l-Gl-152-m01	
Modul	e coord	inator		Module offered by		
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 semester undergraduate						
Contents						

Selected topics in computer science.

Intended learning outcomes

The students are able to understand solutions to fundamental problems in computer science and to transfer them to related topics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation
Graphs and Discrete Optimization					10-I-GudO-212-m01
Module coordinator Module offered b					
holdei constr		Professorship for optim	ization under resource	Institute of Comput	ter Science
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5		rical grade			
Durati	ion	Module level	Other prerequisites		
1 sem	ester	undergraduate			
Conte	nts				
blems Intend	as (into	eger) linear programs.			ample, how to model graph pro-
		can decide which tools			•
Cours	es (type	, number of weekly con	tact hours, language –	- if other than Germa	an)
V (2) +	- Ü (2)				
		sessment (type, scope, ion on whether module			ation offered — if not every seme-
if anno exami prox. 1	ounced nation (15 minu		eginning of the course, approx. 20 minutes) or		ation may be replaced by an oral n in groups of 2 candidates (ap-

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module title					Abbreviation
Practical course in hardware					10-I-HWP-152-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)	
10	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				
Contents					

Practical experiments on hardware aspects, for example in communication technology, robots or the structure of a complete microprocessor.

Intended learning outcomes

The students are able to independently review, prepare and perform experiments with the help of experiment descriptions, to independently search for additional information as well as to document and evaluate experiment results.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

portfolio: completion of approx. 3 to 10 project assignments (approx. 250 hours total) and presentation of results (approx. 10 minutes per project)

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Mathematics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Interactive Computer Graphics					10-l-ICG-152-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science IX			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Conto	Contents					

Computer graphics studies methods for digitally synthesising and manipulating visual content. This course specifically concentrates on interactive graphics with an additional focus on 3D graphics as a requirement for many contemporary as well as for novel human-computer interfaces and computer games. The course will cover topics about light and images, lighting models, data representations, mathematical formulations of movements, projection as well as texturing methods. Theoretical aspects of the steps involved in ray-tracing and the raster pipeline will be complemented by algorithmical approaches for interactive image syntheses using computer systems. Accompanying software solutions will utilise modern graphics packages and languages like OpenGL, GLSL and/ or DirectX.

Intended learning outcomes

At the end of the course, the students will have a broad understanding of the underlying theoretical models of computer graphics. They will be able to implement a prominent variety of these models, to build their own interactive graphics applications and to choose the right software tool for this task.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Computer Science and Ethics				_	10-I-IuE-212-m01	
Modul	e coord	inator		Module offered by		
holder	holder of the Chair of Computer Science III			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Contents						

The content of the module focuses on the connection between ethics and computer science, implications for computer science (e.g. in implementation) and also technical possibilities (e.g. in the design of software, mechanisms or algorithms, in the operation of systems or networks).

Intended learning outcomes

The aim of the module is the scientific discourse on ethical problems in computer science. After completing the module, students have a basic awareness of computer science based on hypothetical but realistic case studies on ethical conflict cases.

Courses (type, number of weekly contact hours, language — if other than German)

V/S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) term paper (10 to 15 pages) and presentation (30 to 45 minutes) with subsequent discussion Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Cryptography and Data Security					10-l-KD-191-m01	
Module coordinator				Module offered by		
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Contor	Contents					

Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Usually every 2 years

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Computational Complexity					10-l-KT-191-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisit	Other prerequisites		
1 seme	1 semester undergraduate					
Contor	Contents					

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language - if other than German, examination offered - if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: Usually every 2 years

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation
Introduction to Aviation Systems					10-I-LFS-172-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 semester undergraduate					
Contents					

Physical foundations of aircraft aerodynamics, flight stability, airplane technology and structure of aircraft, foundations of aviation propulsion and suitable material.

