Subdivided Module Catalogue for the Subject

MINT Teacher Education PLUS, Elite Network Bavaria (ENB)

with the degree "LA Master Gymnasium"

(120 ECTS credits)

Examination regulations version: 2020
Responsible: Faculty of Biology
Responsible: Faculty of Chemistry and Pharmacy
Responsible: Faculty of Mathematics and Computer Science
Responsible: Faculty of Physics and Astronomy
Course of Studies - Contents and Objectives
See "Transcript of Records" attached to this document.
Abbreviations used

Course types: \(E = \) field trip, \(K = \) colloquium, \(O = \) conversatorium, \(P = \) placement/lab course, \(R = \) project, \(S = \) seminar, \(T = \) tutorial, \(Ü = \) exercise, \(V = \) lecture

Term: \(SS = \) summer semester, \(WS = \) winter semester

Methods of grading: \(\text{NUM} = \) numerical grade, \(B/NB = \) (not) successfully completed

Regulations: \(\text{(L)ASPO} = \) general academic and examination regulations (for teaching-degree programmes), \(\text{FSB} = \) subject-specific provisions, \(\text{SFB} = \) list of modules

Other: \(A = \) thesis, \(LV = \) course(s), \(PL = \) assessment(s), \(TN = \) participants, \(VL = \) prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

\(\text{ASPO2015} \)

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

\(18-\text{Dec-2019 (2019-59)} \)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
The subject is divided into

