Subdivided Module Catalogue
for the Subject
Mathematical Physics
as a Bachelor’s with 1 major
with the degree "Bachelor of Science"
(180 ECTS credits)

Examination regulations version: 2009
Responsible: Faculty of Physics and Astronomy
Responsible: Institute of Mathematics
Course of Studies - Contents and Objectives

The Bachelor programme in Mathematical Physics is offered by the Department of Mathematics, jointly with the Faculty of Physics and Astronomy, with a total of currently (SS 2010) 9 resp. 13 chairs.

At the end of this course of study, the student should be familiar with the main branches of mathematical physics, taught methods of both mathematical and physical reasoning and working as well as analytical thinking, abstract concepts and the ability to recognize and construct complex structures and interconnections.

Through the course these skills which the students acquire provide the basic knowledge required for analyzing and solving subsequently the various problems they encounter, and in particular for obtaining a consecutive Bachelor-Masters degree. Therefore, the main emphasis is put on the comprehension of fundamental mathematical and physical notions and principles, the knowledge of a variety of methods, the development of analytical reasoning and abstraction, and the capacity of a qualitative understanding of complex structural interconnections, rather than a detailed quantitative knowledge of many facts in mathematics and physics.

For the Bachelor thesis the student should work on a thematic and temporally closely limited frame in order to carry out a special task in mathematical physics, using well-known procedures and scientific criteria under guidance but, to a large extent, independently.

The exam should ascertain whether the candidate overlooks the context of the basics in mathematical physics and possesses the ability to apply the corresponding scientific methods. The exam should lead to an internationally comparable degree in mathematical physics and provides the means for entry into the working world. In the framework of a consecutive Bachelor-Masters degree it may also be used as preparation for further Masters study.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

20-Jan-2011 (2011-12)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compulsory Courses (118 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (59 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-M-PPM-082-m01</td>
<td>Propaedeutics of Mathematics</td>
<td>2</td>
<td>B/NB</td>
<td>44</td>
</tr>
<tr>
<td>10-M-ANA-082-m01</td>
<td>Analysis</td>
<td>17</td>
<td>NUM</td>
<td>24</td>
</tr>
<tr>
<td>10-M-LNA-082-m01</td>
<td>Linear Algebra</td>
<td>14</td>
<td>NUM</td>
<td>26</td>
</tr>
<tr>
<td>10-M-DFT-082-m01</td>
<td>Ordinary Differential Equations and Complex Analysis</td>
<td>13</td>
<td>NUM</td>
<td>28</td>
</tr>
<tr>
<td>10-M-GAP-092-m01</td>
<td>Geometric Analysis and Partial Differential Equations</td>
<td>13</td>
<td>NUM</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Physics (59 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-KP-092-m01</td>
<td>Classical Physics (Mechanics, Thermodynamics, Waves, Oscillations, Electricity, Magnetism and Optics)</td>
<td>16</td>
<td>NUM</td>
<td>81</td>
</tr>
<tr>
<td>11-STE-092-m01</td>
<td>Statistical Mechanics, Thermodynamics and Electrodynamics</td>
<td>16</td>
<td>NUM</td>
<td>86</td>
</tr>
<tr>
<td>11-TQM-092-m01</td>
<td>Theoretical Mechanics and Quantum Mechanics</td>
<td>16</td>
<td>NUM</td>
<td>87</td>
</tr>
<tr>
<td>11-TQM-F-092-m01</td>
<td>Theoretical Mechanics and Quantum Mechanics for FOKUS Students</td>
<td>16</td>
<td>NUM</td>
<td>89</td>
</tr>
<tr>
<td>11-P-PB-MP-092-m01</td>
<td>Practical Course Part B Mathematical Physics</td>
<td>6</td>
<td>B/NB</td>
<td>96</td>
</tr>
<tr>
<td>11-P-PA-092-m01</td>
<td>Practical Course A</td>
<td>5</td>
<td>B/NB</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Compulsory Electives (32 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-M-BSA-072-m01</td>
<td>Seminar in Analysis</td>
<td>5</td>
<td>NUM</td>
<td>7</td>
</tr>
<tr>
<td>10-M-BSL-072-m01</td>
<td>Seminar in Linear Algebra</td>
<td>5</td>
<td>NUM</td>
<td>8</td>
</tr>
<tr>
<td>10-M-BSE-072-m01</td>
<td>Seminar in Algebra</td>
<td>5</td>
<td>NUM</td>
<td>9</td>
</tr>
<tr>
<td>10-M-BSG-072-m01</td>
<td>Seminar in Geometry</td>
<td>5</td>
<td>NUM</td>
<td>10</td>
</tr>
<tr>
<td>10-M-BSZ-072-m01</td>
<td>Seminar in Number Theory</td>
<td>5</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>10-M-BSW-072-m01</td>
<td>Seminar in Ordinary Differential Equations</td>
<td>5</td>
<td>NUM</td>
<td>12</td>
</tr>
<tr>
<td>10-M-BSC-072-m01</td>
<td>Seminar in Complex Analysis</td>
<td>5</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>10-M-BSN-072-m01</td>
<td>Seminar in Numerical Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>10-M-BSS-072-m01</td>
<td>Seminar in Stochastics</td>
<td>5</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>10-M-BSF-072-m01</td>
<td>Seminar in Functional Analysis</td>
<td>5</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>10-M-BSO-072-m01</td>
<td>Seminar in Operation Research</td>
<td>5</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>10-M-BSD-072-m01</td>
<td>Seminar in Discrete Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>18</td>
</tr>
<tr>
<td>10-M-EDM-072-m01</td>
<td>Introduction to Discrete Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>19</td>
</tr>
<tr>
<td>10-M-FAN-072-m01</td>
<td>Introduction to Functional Analysis</td>
<td>5</td>
<td>NUM</td>
<td>20</td>
</tr>
<tr>
<td>10-M-ORS-072-m01</td>
<td>Operations Research</td>
<td>5</td>
<td>NUM</td>
<td>21</td>
</tr>
<tr>
<td>10-M-NLD-072-m01</td>
<td>Non-Linear Dynamics</td>
<td>5</td>
<td>NUM</td>
<td>23</td>
</tr>
<tr>
<td>10-M-GEO-082-m01</td>
<td>Introduction to Geometry</td>
<td>8</td>
<td>NUM</td>
<td>46</td>
</tr>
<tr>
<td>10-M-ZAL-082-m01</td>
<td>Number Theory and Algebra</td>
<td>13</td>
<td>NUM</td>
<td>49</td>
</tr>
<tr>
<td>10-M-NM1-082-m01</td>
<td>Numerical Mathematics 1</td>
<td>8</td>
<td>NUM</td>
<td>30</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>ECTS</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10-M-ST1-082-m01</td>
<td>Stochastics 1</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-M-NM2-082-m01</td>
<td>Numerical Mathematics 2</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-M-ST2-082-m01</td>
<td>Stochastics 2</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-M-VAN-082-m01</td>
<td>Advanced Analysis</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-M-MWR-092-m01</td>
<td>Modelling and Computational Science</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
</tbody>
</table>