Intended learning outcomes

The students possess the theoretical and practical knowledge necessary to correctly classify aerospace systems, correctly identify the most important system relationships, formulate requirements for new systems and do calculations for selected basic system elements.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 30 minutes).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Logic for informatics					10-I-LOG-152-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science			Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisit	Other prerequisites		
1 seme	1 semester undergraduate					
Contor	Contents					

Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes

The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Mathematics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Introduction into Human-Computer Interaction					10-I-MCS-191-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science IX			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisite	Other prerequisites			
1 semester undergraduate						
Conto	Contents					

Human-Computer Interaction studies the design, evaluation, and implementation of interactive computer systems. Special focus lies on fundamental psychological and physiological properties of the human users, the technical principals and models of modern computer systems, as well as on the derived boundary conditions of designing usable and human-oriented interactions with technical systems. The topics of this course cover the human perception and cognition, the human memory and attention, the design of interactive systems, popuplar evaluation methods, principles of computer systems, input processing techniques, human interfaces and typical means of interaction, from text-based input methods over graphical user interfaces to multi-modal interfaces. Accompanying practical tasks convey to the students typical methods of requirement analysis, prototyping and evaluation.

Intended learning outcomes

After successfully completing this course, students have a fundamental understanding of human-computer interface design principles. They understand the possibilities and limitations of technology and user and the applications of modern user interfaces. They know the necessary steps of user-centric design and typical design princip-

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Method of assessment (type, scope, language - if other than German, examination offered - if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Module	e title				Abbreviation	
Fundar	mentals	s and Programming o	of Avionics		10-I-MEC-172-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer Sc	ience VIII	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level Other prerequisite			S		
1 seme	1 semester undergraduate					
Conter	Contents					

Fundamental principles of data processing, especially for aerospace applications. What is information? Guidance for reliable systems, analogue, digital, FPGAs, radiation effects, micro programming, CPUs, DMAs, memory, memory organisation, system architecture, input and output, sensors and actuators, energy systems, reliabili-

ty, fault tolerance. Programming of embedded systems in C++.

Intended learning outcomes

Understanding of analogue and digital data processing in embedded systems. Structure of hardware and programming. Embedded programming in C++, knowledge about common sensors and actuators as well as input and output systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2) + P(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes) and practical examination (approx. 6 programming exercises approx. 4 hours each), weighted 1:1

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Module title					Abbreviation	
Modeling and Simulation				-	10-l-MuS-212-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Professorship for mo	deling and simulation	Institute of Comput	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other prerequisite			<u> </u>		
1 seme	1 semester undergraduate					
Contents						

Modeling and simulation play a central role in computer science and in the natural sciences for the analysis of systems. The module includes basic modeling paradigms, basics of simulation (discrete, continuous, hybrid, parallel), its implementation and evaluation.

Intended learning outcomes

The students learn the basics of various modeling formalisms and types of simulations as well as their application. They will acquire the skills to translate these systems into models for given problems and tasks, to develop simulation scenarios with suitable software, and to carry out and analyze simulation studies.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation
Sustainability and IT					10-I-NIT-212-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prereq		Other prerequisites			
1 semester undergraduate					
<i>~</i> .					

The module addresses social challenges in relation to sustainability, concepts for sustainability, and sustainability goals. The students get an overview of environmental informatics, sustainability informatics, and computational methods for environmental protection and environmental research. The subject areas of the study program are treated as application areas. Other foci are the effect of information technology through its provision and use, the environmental and sustainability balance of IT, and methods for designing sustainable IT systems.