<table>
<thead>
<tr>
<th>Module Area B: Focus Subject (60 ECTS credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>07-GY-BFM-152-m01</td>
</tr>
<tr>
<td>07-GY-FOP-152-m01</td>
</tr>
<tr>
<td>07-LA-HUBIO-1-152-m01</td>
</tr>
<tr>
<td>07-LA-HUBIO-2-152-m01</td>
</tr>
<tr>
<td>07-GY-MIBI-152-m01</td>
</tr>
<tr>
<td>07-MS1-152-m01</td>
</tr>
<tr>
<td>07-MS1CB-152-m01</td>
</tr>
<tr>
<td>07-MS1NMD-152-m01</td>
</tr>
<tr>
<td>07-MS1NF1-152-m01</td>
</tr>
<tr>
<td>07-MS1NF2-152-m01</td>
</tr>
<tr>
<td>07-MS1TÖ-152-m01</td>
</tr>
<tr>
<td>07-MS1TÖ2-152-m01</td>
</tr>
<tr>
<td>07-MS1TÖF1-152-m01</td>
</tr>
<tr>
<td>07-MS1TÖF2-152-m01</td>
</tr>
<tr>
<td>07-MS1K-152-m01</td>
</tr>
<tr>
<td>07-MS1ES-152-m01</td>
</tr>
<tr>
<td>07-MS1NB-152-m01</td>
</tr>
<tr>
<td>07-MS1VF1-152-m01</td>
</tr>
<tr>
<td>07-MS1VF2-152-m01</td>
</tr>
<tr>
<td>07-MS2-152-m01</td>
</tr>
<tr>
<td>07-MS2ZE1-152-m01</td>
</tr>
<tr>
<td>07-MS2ZE2-152-m01</td>
</tr>
<tr>
<td>07-MS2ZEF1-152-m01</td>
</tr>
<tr>
<td>07-MS2ZEF2-152-m01</td>
</tr>
<tr>
<td>07-MS2INF-152-m01</td>
</tr>
<tr>
<td>07-MS2PA-152-m01</td>
</tr>
<tr>
<td>07-MS2MF1-152-m01</td>
</tr>
<tr>
<td>07-MS2MF2-152-m01</td>
</tr>
<tr>
<td>07-MS2BT-152-m01</td>
</tr>
<tr>
<td>07-MS2BTF1-152-m01</td>
</tr>
<tr>
<td>07-MS2BTF2-152-m01</td>
</tr>
<tr>
<td>07-MS31-152-m01</td>
</tr>
<tr>
<td>07-MS31POEK-152-m01</td>
</tr>
<tr>
<td>07-MS31PIP-152-m01</td>
</tr>
<tr>
<td>07-MS3BB-152-m01</td>
</tr>
<tr>
<td>07-MS31MPPF1-152-m01</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>07-MS31MPP-F2-152-m01</td>
</tr>
<tr>
<td>07-MS3BSBF1-152-m01</td>
</tr>
<tr>
<td>07-MS3BSBF2-152-m01</td>
</tr>
<tr>
<td>07-MS3BPBF1-152-m01</td>
</tr>
<tr>
<td>07-MS3BPBF2-152-m01</td>
</tr>
<tr>
<td>07-MS3SPF1-152-m01</td>
</tr>
<tr>
<td>07-MS3SPF2-152-m01</td>
</tr>
<tr>
<td>07-MS3PBMF1-152-m01</td>
</tr>
<tr>
<td>07-MS3PBMF2-152-m01</td>
</tr>
<tr>
<td>07-MS3PPEF1-152-m01</td>
</tr>
<tr>
<td>07-MS3PPEF2-152-m01</td>
</tr>
<tr>
<td>07-MS3MCPE-F1-152-m01</td>
</tr>
<tr>
<td>07-MS3MCPE-F2-152-m01</td>
</tr>
<tr>
<td>07-MS3S-152-m01</td>
</tr>
<tr>
<td>07-MS3SYF1-152-m01</td>
</tr>
<tr>
<td>07-MS3SYF2-152-m01</td>
</tr>
<tr>
<td>07-MS3COBF1-152-m01</td>
</tr>
<tr>
<td>07-MS3COBF2-152-m01</td>
</tr>
<tr>
<td>07-MSL1-152-m01</td>
</tr>
<tr>
<td>07-MSL2-152-m01</td>
</tr>
<tr>
<td>07-MSL3-152-m01</td>
</tr>
<tr>
<td>07-MSA1-152-m01</td>
</tr>
<tr>
<td>07-MSA2-152-m01</td>
</tr>
<tr>
<td>07-MSA3-152-m01</td>
</tr>
<tr>
<td>07-ML-152-m01</td>
</tr>
<tr>
<td>07-MLStB-152-m01</td>
</tr>
<tr>
<td>07-MLSt-152-m01</td>
</tr>
<tr>
<td>07-MLStB-152-m01</td>
</tr>
<tr>
<td>07-MLStB-152-m01</td>
</tr>
<tr>
<td>07-MS31B-152-m01</td>
</tr>
<tr>
<td>07-MS31POEK-B-152-m01</td>
</tr>
<tr>
<td>07-MS31PIPB-152-m01</td>
</tr>
<tr>
<td>07-MS3BBB-152-m01</td>
</tr>
<tr>
<td>07-MS2BTB-152-m01</td>
</tr>
<tr>
<td>07-MS1B-152-m01</td>
</tr>
<tr>
<td>07-MNBDB-152-m01</td>
</tr>
<tr>
<td>07-MENMNBDB-152-m01</td>
</tr>
<tr>
<td>07-MECB-152-m01</td>
</tr>