Physics

Students who took module 11-QAM or module 11-FKP will not be able to take module 11-KM. With regard to future participation in the Master's degree programme FOKUS Physik (Physics), students interested in participating in the FOKUS programme are recommended to take modules 11-KM and 11-KET.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-A4-072-m01</td>
<td>Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-EPP-092-m01</td>
<td>Introduction to Plasmaphysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QM2-092-m01</td>
<td>Quantum Mechanics II</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QVTP-092-m01</td>
<td>Many Body Quantum Theory</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RMS-092-m01</td>
<td>Relativistic Effects in Mesoscopic Systems</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TFK-092-m01</td>
<td>Theoretical Solid State Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TSL-092-m01</td>
<td>Theory of Superconductivity</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-PKS-092-m01</td>
<td>Physics of Complex Systems</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QIC-092-m01</td>
<td>Quantum Information and Quantum Computing</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>11-SDC-092-m01</td>
<td>Statistics, Data Analysis and Computer Physics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AKM-092-m01</td>
<td>Cosmology</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-APL-092-m01</td>
<td>Plasma-Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-GRT-092-m01</td>
<td>Group Theory</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-NMA-092-m01</td>
<td>Numerical Methods in Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QFT2-092-m01</td>
<td>Quantum Field Theory II</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RNT-092-m01</td>
<td>Renormalization Theory</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RQFT-092-m01</td>
<td>Relativistical Quantumfield Theory</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-RTT-092-m01</td>
<td>Theory of Relativity</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TEP-092-m01</td>
<td>Theoretical Elementary Particle Physics</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TPE-092-m01</td>
<td>Experimental Particle Physics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>11-TPS-092-m01</td>
<td>Particle Physics (Standard Model)</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-SUS-092-m01</td>
<td>Supersymmetry I and II</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-KM-092-m01</td>
<td>Condensed Matter (Quanta, Atoms, Molecules, Solid State Physics)</td>
<td>16</td>
<td>NUM</td>
</tr>
<tr>
<td>11-KET-092-m01</td>
<td>Nuclear and Elementary Particle Physics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>11-AST-092-m01</td>
<td>Theoretical Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>11-FKP-092-m01</td>
<td>Solid State Physics 1</td>
<td>8</td>
<td>NUM</td>
</tr>
<tr>
<td>11-QAM-092-m01</td>
<td>Quanta, Atoms, Molecules</td>
<td>8</td>
<td>NUM</td>
</tr>
</tbody>
</table>

Thesis (10 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-M-BAP-092-m01</td>
<td>Thesis Mathematical Physics (Bachelor Thesis)</td>
<td>10</td>
<td>NUM</td>
</tr>
</tbody>
</table>

Subject-specific Key Skills

Key Skills 1 (Compulsory) (5 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-M-VKM-082-m01</td>
<td>Preparatory Course Mathematics</td>
<td>1</td>
<td>B/NB</td>
</tr>
<tr>
<td>11-SMP-092-m01</td>
<td>Seminar Mathematical Physics</td>
<td>4</td>
<td>NUM</td>
</tr>
</tbody>
</table>

Key Skills 2 (Elective)

Students may only take one out of the two modules 10-M-COM and 10-M-COMg or, respectively, out of the two modules 10-M-PRG and 10-M-PRGk.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-A4-072-m01</td>
<td>Astrophysics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSA-072-m01</td>
<td>Seminar in Analysis</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Type</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>10-M-BSL-072-m01</td>
<td>Seminar in Linear Algebra</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSE-072-m01</td>
<td>Seminar in Algebra</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSG-072-m01</td>
<td>Seminar in Geometry</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSZ-072-m01</td>
<td>Seminar in Number Theory</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSC-072-m01</td>
<td>Seminar in Complex Analysis</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSN-072-m01</td>
<td>Seminar in Numerical Mathematics</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSS-072-m01</td>
<td>Seminar in Stochastics</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSF-072-m01</td>
<td>Seminar in Functional Analysis</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSO-072-m01</td>
<td>Seminar in Operation Research</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-BSZ-072-m01</td>
<td>Seminar in Discrete Mathematics</td>
<td>5</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-COMg-082-m01</td>
<td>Computational Mathematics, advanced</td>
<td>4</td>
<td>B/NB</td>
</tr>
<tr>
<td>10-M-PRGk-082-m01</td>
<td>Programming course for students of Mathematics</td>
<td>2</td>
<td>B/NB</td>
</tr>
<tr>
<td>10-M-RCN-082-m01</td>
<td>Reading Course Numerical Mathematics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCS-082-m01</td>
<td>Reading Course Stochastics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCD-082-m01</td>
<td>Reading Course Discrete Mathematics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCF-082-m01</td>
<td>Reading Course Functional Analysis</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCO-082-m01</td>
<td>Reading Course Operations Research</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCY-082-m01</td>
<td>Reading Course Dynamical Systems</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-RCP-082-m01</td>
<td>Reading Course Optimisation</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>10-M-PRG-082-m01</td>
<td>Programming course for students of Mathematics</td>
<td>3</td>
<td>B/NB</td>
</tr>
<tr>
<td>11-HS-092-m01</td>
<td>Advanced Seminar Experimental/Theoretical Physics</td>
<td>4</td>
<td>NUM</td>
</tr>
<tr>
<td>11-A1-092-m01</td>
<td>Computational Physics</td>
<td>6</td>
<td>NUM</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar in Analysis</td>
<td>10-M-BSA-072-m01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in analysis.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Linear Algebra</td>
<td>10-M-BSL-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in linear algebra.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 minutes)