Intended learning outcomes

In the module, students learn what sustainability and sustainability goals are, what direct and indirect effects information technology has on the environment and society, and how information technology can contribute to solving environmental problems and sustainability challenges. Basics for sustainable information technology are learned.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Qualification goal: scientific competences

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Module title Abbreviation								
Bache	Bachelor's Thesis Computer Science and Sustainability 10-InNa-BA-212-mo1							
Modul	le coord	inator		Module offered by	•			
Dean	of Studi	es Informatik (Compu	iter Science)	Institute of Compu	ter Science			
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)				
10	nume	rical grade						
Durati	on	Module level	Other prerequisites					
1 seme	ester	undergraduate						
Conte	nts							
	rching a		ed problem within a give	n time frame and ac	lhering to the principles of good			
Intend	led lear	ning outcomes						
The sto		are able to research a	and write on a defined pro	oblem, adhering to	the principles of good scientific			
Course	es (type	, number of weekly co	ontact hours, language –	- if other than Germ	an)			
Νο coι	urses as	ssigned to module	·					
			e, language — if other the		ation offered — if not every seme-			
		esis (approx. 50 to 10 assessment: German						
Alloca	tion of	places						
Additi	onal inf	ormation						
Time t	o comp	lete: 10 weeks.						
Workle	oad							
300 h								
Teachi	ing cycl	e						
Referred to in LPO I (examination regulations for teaching-degree programmes)								
Module appears in								
	Bachelor's degree (1 major) Computer Science and Sustainability (2021)							

Module title				,	Abbreviation
Aerosp	Aerospace Laboratory				10-InNa-LRLA-212-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Sc	ience VIII	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Durati	Duration Module level Other prerequisite			s	
1 seme	1 semester undergraduate				
Contor	Contents				

Structure and control of satellites and airplanes, control and (very little) regulation of physical/mechanical systems, sensors and actuators, energy, structure (construction) of a satellite model/simulator, construction of a ground segment for different components and systems of air and space flight, structure of simplified subsystems of air and space flight. Life cycle of a complex development consisting of software, hardware, electronics and mechanics. Selection of suitable components.

Intended learning outcomes

The students will be able to construct and integrate prototypical subsystems consisting of software, hardware, electronics and mechanics by themselves as well as to operate, test and document these. The whole life cycle of a development will be tested: capture of requirements, rudimentary design, detailed design, modelling, implementation (software, hardware, mechanics), test design, inspection, maintenance, transfer to the successor model.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + P(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Solving of approx. 6 practical assignments (approx. 4 hours each)

Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

__

Workload

300 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Modul	e title				Abbreviation	
Projec	Project Presentation				10-InNa-PV-212-m01	
Modul	e coord	inator		Module offered by		
Dean o	of Studi	es Informatik (Computer :	Science)	Institute of Comput	ter Science	
ECTS	Meth	od of grading	Only after succ. con	ıpl. of module(s)		
5	nume	rical grade				
Durati	on	Module level	Other prerequisites			
1 seme	ester	undergraduate				
Conte	nts					
sentat	ion for l	aypersons with a knowle	dge of computer scie	nce at a trade fair. T	ware project) analogous to a pre- he project, which may also be ally a live demonstration.	
Intend	ed lear	ning outcomes				
The stu	udents	are able to present a proj	ect they developed a	nd to create the requ	uired media.	
Course	es (type	, number of weekly conta	ct hours, language –	· if other than Germa	an)	
S (5)		•				
Metho		sessment (type, scope, la			ntion offered — if not every seme-	
ge of c	ompute	of a project developed by er science at a trade fair a essessment: German and,	s well as discussion		on for laypersons with a knowled nutes total)	
Alloca	tion of	places				
Additio	onal inf	ormation				
Workload						
150 h						
Teaching cycle						
Teaching cycle: every semester						
Referred to in LPO I (examination regulations for teaching-degree programmes)						

Module appears in

Modul	Module title				Abbreviation
Sustainability Concepts and Assessment					10-I-NuB-212-m01
Modul	e coord	inator		Module offered by	
Dean c	f Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level Other prerequisit				
1 seme	1 semester undergraduate				
C 4	Contonto				

In this module, we get to know basic concepts of sustainability and we learn how to assess the sustainability of technical systems. Applications from the specialization areas of this study program yield practical examples of systems and their interactions.