<tr>
<td>07-MTOB-152-m01</td>
</tr>
<tr>
<td>07-MTO2B-152-m01</td>
</tr>
<tr>
<td>07-MKBB-152-m01</td>
</tr>
<tr>
<td>07-MESB-152-m01</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>07-MS2B-152-m01</td>
</tr>
<tr>
<td>07-MS2INF-B-152-m01</td>
</tr>
<tr>
<td>07-MS2PA-B-152-m01</td>
</tr>
<tr>
<td>07-MBI-152-m01</td>
</tr>
<tr>
<td>07-MS-B-152-m01</td>
</tr>
<tr>
<td>07-MKEWO-152-m01</td>
</tr>
<tr>
<td>07-MTROP-152-m01</td>
</tr>
<tr>
<td>07-MPWD-152-m01</td>
</tr>
<tr>
<td>07-MGLN-152-m01</td>
</tr>
<tr>
<td>07-MVMINT4-152-m01</td>
</tr>
<tr>
<td>07-MVMINT4B-152-m01</td>
</tr>
<tr>
<td>07-MV4-152-m01</td>
</tr>
<tr>
<td>07-MV4B-152-m01</td>
</tr>
<tr>
<td>07-DR4-152-m01</td>
</tr>
<tr>
<td>Focus Subject Chemistry (0 or 60 ECTS credits)</td>
</tr>
<tr>
<td>08-SCM3-152-m01</td>
</tr>
<tr>
<td>08-FU-NT-152-m01</td>
</tr>
<tr>
<td>08-AC-ELO-152-m01</td>
</tr>
<tr>
<td>08-AC-FK-152-m01</td>
</tr>
<tr>
<td>08-ACM3-161-m01</td>
</tr>
<tr>
<td>08-Forsch-LAGY-152-m01</td>
</tr>
<tr>
<td>08-OCM-AKP1-161-m01</td>
</tr>
<tr>
<td>08-PCM6-161-m01</td>
</tr>
<tr>
<td>08-ACM1-161-m01</td>
</tr>
<tr>
<td>08-ACPM-161-m01</td>
</tr>
<tr>
<td>08-PH-KAC-152-m01</td>
</tr>
<tr>
<td>08-PCM1a-161-m01</td>
</tr>
<tr>
<td>08-PCM1b-161-m01</td>
</tr>
<tr>
<td>08-FU-MaWi1-152-m01</td>
</tr>
<tr>
<td>08-FU-MaWi2-152-m01</td>
</tr>
<tr>
<td>08-FMM-161-m01</td>
</tr>
<tr>
<td>08-OCM-SYNT-161-m01</td>
</tr>
<tr>
<td>08-BC-MOLM-161-m01</td>
</tr>
<tr>
<td>08-FU-MoMaV-152-m01</td>
</tr>
<tr>
<td>08-PC-MBS-152-m01</td>
</tr>
<tr>
<td>08-PCM3-161-m01</td>
</tr>
<tr>
<td>08-OC3-152-m01</td>
</tr>
<tr>
<td>08-OC4-152-m01</td>
</tr>
<tr>
<td>08-OCM-FM-161-m01</td>
</tr>
<tr>
<td>08-PCM5-161-m01</td>
</tr>
<tr>
<td>08-PH-KACP-152-m01</td>
</tr>
<tr>
<td>08-FMM-PA-161-m01</td>
</tr>
<tr>
<td>08-TC-152-m01</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>08-PCM2-161-m01</td>
</tr>
<tr>
<td>08-PC-SBL1-152-m01</td>
</tr>
<tr>
<td>08-PCM4-161-m01</td>
</tr>
<tr>
<td>08-BC-VPMM-161-m01</td>
</tr>
<tr>
<td>08-BC-VPPD-161-m01</td>
</tr>
<tr>
<td>08-BC-VPRB-161-m01</td>
</tr>
<tr>
<td>08-BC-VPSB-161-m01</td>
</tr>
<tr>
<td>08-TCM1-161-m01</td>
</tr>
<tr>
<td>08-ACM2-161-m01</td>
</tr>
<tr>
<td>08-SCM4-161-m01</td>
</tr>
<tr>
<td>08-SCM1-152-m01</td>
</tr>
<tr>
<td>08-TCM2-161-m01</td>
</tr>
<tr>
<td>08-MCM3-161-m01</td>
</tr>
<tr>
<td>08-OCM-NAT-172-m01</td>
</tr>
<tr>
<td>08-BC-MOLP-172-m01</td>
</tr>
<tr>
<td>08-TCM3-161-m01</td>
</tr>
<tr>
<td>08-HKM1-152-m01</td>
</tr>
<tr>
<td>08-MCM2a-161-m01</td>
</tr>
<tr>
<td>08-MCM2b-161-m01</td>
</tr>
<tr>
<td>03-FU-PM1-152-m01</td>
</tr>
<tr>
<td>03-FU-PM2-161-m01</td>
</tr>
<tr>
<td>08-HKM3AC-161-m01</td>
</tr>
<tr>
<td>08-HKM3OC-161-m01</td>
</tr>
<tr>
<td>08-SCM2-161-m01</td>
</tr>
<tr>
<td>08-TCM4-161-m01</td>
</tr>
<tr>
<td>08-HKM2-161-m01</td>
</tr>
<tr>
<td>08-HKM4-161-m01</td>
</tr>
<tr>
<td>08-TCAP1-161-m01</td>
</tr>
<tr>
<td>08-TCAP2-161-m01</td>
</tr>
<tr>
<td>08-MCM3-172-m01</td>
</tr>
</tbody>
</table>

