Subdivided Module Catalogue
for the Subject
Nanostructure Technology
as a Bachelor’s with 1 major
with the degree "Bachelor of Science"
(180 ECTS credits)

Examination regulations version: 2015
Responsible: Faculty of Physics and Astronomy
Course of Studies - Contents and Objectives

The goal of the studies is it to mediate knowledge on the most important subsections of the Nanostructure Technology and to make the students familiar with the methods of engineering scientific and physical thinking and working. By training of analytic thinking abilities the students acquire the ability to deal later with the various fields of applications and to compile the basic knowledge in particular necessary for a consecutive Bachelor and Master course of studies. Therefore the main emphasis is put on the understanding of the fundamental physical and chemical terms and laws as well as on basic engineering-scientific knowledge and the development of the typical scientific thinking and working structures. During the Bachelor thesis the student should work on an thematic and temporarily limited experimental or theoretical engineering-scientific task in the field of Nanostructure Technology using well-known procedures and scientific criteria under guidance to a large extent independently.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

12-Aug-2015 (2015-81)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Module title</th>
<th>ECTS credits</th>
<th>Method of grading</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses (118 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanostructure Technology (27 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-N-EIN-152-m01</td>
<td>Introduction to Nanoscience</td>
<td>7</td>
<td>NUM</td>
<td>28</td>
</tr>
<tr>
<td>11-N-IP-152-m01</td>
<td>Industrial Internship</td>
<td>10</td>
<td>NUM</td>
<td>31</td>
</tr>
<tr>
<td>08-AC-ExChem-152-m01</td>
<td>Experimental Chemistry</td>
<td>5</td>
<td>NUM</td>
<td>32</td>
</tr>
<tr>
<td>08-ACP-NF-152-m01</td>
<td>General and Analytical Chemistry for students of natural sciences (lab)</td>
<td>2</td>
<td>B/NB</td>
<td>33</td>
</tr>
<tr>
<td>08-OC-NF-152-m01</td>
<td>Organic Chemistry for students of medicine, biomedicine, dental medicine and natural sciences</td>
<td>3</td>
<td>NUM</td>
<td>34</td>
</tr>
<tr>
<td>Classical Physics (16 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-E-M-152-m01</td>
<td>Classical Physics 1 (Mechanics)</td>
<td>8</td>
<td>NUM</td>
<td>11</td>
</tr>
<tr>
<td>11-E-E-152-m01</td>
<td>Classical Physics 2 (Heat and Electromagnetism)</td>
<td>8</td>
<td>NUM</td>
<td>13</td>
</tr>
<tr>
<td>Optics and Quantum Physics I (6 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-E-OAV-152-m01</td>
<td>Optics and Quantum Physics</td>
<td>6</td>
<td>NUM</td>
<td>35</td>
</tr>
<tr>
<td>Optics and Quantum Physics II (10 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-E-OA-152-m01</td>
<td>Optics and Waves - Exercises</td>
<td>5</td>
<td>NUM</td>
<td>37</td>
</tr>
<tr>
<td>11-E-AA-152-m01</td>
<td>Atoms and Quanta - Exercises</td>
<td>5</td>
<td>NUM</td>
<td>38</td>
</tr>
<tr>
<td>Solid State Physics (8 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-E-F-152-m01</td>
<td>Introduction to Solid State Physics</td>
<td>8</td>
<td>NUM</td>
<td>19</td>
</tr>
<tr>
<td>Theoretical Physics I (6 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-T-QS-152-m01</td>
<td>Quantum Mechanics and Statistical Physics</td>
<td>6</td>
<td>NUM</td>
<td>39</td>
</tr>
<tr>
<td>Theoretical Physics II (10 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-T-QA-152-m01</td>
<td>Quantum Mechanics - Exercises</td>
<td>5</td>
<td>NUM</td>
<td>41</td>
</tr>
<tr>
<td>11-T-SA-152-m01</td>
<td>Statistical Physics - Exercises</td>
<td>5</td>
<td>NUM</td>
<td>17</td>
</tr>
<tr>
<td>Mathematics (24 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-M-PHY1-152-m01</td>
<td>Mathematics 1 for Students of Physics and Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>42</td>
</tr>
<tr>
<td>10-M-PHY2-152-m01</td>
<td>Mathematics 2 for Students of Physics and Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>43</td>
</tr>
<tr>
<td>11-M-D-152-m01</td>
<td>Mathematics 3 for Students of Physics and related Disciplines (Differential Equations)</td>
<td>8</td>
<td>NUM</td>
<td>44</td>
</tr>
<tr>
<td>Laboratory Course Physics (11 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-P-PA-152-m01</td>
<td>Laboratory Course Physics A (Mechanics, Heat, Electromagnetism)</td>
<td>3</td>
<td>B/NB</td>
<td>7</td>
</tr>
<tr>
<td>11-P-NB-152-m01</td>
<td>Laboratory Course Physics B (Classical Physics, Electricity, Circuits)</td>
<td>4</td>
<td>B/NB</td>
<td>45</td>
</tr>
<tr>
<td>11-P-NC-152-m01</td>
<td>Advanced Laboratory Course Physics C (Modern Physics, Computer Aided Experiments)</td>
<td>4</td>
<td>B/NB</td>
<td>46</td>
</tr>
<tr>
<td>Compulsory Electives (32 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiconductor Electronics (min. 6 ECTS credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EL-152-m01</td>
<td>Electronic Circuits</td>
<td>6</td>
<td>NUM</td>
<td>26</td>
</tr>
<tr>
<td>11-SPD-152-m01</td>
<td>Physics of Semiconductor Devices</td>
<td>6</td>
<td>NUM</td>
<td>47</td>
</tr>
<tr>
<td>11-HLF-152-m01</td>
<td>Semiconductor Lasers and Photonics</td>
<td>6</td>
<td>NUM</td>
<td>49</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Type</td>
<td>ECTS</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>11-HLP-152-m01</td>
<td>Fundamentals of Semiconductor Physics</td>
<td>6</td>
<td>NUM</td>
<td>50</td>
</tr>
<tr>
<td>11-KDS-152-m01</td>
<td>Crystal Growth, thin Layers and Lithography</td>
<td>6</td>
<td>NUM</td>
<td>51</td>
</tr>
<tr>
<td>11-BXN6a-112-m01</td>
<td>Current Topics in Semiconductor Electronics</td>
<td>6</td>
<td>NUM</td>
<td>52</td>
</tr>
<tr>
<td>Materials Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NAN-152-m01</td>
<td>Nanoanalytics</td>
<td>6</td>
<td>NUM</td>
<td>53</td>
</tr>
<tr>
<td>11-ENT-152-m01</td>
<td>Principles of Energy Technologies</td>
<td>6</td>
<td>NUM</td>
<td>54</td>
</tr>
<tr>
<td>11-NTE-152-m01</td>
<td>Nanotechnology in Energy Research</td>
<td>6</td>
<td>NUM</td>
<td>55</td>
</tr>
<tr>
<td>11-PPT-152-m01</td>
<td>Laboratory Course Physical Technology of Material Synthesis</td>
<td>8</td>
<td>B/NB</td>
<td>56</td>
</tr>
<tr>
<td>11-BVG-152-m01</td>
<td>Coating Technologies based on Vapour Deposition</td>
<td>5</td>
<td>NUM</td>
<td>57</td>
</tr>
<tr>
<td>08-FU-MoMaV-152-m01</td>
<td>Molecular Materials (Lecture)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08-FU-NT-152-m01</td>
<td>Chemically and bio-inspired Nanotechnology for Material Synthesis</td>
<td>5</td>
<td>NUM</td>
<td>58</td>
</tr>
<tr>
<td>08-PCM3-152-m01</td>
<td>Nanoscale Materials</td>
<td>5</td>
<td>NUM</td>
<td>59</td>
</tr>
<tr>
<td>08-FU-MaWi1-152-m01</td>
<td>Material Science 1 (Basic introduction)</td>
<td>5</td>
<td>NUM</td>
<td>60</td>
</tr>
<tr>
<td>08-FU-MaWi2-152-m01</td>
<td>Material Science 2 (The Material Groups)</td>
<td>5</td>
<td>NUM</td>
<td>61</td>
</tr>
<tr>
<td>08-FU-NT-AA-152-m01</td>
<td>Chemical Nanotechnology: Analytics and Applications</td>
<td>5</td>
<td>NUM</td>
<td>62</td>
</tr>
<tr>
<td>11-ZMB-152-m01</td>
<td>Methods of non-destructive Material Testing</td>
<td>4</td>
<td>NUM</td>
<td>63</td>
</tr>
<tr>
<td>Life Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-4BFPS2-152-m01</td>
<td>Membranebiology of Plants for Advanced Students</td>
<td>5</td>
<td>NUM</td>
<td>64</td>
</tr>
<tr>
<td>07-4StAMB-152-m01</td>
<td>Methods in Biotechnology</td>
<td>5</td>
<td>NUM</td>
<td>65</td>
</tr>
<tr>
<td>07-4StMOLB-152-m01</td>
<td>Aspects of molecular Biotechnology</td>
<td>5</td>
<td>NUM</td>
<td>66</td>
</tr>
<tr>
<td>07-4StMZ6-152-m01</td>
<td>Special Bioinformatics 1</td>
<td>5</td>
<td>NUM</td>
<td>67</td>
</tr>
<tr>
<td>07-4StMZ1-152-m01</td>
<td>Basics in Light- and Electron-Microscopy</td>
<td>5</td>
<td>NUM</td>
<td>68</td>
</tr>
<tr>
<td>07-5SzM4-152-m01</td>
<td>Specific Biotechnology 2</td>
<td>10</td>
<td>NUM</td>
<td>69</td>
</tr>
<tr>
<td>11-LMB-152-m01</td>
<td>Laboratory and Measurement Technology in Biophysics</td>
<td>6</td>
<td>NUM</td>
<td>70</td>
</tr>
<tr>
<td>Mathematics, Theory and Computer Aided Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-SDC-152-m01</td>
<td>Statistics, Data Analysis and Computer Physics</td>
<td>4</td>
<td>NUM</td>
<td>71</td>
</tr>
<tr>
<td>10-M-NUM1af-152-m01</td>
<td>Numerical Mathematics 1 for students of other subjects</td>
<td>10</td>
<td>NUM</td>
<td>72</td>
</tr>
<tr>
<td>10-M-NUM2af-152-m01</td>
<td>Numerical Mathematics 2 for students of other subjects</td>
<td>10</td>
<td>NUM</td>
<td>73</td>
</tr>
<tr>
<td>10-M-PRG-152-m01</td>
<td>Programming course for students of Mathematics and other subjects</td>
<td>3</td>
<td>B/NB</td>
<td>74</td>
</tr>
<tr>
<td>10-M-COM-152-m01</td>
<td>Computational Mathematics</td>
<td>4</td>
<td>B/NB</td>
<td>75</td>
</tr>
<tr>
<td>11-M-F-152-m01</td>
<td>Mathematics 4 for Students of Physics and related Disciplines (Complex Analysis)</td>
<td>8</td>
<td>NUM</td>
<td>76</td>
</tr>
<tr>
<td>11-T-M-152-m01</td>
<td>Theoretical Mechanics</td>
<td>8</td>
<td>NUM</td>
<td>77</td>
</tr>
<tr>
<td>11-T-E-152-m01</td>
<td>Electrodynamics</td>
<td>8</td>
<td>NUM</td>
<td>78</td>
</tr>
<tr>
<td>Applied Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-ZDR-152-m01</td>
<td>Principles of two- and three-dimensional Röntgen imaging</td>
<td>6</td>
<td>NUM</td>
<td>79</td>
</tr>
<tr>
<td>11-BMS-152-m01</td>
<td>Imaging Methods at the Synchroton</td>
<td>6</td>
<td>NUM</td>
<td>80</td>
</tr>
<tr>
<td>11-ASI-152-m01</td>
<td>Imaging Sensors in Infrared</td>
<td>3</td>
<td>NUM</td>
<td>81</td>
</tr>
<tr>
<td>11-EBV-152-m01</td>
<td>Principles of Image Processing</td>
<td>3</td>
<td>NUM</td>
<td>82</td>
</tr>
<tr>
<td>11-KVM-152-m01</td>
<td>Principles of Pattern Classification</td>
<td>3</td>
<td>NUM</td>
<td>83</td>
</tr>
<tr>
<td>11-LMT-152-m01</td>
<td>Laboratory and Measurement Technology</td>
<td>6</td>
<td>NUM</td>
<td>84</td>
</tr>
<tr>
<td>11-LVW-152-m01</td>
<td>Introduction to Labview</td>
<td>6</td>
<td>NUM</td>
<td>85</td>
</tr>
<tr>
<td>08-FU-EEW-152-m01</td>
<td>Electrochemical Energy Storage and Conversion</td>
<td>5</td>
<td>NUM</td>
<td>86</td>
</tr>
</tbody>
</table>