Assessment offered: in the semester in which the course is offered

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Algebra</td>
<td>10-M-BSE-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in algebra.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Geometry</td>
<td>10-M-BSG-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in geometry or differential geometry.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 4. Mathematik Geometrie
Module Catalogue for the Subject Mathematical Physics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Number Theory</td>
<td>10-M-BSZ-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents
A selected topic in number theory.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Ordinary Differential Equations</td>
<td>10-M-BSW-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A selected topic in the theory of ordinary differential equations.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Complex Analysis</td>
<td>10-M-BSC-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

A selected topic in complex analysis.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- talk (approx. 60 minutes)

 - Assessment offered: in the semester in which the course is offered
 - Language of assessment: German, English if agreed upon with the examiner

Allocation of places

-

Additional information

-

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Numerical Mathematics</td>
<td>10-M-BSN-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in numerical mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- Talk (approx. 60 minutes)
 - Assessment offered: in the semester in which the course is offered
 - Language of assessment: German, English if agreed upon with the examiner

Allocation of places

-

Additional information

-

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Stochastics</td>
<td>10-M-BSS-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A selected topic in stochastics.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
§ 73 (1) 3. Mathematik Stochastik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Functional Analysis</td>
<td>10-M-BSF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in functional analysis.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Operation Research</td>
<td>10-M-BSO-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in operations research.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Discrete Mathematics</td>
<td>10-M-BSD-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in discrete mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Introduction to Discrete Mathematics
Abbreviation: 10-M-EDM-072-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes:
The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
Module title	Abbreviation
Introduction to Functional Analysis | 10-M-FAN-072-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis.

Intended learning outcomes
The student knows the fundamental concepts and methods of functional analysis as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to functional analysis, and realises the broad applicability of the theory to other branches of mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
Module Title

Operations Research

Abbreviation 10-M-ORS-072-m01

Module Coordinator

Dean of Studies Mathematik (Mathematics)
Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended Learning Outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(see examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module Catalogue for the Subject
Mathematical Physics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics</td>
<td>11-A4-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
- History of astronomy, coordinates and time measurement, the solar system, size scales in outer space, telescopes and detectors, stellar structure, stellar atmospheres, stellar evolution, final stages of stellar evolution, interstellar medium, structure of the Milky Way, local universe, expanding space-time, galaxies, active galactic nuclei, large-scale structure of the universe, Friedmann World Models, thermodynamics of the early universe, primordial nucleosynthesis, cosmic microwave background radiation, structure formation, inflation

Intended learning outcomes
The students are familiar with the modern world view of Astrophysics. They know methods and tools for astrophysical observations and evaluations. They are able to use these methods to plan and analyse own observations. They know the structure of the universe, e.g. of stars and galaxies and understand the process of their development.

Courses (type, number of weekly contact hours, language — if other than German)
- V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
- written examination (approx. 120 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 15 places. Places will be allocated by lot.

Additional information
-

Referred to in LPO I (examination regulations for teaching-degree programmes)
-

Bachelor’s with 1 major Mathematical Physics (2009) IMU Würzburg • generated 17-Sep-2019 • exam. reg. data record 82|b55|-|-|H|2009 page 22 / 96
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Linear Dynamics</td>
<td>10-M-NLD-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Basic notions in stability theory, Lyapunov theory; stable manifolds, periodic solutions including Poincare-Bendixson, chaotic dynamics; applications in physics and biology (e.g. Hamiltonian systems, Volterra-Lotka).

Intended learning outcomes
The student is acquainted with the fundamental concepts and results in non-linear dynamics and their proof methods. He/She is able to apply these methods to simple situations, e.g. in physics or biology.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>10-M-ANA-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, power series, Taylor series, fundamental calculus in one and several variables (including inverse and implicit function theorem); fundamental integral calculus in one variable (Riemann integral and improper integrals).

Intended learning outcomes

The student knows and masters the essential methods and notions of analysis. He/She is able to perform easy mathematical arguments and present them adequately in written and oral form. He/She is acquainted with the central proof methods and concepts in analysis, their analytic background and geometric interpretation.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- **10-M-ANA-1-082**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-ANA-2-082**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-ANA-P-082**: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ANA-1-082: Analysis 1 Analysis 1

- 8 ECTS, Method of grading: (not) successfully completed
- a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended.

Assessment in module component 10-M-ANA-2-082: Analysis 2 Analysis 2

- 7 ECTS, Method of grading: (not) successfully completed
- a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended; in addition, module component 10-M-ANA-1 is recommended for module component 10-M-ANA-2.

Assessment in module component 10-M-ANA-P-082: Examination in Analysis

- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of any one of the module components 10-M-ANA-1, 10-M-ANL-1, 10-M-ANA-2, 10-M-ANL-2 is a prerequisite for participation in module component 10-M-ANA-P.

Allocation of places

--
Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module title: Linear Algebra
Abbreviation: 10-M-LNA-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 14
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 2 semester
Module level: undergraduate
Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Sets, relations and maps; notions of groups, rings and fields (in particular, polynomial rings); vector spaces (subspaces, quotient spaces, linear independency, basis, dimension); linear maps (isomorphism theorem, image, kernel, rank); matrix calculus; systems of linear equations, determinants, eigenvalues, eigenvectors and eigenspaces, diagonalisability (including characteristic polynomial, minimal polynomial), normal forms, bilinear forms; Euclidean and unitary vector spaces (orthonormal bases, isometries, principal axis transformation).

Intended learning outcomes
The student knows and masters the basic notions and essential methods of linear algebra. He/She is able to perform easy mathematical arguments independently, and can present them adequately in written and oral form. He/She is able to apply the central proof methods and concepts of linear algebra and knows about their algebraic and geometric background.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 3 module components. Information on courses will be listed separately for each module component.