Focus Subject Computer Science (0 or 60 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-HCI=3DUI-161-m01</td>
<td>3D User Interfaces</td>
<td>5</td>
<td>NUM</td>
<td>14</td>
</tr>
<tr>
<td>10-I=HCI-161-m01</td>
<td>Introduction into Human-Computer Interaction</td>
<td>5</td>
<td>NUM</td>
<td>131</td>
</tr>
<tr>
<td>10-HCI=RIS-182-m01</td>
<td>Real-Time Interactive Systems</td>
<td>5</td>
<td>NUM</td>
<td>191</td>
</tr>
<tr>
<td>10-I=REP-152-m01</td>
<td>Exam Tutorial for the German Staatsexamen</td>
<td>4</td>
<td>B/NB</td>
<td>325</td>
</tr>
<tr>
<td>10-I=3D-152-m01</td>
<td>3D Point Cloud Processing</td>
<td>5</td>
<td>NUM</td>
<td>15</td>
</tr>
<tr>
<td>10-I=AA-152-m01</td>
<td>Advanced Automation</td>
<td>8</td>
<td>NUM</td>
<td>16</td>
</tr>
<tr>
<td>10-I=AGIS-161-m01</td>
<td>Algorithms for Geographic Information Systems</td>
<td>5</td>
<td>NUM</td>
<td>35</td>
</tr>
<tr>
<td>10-I=AG-161-m01</td>
<td>Computational Geometry</td>
<td>5</td>
<td>NUM</td>
<td>36</td>
</tr>
<tr>
<td>10-I=AGT-152-m01</td>
<td>Algorithmic Graph Theory</td>
<td>5</td>
<td>NUM</td>
<td>37</td>
</tr>
<tr>
<td>10-I=APA-161-m01</td>
<td>Approximation Algorithms</td>
<td>5</td>
<td>NUM</td>
<td>42</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10-I=AUT-161-m01</td>
<td>Automata Theory</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AVS-161-m01</td>
<td>Avionics Systems</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=BER-161-m01</td>
<td>Computability Theory</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>07-BI-161-m01</td>
<td>Bioinformatics</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=CB-161-m01</td>
<td>Compiler Construction</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=DM-152-m01</td>
<td>Data Mining</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=DB2-161-m01</td>
<td>Databases 2</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=ES-161-m01</td>
<td>Embedded Systems</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=EL-161-m01</td>
<td>E-Learning</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=PA-161-m01</td>
<td>Analysis and Design of Programs</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=APR-161-m01</td>
<td>Advanced Programming</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=APR-172-m01</td>
<td>Advanced Programming</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=HWP-152-m01</td>
<td>Practical course in hardware</td>
<td>10</td>
<td>B/NB</td>
<td></td>
</tr>
<tr>
<td>10-I=IR-161-m01</td>
<td>Information Retrieval</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=ICG-152-m01</td>
<td>Interactive Computer Graphics</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=KT-191-m01</td>
<td>Computational Complexity</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=KT2-161-m01</td>
<td>Computational Complexity II</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=KD-191-m01</td>
<td>Cryptography and Data Security</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=LOG-152-m01</td>
<td>Logic for informatics</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=PV-152-m01</td>
<td>Project Presentation</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=RAL-152-m01</td>
<td>Digital computer systems</td>
<td>10</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=RAK-152-m01</td>
<td>Computer Architecture</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=RIÜ-191-m01</td>
<td>Computer Networks and Information Transmission</td>
<td>10</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=RK-161-m01</td>
<td>Computer Networks and Communication Systems</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=SEM-152-m01</td>
<td>Seminar 1</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=TIV-152-m01</td>
<td>Theoretical Informatics</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=TTT-191-m01</td>
<td>Tutorial Theoretical Informatics</td>
<td>5</td>
<td>B/NB</td>
<td></td>
</tr>
<tr>
<td>10-I=WBS-152-m01</td>
<td>Knowledge-based Systems</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKA-161-m01</td>