Current Topics in Nanostructure Technology

Bachelor’s with 1 major Nanostructure Technology
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-BXN5-152-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>87</td>
</tr>
<tr>
<td>11-BXN6-152-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>88</td>
</tr>
<tr>
<td>11-BXN8-152-m01</td>
<td>Current Topics in Nanostructure Technology</td>
<td>8</td>
<td>NUM</td>
<td>89</td>
</tr>
<tr>
<td>11-BXP8-152-m01</td>
<td>Current Topics in Physics</td>
<td>8</td>
<td>NUM</td>
<td>29</td>
</tr>
<tr>
<td>11-BXP6-152-m01</td>
<td>Current Topics in Physics</td>
<td>6</td>
<td>NUM</td>
<td>30</td>
</tr>
<tr>
<td>11-BXP5-152-m01</td>
<td>Current Topics in Physics</td>
<td>5</td>
<td>NUM</td>
<td>90</td>
</tr>
<tr>
<td>11-CSN6-152-m01</td>
<td>Selected Topics in Nanostructure Technology</td>
<td>6</td>
<td>NUM</td>
<td>91</td>
</tr>
<tr>
<td>11-CSF6-152-m01</td>
<td>Selected Topics in Solid State Physics</td>
<td>6</td>
<td>NUM</td>
<td>92</td>
</tr>
<tr>
<td>11-CSEM6-152-m01</td>
<td>Selected Topics in Energy and Material Science</td>
<td>6</td>
<td>NUM</td>
<td>93</td>
</tr>
<tr>
<td>11-NTP-152-m01</td>
<td>Novel Transport Phenomena</td>
<td>6</td>
<td>NUM</td>
<td>94</td>
</tr>
</tbody>
</table>

Key Skills Area (20 ECTS credits)

General Key Skills (5 ECTS credits)
In addition to the modules listed below, students may also take modules offered by JMU as part of the pool of general transferable skills (ASQ).

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-P-VKM-152-m01</td>
<td>Preparatory Course Mathematics</td>
<td>2</td>
<td>B/NB</td>
<td>21</td>
</tr>
<tr>
<td>11-FFI-152-m01</td>
<td>Fit for Industry</td>
<td>3</td>
<td>NUM</td>
<td>95</td>
</tr>
<tr>
<td>11-PMP-152-m01</td>
<td>Project Management in Practice</td>
<td>3</td>
<td>B/NB</td>
<td>96</td>
</tr>
<tr>
<td>07-SQF-BGA-152-m01</td>
<td>Biotechnology and Social Acceptance</td>
<td>3</td>
<td>NUM</td>
<td>97</td>
</tr>
<tr>
<td>11-NASQ5-152-m01</td>
<td>General Competences for Students of Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>99</td>
</tr>
</tbody>
</table>

Subject-specific Key Skills (15 ECTS credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-M-MR-152-m01</td>
<td>Mathematical Methods of Physics</td>
<td>6</td>
<td>B/NB</td>
<td>24</td>
</tr>
<tr>
<td>11-N-HS-152-m01</td>
<td>Seminar Nanostructure Technology</td>
<td>5</td>
<td>NUM</td>
<td>100</td>
</tr>
<tr>
<td>11-P-FR1-152-m01</td>
<td>Data and Error Analysis</td>
<td>2</td>
<td>B/NB</td>
<td>8</td>
</tr>
<tr>
<td>11-P-FR2-152-m01</td>
<td>Advanced and Computational Data Analysis</td>
<td>2</td>
<td>B/NB</td>
<td>18</td>
</tr>
</tbody>
</table>

Thesis (50 ECTS credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>ECTS</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-BA-N-152-m01</td>
<td>Bachelor Thesis Nanostructure Technology</td>
<td>10</td>
<td>NUM</td>
<td>101</td>
</tr>
</tbody>
</table>
Module title | Abbreviation
--- | ---
Laboratory Course Physics A (Mechanics, Heat, Electromagnetism) | 11-P-PA-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Measurement tasks in mechanics, thermodynamics and electricity theory, e.g. measurement of voltages and currents, heat capacity, calorimetry, density of bodies, dynamic viscosity, elasticity, surface tension, spring constant, drafting of graphics and drafting of measurement protocols.

Intended learning outcomes
The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol.

Courses (type, number of weekly contact hours, language — if other than German)
P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
practical assignment with talk (approx. 30 minutes)
Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and Error Analysis</td>
<td>11-P-FR1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.</td>
</tr>
</tbody>
</table>

Contents

Types of errors, error approximation and propagation, graphic representations, linear regression, mean values and standard deviation.

Intended learning outcomes

The students are able to evaluate measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (t) + Ü (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: Ü: German or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Reflected to in LPO I (examination regulations for teaching-degree programmes)

<p>| § 53 I Nr. 1 c) |
| § 77 I Nr. 1 d) |</p>
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 1 for students of other subjects</td>
<td>10-M-NUM1af-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 2 for students of other subjects</td>
<td>10-M-NUM2af-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Eigenvalue problems, linear programming, methods for initial value problems for ordinary differential equations, boundary value problems.

Intended learning outcomes

The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Physics 1 (Mechanics)</td>
<td>11-E-M-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics
Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.</td>
</tr>
</tbody>
</table>

Contents

1. Principles: Physical quantities, prefactors, derived quantities, dimensional analysis, time / length / mass (definition, measurement procedures, SI), importance of metrology;
2. Point Mechanics: Kinematics, motion in 2D and 3D / vectors, special cases: Uniform and constant accelerated motion, free fall, slate litter; circular motion in polar coordinates;
3. Newton’s laws: Forces and momentum definition, weight vs. mass forces on the pendulum, forces on an atomic scale, isotropic and anisotropic friction. Preparation of the equations of motion and solutions;
4. Work and energy: (Kinetic) performance, examples;
5. Elastic, inelastic and super-elastic collision: Energy and momentum conservation, surges in centre of mass and balance system, rocket equation;
6. Conservative and non-conservative force fields: Potential, potential energy; law, weight scale, field strength and potential of gravity (general relations);
7. Rotational motion: Angular momentum, angular velocity, torque, rotational energy, moment of inertia, analogies to linear translation, applications, satellites (geostationary and interstellar), escape velocities, trajectories in the central potential;
8. Tidal forces: Inertial system, reference systems, apparent forces, Foucault pendulum, Coriolis force, centrifugal force;
9. Galilean transformation: Brief digression to Maxwell’s equations, ether, Michelson interferometer, Einstein’s postulates, problem of simultaneity, Lorentz transformation, time dilation and length contraction, relativistic impulse;
10. Rigid body and gyroscope: Determining the centre of mass, inertia tensor and -ellipsoid, principal axes and their stability, tensor on the example of the elasticity tensor, physics of the bike; gyroscope: Precession and nutation, the Earth as a spinning top;
11. Friction: Static and dynamic friction, stick-slip motion, rolling friction, viscous friction, laminar flow, eddy formation;
12. Vibration: Representation by means of complex e-function, equation of motion (DGL) on forces, torque and power approach, Taylor expansion, harmonic approximation; spring and pendulum, physical pendulum, damped vibration (resonant case, Kriechfall, aperiodic limit), forced vibration, Fourier analysis;
13. Coupled vibrations: Eigenvalues and eigenfunctions, double pendulum, deterministic vs. chaotic motion, non-linear dynamics and chaos;
14. Waves: Wave equation, transverse and longitudinal waves, polarisation, principle of superposition, reflection at the open and closed end, speed of sound; interference, Doppler effect; phase and group velocity, dispersion relation;
15. Elastic deformation of solid bodies: Elastic modulus, general Hooke’s law, elastic waves;
16. Fluids: Hydrostatic pressure and buoyancy, surface tension and contact angle, capillary forces, steady flows, Bernoulli equation; Boyle-Mariotte, gas laws, barometric height formula, air pressure, compressibility and compressive modulus;
17. Kinetic theory of gases: ideal and real gas, averages, distribution functions, equipartition theorem, Brownian motion, collision cross section, mean free path, diffusion and osmosis, degrees of freedom, specific heat
Intended learning outcomes