• 10-M-LNA-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
• 10-M-LNA-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
• 10-M-LNA-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-LNA-1-082: Linear Algebra 1 Linear Algebra 1
• 7 ECTS, Method of grading: (not) successfully completed
• written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
• Language of assessment: German, English if agreed upon with the examiner
• Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-2-082: Linear Algebra 2 Linear Algebra 2
• 5 ECTS, Method of grading: (not) successfully completed
• written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
• Language of assessment: German, English if agreed upon with the examiner
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-P-082: Examination in Linear Algebra
- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-LNA-1 or module component 10-M-LNA-2 is a prerequisite for participation in module component 10-M-LNA-P.

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
Module title

Ordinary Differential Equations and Complex Analysis

Abbreviation

10-M-DFT-082-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

13

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

2 semester

Module level

undergraduate

Other prerequisites

By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Existence and uniqueness theorems on solutions of ordinary differential equations, solution theorems on systems of linear differential equations, introduction to the problem of systems of nonlinear differential equations, basic notions in the qualitative theory of ordinary differential equations, basic properties of holomorphic functions, meromorphic functions and conformal maps, basic proof methods in differential equations and complex analysis, applications in computer science, physics, engineering science and other fields of mathematics.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations and holomorphic functions. He/she is able to interconnect these concepts and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- **10-M-DFT-1-082**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-DFT-2-082**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-DFT-P-082**: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-DFT-1-082: Ordinary Differential Equations

- 4 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-DFT-2-082: Introduction to Complex Analysis

- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
• Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-DFT-P-082: Examination in Ordinary Differential Equations and Complex Analysis
- 2 ECTS, Method of grading: numerical grade
- Oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-DFT-1 or module component 10-M-DFT-2 is a prerequisite for participation in module component 10-M-DFT-P.

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module Title
Numerical Mathematics 1

Abbreviation
10-M-NM1-082-m01

Module Coordinator
Dean of Studies Mathematik (Mathematics)

Module Offered by
Institute of Mathematics

ECTS
8

Method of Grading
Numerical grade

Only after Succ. Compl. of Module(s)

Duration
1 semester

Module Level
Undergraduate

Other Prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended Learning Outcomes
The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of Assessment
Written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of Places

Additional Information

Referred to in LPO I
(Examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title
Stochastics 1

Abbreviation
10-M-ST1-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses
(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 3. Mathematik Stochastik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 2</td>
<td>10-M-NM2-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems.

Intended learning outcomes

The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastics 2</td>
<td>10-M-ST2-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in statistics, applies these methods to practical problems and knows about the typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 3. Mathematik Stochastik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Numerical Mathematics</td>
<td>10-M-RCN-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advanced topics in numerical mathematics.

Intended learning outcomes

The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses (type, number of weekly contact hours, language — if other than German)

A (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Stochastics</td>
<td>10-M-RCS-o82-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advanced topics in stochastics.

Intended learning outcomes

The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses

(type, number of weekly contact hours, language — if other than German)

A (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Reading Course Discrete Mathematics
Abbreviation: 10-M-RCD-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 4
Method of grading: numerical grade
Duration: 1 semester
Other prerequisites:

Contents:
Basics in discrete mathematics.

Intended learning outcomes:
The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses (type, number of weekly contact hours, language — if other than German):
A (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places:
-

Additional information:
-

Referred to in LPO I (examination regulations for teaching-degree programmes):
-
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Functional Analysis</td>
<td>10-M-RCF-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics in functional analysis.

Intended learning outcomes

The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses (type, number of weekly contact hours, language — if other than German)

A (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Operations Research</td>
<td>10-M-RCO-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics in operations research.

Intended learning outcomes
The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses
A (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Dynamical Systems</td>
<td>10-M-RCY-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics in dynamical systems and nonlinear dynamics.

Intended learning outcomes
The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses
(type, number of weekly contact hours, language — if other than German)
No information on SWS (weekly contact hours) and course language available

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Course Optimisation</td>
<td>10-M-RCP-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics in optimization.

Intended learning outcomes
The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses (type, number of weekly contact hours, language — if other than German)
A (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Mathematical Physics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Course Mathematics</td>
<td>10-M-VKM-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of courses (as specified at the beginning of the course).

Contents
Introduction to the basic techniques in mathematics; approach to sets, propositions, propositional logic.

Intended learning outcomes
The student gets acquainted with the basic working techniques which are prerequisites for the further courses in the Bachelor’s degree study programme.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Assessment offered: once a year, winter semester
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>10-M-PRG-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>Admission prerequisite to assessment: regular attendance (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents
Basics of a modern programming language (e.g. C or Fortran) taking into account the particular needs in mathematics.

Intended learning outcomes
The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Project in the form of programming exercises (as specified at the beginning of the course)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computeroriented Mathematics</td>
<td>10-M-COM-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to modern mathematical software for symbolic computation (e.g. Mathematica or Maple) and numerical computation (e.g. Matlab) to supplement the basic modules in analysis and linear algebra ((10-M-ANA or 10-M-ANL) and 10-M-LNA). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

project in the form of programming exercises (as specified at the beginning of the course)

Assessment offered: once a year, summer semester

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title: Propaedeutics of Mathematics
Abbreviation: 10-M-PPM-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 2
Method of grading: Only after succ. compl. of module(s)
2 (not) successfully completed

Duration: 1 semester
Module level: undergraduate

Other prerequisites: Admission prerequisite to assessment: regular attendance of courses (as specified at the beginning of the course).

Contents:
Fundamental proof methods and questions in mathematics, insight into examples of abstract concepts of mathematics, e.g. by reference to its historical development, approach to axiomatic and deduction.

Intended learning outcomes:
The student is acquainted with the basic proof methods and techniques in mathematics. He/She is able to perform easy mathematical arguments independently and present them adequately and reasonably in written and oral form.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Assessment offered: once a year, winter semester
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Mathematics, advanced</td>
<td>10-M-COMg-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to modern mathematical software for symbolic computation (e. g. Mathematica or Maple) and numerical computation (e. g. Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA, 10-M-ANL and 10-M-LNA). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)

Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)

Assessment offered: once a year, summer semester

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title: Introduction to Geometry
Abbreviation: 10-M-GEO-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 8
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents:
Introduction to topics in geometry: axiomatic introduction of projective spaces, coordinates, fundamental theorems, relations to linear algebra and algebra, curves and hypersurfaces in Euclidean spaces, curvature.