<td>Selected Topics in Algorithms</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKES-161-m01</td>
<td>Selected Topics in Embedded Systems</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKHCl-182-m01</td>
<td>Selected Topics in HCI</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKII-182-m01</td>
<td>Selected Topics in Computer Science</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKIS-161-m01</td>
<td>Selected Topics in Intelligent Systems</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKIT-161-m01</td>
<td>Selected Topics in Internet Technologies</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKITS-172-m01</td>
<td>Selected Topics in IT Security</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKLR-161-m01</td>
<td>Selected Topics in Aerospace Engineering</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKT-161-m01</td>
<td>Selected Topics in Theory</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=AKSE-161-m01</td>
<td>Selected Topics in Software Engineering</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=KI1-161-m01</td>
<td>Artificial Intelligence 1</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=KI2-161-m01</td>
<td>Artificial Intelligence 2</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=LVS-161-m01</td>
<td>Performance Evaluation of Distributed Systems</td>
<td>8</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=LP-172-m01</td>
<td>Logic Programming</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=NLP-182-m01</td>
<td>Machine learning for Natural Language Processing</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=MLU-161-m01</td>
<td>Machine Learning (for User Interfaces)</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>10-I=ML-161-m01</td>
<td>Mathematical Logic</td>
<td>5</td>
<td>NUM</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Type</td>
<td>ECTS</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>10-I=MI-161-m01</td>
<td>Medical Informatics</td>
<td>5</td>
<td>NUM</td>
<td>229</td>
</tr>
<tr>
<td>10-HCI=MMUI-161-m01</td>
<td>Multimodal User Interfaces</td>
<td>5</td>
<td>NUM</td>
<td>250</td>
</tr>
<tr>
<td>10-I=PEB-161-m01</td>
<td>Performance Engineering & Benchmarking of Computer Systems</td>
<td>5</td>
<td>NUM</td>
<td>277</td>
</tr>
<tr>
<td>10-I=PRAK-161-m01</td>
<td>Practical course - Current Topics in Computer Science</td>
<td>10</td>
<td>B/NB</td>
<td>294</td>
</tr>
<tr>
<td>10-I=PM-182-m01</td>
<td>Professional Project Management</td>
<td>5</td>
<td>NUM</td>
<td>300</td>
</tr>
<tr>
<td>10-I=PNN-182-m01</td>
<td>Programming with neural nets</td>
<td>5</td>
<td>NUM</td>
<td>303</td>
</tr>
<tr>
<td>10-I=PRIAK-162-m01</td>
<td>Project - Current Topics in Computer Science</td>
<td>5</td>
<td>NUM</td>
<td>304</td>
</tr>
<tr>
<td>10-I=RAM-161-m01</td>
<td>Computer Arithmetic</td>
<td>5</td>
<td>NUM</td>
<td>318</td>
</tr>
<tr>
<td>10-I=RO1-182-m01</td>
<td>Robotics 1</td>
<td>8</td>
<td>NUM</td>
<td>327</td>
</tr>
<tr>
<td>10-I=RO2-152-m01</td>
<td>Robotics 2</td>
<td>8</td>
<td>NUM</td>
<td>328</td>
</tr>
<tr>
<td>10-I=SEM3-161-m01</td>
<td>Seminar 1 - Current Topics in Computer Science</td>
<td>5</td>
<td>NUM</td>
<td>332</td>
</tr>
<tr>
<td>10-I=SEM4-161-m01</td>
<td>Seminar 2 - Current Topics in Computer Science</td>
<td>5</td>
<td>NUM</td>
<td>333</td>
</tr>
<tr>
<td>10-I=SSS-172-m01</td>
<td>Security of Software Systems</td>
<td>5</td>
<td>NUM</td>
<td>347</td>
</tr>
<tr>
<td>10-I=ST-161-m01</td>
<td>Discrete Event Simulation</td>
<td>8</td>
<td>NUM</td>
<td>350</td>
</tr>
<tr>
<td>10-I=SAR-161-m01</td>
<td>Software Architecture</td>
<td>5</td>
<td>NUM</td>
<td>351</td>
</tr>
<tr>
<td>10-I=SSD-152-m01</td>
<td>Spacecraft System Design</td>
<td>8</td>
<td>NUM</td>
<td>352</td>
</tr>
<tr>
<td>10-I=STM-162-m01</td>
<td>NLP and Text Mining</td>
<td>5</td>
<td>NUM</td>
<td>359</td>
</tr>
<tr>
<td>10-I=VG-161-m01</td>
<td>Visualization of Graphs</td>
<td>5</td>
<td>NUM</td>
<td>407</td>
</tr>
</tbody>
</table>