The students understand the basic contexts and principles of mechanics, vibration, waves and kinetic theory of gases. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language (if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>Ü: German or English</td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- **Written examination** (approx. 120 minutes)
- **Language of assessment**: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 53 I Nr. 1 a)
- § 77 I Nr. 1 a)
Module Catalogue for the Subject
Nanostructure Technology
Bachelor's with 1 major, 180 ECTS credits

Module title
Classical Physics 2 (Heat and Electromagnetism)

Abbreviation
11-E-E-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
1. Thermodynamics (linked to 11-E-M); temperature and quantity of heat, thermometer, Kelvin scale;
2. Heat conduction, heat transfer, diffusion, convection, radiant heat;
3. Fundamental theorems of thermodynamics, entropy, irreversibility, Maxwell’s demon;
4. Heat engines, working diagrams, efficiency, example: Stirling engine;
5. Real gases and liquids, states of matter (also solids), van der Waals, critical point, phase transitions, critical phenomena (opalescence), coexistence region, Joule-Thomson;
6. Electrostatics, basic concepts: Electrical charge, forces; electric field, reps. field concept, field lines, field of a point charge;
7. Gaussian sentence, related to Coulomb’s law, definition of ”river”; Gaussian surface, divergence theorem; special symmetries; divergence and GS in differential form;
8. Electrical potential, working in the E-box, electric. potential, potential difference, voltage; potential equation, equipotential surfaces; several important examples: Sphere, hollow sphere, capacitor plates, electric dipole; lace effects, Segner wheel;
9. Matter in the E-field, charge in a homogeneous field, Millikan experiment, Braun tube; electron: Field emission, thermionic emission, dipole in homogeneous and inhomogeneous field; induction, Faraday cage;
10. Capacitor, mirror charge, definition, capacity; plate and spherical capacitor; combination of capacitors; media in the capacitor; electrical polarisation, displacement and orientation polarisation, microscopic image; dielectric displacement; electrolytic capacitor; Piezoelectric effect;
11. Electricity, introduction, current density, drift velocity, conduction mechanisms;
12. Resistance and conductivity, resistivity, temperature dependence; Ohm’s law; realisations (resistive and non-ohmic, NTC, PTC);
13. Circuits, electrical networks, Kirchhoff’s rules (meshes, nodes); internal resistance of a voltage source, measuring instruments; Wheatstone bridge;
14. Power and energy in the circuit; Capacitor charge; galvanic element; thermovoltage;
15. Transfer mechanisms, conduction in solids: Band model, semiconductor; line in liquids and gases;
16. Magnetostatics, fundamental laws; permanent magnet, field properties, definitions and units; Earth’s magnetic field; Amper’s Law, analogous to e-box, magn. river, swirl;
17. Vector potential, formal derivation, analogous to electric scalar potential; calculation of fields, examples, Helmholtz coils;
18. Moving charge in the static magnetic field, current balance, Lorentz force, right-hand rule, electric motor; dipole field; movement paths, mass spectrometer, Wien filters, Hall effect; electron: e / m determination;
19. Matter in the magnetic field, effects of the field on matter, relative permeability, susceptibility; para-, dia-, ferromagnetism; magn. moment of the electron, behaviour at interfaces;
20. Induction, Faraday’s law of induction, Lenz’s rule, flux change, eddy electric field, Waltenhofen’s pendulum; Inductance, self-induction; applications: Transformer, generator;
21. Maxwell’s displacement current, choice of integration area, displacement current; Maxwell’s extension, wave equation; Maxwell equations;
22. AC: Fundamentals, sinusoidal vibrations, amplitude, period and phase; power and RMS value, ohmic resistance; Capacitive & inductive resistor, capacitor and coil, phase shift and frequency dependence; impedance: Complex resistance; performance of the AC;
23. Resonant circuits, combinations of RLC; series and parallel resonant circuit; forced vibration, damped harmonic oscillator (related to 11-E-M);
24. Hertz dipole, characteristics of irradiation, near field, far field; Rayleigh scattering; accelerated charge, synchrotron radiation, X-rays; 25. Electromagnetic waves: Principles, Maxwell’s determination to electromagnetism, radiation pressure (Poynting vector, radiation pressure).

Intended learning outcomes

The students understand the basic principles and contexts of thermodynamics, science of electricity and magnetism. They know relevant experiments to observe and measure these principles and contexts. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td></td>
<td>German or English</td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language — if other than German</th>
<th>Examination offered — if not every semester</th>
<th>Information on whether module can be chosen to earn a bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>approx. 120 minutes</td>
<td>German and/or English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 a)
§ 77 I Nr. 1 a)
Module title	Abbreviation
Theoretical Mechanics | 11-T-M-152-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.</td>
</tr>
</tbody>
</table>

Contents

1. Newton’s formulation: Inertial systems, Newton’s laws of motion, equations of motion; one-dimensional motion, energy conservation; Harmonic oscillator; Movement in space of intuition, conservative forces;
2. Lagrangian formulation: Variational principles, Euler-Lagrange equation; constraints; coordinate transformations, mechanical gauge transformation; symmetries, Noether theorem, cyclic coordinates; accelerated reference systems and apparent forces;
3. Hamiltonian formulation: Legendre transformation, phase space; Hamilton function, canonical equations; Poisson brackets, canonical transformations; generator of symmetries, conservation laws; minimal coupling; Liouville theorem; Hamilton-Jacobi formulation [optional];
4. Applications: Central-force problems; mechanical similarity, Virial theorem; minor vibrations; particles in an electromagnetic field; rigid bodies, torque and inertia tensor, centrifugal and Euler equations [optional]; scattering, cross section [optional];
5. Relativistic dynamics: Lorentz Transformation; Minkowski space; equations of motion; 6. Non-linear dynamics: Stability theory; KAM theory [optional]; deterministic chaos [optional]

Intended learning outcomes

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations. They are able to independently apply the acquired mathematical methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Bachelor’s with 1 major, Nanostructure Technology (2015)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Physics - Exercises</td>
<td>11-T-SA-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Exercises in Statistical Physics and theoretical thermodynamics according to the content of 11 T-SEV content. Among others Principles of statistics, Statistical Physics, ideal systems, fundamental theorems, thermodynamic potentials, quantum statistics, Fermi and Bose gas, systems of interacting particles, approximation methods, Ising models, critical phenomena, etc.

Intended learning outcomes

The students are familiar with the mathematical methods of theoretical thermodynamics and Statistical Physics and are able to independently apply them to the description and solution of problems of Statistical Physics and to interpret the results in a physical manner.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Ü (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: Ü: German or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced and Computational Data Analysis</td>
<td>11-P-FR2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Students are highly recommended to complete module 11-P-FR1 prior to completing module 11-P-FR2.</td>
</tr>
</tbody>
</table>

Contents

Advanced methods of data analysis and error calculation. Distribution function, significance tests, modelling. Computerised data analysis.

Intended learning outcomes

The students have advanced knowledge of the analysis of measuring data and error calculation. They have mastered methods of computerised data analysis are able to apply them to self-obtained measuring data and to discuss the results.

Courses

- V (1) + Ü (1)

Method of assessment

- Exercises (successful completion of approx. 50% of approx. 10 exercise sheets)
- Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

--

Referred to in LPO I

(Examination regulations for teaching-degree programmes)

--
Module title	Introduction to Solid State Physics
Abbreviation | 11-E-F-152-m01

Module coordinator | Managing Director of the Institute of Applied Physics
Module offered by | Faculty of Physics and Astronomy

ECTS | 8
Method of grading | Only after succ. compl. of module(s)
Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents
1. The free-electron gas (FEG), free electrons; density of states; Pauli principle; Fermi-Dirac statistics; spec. heat, Sommerfeld coefficient; electrons in fields: Drude-Lorentz-Sommerfeld; electrical and thermal conductivity, Wiedemann-Franz law; Hall effect; limitations of the model
2. Crystal structure, periodic lattice; types of lattices; Bravais lattice; Miller indices; simple crystal structures; lattice defects; polycrystals; amorphous solids; group theoretical approaches, the importance of symmetry for electronic properties
3. The reciprocal lattice (RG), motivation: Diffraction; Bragg condition; definition; Brillouin zones; diffraction theory; Scattering; Ewald construction; Bragg equation; Laue’s equation; structure and form factor
4. Structure determination, probes: X-ray, electron, neutron; methods: Laue, Debye-Scherrer, rotating crystal; electron diffraction, LEED
5. Lattice vibrations (phonons), equations of motion; dispersion; group velocity; diatomic base: optical, acoustic branch; quantisation: Phonon momentum; optical properties in the infrared; dielectric function (Lorentz model); examples of dispersion curves (occ. Kramers-Kronig), measurement methods
6. Thermal properties of insulators, Einstein and Debye model; phonon density of states; anharmonicity and thermal expansion; thermal conductivity; Umklapp processes; crystal defects
7. Electrons in a periodic potential, Bloch theorem; band structure; approximation of nearly free electrons (NFE); strongly bound electrons (tight binding, LCAO); examples of band structures, Fermi surfaces, spin-orbit interaction
8. Superconductivity, BCS theory, pairing, coupling of bosonic and fermionic modes, band structure, many-particle aspects (quasiparticle concept)

Intended learning outcomes
The students understand the basic contexts and principles of Solid-State Physics (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)). They understand the structure of solids and know the experimental methods and theoretical models for the description of phenomena of Solid-State Physics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics, Data Analysis and Computer Physics</td>
<td>11-SDC-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Statistics, data analysis and computer physics.