Intended learning outcomes:
The student is acquainted with the fundamental concepts and methods of geometry.

Courses:
This module has 2 components; information on courses listed separately for each component.
- 10-M-GEO-1-082: V + Ü
- 10-M-GEO-2-082: V + Ü

Method of assessment:
This module has the following 2 assessment components. To pass the module as a whole students must pass one of the two assessment components.

Assessment component to module component 10-M-GEO-1-082: Einführung in die Projektive Geometrie
- 8 ECTS credits, method of grading: numerical grade
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: English, German if agreed upon with the examiner
- Other prerequisites: Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment component to module component 10-M-GEO-2-082: Einführung in die Differentialgeometrie
- 8 ECTS credits, method of grading: numerical grade
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: English, German if agreed upon with the examiner
- Other prerequisites: Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.
Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 4. Mathematik Geometrie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects, simple</td>
<td>10-M-PRGk-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Basics of a modern programming language (e.g. C or Fortran) taking into account the particular needs in mathematics.

Intended learning outcomes

The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Number Theory and Algebra

Abbreviation: 10-M-ZAL-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 13
Method of grading: numerical grade
Duration: 2 semester
Module level: undergraduate

Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Introduction to number theory, algebra and their interrelations: basic algebraic structures (groups, rings, fields); discussion of properties of integers and rational numbers (as well as algebraic extensions) with regard to their algebraic structure (residue class rings and finite fields).

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of number theory and algebra. He/she is able to interrelate these concepts and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-ZAL-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ZAL-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ZAL-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ZAL-1-082: Introduction to Number Theory

- 4 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ZAL-2-082: Introduction to Algebra

- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have
obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ZAL-P-082: Examination in Number Theory and Algebra
- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-ZAL-1 or module component 10-M-ZAL-2 is a prerequisite for participation in module component 10-M-ZAL-P.

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
Module title: Advanced Analysis
Abbreviation: 10-M-VAN-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 8
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: undergraduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Lebesgue integral in several variables, including theorems on convergence and Fubini’s theorem, L^p-spaces and elementary Fourier theory in L^2, Gauss’s theorem.

Intended learning outcomes
The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)
Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Analysis and Partial Differential Equations</td>
<td>10-M-GAP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>numerical grade</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Basics in analysis on manifolds, e. g. submanifolds and calculus of differential forms, Stoke's theorem and its applications in vector calculus and topology, examples of first order partial differential equations, existence and uniqueness theorems, basic equations in mathematical physics, boundary value theorems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student knows and masters the basic notions and essential methods of vector analysis on manifolds and partial differential equations. He/She is able to perform mathematical arguments in this field independently, and can present them adequately in written and oral form. He/She is able to apply the central proof methods and concepts of geometric analysis and partial differential equations and knows about their analytic background.

Courses

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-GAP-1-092: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-GAP-2-092: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-GAP-P-092: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-GAP-1-092: Geometric Analysis Geometric Analysis

- 7 ECTS, Method of grading: (not) successfully completed
 - a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Other prerequisites: Modules 10-M-ANA and 10-M-LNA are recommended.

Assessment in module component 10-M-GAP-2-092: Partial Differential Equations Partial Differential Equations

- 4 ECTS, Method of grading: (not) successfully completed
 - a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Other prerequisites: Modules 10-M-ANA and 10-M-LNA are recommended.

Assessment in module component 10-M-GAP-P-092: Examination in Geometric Analysis and Partial Differential Equations

- 2 ECTS, Method of grading: numerical grade
 - oral examination of one candidate each (approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Only after successful completion of module components: 10-M-GAP-1 or 10-M-GAP-2
 - Other prerequisites: Modules 10-M-ANA and 10-M-LNA are recommended.
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Modelling and Computational Science</td>
<td>10-M-MWR-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Intended learning outcomes
The student masters the fundamental mathematical methods and techniques to simulate processes from natural and engineering sciences on a computer.

Courses
(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes; usually chosen) or (b) oral examination of one candidate each (approx. 20 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Module title
Seminar Mathematical Physics

Abbreviation
11-SMP-092-m01

Module coordinator
chairperson of examination committee Mathematische Physik (Mathematical Physics)

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance and successful preparation of seminar presentation.

Contents
A selected topic of Mathematical Physics.

Intended learning outcomes
The students learn about the principles of independent scientific work. This involves the development and division of a given topic on the basis of literature, the preparation of a lecture as well as the ability to actively participate in discussions.

Courses
(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk with discussion (approx. 60 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title: Mathematical Physics (Bachelor Thesis)
Abbreviation: 10-M-BAP-092-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s)

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Registration for assessment: as specified.

Contents:
Independently researching and writing on a (potentially interdisciplinary) topic in mathematics or physics selected in consultation with the supervisor.

Intended learning outcomes:
The student is able to work independently on a given, possibly interdisciplinary topic in mathematics or physics and apply the skills and methods obtained during the study programme. He/She can write down the result of his/her work in a suitable form.

Courses:
(no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written thesis
Language of assessment: German, English if agreed upon with the examiner

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Module title	Practical Course A
Abbreviation | 11-P-PA-092-m01

Module coordinator | Managing Director of the Institute of Applied Physics
Module offered by | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Physical laws of mechanics, thermodynamics, science of electricity, types of error, error approximation and propagation, graphs, linear regression, average values and standard deviation, distribution functions, significance tests, writing of lab reports and publications.

Intended learning outcomes

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)

Auswertung von Messungen und Fehlerrechnung (Measurements and Data Analysis): V (1 weekly contact hour) + Ü (1 weekly contact hour), once a year (winter semester)
Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity, BAM): P (2 weekly contact hours)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 120 minutes)
2. Lab course: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students’ understanding of the physics-related contents of the course (approx. 30 minutes).