Intended learning outcomes

The students know and understand concepts for achieving sustainability and approaches for evaluating the sustainability of technical systems. They understand conflicts and compromises for achieving sustainability. The students get aware of contradicting goals in the sustainability discussion. They can transfer their knowledge to practical examples in order to apply and evaluate sustainability concepts for problem areas from the specializations of this study program.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

__

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Module title					Abbreviation
Practic	al Cour	se in Programming		•	10-I-PP-191-m01
Module	e coord	inator		Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	cience) Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	(not)	successfully completed			
Duratio	n	Module level	Other prerequisites		
undergraduate		Intended learning outcomes of the following module are required: 10-I-			
	GdP. It is therefore strongly recommended to complete this before.			ed to complete this before.	

The programming language Java. Independent creation of small to middle-sized, high-quality Java programs.

Intended learning outcomes

The students are able to independently develop small to middle-sized, high-quality Java programs.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical examination (programming exercises, approx. 240 hours) and written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 c)

§ 69 | Nr. 1 d)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Computer Architecture					10-I-RAK-152-m01	
Module coordinator				Module offered by		
Dean c	f Studi	es Informatik (Comput	er Science)	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other			s		
1 semester undergraduate						
Conter	Contents					

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

§ 69 | Nr. 1 c): Rechnerarchitektur

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Modul	Module title				Abbreviation	
Digital	Digital computer systems				10-I-RAL-152-m01	
Module coordinator				Module offered by		
Dean c	f Studi	es Informatik (Compu	ter Science)	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level Other prer			!S		
1 seme	1 semester undergraduate					
Conter	Contents					

Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes

The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Introduction to Space Systems					10-I-RFS-172-m01	
Module coordinator				Module offered by	Module offered by	
Dean c	of Studi	es Informatik (Compu	iter Science)	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other prerequisite			es		
1 seme	1 semester undergraduate					
Contents						

History of space flight, carrier rockets, orbits of spacecraft, environment conditions in space, special aspects of space applications, foundations of subsystems of spacecraft. Introduction to aviation systems.

Intended learning outcomes

The students possess the theoretical and practical knowledge necessary to correctly classify aerospace systems, correctly identify the most important system relationships, formulate requirements for new systems and do calculations for selected basic system elements.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 30 minutes).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module	e title			Abbreviation		
Computer Networks and Information Transmission					10-I-RIÜ-191-m01	
Module	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scienc	e III	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level Other prerequisites					
1 semester undergraduate						
Camban	Contonto					

- Computer networks and the Internet: Structure and Mechanisms of Telecommunication
- Communication Protocols: Basic Principles and the Layer Model
- Computer and Communication Systems: Network Systems, Data Traffic in Distributed Systems and inter-network Communication
- The Internet: Important Protocols and Routing
- Architecture and Structure of Computer Networks: Network Architecture, Access Mechanisms, Flow Control and Traffic Management
- Coding Theory: Mechanisms for Error Detection and Error Correction
- Information Theory: Entropy of Data
- Digital Communication Systems: Signal Modulation

Intended learning outcomes

Students command the technical, theoretical as well as practical knowledge to understand the structure of computer networks, the Internet and communication systems for telecommunication.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b), § 69 I Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Modul	e title		Abbreviation			
Control Principles of Modern Communication Systems					10-I-RK-212-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer Sc	ience III	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Other prerequis		Other prerequisite	es		
1 seme	ester	undergraduate				
Conto	Contents					

The module teaches control principles in the Internet, in computer networks and modern communication systems, central and distributed mechanisms for control and data exchange, architecture and basic mechanisms in current broadband and home access networks. Simple methods of assessing performance and an introduction to traffic theory are given.