Intended learning outcomes

The students have specific and advanced knowledge in the field of statistics, data analysis and Computational Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Course Mathematics</td>
<td>11-P-VKM-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Principles of mathematics and elementary calculation methods from school and partially beyond, especially for the introduction to and preparation for the modules of Experimental and Theoretical Physics.

1. Basic geometry and algebra
2. Coordinate systems and complex numbers
3. Vectors - vectored values
4. Differential calculus
5. Integral calculus

Intended learning outcomes
The students know the principles of mathematics and elementary calculation methods which are required for successfully studying Theoretical and Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)
T (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) exercises (successful completion of approx. 50% of approx. 6 exercise sheets) or b) talk (approx. 15 minutes)
Assessment offered: Once a year, winter semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
Module title	Abbreviation
Computational Mathematics | 10-M-COM-152-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
4 | (not) successfully completed | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Introduction to modern mathematical software for symbolic computation (e.g. Mathematica or Maple) and numerical computation (e.g. Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA-G and 10-M-LNA-G). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes
The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project in the form of programming exercises (approx. 20 to 25 hours)
Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>10-M-PRG-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics of a modern programming language (e. g. C).

Intended learning outcomes
The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project in the form of programming exercises (approx. 20 to 25 hours)
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Methods of Physics</td>
<td>11-M-MR-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Principles of mathematics and basic calculation methods beyond the school curriculum, especially for the introduction to and preparation of the modules of Theoretical Physics and Classical or Experimental Physics.

Intended learning outcomes

The students have knowledge of the principles of mathematics and elementary calculation methods which are required in Theoretical and Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1) + V (2) + Ü (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) exercises (successful completion of approx. 50% of approx. 13 exercise sheets) or b) talk (approx. 15 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 a)
§ 77 I Nr. 1 a)
Module Catalogue for the Subject
Nanostructure Technology
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodynamics</td>
<td>11-T-E-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

0. Mathematical tools: Gradient, divergence, curl; curve, surface, volume integrals; Stokes and Gaussian sentence; Delta function; Fourier transform; full functional systems; solving PDEs;

1. Maxwell equations;

2. Electrostatics: Coulomb’s law; electrostatic potential; charged interface; electrostatic field energy (capacitor); multipole expansion; Boundary value problems; numerical solution; Image charges; Green’s functions; development according to orthogonal functions;

3. Magnetostatics: Current density; continuity equation; vector potential; Biot-Savart law; magnetic moment; analogies to electrostatics;

4. Maxwell equations in matter: Electrical and magnetic susceptibility; interfaces;

5. Dynamics of electromagnetic fields: Faraday induction; RCL-circuits; field energy and pulse; potentials; plane waves; wave packets; plane waves in matter; cavity resonators and wave guides; inhomogeneous wave equation; temporally oscillating sources and dipole radiation; accelerated point charges;

6. Special Theory of Relativity: Lorentz transform; simultaneity; length contraction and time dilation; light cone; effect, energy and momentum; co- and contra-variant tensors; covariant classical mechanics;

7. Covariant electrodynamics: Field strength tensor and Maxwell’s equations; transformation of the fields; Doppler effect; Lorentz force

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of theoretical electrodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Circuits</td>
<td>11-EL-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Principles of electronic components and circuits. Analogous circuit technology: Passive (resistors, capacitors, coils and diodes) and active components (bipolar and field-effect transistors, operational amplifiers). Digital circuits: different types of gates and CMOS circuits. Microcontroller

Intended learning outcomes

The students have knowledge of the practical setup of electronic circuits from the field of analogous and digital circuit technology.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes). If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory and Measurement Technology</td>
<td>11-LMT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to electronic and optical measuring methods of physical metrology, vacuum technology and cryogenics, light sources, spectroscopic methods and measured value acquisition.

Intended learning outcomes

The students have competencies in the field of electronic and optical measuring methods of physical metrology, vacuum technology and cryogenics, light sources, spectroscopic methods and measured value acquisition.

Courses

- **V (3) + R (1)**
 - Module taught in: German or English

Method of assessment

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
- If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered

- Once a year, winter semester

Language of assessment

- German and/or English

Allocation of places

- --

Additional information

- --

Referred to in LPO I

- (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Nanoscience</td>
<td>11-N-EIN-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance (minimum 85% of sessions).</td>
</tr>
</tbody>
</table>

Contents
Introduction to the principles of producing, characterising and applying nanostructures.

Intended learning outcomes
The students have knowledge of the fundamental properties, technologies, characterising methods and functions of nanostructures.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + S (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) talk (30 to 45 minutes) with discussion and b) written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physics</td>
<td>11-BXP8-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental and Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Bachelor's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physics</td>
<td>11-BXP6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental and Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Bachelor's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Industrial Internship | 11-N-IP-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Method of grading

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Insights into industrial methods, work processes, goals and production methods. Summary of own experiences and tasks in a report and an oral presentation.

Intended learning outcomes
The students have knowledge and practical experience of using a variety of industrial technologies with relevance to nanostructure technology and are able to summarise their experience in a report and an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
P (0) + S (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) report on practical course (approx. 15 pages) and b) presentation/talk (approx. 45 minutes), weighted 1:4

Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Chemistry</td>
<td>08-AC-ExChem-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Experimentalchemie" (Experimental Chemistry)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics of general and anorganic chemistry.

Intended learning outcomes
German intended learning outcomes available but not translated yet.

Kenntnis der Grundlagen der Allgemeinen und Anorganischen Chemie

Courses (type, number of weekly contact hours, language — if other than German)

| V (4) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

General and Analytical Chemistry for students of natural sciences (lab)

Abbreviation

08-ACP-NF-152-m01

Module coordinator

holder of the Chair of Anorganic Chemistry

Module offered by

Institute of Inorganic Chemistry

ECTS

2

Method of grading

(only after succ. compl. of module(s))

ECTS

2

Method of grading

(only after succ. compl. of module(s))

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

The module provides the opportunity to apply the knowledge of the introductory lectures in a practical course. After a safety introduction the students experiment independently in the laboratory. Focuses are laboratory safety, basic laboratory techniques, synthesis of basic compounds and analysis of an unknown compound.

Intended learning outcomes

The student is able to identify basic chemical issues and to solve them experimentally. Therefore he/she can carry out the necessary stoichiometric calculations and correctly outline the chemical processes written and verbal.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical performance (2 to 4 random examinations)

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry for students of medicine, biomedicine, dental medicine</td>
<td>08-OC-NF-152-m01</td>
</tr>
<tr>
<td>and natural sciences</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Organische Chemie für Studierende der Medizin, Biomedizin, Zahnmedizin, Ingenieur- and Naturwissenschaften"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module will provide students with an overview of organic chemistry.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Der/Die Studierende verfügt über grundlegendes Wissen im Bereich der Organischen Chemie.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (2)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Optics and Quantum Physics

Abbreviation: 11-E-OAV-152-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 6

Method of grading: numerical grade

Duration: 2 semester

Module level: undergraduate

Other prerequisites: --

Contents:

A. optics and quanta

1. Light (linked to 11-E-E): basic concepts, the speed of light, Huygens-Fresnel principle: reflection, refraction.
2. Light in matter: propagation velocity in the medium; dispersion, complex and frequency-dependent dielectric constant; absorption, Kramers-Kronig relation, interfaces, Fresnel equations, polarization, generation by absorption, birefringence, optical activity (dipole).
3. Geometrical optics: basic concepts, Fermat’s principle, optical path, planar interfaces, Snell’s law, total reflection, optical tunneling, evanescent waves, prism; normal and anomalous dispersion, curved interfaces, thin and thick lenses, lens systems, lens grinder formula, aberrations, imaging errors (spherical & chromatic aberration, astigmatism, coma, distortion, correction approaches).
4. Optical instruments: characteristics; camera, eye, magnifying glass, microscope, telescope types, bundle beam vs. image construction (electron lenses, electron microscope), confocal microscopy.
5. Wave optics: spatial and temporal coherence, Young’s double slit experiment, interference pattern (intensity profile), thin films, parallel layers, wedge-shaped layers, phase shift, Newton rings, interferometer (Michelson, Mach-Zender, Fabry-Perot).
6. Diffraction in the far field: Fraunhofer diffraction, single slit, intensity distribution, apertures, resolving power, Rayleigh & Abbé criterion, Fourier optics, optical grating, n-fold slit, intensity distribution, grating spectrometer and resolution, diffraction off atomic lattices, convolution theorem.
7. Diffraction in the near field: Fresnel, near-field diffraction at circular apertures/disks, Fresnel zone plate, near-field microscopy, holography, Huygens-Fresnel concept; white light hologram.
8. Failure of classical physics I - from light wave to photon: black body radiation and Planck’s quantum hypothesis; photoelectric effect and Einstein’s explanation, Compton effect, light as a particle, wave-particle duality, quantum structure of nature.
9. Failure of classical physics II - particles as waves: de Broglie’s matter wave concept; diffraction of particle waves (Davison-Germer-experiment, double slit interference).
10. Wave mechanics: wave packets, phase and group velocity (recap of 11-EM), uncertainty principle, Nyquist-Shannon theorem, wave function as probability amplitude, probability of residence, measurement process in quantum mechanics (double-slit experiment & which-way information, collapse of the wave function, Schrödinger’s cat).
11. Mathematical concepts of quantum mechanics: Schrödinger equation as wave equation, conceptual comparison to wave optics, free particle and particles in a potential, time-independent Schrödinger equation as eigenvalue equation, simple examples in 1D (potential step, potential barrier and tunnel effect, box potential and energy quantization, harmonic oscillator), box potential in higher dimensions and degeneracy, formal theory of QM (states, operators, observables).