Successful completion of approx. 50% of practice work is a prerequisite for admission to assessment component 1.
To pass assessment component 2, students must pass both elements a) and b). Students will be offered one opportunity to retake element a) and/or element b).
Students must register for assessment components 1 and 2 online (details to be announced).
Students must attend Auswertung von Messungen und Fehlerrechnung (Measurements and Data Analysis) before attending Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity).
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. c) Physik physikalische Grundpraktika
§ 77 (1) 1. d) Physik "physikalische Praktika"
Module Catalogue for the Subject Mathematical Physics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Plasmaphysics</td>
<td>11-EPP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
6 | numerical grade | -- |

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, Magnetohydrodynamics, Transport equations for energetic particles, Properties of magnetic turbulence, Propagation of solar particles within the solar wind, Particle acceleration via shock waves and via interaction with plasma turbulence, Particle acceleration and transport in galaxies and other astrophysical objects, Cosmic radiation.

Intended learning outcomes

The students know the principles of Plasma Physics, especially the description of transport phenomena in plasma. They are able to solve basic problems of Plasma Physics and to apply this knowledge to Astrophysics.

Courses

[type, number of weekly contact hours, language — if other than German]

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

[type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus]

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Quantum Mechanics II | 11-QM2-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

"Quantum mechanics II" constitutes the central theoretical course of the international Master's program in Physics. It builds upon basics which are acquired in the lecture "Quantum mechanics I" of the Bachelor's degree. While the specific emphasis can be adjusted individually, the core topics that are supposed to be covered should include:
1. Second quantisation: Fermions and bosons
2. Band structures of particles in a crystal
3. Angular momentum, symmetry operators, Lie Algebras
4. Scattering theory: Potential scattering, partial wave expansion
5. Relativistic quantum mechanics: Klein-Gordon equation, Dirac equation, Lorentz group, fine structure splitting of atomic spectra
6. Quantum entanglement
7. Canonical formalism

Intended learning outcomes

The students acquire in-depth knowledge of advanced quantum mechanics and have a thorough understanding of the mathematical and theoretical concepts of the listed topics. They are able to describe or model problems of modern theoretical Quantum Physics mathematically, to solve problems analytically, to use approximation methods and to interpret the results physically. The course is pivotal to subsequent theory courses in Astrophysics, High-Energy Physics and Condensed Matter/Solid-State Physics. The course is mandatory for all Master's students.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Many Body Quantum Theory
Abbreviation
11-QVTP-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS 8
Method of grading numerical grade
Only after succ. compl. of module(s)
--

Duration 1 semester
Module level graduate
Other prerequisites Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
This will usually be a course on quantum many particle physics approached by the perturbative methods using Green's functions.
An outline could be:

1 Single-particle Green’s function
2 Review of second quantization
3 Diagrammatic method using many particle Green’s functions at temperature T=0
4 Diagrammatic method for finite T
5 Landau theory of Fermi liquids
6 Superconductivity
7 One-dimensional systems and bosonization

Intended learning outcomes
The students have mastered the principles of quantum field theory in many-particle systems. They are able to apply the acquired methods to current problems of Theoretical Solid-State Physics.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--
<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Relativistic Effects in Mesoscopic Systems

Abbreviation
11-RMS-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Relativistic effects in mesoscopic systems. - Spin-orbit coupling. - Dirac equation. - Quantum Hall effect. - Topological insulators. - Majorana fermions

Intended learning outcomes
The students have mastered the mathematical methods for the description of relativistic quantum systems, especially in the field of mesoscopic physics. They are able to apply their knowledge to simple systems.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Mathematical Physics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Solid State Physics</td>
<td>11-TFK-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the theoretical description of solid-state phenomena. They know the corresponding mathematical or theoretical methods and are able to apply them to basic problems of solid-state theory and to understand the connections to experimental results. The individual students have elaborated on an advanced topic of solid-state theory and have discussed this topic in a seminar presentation.

Courses

(type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Superconduction</td>
<td>11-TSL-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the theoretical models for the description of superconductivity. They know the properties and application areas of these models and are able to apply calculation methods to simple problems.

Courses

(type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Complex Systems</td>
<td>11-PKS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

1. Theory of critical phenomena in thermal equilibrium
2. Introduction into the physics out of equilibrium
3. Entropy production and fluctuation
4. Phase transitions away from equilibrium
5. Universality
6. Spin glasses
7. Theory of neural networks

Intended learning outcomes

The students have specific and advanced knowledge in the field of physics of complex systems. They know the methods of Statistical Physics, Computational Physics and non-linear dynamics, which are used to describe such systems. They are able to work on current research problems in this area.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009. Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Quantum Information and Quantum Computing
Abbreviation | 11-QIC-092-m01

Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | 1 semester
Module level | graduate
Other prerequisites | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The first part introduces the theoretical concepts of quantum information and quantum computers. It discusses the main quantum algorithms. The second part discusses experimental possibilities for the realisation of entangled states. One of the main topics is the production, controlling and manipulation of coherent two-electron spin states. The third part covers the description and explanation of decoherence of quantum mechanical states.

Intended learning outcomes
The students have an advanced understanding of quantum theory and basic knowledge of quantum calculation. They are able to solve simple problems of quantum information theory.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Statistics, Data Analysis and Computer Physics

Abbreviation
11-SDC-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Statistics, data analysis and computer physics.

Intended learning outcomes
The students have specific and advanced knowledge in the field of statistics, data analysis and Computational Physics.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Cosmology

Module title: Cosmology
Abbreviation: 11-AKM-092-m01
Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy
ECTS: 6
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --
Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
- Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, supercluster, galaxies and galaxy clusters, intergalactic medium, cosmological parameters

Intended learning outcomes
- The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to work on scientific questions.

Courses
- **R + V** (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- **a)** written examination (approx. 90 minutes)
- **b)** oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes)
- **c)** project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks)
- **d)** presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
- --

Additional information
- --

Referred to in LPO I
- (examination regulations for teaching-degree programmes)
- --
Module title
Plasma-Astrophysics

Abbreviation
11-APL-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have basic knowledge of Plasma Astrophysics. They have mastered the theoretical description of motion and acceleration of charged particles in space, they know corresponding measuring methods and can compare and evaluate theory and experiments.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Title: Group Theory

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-GRT-092-m01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Coordinator</td>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
</tr>
<tr>
<td>Module offered by</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Method of Grading</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td>Numerical Grade</td>
<td>--</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module Level</td>
<td>graduate</td>
</tr>
<tr>
<td>Other Prerequisites</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

- Group theory
- Finite groups
- Lie groups
- Lie algebra
- Depiction
- Tensors
- Classification theorem
- Applications

Intended Learning Outcomes

The students know the basics of group theory, especially of Lie groups. They are able to identify problems of group theory and to solve them by using the acquired methods. They are able to apply group theory to the formulation and processing of physical problems.