Intended learning outcomes

The students have extensive knowledge of the structure, architecture and control principles of modern communication systems and can apply the knowledge to evaluate the systems and protocols in simulations and measurements. They also get to know basic methods for theoretical analysis.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Modul	e title			Abbreviation		
IT Secu	IT Security				10-l-SEC-191-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer Sc	ience II	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)		
5	nume	rical grade				
Duration Module level Other pres			Other prerequisites	<u> </u>		
1 semester undergraduate						
Contor	Contents					

The course provides a broad sweep through concepts and technologies related to IT security:

- Theoretical aspects: information-theoretic security, computational security, introduction to cryptography (historical and modern ciphers, hash functions, pseudo-random generators, message authentication codes, public key cryptography)
- Network security: protocol security, security of TCP/IP, public key infrastructure, user authentication
- Software security: Software vulnerabilities, common programming errors and exploitation techniques, reverse engineering and obfuscation, malware and anti-malware
- Platform security: access control models, security policies, operating system security, virtualization, security mechanisms with support in hardware

Intended learning outcomes

Students will be introduced to the main concepts and abstractions of IT security. They learn how to model threats and analyze security of a system critically from the attacker view point. After visiting the lecture students are going to understand the purpose and function of several security technologies, as well as their limitations. The exercises provide some hands-on experience of security flows in software.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Games Engineering (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

Module title					Abbreviation	
Semin	Seminar - Selected Topics in Computer Science 1				10-I-SEM1-152-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Informatik (Compu	ıter Science)	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other prerequisite			tes		
1 seme	1 semester undergraduate					
Contor	Contents					

Independent review of a current topic in computer science on the basis of literature and, where applicable, software with written and oral presentation. The topics in modules 10-I-SEM1 and 10-I-SEM2 must come from different areas (this usually means that they are assigned by different lecturers).

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written elaboration (approx. 10 to 15 pages) and presentation (approx. 30 to 45 minutes) with subsequent discussion on a topic from the field of computer science

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Module title					Abbreviation	
Semin	ar - Sel	ected Topics in Compu	ter Science and Sustai	nability	10-I-SEM-InNa-212-m01	
Modul	e coord	inator		Module offered by		
Dean	of Studi	es Informatik (Comput	er Science)	Institute of Compu	ter Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Durati	on	Module level	Other prerequisites	i		
1 seme	ester	undergraduate				
Conte	nts					
		review of a current topi software with written a		and sustainability or	the basis of literature and, whe-	
		ning outcomes	<u> </u>			
			ntly review a current top present these in an ap		nce, to summarize the main	
Course	es (type	, number of weekly cor	ntact hours, language –	- if other than Germa	an)	
S (2)						
			, language — if other th e can be chosen to earr		ation offered — if not every seme-	
		pprox. 10 to 15 pages) a essessment: German ar		ox. 30 to 45 minutes) with subsequent discussion	
Alloca	tion of	places	,			
Additi	onal inf	ormation				
Workle	oad					
150 h						
Teachi	Teaching cycle					
Teaching cycle: every semester						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Modul	Module appears in					
	Bachelor's degree (1 major) Computer Science and Sustainability (2021)					
	eachelor's degree (1 major) Computer Science and Sustainability (2021)					

Module title					Abbreviation	
Softwa	Software Technology				10-l-ST-152-m01	
Modul	e coord	inator		Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Duration Module level Othe			Other prerequisit	Other prerequisites		
1 semester undergraduate						
Conto	Contents					

Object-oriented software development with UML, development of graphical user interfaces, foundations of databases and object-relational mapping, foundations of web programming (HTML, XML), software development processes, unified process, agile software development, project management, quality assurance.

Intended learning outcomes

The students possess a fundamental theoretical and practical knowledge on the design and development of software systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b)

§ 69 I Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Human-Computer Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Module title					Abbreviation
Practic	al cour	se in software			10-l-SWP-152-m01
Module	e coord	inator		Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	science) Institute of Computer Science	
ECTS	Method of grading Only after succ. co		Only after succ. con	npl. of module(s)	
10	(not)	successfully completed	10-I-PP, 10-I-ST		
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate		· ·	•	quired in module 10-I-ADS are e is therefore highly recommen-	

Completion of a project assignment in groups, problem analysis, creation of requirements specifications, specification of solution components (e. g. UML) and milestones, user manual, programming documentation, presentation and delivery of the runnable software product in a colloquium.