Focus Subject Computer Mathematics (0 or 60 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-M=VATP-161-m01</td>
<td>Algebraic Topology</td>
<td>10</td>
<td>NUM</td>
<td>33</td>
</tr>
<tr>
<td>10-M=AAAN-161-m01</td>
<td>Applied Analysis</td>
<td>10</td>
<td>NUM</td>
<td>40</td>
</tr>
<tr>
<td>10-M=AALG-161-m01</td>
<td>Topics in Algebra</td>
<td>10</td>
<td>NUM</td>
<td>64</td>
</tr>
<tr>
<td>10-M=VGEO-161-m01</td>
<td>Aspects of Geometry</td>
<td>5</td>
<td>NUM</td>
<td>65</td>
</tr>
<tr>
<td>10-M=VANA-161-m01</td>
<td>Selected Topics in Analysis</td>
<td>10</td>
<td>NUM</td>
<td>79</td>
</tr>
<tr>
<td>10-M=VFNM-161-m01</td>
<td>Selected Topics in Financial Mathematics</td>
<td>10</td>
<td>NUM</td>
<td>80</td>
</tr>
<tr>
<td>10-M=VOPT-161-m01</td>
<td>Selected Topics in Optimization</td>
<td>10</td>
<td>NUM</td>
<td>83</td>
</tr>
<tr>
<td>10-M=ADGM-161-m01</td>
<td>Differential Geometry</td>
<td>10</td>
<td>NUM</td>
<td>126</td>
</tr>
<tr>
<td>10-M=VDIM-161-m01</td>
<td>Discrete Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>127</td>
</tr>
<tr>
<td>10-M=VDSY-161-m01</td>
<td>Dynamical Systems</td>
<td>5</td>
<td>NUM</td>
<td>130</td>
</tr>
<tr>
<td>10-M=AFTH-161-m01</td>
<td>Complex Analysis</td>
<td>10</td>
<td>NUM</td>
<td>162</td>
</tr>
<tr>
<td>10-M=VGEM-161-m01</td>
<td>Geometrical Mechanics</td>
<td>10</td>
<td>NUM</td>
<td>165</td>
</tr>
<tr>
<td>10-M=AGMS-161-m01</td>
<td>Geometric Structures</td>
<td>10</td>
<td>NUM</td>
<td>166</td>
</tr>
<tr>
<td>10-M-HAG-Ü-162-m01</td>
<td>Overview Algebra and Geometry (Differential Geometry or Projective Geometry) for Teaching Degree (German Gymnasium)</td>
<td>10</td>
<td>NUM</td>
<td>167</td>
</tr>
<tr>
<td>10-M-HHA-Ü-162-m01</td>
<td>Overview Higher Analysis for Teaching Degree (German Gymnasium) (Differential Equations and Complex Analysis, or Advanced Analysis and Complex Analysis)</td>
<td>10</td>
<td>NUM</td>
<td>168</td>
</tr>
<tr>
<td>10-M-HSA-Ü-162-m01</td>
<td>Overview Stochastics and Applied Mathematics (Numerical Mathematics or Discrete Mathematics) or Stochastic Mathematics for Teaching Degree (German Gymnasium)</td>
<td>8</td>
<td>NUM</td>
<td>169</td>
</tr>
<tr>
<td>10-M=AGPC-161-m01</td>
<td>Giovanni Prodi Lecture (Master)</td>
<td>5</td>
<td>NUM</td>
<td>170</td>
</tr>
<tr>
<td>10-M=AOPT-161-m01</td>
<td>Basics in Optimization</td>
<td>10</td>
<td>NUM</td>
<td>175</td>
</tr>
<tr>
<td>10-M=VGDS-161-m01</td>
<td>Groups and their Representations</td>
<td>10</td>
<td>NUM</td>
<td>179</td>
</tr>
<tr>
<td>10-M=AIST-161-m01</td>
<td>Industrial Statistics 1</td>
<td>10</td>
<td>NUM</td>
<td>185</td>
</tr>
<tr>
<td>10-M=VIST-161-m01</td>
<td>Industrial Statistics 2</td>
<td>10</td>
<td>NUM</td>
<td>186</td>
</tr>
<tr>
<td>Code</td>
<td>Subject</td>
<td>Credits</td>
<td>Type</td>
<td>ECTS</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>10-M=VKAR-161-m01</td>
<td>Field Arithmetics</td>
<td>10</td>
<td>NUM</td>
<td>205</td>
</tr>
<tr>
<td>10-M=ALTH-161-m01</td>
<td>Lie Theory</td>
<td>10</td>
<td>NUM</td>
<td>213</td>
</tr>
<tr>
<td>10-M=ANGG-161-m01</td>