B. atomic and molecular physics

1. Structure of atoms: experimental evidence for the existence of atoms, size of the atom, charges and masses in the atom, isotopes, internal structure, Rutherford experiment, instability of the "classical" Rutherford atom.

5. Fine and hyperfine structure: electronic spin and magnetic spin moment, Stern-Gerlach experiment, Einstein-de Haas effect, glimpse of the Dirac equation (spin as relativistic phenomenon and existence of antimatter), electron spin resonance (ESR), spin-orbit coupling, relativistic fine structure, Lamb shift (quantum electrodynamics), nuclear spin and hyperfine structure.

7. Light-matter interaction: time-dependent perturbation theory (Fermi’s Golden Rule) and optical transitions, matrix elements and dipole approximation, selection rules and symmetry, line broadening (lifetime, Doppler effect, collision broadening), atomic spectroscopy.

8. LASER: elementary optical processes (absorption, spontaneous and stimulated emission), stimulated emission as light amplification, Einstein’s rate equations, thermal equilibrium, non-equilibrium character of a laser: rate equations, population inversion, and laser condition, principle structure of a laser, optical pumping, 2-, 3- and 4-level lasers, examples (ruby laser, He-Ne laser, semiconductor laser).

Intended learning outcomes

The students understand the basic principles and contexts of radiation, wave and quantum optics and quantum phenomena as well as Atomic and Molecular Physics. They understand the theoretical concepts and know the structure and application of important optical instruments and measuring methods. They understand the ideas and concepts of quantum theory and Astrophysics and the relevant experiments to observe and measure quantum phenomena. They are able to discuss their knowledge and to integrate it into a bigger picture.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

oral examination of one candidate each (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optics and Waves - Exercises</td>
<td>11-E-OA-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Exercises in Optics according to the content of 11-E-OAV. Among others Basic concepts, Fermat's principle, optical path, light in matter, polarization, Geometrical Optics, Optical instruments, wave optics, interference, thin films, interferometers, Fraunhofer diffraction optical grating, Fresnel diffraction, holography, wave packets, wave equation and Schrödinger equation, quantum structure of nature, etc.

Intended learning outcomes

The students understand the basic principles and contexts of radiation, wave and quantum optics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment

- written examination (approx. 120 minutes)
- Language of assessment: German and/or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 53 I Nr. 1 a)
- § 77 I Nr. 1 a)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms and Quanta - Exercises</td>
<td>11-E-AA-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Exercises in Atomic and Quantum Physics according to the contents of 11-E-OAV. Among others Structure of atoms, experimental fundamental laws of Quantum Physics, the Schrödinger equation, quantum mechanics of the hydrogen atom, atoms in external fields, multi-electron atoms, optical transitions and spectroscopy, laser, molecules and chemical bonding, molecular rotations and vibrations, etc.

Intended learning outcomes

The students understand the basic principles and contexts of quantum phenomena as well as Atomic and Molecular Physics. They are able to mathematically formulate physical contexts of Atomic and Quantum Physics and to autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

(undergraduate, number of weekly contact hours, language — if other than German)

Ü (2)

Module taught in: Ü: German or English

Method of assessment

(undergraduate, type, scope, language — if other than German, examination offered — if not every semester, inforation on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Module title: Quantum Mechanics and Statistical Physics
Abbreviation: 11-T-QS-152-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 2 semester
Module level: undergraduate
Other prerequisites: --

Contents:

A. Quantum mechanics:
1. History and principles; limits of classical physics; fundamental historical experiments; from classical physics to quantum mechanics (QM);
2. Wave function and Schrödinger equation (SG): SG for free particles; superposition; probability distribution for pulse measurement; correspondence principles: postulates of QM; Ehrenfest theorem; continuity equation; stationary solutions of SG
3. Formalisation of QM: Eigenvalue equations; Physical significance of the eigenvalues of an operator; state space and Dirac notation; representations in state space; tensor products of state spaces;
4. Postulates of QM (and their interpretation): state; measurement; chronological development; energy-time uncertainty;
5. One-Dimensional problems: The harmonic oscillator; potential level; potential barrier; potential well; symmetry properties;
6. Spin-1/2 systems I: Theoretical description in Dirac notation; Spin 1/2 in the homogeneous magnetic field; two-level systems (qubits);
7. Angular momentum: Commutation and rotations; eigenvalues of the angular momentum operators (abstract); solution of the eigenvalue equation in polar coordinates (concrete);
8. Central potential - hydrogen atom: Bonding states in 3D; Coulomb potential;
9. Motion in an electromagnetic field; Hamiltonian operator; Normal Zeeman effect; canonical and kinetic momentum; Gauge transformation; Aharonov-Bohm effect; Schrödinger, Heisenberg and interaction representation; motion of a free electron in a magnetic field;
10. Spin-1/2 systems II: Formulation using angular momentum algebra;
11. Addition of angular momenta;
12. Approximation methods: Stationary perturbation theory (with examples); variational method; WKB method; time-dependent perturbation theory;
13. Atoms with several electrons: Identical particles; helium atom; Hartree and Hartree-Fock approximation; atomic structure and Hund's rules;

B. Statistical Physics and thermodynamics:
0. Principles of statistics: Elements of statistics (central limit theorem and statistics of extremes); micro- and macro-states; probability space (conditional probability, statistical independence);
1. Statistical Physics: Entropy and probability theory; entropy in classical physics; thermodynamic equilibrium in closed and open systems (with energy and / or particle exchange);
2. Ideal systems: Spin systems, linear oscillators; ideal gas;
3. Statistical Physics and thermodynamics: The 1st law; quasi-static processes; entropy and temperature; generalised forces; the second and third law; reversibility; transition from Statistical Physics to thermodynamics;
4. Thermodynamics: Thermodynamic fundamentals relationship; thermodynamic potentials; changes of state; thermodynamic machines (Carnot engine and efficiency); chemical potential;
5. Ideal Systems II, quantum statistics: Systems of identical particles; ideal Fermi gas; ideal Bose gas and Bose-Einstein condensation; grids and normal modes: Phonons;
6. Systems of interacting particles: Approximation methods (mean-field theory, Sommerfeld expansion); computer simulation (Monte Carlo method); interacting phonons (Debye approximation); Ising models (particularities in 1 and 2 dimensions); Yang-Lee-theorems; Van der Waals equation for real interacting gases;
7. Critical phenomena: Scaling laws, critical slowing down, fast variable as Bad (electron-phonon interaction and BCS superconductivity); magnetism (quantum criticality at low temperatures, quantum phase transitions at $T = 0$); problems of the thermodynamic limit

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students have knowledge of the methods of Theoretical Physics. They know the principles of mechanics, Statistical Physics and thermodynamics. They are able to discuss the acquired theoretical concepts and to attribute them to bigger physical contexts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + V (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (approx. 30 minutes)</td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title | Quantum Mechanics - Exercises
--- | ---
Abbreviation | 11-T-QA-152-m01

| Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
| Module offered by | Faculty of Physics and Astronomy

| ECTS | 5
| Method of grading | numerical grade
| Only after succ. compl. of module(s) | --
| Duration | 1 semester
| Module level | undergraduate
| Other prerequisites | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
Exercises in quantum mechanics according to the content of 11 T-SEV. Among others Wave function and Schrödinger equation (SG), formalisation of QM, eigenvalue equations, postulates of QM, one-dimensional problems, spin-1/2 systems, angular momentum, central potential, hydrogen atom, movement in the electromagnetic field, addition of angular momenta, approximation methods, atoms with several electrons, etc.

Intended learning outcomes
The students are familiar with the mathematical methods of quantum mechanics and are able to independently apply them to the description and solution of problems of quantum theory and to interpret the results in a physical manner.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Mathematics 1 for Students of Physics and Nanostructure Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>10-M-PHY1-152-m01</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Dean of Studies Mathematik (Mathematics)</td>
</tr>
<tr>
<td>Module offered by</td>
<td>Institute of Mathematics</td>
</tr>
<tr>
<td>ECTS</td>
<td>8</td>
</tr>
<tr>
<td>Method of grading</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module level</td>
<td>undergraduate</td>
</tr>
<tr>
<td>Other prerequisites</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals on numbers and functions, sequences and series, differential and integral calculus in one variable, vector spaces, simple differential equations.

Intended learning outcomes

The student gets acquainted with basic concepts of mathematics. He/She learns to apply these methods to simple problems in natural and engineering sciences, in particular in the fields of physics and nanostructure technology, and is able to interpret the results.

Courses

(type, number of weekly contact hours, language — if other than German)

| V (5) + Ü (2) |
| Module taught in: Ü: German or English |

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 2 for Students of Physics and Nanostructure Technology</td>
<td>10-M-PHY2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Linear maps and systems of linear equations, matrix calculus, eigenvalue theory, differential and integral calculus in several variables, differential equations, Fourier analysis.