Intended learning outcomes

The students possess the practical skills for the design, development and execution of a software project in small teams.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

practical project (Completion of a larger software project in groups (approx. 300 hours per person) and final presentation (approx. 10 minutes per group)

Allocation of places

__

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 | Nr. 1 d)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Modul	e title				Abbreviation
Tutoria	Tutorial Theoretical Informatics				10-l-TIT-191-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate					
Contor	Contents				

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) exercises (consisting in completion of approx. 11 home work exercise sheets, presentation of own solutions in the exercise groups as well as approx. 5 short assessments written in the exercise group) or
- b) written examination (approx. 180 to 240 minutes)

Method of assessment to be selected by the candidate.

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Theore	Theoretical Informatics				10-I-TIV-152-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level Othe		Other prerequisites		
1 semester undergraduate					
Cantan	Contonts				

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 a)

§ 69 | Nr. 1 a)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module	e title				Abbreviation	
Tutor activity 1					10-I-TUT1-152-m01	
Module	e coord	inator		Module offered by		
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
2	(not)	successfully completed				
Duratio	Duration Module level		Other prerequisites			
undergraduate						
Conten	Contents					

Tutoring activities in the area of computer science.

Intended learning outcomes

Imparting knowledge and skills to students of computer science.

Courses (type, number of weekly contact hours, language — if other than German)

T (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Wrap-up report on tutoring activities (5 to 10 pages)

Allocation of places

--

Additional information

--

Workload

60 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Modul	e title				Abbreviation
Tutor activity 2				-	10-l-TUT2-152-m01
Modul	e coord	inator		Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
2	(not)	successfully completed			
Duration Module level		Other prerequisites			
undergraduate					
Contents					

Tutoring activities in the area of computer science.

Intended learning outcomes

Imparting knowledge and skills to students of computer science.

Courses (type, number of weekly contact hours, language — if other than German)

T (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Wrap-up report on tutoring activities (5 to 10 pages)

Allocation of places

Additional information

Workload

60 h

Teaching cycle

Teaching cycle: every semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

First state examination for the teaching degree Realschule Computer Science (2025)

First state examination for the teaching degree Gymnasium Computer Science (2025)

Modul	e title				Abbreviation	
Tutor a	ctivity	3			10-I-TUT3-152-m01	
Modul	e coord	linator		Module offered by		
Dean c	f Studi	es Informatik (Computer	Science)	Institute of Comput	ter Science	
ECTS		od of grading	Only after succ. con	npl. of module(s)		
2	(not)	successfully completed				
Duration	on	Module level	Other prerequisites			
		undergraduate				
Conter	ıts					
Tutorir	ıg activ	ities in the area of compu	iter science.			
Intend	ed lear	ning outcomes				
Impart	ing kno	wledge and skills to stud	lents of computer sci	ence.		
		, number of weekly conta			an)	
T (2)		•			·	
					ation offered — if not every seme-	
•	_	ion on whether module c		a bonus)		
		rt on tutoring activities (5	to 10 pages)			
Alloca	ion of	places				
Additio	nal inf	ormation				
Worklo	ad					
60 h	_					
Teachi	ng cycl	e				
Teachi	ng cycl	e: every semester				
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Modul	Module appears in					
	Bachelor's degree (1 major) Computer Science (2015)					
	Bachelor's degree (1 major) Computer Science (2017)					
Bache	Bachelor's degree (1 major) Computer Science (2019)					

Bachelor's degree (1 major) Computer Science and Sustainability (2021) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Bachelor's degree (1 major) Computer Science (2025)

Modul	e title				Abbreviation	
Enviro	nmenta	ll Monitoring			10-I-UB-212-m01	
Modul	e coord	linator		Module offered by		
I	holder of the Professorship for sensors and embedded systems for earth observation			Institute of Comput	ter Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level Other prerequisit		Other prerequisites				
1 semester undergraduate						
Conten	Contents					

The module teaches basic methods of environmental observation, suitable indicators and sensors for the collection of environmental data, methods for the qualitative and quantitative evaluation of the collected environmental data, further analysis and visualization of environmental data.