Courses

- R + V (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or
- c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or
- d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Mathematical Physics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Methods in Astrophysics</td>
<td>11-NMA-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes
The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)</td>
<td></td>
</tr>
</tbody>
</table>

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Quantum Field Theory II
Abbreviation | 11-QFT2-092-m01

Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by | Faculty of Physics and Astronomy

ECTS | 6
Method of grading | Only after succ. compl. of module(s)
numerical grade | --

Duration | 1 semester
Module level | graduate
Other prerequisites | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve simple problems of quantum field theory by using the acquired calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Renormalization Theory | 11-RNT-092-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester

Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes

The students have gained an overview of renormalisation group methods for non-linear partial differential equations. They know important examples and corresponding solving methods and are able to apply them to specific tasks.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relativistical Quantumfield Theory</td>
<td>11-RQFT-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Relativity</td>
<td>11-RTT-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Mathematical foundations of the theory of relativity; differential forms; brief summary of special relativity; elements of differential geometry; electrodynamics as an example of a relativistic gauge theory; field equations of general relativity; stellar models; introduction to cosmology; Hamiltonian formulation

Intended learning outcomes

The students are familiar with the basic physical and mathematical concepts of general relativity. They have a mathematical understanding of the formulation of general relativity on the basis of differential forms. They are able to apply the acquired knowledge to problems of Astrophysics and cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Elementary Particle Physics</td>
<td>11-TEP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Mathematical Physics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Particle Physics</td>
<td>11-TPE-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physics with modern particle detectors at the LHC and at the Tevatron. Discovery of the Higgs boson. Search for supersymmetry and other physics beyond the standard model. Determination of the top quark mass and W mass as well as other parameters of the standard model. Introduction to modern methods of analysis and assessment of systematic errors.

Intended learning outcomes

The students are familiar with the principles of modern particle detector physics, especially with currently open questions of Particle Physics, which are examined by using these detectors. They know modern methods of analysis and are able to put results into context and to assess their systematic uncertainties.

Courses

- **R + V** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or
- c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or
- d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Physics (Standard Model)</td>
<td>11-TPS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>the Institute of Theoretical Physics and Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to the theory of electroweak interaction and spontaneous symmetry breaking. Experiments on the standard model and determination of model parameters.

Intended learning outcomes

The students know the theoretical fundamental laws of the standard model of Particle Physics and the key experiments that have established and confirmed the standard model. They are able to interpret experimental or theoretical results in the framework of the standard model and know its validity and limits.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersymmetry I and II</td>
<td>11-SUS-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have knowledge of the mathematical and physical principles of supersymmetry and supersymmetric models. They understand the theory’s formalism and recognise its connections to other models as well as its importance for phenomenology of elementary particles.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Classical Physics (Mechanics, Thermodynamics, Waves, Oscillations, Electricity, Magnetism and Optics)

Abbreviation

11-KP-092-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>Bridge course Mathematische Rechenmethoden der Physik (Mathematical Methods of Physics) for first-semester students.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students understand the basic principles and connections of mechanics, thermodynamics, vibrations, waves, science of electricity, magnetism, electromagnetic vibrations and waves, radiation and wave optics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

- **Klassische Physik 1 (Mechanik, Wellen, Wärme)** (Classical Physics 1 (Mechanics, Waves, Heat)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
- **Klassische Physik 2 (Elektromagnetismus, Optik)** (Classical Physics 2 (Electromagnetism, Optics)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises in part 1 (Klassische Physik 1 (Classical Physics 1)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Klassische Physik 2 (Classical Physics 2)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.

To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2.

Students are highly recommended to attend both courses Klassische Physik 1 (Classical Physics 1) and Klassische Physik 2 (Classical Physics 2). The topics discussed in these two courses will be covered in assessment component 3.

Students must register for assessment components 1 through 3 online (details to be announced).

To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.

The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places

--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>000</td>
</tr>
</tbody>
</table>
Module title | Abbreviation
---|---
Condensed Matter (Quanta, Atoms, Molecules, Solid State Physics) | 11-KM-092-m01

Module coordinator	Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
16 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | --

Contents

Intended learning outcomes
The students know the basic contexts and principles of quantum phenomena, Atomic Physics and solids (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)). They are able to apply mathematical methods to the formulation of modern physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)
Kondensierte Materie 1 (Quanten, Atome, Moleküle) (Condensed Matter 1 (Quanta, Atoms, Molecules)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
Kondensierte Materie 2 (Festkörperphysik 1) (Condensed Matter 2 (Solid State Physics)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Kondensierte Materie 1 (Condensed Matter 1)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Kondensierte Materie 2 (Condensed Matter 2)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s). Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.
To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Kondensierte Materie 1 (Condensed Matter 1) and Kondensierte Materie 2 (Condensed Matter 2). The topics discussed in these two courses will be covered in assessment component 3.
Students must register for assessment components 1 through 3 online (details to be announced). To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3. The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places
--

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Abbreviation
Nuclear and Elementary Particle Physics | 11-KET-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students understand the basic connections between fundamental Nuclear and Elementary Particle Physics. They have an overview of the experimental observations of Particle Physics and the theoretical models which describe them.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Statistical Mechanics, Thermodynamics and Electrodynamics | 11-STE-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
16 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | 10-M1-PHY and 10-M2-PHY or 10-M1-NST and 10-M2-NST

Contents

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of electrodynamics, thermodynamics and statistical mechanics. They are familiar with the corresponding calculation methods and are able to independently apply them to the description and solution of problems in this area.

Courses

(type, number of weekly contact hours, language — if other than German)

Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
Theoretische Elektrodynamik (Theoretical Electrodynamics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Theoretische Elektrodynamik (Theoretical Electrodynamics)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.