Intended learning outcomes

The student gets acquainted with fundamental concepts of advanced mathematics. He/She learns to apply these methods to simple problems in natural and engineering sciences, in particular in the field of physics and nanostructure technology, and is able to interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)

V (5) + Ü (2)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 3 for Students of Physics and related Disciplines (Differential Equations)</td>
<td>11-M-D-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics of ordinary and partial differential equations of physics.

1. Ordinary differential equations;
 1.1. Solution methods
 1.2 Existence and uniqueness theorem
 1.3 Systems of differential equations
2. Partial differential equations
 2.1 Non-linear partial differential equations of the 1st and 2nd order
 2.2 1D and 3D wave equation
 2.3 Helmholtz equation and potential theory
 2.4 Parabolic differential equations

Intended learning outcomes
The students have basic mathematical knowledge of dynamic equations and solution methods for common and partial differential equations and have mastered the necessary calculation methods.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physics B (Classical Physics, Electricity, Circuits)</td>
<td>11-P-NB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Students are highly recommended to complete modules 11-P-PA and 11-P-FR1 prior to completing module 11-P-NB.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of optics, vibrations and waves, science of electricity and circuits with electric components.

Intended learning outcomes

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)

P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Practical assignment with talk (approx. 30 minutes)
Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Laboratory Course Physics C (Modern Physics, Computer Aided Experiments)</td>
<td>11-P-NC-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Only after succ. compl. of module(s)</td>
<td>Students are highly recommended to complete module 11-P-NB prior to completing module 11-P-NC.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of wave optics, Molecular, Atomic and Nuclear Physics and modern measuring methods using special computerised devices with examples from optics and Solid-State Physics.

Intended learning outcomes

The students are able to build and almost independently operate advanced experimental setups. They are able to record measuring results in a structured manner, even in case of huge data traffic, and to analyse the results by using error propagation and statistics. They are able to evaluate results, to draw conclusions and to present and discuss them in a scientific paper and a presentation.

Courses (type, number of weekly contact hours, language — if other than German)

- P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate's understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Semiconductor Devices</td>
<td>11-SPD-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Based on the fundamentals of Semiconductor Physics, the lecture provides an insight into semiconductor key technologies and discusses the main components in the fields of electronics and photonics on the basis of examples. The basic part introduces the crystal structures and band and phonon dispersions of technologically relevant semiconductors. The following part discusses the principles of charge transport involving non-equilibrium effects based on the carrier charge density of the thermal equilibrium. The part on technology gives an insight into the methods of production of semiconductor materials and presents the most important methods of planar technology. It discusses the way of functioning of the following components, sorted according to volume components, interface components and application fields: Rectifier diodes, Zener diodes, varistor, varactor, tunnel diodes, IMPATT, Barritt- and Gunn diodes, photodiode, solar cell, LED, semiconductor injection laser, transistor, JFET, Thyristor, Diac, Triac, Schottky diode, MOSFET, MESFET, HFET. It highlights the importance of low-dimensional charge carrier systems for technology and basic research and shows recent developments in the components sector.

Intended learning outcomes

The students know the characteristics of semiconductors, they have gained an overview of the electronic and phonon band structures of important semiconductors and the resulting electronic, optical and thermal properties. They know the principles of charge transport as well as the Poisson, Boltzmann and continuity equation for the solution of questions. They have gained insights into the methods of semiconductor production and are familiar with the theories of planar technology and recent developments in this field, they have a basic understanding of component production. They understand the structure and way of functioning of the main components of electronics (diode, transistor, field-effect transistor, thyristor, diac, triac), of microwave applications (tunnel, IMPATT, Barritt or Gunn diode) and of optoelectronics (photo diode, solar cell, light-emitting diode, semiconductor injection laser), they know the realisation possibilities of low-dimensional charge carrier systems on the basis of semiconductors and their technological relevance, they are familiar with current developments in the field of components.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (3) + R (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: German or English</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--
Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Lasers and Photonics</td>
<td>11-HLF-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture discusses the principles of laser physics, based on the example of semiconductor lasers, and current developments regarding components. The principles of lasers are described on the basis of a general laser model, which will then be extended to special aspects of semiconductor lasers. Basic concepts such as threshold condition, characteristic curve and laser efficiency are derived from coupled rate equations for charge carriers and photons. Other topics of the lecture are optical processes in semiconductors, layer and ridge waveguides, laser resonators, mode selection, dynamic properties as well as technology for the generation of semiconductor lasers. The lecture closes with current topics of laser research such as quantum dot lasers, quantum cascade lasers, terahertz lasers or high-performance lasers.

Intended learning outcomes

The students have advanced knowledge of the principles of semiconductor-laser physics. They can apply their knowledge to modern questions and know the applications in the current development of components.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Fundamentals of Semiconductor Physics | 11-HLP-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
1. Symmetry properties
2. Crystal formation and electronic band structure
3. Optical excitations and their coupling effects
4. Electron-phonon coupling
5. Temperature-dependent transport properties
6. (Semi-)magnetic semiconductors

Intended learning outcomes
The students are familiar with the principles of Semiconductor Physics. They understand the structure of semiconductors and know their physical properties and effects. They know important applications.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Growth, thin Layers and Lithography</td>
<td>11-KDS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Crystal growth, thin films, lithography.

Intended learning outcomes

The students have knowledge of crystal growth and the techniques and methods to control crystal growth in the laboratory. They have methodological knowledge of the production and examination of thin layers and know techniques and applications of lithography.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Semiconductor Electronics</td>
<td>11-BXN6A-112-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>unknown</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoanalytics</td>
<td>11-NAN-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of modern research methods for different nanostructures up to an atomic level. They know microscoping procedures that are used in practice in labs and the industry as well as spectroscopic methods for the determination of electronic properties. They are able to evaluate the efficiency of different research methods.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Nanostructure Technology
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Energy Technologies</td>
<td>11-ENT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes
The students know the principles of different methods of energy technology, especially energy conversion, transport and storage. They understand the structures of corresponding installations and are able to compare them.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title
Nanotechnology in Energy Research

Abbreviation
11-NTE-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Nanotechnology is of great significance for energy research. Energy efficiency can be heightened in numerous processes or applications by using special functional materials. This module covers special materials, surfaces and structures that have optimised properties due to effects of nanotechnology. It explains the underlying physical contexts. It uses specific materials and components as examples, such as thermal insulation materials, heat accumulators, functional nanoscale layer and particle systems with spectral selective properties, nanoporous vacuum insulations and electrode materials.

Intended learning outcomes
The students have specific and advanced knowledge of the application of nanotechnology in the field of energy research. They know methods of nanotechnology to influence the properties of materials and their applications. They are able to apply their knowledge to specific questions.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physical Technology of Material Synthesis</td>
<td>11-PPT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Only after succ. compl. of module(s)</td>
<td>Students of Funktionswerkstoffe (Functional Materials, Bachelor’s) are recommended to take module 11-P-FR1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Physical material properties, growth and coating procedures, methods of characterisation and structuring technologies.

Intended learning outcomes

The students have knowledge of the practical basics of material characterisation and physical technology for material synthesis.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>(5)</td>
<td>German or English</td>
</tr>
</tbody>
</table>

Method of assessment

Preparation of the experiment will be considered successfully completed if a pre-experiment oral test (approx. 15 minutes) is passed. Performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. An experiment log (approx. 8 pages) must be prepared. Each component of the assessment can be repeated once in the respective semester. Only if both components of the assessment have been successfully completed in the same semester will the module component be considered successfully completed.

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Coating Technologies based on Vapour Deposition | 11-BVG-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | --

Contents
Physical technical principles of PVD and CVD installations and processes. Coating deposit and layer characterisation. Application of layer materials on an industrial level.

Intended learning outcomes
The students have advanced knowledge of coating deposit processes in the gaseous phase and gain insights into their industrial relevance and variety.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Materials (Lecture)</td>
<td>08-FU-MoMaV-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemical bonds and molecular interactions, supramolecular chemistry, molecular materials, colloids, nano particles, thin films.

Intended learning outcomes

The student understands the relationship of physical, chemical and technolological properties of materials and their structure. They know the significance of various inter and intramolecular interactions and how they determine the properties of molecular materials. They learn how to familiarize themselves with a scientific topic including a literature search, and how to give a presentation including discussion and feedback.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + S (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

A) assessment [a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)] as well as B) talk (approx. 30 minutes), weighted 3:1

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Chemically and bio-inspired Nanotechnology for Material Synthesis | 08-FU-NT-152-m01

Module coordinator | Module offered by
degree programme coordinator Funktionswerkstoffe (Functional Materials) | Chair of Chemical Technology of Material Synthesis

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents

Synthesis methods and parameters in sol-gel chemistry as well as characterisation and application of created materials. Basic principles of bio-mineralisation, structure of biomaterials and introduction to bio-inspired materials synthesis.

Intended learning outcomes

The student possesses profound knowledge about sol-gel chemistry and biomineralisation.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Nanoscale Materials

Abbreviation: 08-PCM3-152-m01

Module coordinator: Lecturer of the seminar "Nanoskalige Materialien"

Module offered by: Institute of Physical and Theoretical Chemistry

ECTS: 5

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: Graduate

Other prerequisites: --

Contents:

German contents available but not translated yet.

Intended learning outcomes:

German intended learning outcomes available but not translated yet.

Die Studierenden sind in der Lage, nanoskalige Materialien zu charakterisieren. Er/Sie kann Analysenmethoden sowie Anwendungsgebiete nanoskaliger Materialien anführen.