Intended learning outcomes

The students know important indicators and procedures for environmental observation. They will be able to develop concepts for environmental monitoring with technical sensors and devices, as well as to evaluate the measurement data with suitable methods.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)

if announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science and Sustainability (2021) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Module title					Abbreviation	
Knowl	edge-b	ased Systems		_	10-l-WBS-152-m01	
Module coordinator Module offered by						
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duration Module level Oth			Other prerequisites			
1 semester undergraduate						
Contor	Contents					

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

_

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title					Abbreviation	
Ordina	ry Diffe	erential Equations for	students of other subje	ects	10-M-DGLaf-152-m01	
Modul	e coord	inator		Module offered by	Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisite	S		
1 seme	1 semester undergraduate					
Contents						

Existence and uniqueness theorem; continuous dependence of solutions on initial values; systems of linear differential equations; matrix exponential series; linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025) Bachelor's degree (1 major) Computer Science (2025) Bachelor's degree (1 major) Computer Science and Sustainability (2025)

Module	e title		Abbreviation			
Introduction to Discrete Mathematics for students of other subjects					10-M-DIMaf-152-m01	
Module	e coord	inator	Module offered by			
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
10	nume	rical grade				
Duratio	on	Module level	Other prerequisites	3		
1 semester undergraduate						
Conten	Contents					

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

__

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Mathematics 1 for students in Computer Science					10-M-INF1-152-m01	
Modul	e coord	inator		Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisite	3		
1 semester undergraduate						
Conter	Contents					

Propositional logic, set theory, proof techniques, relations; sequences, limits and lambda-symbols; the ring of integers; elementary group theory; residue class rings; basics in linear algebra, linear maps and matrix calculus, systems of linear equations.

Intended learning outcomes

The student gets acquainted with fundamental concepts and methods of advanced mathematics. He/She learns to apply these methods to problems in natural and engineering sciences, in particular in computer science, and is able to interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Mathe	matics	2 for students in Con	nputer Science		10-M-INF2-152-m01	
Modul	e coord	linator		Module offered by	Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Duration Module level Oth			Other prerequisit	es		
1 semester undergraduate						
Contar	Contents					

Determinants, eigenvalue theory; event and probability spaces, combinatorics, random variables, examples of distributions, parameter estimates; basics in analysis.

Intended learning outcomes

The student gets acquainted with fundamental concepts and methods of advanced mathematics. He/She learns to apply these methods to problems in natural and engineering sciences, in particular in computer science, and is able to interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Numerical Mathematics 1 for students of other subjects					10-M-NUM1af-152-m01	
Module coordinator				Module offered by	Module offered by	
Dean of Studies Mathematik (Mathematics)			nematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	numerical grade					
Duration Module level O			Other prerequisite	es		
1 semester undergraduate						
Contents						

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) Aerospace Computer Science (2025)

Bachelor's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Operat	ions Re	esearch for students of	other subjects		10-M-ORSaf-152-m01	
Module	e coord	inator		Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Method of grading Only after succ. cor		Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	on	Module level	Other prerequisites	her prerequisites		
1 semester undergraduate						
Conten	Contents					

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Master's degree (1 major) Physics (2016)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Module title					Abbreviation	
Stocha	stics 1	for students of other	subjects		10-M-STO-1af-152-mo1	
Modul	e coord	inator		Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisites	•		
1 seme	ster	undergraduate				
Conten	Contents					

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science and Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Computer Science (2025)