<td>Numeric of Large Systems of Equations</td>
<td>10</td>
<td>NUM</td>
<td>263</td>
</tr>
<tr>
<td>10-M=VNPE-161-m01</td>
<td>Numeric of Partial Differential Equations</td>
<td>10</td>
<td>NUM</td>
<td>264</td>
</tr>
<tr>
<td>10-M=ARTH-161-m01</td>
<td>Control Theory</td>
<td>10</td>
<td>NUM</td>
<td>321</td>
</tr>
<tr>
<td>10-M=VSTA-161-m01</td>
<td>Statistical Analysis</td>
<td>10</td>
<td>NUM</td>
<td>360</td>
</tr>
<tr>
<td>10-M=ASMR-161-m01</td>
<td>Stochastic Models of Risk Management</td>
<td>10</td>
<td>NUM</td>
<td>362</td>
</tr>
<tr>
<td>10-M=ASTP-161-m01</td>
<td>Stochastical Processes</td>
<td>10</td>
<td>NUM</td>
<td>363</td>
</tr>
<tr>
<td>10-M=ATOP-161-m01</td>
<td>Topology</td>
<td>10</td>
<td>NUM</td>
<td>389</td>
</tr>
<tr>
<td>10-M=AVSM-161-m01</td>
<td>Insurance Mathematics 1</td>
<td>10</td>
<td>NUM</td>
<td>399</td>
</tr>
<tr>
<td>10-M=VSTA-161-m01</td>
<td>Insurance Mathematics 2</td>
<td>10</td>
<td>NUM</td>
<td>400</td>
</tr>
<tr>
<td>10-M=AZTH-161-m01</td>
<td>Number Theory</td>
<td>10</td>
<td>NUM</td>
<td>410</td>
</tr>
<tr>
<td>10-M=AZRA-161-m01</td>
<td>Time Series Analysis 1</td>
<td>10</td>
<td>NUM</td>
<td>411</td>
</tr>
<tr>
<td>10-M=VZRA-161-m01</td>
<td>Time Series Analysis 2</td>
<td>10</td>
<td>NUM</td>
<td>412</td>
</tr>
<tr>
<td>10-M=MP2-161-m01</td>
<td>Algebra and dynamics of Quantum Systems</td>
<td>10</td>
<td>NUM</td>
<td>34</td>
</tr>
<tr>
<td>10-M=MP1-161-m01</td>
<td>Analysis and Geometry of Classical Systems</td>
<td>10</td>
<td>NUM</td>
<td>39</td>
</tr>
<tr>
<td>10-M=VADG-161-m01</td>
<td>Applied Differential Geometry</td>
<td>10</td>
<td>NUM</td>
<td>41</td>
</tr>
<tr>
<td>10-M=GALG-161-m01</td>
<td>Research in Groups - Algebra</td>
<td>10</td>
<td>NUM</td>
<td>43</td>
</tr>
<tr>
<td>10-M=GDFQ-161-m01</td>
<td>Research in Groups - Deformation Quantization</td>
<td>10</td>
<td>NUM</td>
<td>45</td>
</tr>
<tr>
<td>10-M=GDGE-161-m01</td>
<td>Research in Groups - Differential Geometry</td>
<td>10</td>
<td>NUM</td>
<td>46</td>
</tr>
<tr>
<td>10-M=GDIM-161-m01</td>
<td>Research in Groups - Discrete Mathematics</td>
<td>10</td>
<td>NUM</td>
<td>47</td>
</tr>
<tr>
<td>10-M=GDSC-161-m01</td>
<td>Research in Groups - Dynamical Systems and Control Theory</td>
<td>10</td>
<td>NUM</td>
<td>48</td>
</tr>
<tr>
<td>10-M=GOCA-161-m01</td>
<td>Research in Groups - Complex Analysis</td>
<td>10</td>
<td>NUM</td>
<td>49</td>
</tr>
<tr>
<td>10-M=GGMT-161-m01</td>
<td>Research in Groups - Geometry and Topology</td>
<td>10</td>
<td>NUM</td>
<td>50</td>
</tr>
<tr>
<td>10-M=GCQS-161-m01</td>
<td>Research in Groups - Control Theory of Quantum Mechanical Systems</td>
<td>10</td>
<td>NUM</td>
<td>51</td>
</tr>
<tr>
<td>10-M=GMAI-161-m01</td>
<td>Research in Groups - Measure and Integral</td>
<td>10</td>
<td>NUM</td>
<td>53</td>
</tr>
<tr>
<td>10-M=GMCK-161-m01</td>
<td>Research in Groups - Mathematics in Context</td>
<td>10</td>
<td>NUM</td>
<td>54</td>
</tr>
<tr>
<td>10-M=GMSC-161-m01</td>
<td>Research in Groups - Mathematics in the Sciences</td>
<td>10</td>
<td>NUM</td>
<td>55</td>
</tr>
<tr>
<td>10-M=GNMA-161-m01</td>