Courses (type, number of weekly contact hours, language — if other than German):

S (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):

Written examination (approx. 90 minutes) or oral examination of one candidate each (approx. 20 minutes) or talk (approx. 30 minutes)

Language of assessment: German and/or English
creditable for bonus

Allocation of places:

--

Additional information:

--

Referred to in LPO I (examination regulations for teaching-degree programmes):

--
Module title	Abbreviation
Material Science 1 (Basic introduction) | 08-FU-MaWi1-152-m01

Module coordinator | Module offered by
holder of the Chair of Chemical Technology of Material Synthesis | Chair of Chemical Technology of Material Synthesis

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student possesses comprehensive knowledge about various techniques from different areas of the field of chemical process engineering. For a given objective he/she is able to weigh the pros and cons of different techniques and can suggest ways of fabrication, processing and treatment of materials. Furthermore he/she is confident in handling of measurement data as well as statistical and systematic errors and possess extensive knowledge about nomenclature, significance as well as practically determining characteristic material properties.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Science 2 (The Material Groups)</td>
<td>08-FU-MaWi2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students possess comprehensive knowledge about fabrication and properties of the major classes of materials and are able to apply this to scientific problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Chemical Nanotechnology: Analytics and Applications

Abbreviation
08-FU-NT-AA-152-m01

Module coordinator
degree programme coordinator Funktionswerkstoffe (Functional Materials)

Module offered by
Chair of Chemical Technology of Material Synthesis

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Introduction to theory and application of characterisation methods in nano-chemistry. Thermoanalysis, rheological methods, dynamic light scattering, application of nano materials in industry and technology.

Intended learning outcomes
The students possess advanced knowledge of characterisation and application of nano materials.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of non-destructive Material Testing</td>
<td>11-ZMB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the generation and interaction processes of different types of radiation (heat, X-ray, terahertz), particles (neutrons) or ultrasound waves with materials. They know the applied methods for the detection of radiation types, particles and ultrasound waves and are able to apply them to basic problems of material testing and characterisation.

Courses

(V 2) + R (1)
Module taught in: German or English

Method of assessment

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes)
- or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title | Membranebiology of Plants for Advanced Students
Abbreviation | 07-4BFPS2-152-m01

Module coordinator | holder of the Chair of Plant Physiology and Biophysics
Module offered by | Faculty of Biology
ECTS | 5
Method of grading | numerical grade
Only after succ. compl. of module(s)
Duration | 1 semester
Module level | undergraduate
Other prerequisites

Contents
In this module, students will acquire the general fundamentals of plant membrane transport and the biophysical methods with which it can be characterised. For this purpose, students will be introduced to modern methods of molecular biology and imaging as well as data collection and analysis.

Intended learning outcomes
Students understand basic membrane transport processes and are able to use experimental methods in experiments with intact plants, isolated plant cells as well as animal expression systems.

Courses
(type, number of weekly contact hours, language — if other than German)
V (1) + Ü (5)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Allocation of places
16 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.
Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Methods in Biotechnology

Abbreviation
07-4S1AMB-152-m01

Module coordinator
holder of the Chair of Biotechnology and Biophysics

Module offered by
Faculty of Biology

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module (lecture and seminar) will provide students with an overview of instrument-based methods in biotechnology and biomedicine and the underlying physical principles. It will discuss modern methods for the analysis of biological matter on the molecular and cellular level. These methods include light microscopy, fluorescence spectroscopy, electron microscopy, atomic force microscopy, flow cytometry and microfluidics.

Intended learning outcomes
Students will gain an overview of key methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2) + S (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 30 to 60 minutes)
creditable for bonus

Allocation of places
25 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25%...
of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title	Abbreviation
Aspects of molecular Biotechnology | 07-1S1MOLB-152-m01

Module coordinator | Module offered by
holder of the Chair of Biotechnology and Biophysics | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents

Fundamental principles of "white" biotechnology, bioreactors, biocatalysis, immobilisation of cells and enzymes, production of biomolecules, molecular biology, recombinant DNA technology, protein engineering, biosensor design, drug design, drug targeting, molecular diagnostics, recombinant antibodies, hybridoma technology, electromanipulation of cells.

Intended learning outcomes

Students will gain an overview of traditional and modern methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue. Students will acquire a knowledge of fundamental methods in biotechnology that will enable them to independently review relevant literature. In addition, they will become acquainted with - or, where necessary, will be able to independently acquaint themselves with - relevant mechanisms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 30 to 60 minutes)
creditable for bonus

Allocation of places

25 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: first, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
</table>
Module title

Special Bioinformatics 1

Abbreviation

07-4S1MZ6-152-m01

Module coordinator

holder of the Chair of Bioinformatics

Module offered by

Faculty of Biology

ECTS

5

Method of grading

Only after succ. compl. of module(s) numerical grade

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Fundamental principles of the tree of life, fundamental principles of phylogenetics (methods and markers), fundamental principles of evolutionary biology (concepts), sequence analysis, RNA structure prediction, phylogenetic reconstruction.

Intended learning outcomes

Students are able to use software and databases for sequence analysis, RNA structure prediction and phylogenetic reconstruction.

Courses

(type, number of weekly contact hours, language — if other than German)

V (1) + Ü (5)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 10 to 20 pages)

Language of assessment: German or English
creditable for bonus

Allocation of places

20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (Biology) (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 %...
of places): number of subject semesters of the respective applicant; among applicants with the same number of
subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, pla-
ces will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Basics in Light- and Electron-Microscopy
Abbreviation: 07-4S1MZ1-152-m01

Module coordinator: head of the Department of Electronmicroscopy
Module offered by: Faculty of Biology
ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents
Fundamental principles of confocal laser scanning microscopy and electron microscopy.

Intended learning outcomes
Students have acquired theoretical knowledge and practical skills in the area of light and electron microscopy.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + Ü (5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 30 to 60 minutes)
creditable for bonus

Allocation of places
18 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.
Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.
Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.
Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Abbreviation
Specific Biotechnology 2 | 07-5S2MZ4-152-m01

Module coordinator | Module offered by
holder of the Chair of Biotechnology and Biophysics | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This practical course provides students with an insight into different biotechnological and biophysical topics. Under expert guidance, students will perform selected experiments on the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells.

Intended learning outcomes
Students will have acquired a knowledge of fundamental biotechnological and biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms. Students will have acquired practical experience performing experiments, using a variety of scientific tools. In the seminar, students will have acquired detailed theoretical knowledge on these experiments and will have delivered a short presentation (15 minutes) on one of the experiments they performed.

Courses (type, number of weekly contact hours, language — if other than German)

| Ü (7) + S (1) |

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

| a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours). |

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

Allocation of places
18 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components.
in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics))
at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their
average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according
to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking
will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.
Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwi-
se by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of pla-
ces): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology;
among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 %
of places): number of subject semesters of the respective applicant; among applicants with the same number of
subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.
Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, pla-
ces will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Laboratory and Measurement Technology in Biophysics

Abbreviation
11-LMB-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
The lecture covers relevant principles of molecular and cellular biology as well as the physical principles of biophysical procedures for the examination and manipulation of biological systems. The main topics are optical measuring techniques and sensors, methods of single-particle detection, special microscoping techniques and methods of structure elucidation of biomolecules.

Intended learning outcomes
The students know the principles of molecular and cellular biology as well as the physical principles of biophysical procedures for the examination and manipulation of biological systems. They have knowledge of optical measuring techniques and their applications and are able to apply techniques of structure elucidation to simple biomolecules.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Mathematics 4 for Students of Physics and related Disciplines (Complex Analysis)

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 8

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Contents:

Fundamentals of functional analysis and function theory. Basic knowledge of functional analysis, which is needed in the course Quantum Mechanics I. The definition of Hilbert space explains quantum mechanical states as vectors. The non-visualised form of quantum mechanics, the depiction as wave function created through basic states and the Dirac bracket formalism make up an important part of the formal framework of quantum mechanics.

Part I: Functional analysis
1. Linear vector spaces
2. Metric, normed spaces
3. Linear operators
4. Function space, completion, Lebesgue integral, Hilbert space
5. Linear operators on the Hilbert space
6. Matrix representation of operators
7. Fourier transform
8. The Dirac delta function and its different presentations.

Part II: Complex function theory
1. Extension to complex numbers, the specificity of the point ‘infinite’, representation of the complex plane, stereographic projection on a sphere 2. Complex functions and ambiguity of branch points
3. Solving the n-fold ambiguity using Riemann surfaces and n additional indexes, n (Riemann) numbered sheets on which the function is definite. Branch cuts.
4. Singularities in the complex: Pole nth-order, branching points
5. Differentiation: Concept of analytic or holomorphic function, complex differentiability, Cauchy-Riemann differential equation
6. Complex integration and Cauchy integral theorem
7. Cauchy integral formula, implications
8. Laurent series versus Taylor series
9. Residue
10. Computing integrals and series
11. Analytical continuation
12. Meromorphic functions, all functions
13. Sets of Mittag-Leffler (Mittag-Leffler-development) and Weierstrass
14. Differential equations in the complex domain, general and simple solutions near singularities
15. Special functions: Gamma, beta and hypergeometric functions, their definitions, integral representation, differential equations, series expansion
16. The saddle-point method or 'method of steepest descent' with widespread applications in field theory, statistics, and complex integration, for example the Stirling formula

Intended learning outcomes:
The students have basic mathematical knowledge and basic knowledge of the mathematics of Hilbert space and the theory of functions of a complex variable and have mastered the required calculation methods.

Courses: type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: Ü: German or English
<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 120 minutes)</td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Principles of two- and three-dimensional Röntgen imaging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Physics of X-ray generation (X-ray tubes, synchrotron). Physics of the interaction between X-rays and matter (photon absorption, scattering), physics of X-ray detection. Mathematics of reconstruction algorithms (filtered rear projection, Fourier reconstruction, iterative methods). Image processing (image data pre-processing, feature extraction, visualisation,...). Applications of X-ray imaging in the industrial sector (component testing, material characterisation, metrology, biology,...). Radiation protection and biological radiation effect (dose,...).