Students are highly recommended to attend both courses Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics) and Theoretische Elektrodynamik (Theoretical Electrodynamics). The topics discussed in these two courses will be covered in assessment component 3.

Students must register for assessment components 1 through 3 online (details to be announced).

To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.

The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Theoretical Mechanics and Quantum Mechanics | 11-TQM-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
16 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | 10-M1-PHY, 10-M2-PHY and 11-MPI-3 or 10-M1-NST, 10-M2-NST and MPI-3

Contents

Intended learning outcomes
The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations and understand the principles of quantum theory. They are able to apply the acquired calculation methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)
Theoretische Mechanik (Theoretical Mechanics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
Quantenmechanik (Quantum Mechanics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Theoretische Mechanik (Theoretical Mechanics)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Quantenmechanik (Quantum Mechanics)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.
To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Theoretische Mechanik (Theoretical Mechanics) and Quantenmechanik (Quantum Mechanics). The topics discussed in these two courses will be covered in assessment component 3.
Students must register for assessment components 1 through 3 online (details to be announced).
To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.
The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places
--

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Mechanics and Quantum Mechanics for FOKUS Students</td>
<td>11-TQM-F-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>numerical grade</td>
<td>10-M-PHY1 and 10-M-PHY2 or 10-M-NST1 and 10-M-NST2 and 11-TQM-1, 11-KP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations and understand the principles of quantum theory. They are able to apply the acquired calculation methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

- **Theoretische Mechanik (Theoretical Mechanics):** V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
- **Quantenmechanik für FOKUS-Studierende (Quantum Mechanics for FOKUS Students):** V (4 weekly contact hours) + Ü (2 weekly contact hours) + T (1 weekly contact hour), once a year (block taught during semester break between summer and winter semester)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Theoretische Mechanik (Theoretical Mechanics)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Quantenmechanik für FOKUS-Studierende (Quantum Mechanics for FOKUS Students)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2. To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Theoretische Mechanik (Theoretical Mechanics) and Quantenmechanik für FOKUS-Studierende (Quantum Mechanics for FOKUS Students). The topics discussed in these two courses will be covered in assessment component 3. Students must register for assessment components 1 through 3 online (details to be announced). To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3. The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places

--
Additional information

Students who intend to study the FOKUS Master's degree programme must take Quantenmechanik für FOKUS-Studierende (Quantum Mechanics for FOKUS Students) instead of Quantenmechanik (Quantum Mechanics).

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Seminar Experimental/Theoretical Physics</td>
<td>11-HS-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance and successful preparation of seminar presentation.

Contents
Current issues of Theoretical/Experimental Physics.

Intended learning outcomes
The students have advanced knowledge of a specialist field of Experimental or Theoretical Physics. They are able to independently acquire this knowledge and to summarise it in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (approx. 30 to 45 minutes) with discussion
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*
--
Module title	Abbreviation
Computational Physics | 11-A1-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
- Introduction to programming on the basis of C++ / Java / Mathematica
- numerical solution of differential equations
- simulation of chaotic systems
- generation of random numbers
- random walk
- many-particle processes and reaction diffusion model

Intended learning outcomes
The students have knowledge of two major programming languages and know algorithms important for Physics. They have knowledge of numerical standard methods and are able to apply computer-assisted processes to the solution of physical problems, e.g. algorithms for solving numerical problems of Physics.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 120 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
Only as part of pool of general key skills (ASQ): 15 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Astrophysics</td>
<td>11-AST-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Theoretical Astrophysics, models for the description of complex observation results, numeric simulations.

Intended learning outcomes

The students have basic knowledge of the methods of Theoretical Astrophysics. They are able to design complex observations and to test the models with the help of simulations.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics 1</td>
<td>11-FKP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of solids: Bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas).

Intended learning outcomes

The students understand the basic contexts and principles of solids (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)).

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quanta, Atoms, Molecules</td>
<td>11-QAM-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of Atomic, Quantum and Molecular Physics.

Intended learning outcomes

The students have knowledge of the basic contexts and principles of Atomic and Molecular Physics (atoms: Quantum mechanical atom model, one/multi-electron atoms, electronic dipole transitions, atoms in B field, as well as molecules: Bonding models and elementary excitations: rotations, vibrations, electronic excitations)

Courses (type, number of weekly contact hours, language — if other than German)

Ü + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Bachelor's with 1 major, 180 ECTS credits

Module title

Practical Course Part B Mathematical Physics

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-P-PB-MP-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Physical laws of mechanics, thermodynamics, optics, science of electricity, vibration and waves, Atomic and Nuclear Physics, wave optics. Basic measuring methods using computers and storage oscilloscopes.

Intended learning outcomes

The students have knowledge and skills of physical measuring instruments and experimental techniques. They are able to independently plan and conduct experiments in cooperation with others, and to document the results in a measurement protocol.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
<th>Examination offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klassische Physik (Classical Physics, KLP)</td>
<td>P (2 weekly contact hours)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Elektrizitätslehre und Schaltungen (Electricity and Circuits, ELS)</td>
<td>P (2 weekly contact hours)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wellenoptik (Physical Optics, WOP)</td>
<td>P (2 weekly contact hours)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Atom- und Kernphysik (Atomic and Nuclear Physics, AKP)</td>
<td>P (2 weekly contact hours)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Computer und Messtechnik (Computers and Measurement Technology, CMT)</td>
<td>P (2 weekly contact hours)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Method of assessment

This module has the following assessment components

1. Lab course in part 1: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

2. Lab course in part 2: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

Students must register for assessment components 1 and 2 online (registration deadline to be announced). Students will be offered one opportunity to retake element a) and/or element b). To pass an assessment component, they must pass both elements a) and b).

To pass this module, students must successfully complete two out of the five courses. Students must take exactly one course each in the areas KLP and ELS as well as one course in the areas WOP, AKP and CMT. Students must attend KLP or ELS courses prior to attending WOP, AKP or CMT courses.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie

§ 53 (1) 1. b) Physik Aufbau der Materie

§ 53 (1) 1. c) Physik physikalische Grundpraktika

§ 77 (1) 1. b) Physik "Fortgeschrittene Experimentalphysik"

§ 77 (1) 1. d) Physik "physikalische Praktika"