Intended learning outcomes

The students know the principles of generating X-rays and of their interactions with matter. They know imaging techniques using X-rays and methods of image processing as well as application areas of these methods.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Methods at the Synchroton</td>
<td>11-BMS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students know the principles of digital image and signal processing. They know the ways of functioning and applications of different image processing methods and are able to apply them in practice.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaging Sensors in Infrared</td>
<td>11-ASI-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Infrared cameras are important experimental and technical tools, e.g. for measuring temperatures. The spectral range of infrared ranges from the visible spectrum, where the Sun is dominating as the natural source of light, up to microwaves and radiowaves with artificial emitters. There is distinct and sometimes dominating emission from bodies with ambient temperature in the infrared spectrum. The lecture provides an introduction to the physical optics of this spectral range and discusses: Peculiarities of infrared cameras and thermal images, different types of sensors (bolometer, quantum well, superlattice) as well as the evaluation of such sensors on the basis of neurophysiological aspects.

Intended learning outcomes

The students have specific and advanced knowledge in the field of infrared spectral imaging. They know various technologies and detector structures as well as their application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Principles of Image Processing

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Image Processing</td>
<td>11-EBV-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
3

Method of grading
Numerical grade - Only after succ. compl. of module(s)

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
Introduction to image processing. Pictures as two-dimensional signals; digitalisation. Two-dimensional Fourier transform. Histogram equalisation (e.g. image brightening) and pixel connectivity (e.g. noise reduction). Automatic image recognition: Segmentation, classification. Technological image generation. Applications (e.g. motion tracking). Three-dimensional images.

Intended learning outcomes
The students have specific and advanced knowledge in the field of image processing. They know the principles and theory of signal processing for images and have corresponding knowledge of image generation. They are able to independently work with literature, they understand the characteristics of image processing with commercial software and are able to process images for the analysis of experiments with imaging measuring methods.

Courses
V (2)
Module taught in: German or English

Method of assessment
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Pattern Classification</td>
<td>11-KVM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Signals such as images, but also acoustic records, spectra, electrical measurements often contain recurring patterns. These patterns are often classified and analysed by observers, e.g. by a doctor when analysing an ECG. More and more automatic procedures are adopted to take on these tasks and classify patterns. The lecture will discuss principles of different classifiers such as "minimum distance" and "maximum likelihood".

Intended learning outcomes

The students have specific and advanced knowledge in the field of pattern recognition. They know methods of classifying patterns in measuring data as well as ways to automatise these processes. They are able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Introduction to Labview

Abbreviation
11-LVW-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
The module comprises basic and advanced courses. The basic course "NI LabVIEW Basic 1" is the first level of each LabVIEW learning phase. LabVIEW Basic provides a systematic introduction to the functions and application fields of the development environment of LabVIEW. The students become acquainted with dataflow programming and with common LabVIEW architectures. They learn to develop LabVIEW applications for various application fields, from assessment and measurement applications up to data collection, device control, data recording and measurement analysis. In the advanced course "NI LabVIEW Core 2", the students learn to develop comprehensive standalone applications, including the graphical development environment LabVIEW. The course builds upon LabVIEW Basic 1 and provides an introduction to the most common development technologies, in order to enable the students to successfully implement and distribute LabVIEW applications for different application fields. Course topics include techniques and procedures for the optimisation of application performance, e.g. through an optimised reuse of existing codes, usage of file I/O functions, principles of data management, event computing and methods of error handling. After finishing the course, the students have the ability to apply LabVIEW functions according to individual requirements, which enables a fast and productive application development.

Intended learning outcomes
The students have specific and advanced knowledge in the application field of LabVIEW. They know the principles of working with LabVIEW and are able to develop applications, e.g. for recording and analysing measuring data.

Courses
(type, number of weekly contact hours, language — if other than German)

V (1) + R (3)

Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
Module title	Electrochemical Energy Storage and Conversion
Abbreviation | 08-FU-EEW-152-m01

Module coordinator | holder of the Chair of Chemical Technology of Material Synthesis
Module offered by | Chair of Chemical Technology of Material Synthesis

ECTS | 5
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents
Chemistry and application of: battery systems (aqueous and non-aqueous systems like lead, nickel cadmium and nickel metal hydride, sodium sulfur, sodium nickel chloride, lithium ion accumulators), electrochemical double layer capacitors, redox-flow battery, fuel cell systems (AFC, PEMFC, DMFC, PAFC, SOFC), Solar cells (Si, CIS, CIGS, GaAs, organic and dye solar cell), thermoelectric devices.

Intended learning outcomes
The students possess comprehensive knowledge in the field of electrochemical energy storage and transformation and are able to apply this to scientific problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + P (1) + E (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) assessment and b) Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations), weighted 7:3
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Current Topics in Nanostructure Technology | 11-BXN5-152-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Nanostructure Technology of the Bachelor's programme. They have knowledge of a current subdiscipline of nanostructure technology or nano sciences and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Current Topics in Nanostructure Technology
Abbreviation: 11-BXN6-152-m01

Module coordinator: chairperson of examination committee
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Approval from examination committee required.

Contents:
Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes:
The students have advanced competencies corresponding to the requirements of a module of Nanostructure Technology of the Bachelor’s programme. They have knowledge of a current subdiscipline of nanostructure technology or nano sciences and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German):
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title
Current Topics in Nanostructure Technology

Abbreviation
11-BXN8-152-m01

Module coordinator
Chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Numerical grade

Duration
1 semester

Module level
Undergraduate

Other prerequisites
Approval from examination committee required.

Contents
Current topics of Experimental Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Nanostructure Technology of the Bachelor's programme. They have knowledge of a current subdiscipline of nanostructure technology or nano sciences and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	**Abbreviation**
Current Topics Physics | 11-BXP5-152-m01

| **Module coordinator** | **Module offered by**
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | Approval from examination committee required.

Contents
Current topics of Experimental and Theoretical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Bachelor’s programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Nanostructure Technology</td>
<td>11-CSN6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Selected topics of nanostructure technology.

Intended learning outcomes

The students have basic knowledge of an application area of nanostructure technology and of the scientific or technical methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes)
- or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Solid State Physics</td>
<td>11-CSF6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents
Selected topics of Solid-State Physics.

Intended learning outcomes
The students have basic knowledge of a specialist field of Solid-State Physics and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses
(type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Energy and Material Science</td>
<td>11-CSEM6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required</td>
</tr>
</tbody>
</table>

Contents

Selected topics of energy and materials research.

Intended learning outcomes

The students have basic knowledge of energy and material research and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

- V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module Catalogue for the Subject Nanostructure Technology Bachelor’s with 1 major, 180 ECTS credits
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel Transport Phenomena</td>
<td>11-NTP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Current research topics and applications of novel transport phenomena.

Intended learning outcomes

The students have knowledge of a current subdiscipline of nanostructure technology or nano sciences, especially in the field of novel transport phenomena, and understand the measuring and evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology

Bachelor’s with 1 major, 180 ECTS credits

Module title

Fit for Industry

Abbreviation

11-FFI-152-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students know about the requirements of jobs in the industry and are able to make decisions for their own future based on their knowledge.

Courses

(type, number of weekly contact hours, language — if other than German)

V (1) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, summer semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Nanostructure Technology

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management in Practice</td>
<td>11-PMP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical project management in practice, contents: Definitions, terms, cardinal errors in project management, project schedule, kick-off and stakeholder, teams and resources, milestones and planning, visualisation and reporting, conflicts, success factors, technical and economic controlling, target agreement, balanced score cards, solving exemplary cases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students have knowledge of technical project management. They are familiar with different methods and success factors and are able to define, plan and successfully conduct a project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (1) + R (1)</td>
</tr>
<tr>
<td>Module taught in: German or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes). If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest. Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Biotechnology and Social Acceptance

Abbreviation
07-SQF-BGA-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
3

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Applications of green biotechnology; biological background, economic interests, ecological risks, social acceptability.

Intended learning outcomes
Students are able to discuss/evaluate society’s views of biotechnology. They know how to conduct a literature search and are able to critically review scientific publications as well as issues raised by society. Students have enhanced their oral and written presentation skills and are able to use these to present the data they have collected.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
term paper or preparing educational materials (approx. 5 to 10 pages)
Language of assessment: German and/or English
creditable for bonus

Allocation of places
20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: first, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.
Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Competences for Students of Nanostructure Technology</td>
<td>11-NASQ5-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

General qualifications for students of nanostructure technology.

Intended learning outcomes

The students have general competencies corresponding to the requirements of a module of Nanostructure Technology of the Bachelor’s programme. They have knowledge of a current subdiscipline of nanostructure technology and the required understanding of this topic. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

- -

Additional information

- -

Referred to in LPO I (examination regulations for teaching-degree programmes)

- -
Module title	Seminar Nanostructure Technology
Abbreviation | 11-N-HS-152-m01

Module coordinator | Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by | Faculty of Physics and Astronomy

ECTS | 5

Method of grading | numerical grade

Only after succ. compl. of module(s) | --

Duration | 1 semester

Module level | undergraduate

Other prerequisites | Admission prerequisite to assessment: regular attendance (minimum 85% of sessions).

Contents
Current questions on advanced topics of nanostructure technology.

Intended learning outcomes
The students have in-depth knowledge of a specialist field of advanced nanostructure technology. They are able to independently acquire this knowledge and to summarise it in an oral presentation.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) talk (30 to 45 minutes) with discussion and b) written examination (approx. 120 minutes)

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Bachelor Thesis Nanostructure Technology

Abbreviation
11-BA-N-152-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
undergraduate

Other prerequisites
--

Contents
Mostly independent processing of an experimental, theoretical or engineering task in the field of nanostructure technology, especially according to known procedures and scientific aspects; writing of the Bachelor's thesis.

Intended learning outcomes
The students are able to independently work on an experimental, theoretical and engineering task from nanostructure technology under the guidance of a supervisor, especially in accordance with known methods and scientific aspects and to summarise their results in a final paper.

Courses
No courses assigned to module

Method of assessment
Bachelor's thesis (approx. 25 pages)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--