<td>Research in Groups - Numerical Mathematics and Applied Analysis</td>
<td>10</td>
<td>NUM</td>
<td>58</td>
</tr>
<tr>
<td>10-M=GROC-161-m01</td>
<td>Research in Groups - Robotics, Optimization and Control Theory</td>
<td>10</td>
<td>NUM</td>
<td>60</td>
</tr>
<tr>
<td>10-M=GSTA-161-m01</td>
<td>Research in Groups - Statistics</td>
<td>10</td>
<td>NUM</td>
<td>61</td>
</tr>
<tr>
<td>10-M=GNTH-161-m01</td>
<td>Research in Groups - Number Theory</td>
<td>10</td>
<td>NUM</td>
<td>62</td>
</tr>
<tr>
<td>10-M=GTSA-161-m01</td>
<td>Research in Groups - Time Series Analysis</td>
<td>10</td>
<td>NUM</td>
<td>63</td>
</tr>
<tr>
<td>10-M=VMPH-161-m01</td>
<td>Selected Topics in Mathematical Physics</td>
<td>10</td>
<td>NUM</td>
<td>81</td>
</tr>
<tr>
<td>10-M=VTRT-161-m01</td>
<td>Selected Topics in Control Theory</td>
<td>10</td>
<td>NUM</td>
<td>84</td>
</tr>
<tr>
<td>10-M=AFAN-161-m01</td>
<td>Functional Analysis</td>
<td>10</td>
<td>NUM</td>
<td>161</td>
</tr>
<tr>
<td>10-M=VGPA-161-m01</td>
<td>Giovanni Prodi Lecture Advanced Topics (Master)</td>
<td>10</td>
<td>NUM</td>
<td>171</td>
</tr>
<tr>
<td>10-M=VGPM-161-m01</td>
<td>Giovanni Prodi Lecture Modern Topics (Master)</td>
<td>10</td>
<td>NUM</td>
<td>172</td>
</tr>
<tr>
<td>10-M=VGPS-161-m01</td>
<td>Giovanni Prodi Lecture Selected Topics (Master)</td>
<td>10</td>
<td>NUM</td>
<td>173</td>
</tr>
<tr>
<td>10-M=VIPR-161-m01</td>
<td>Inverse Problems</td>
<td>5</td>
<td>NUM</td>
<td>194</td>
</tr>
<tr>
<td>10-M=VKGE-161-m01</td>
<td>Complex Geometry</td>
<td>10</td>
<td>NUM</td>
<td>199</td>
</tr>
<tr>
<td>10-M=VMBV-161-m01</td>
<td>Mathematical Imaging</td>
<td>5</td>
<td>NUM</td>
<td>225</td>
</tr>
<tr>
<td>10-M=VKOM-161-m01</td>
<td>Mathematical Continuum Mechanics</td>
<td>5</td>
<td>NUM</td>
<td>226</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>Type</td>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>10-M=VMTH-161-m01</td>
<td>Module Theory</td>
<td>5</td>
<td>NUM</td>
<td>239</td>
</tr>
<tr>
<td>10-M=VNAN-161-m01</td>
<td>Non-linear Analysis</td>
<td>5</td>
<td>NUM</td>
<td>262</td>
</tr>
<tr>
<td>10-M=VOST-161-m01</td>
<td>Optimal Control</td>
<td>5</td>
<td>NUM</td>
<td>267</td>
</tr>
<tr>
<td>10-M=VPDP-161-m01</td>
<td>Partial Differential Equations of Mathematical Physics</td>
<td>10</td>
<td>NUM</td>
<td>274</td>
</tr>
<tr>
<td>10-M=VPRG-161-m01</td>
<td>Pseudo Riemannian and Riemannian Geometry</td>
<td>10</td>
<td>NUM</td>
<td>307</td>
</tr>
<tr>
<td>10-M=VSYM-161-m01</td>
<td>Networked Systems</td>
<td>5</td>
<td>NUM</td>
<td>398</td>
</tr>
<tr>
<td>10-M=VANP-161-m01</td>
<td>Research in Groups - Non-linear Analysis</td>
<td>10</td>
<td>NUM</td>
<td>57</td>
</tr>
<tr>
<td>10-M=VOPA-161-m01</td>
<td>Research in Groups - Operator Algebras</td>
<td>10</td>
<td>NUM</td>
<td>59</td>
</tr>
<tr>
<td>10-M=VOST-161-m01</td>
<td>Optimal Control</td>
<td>5</td>
<td>NUM</td>
<td>174</td>
</tr>
<tr>
<td>10-M=SIDC-161-m01</td>
<td>Interdisciplinary Seminar</td>
<td>5</td>
<td>NUM</td>
<td>193</td>
</tr>
<tr>
<td>10-M=SNAL-161-m01</td>
<td>Seminar in Algebra</td>
<td>5</td>
<td>NUM</td>
<td>334</td>
</tr>
<tr>
<td>10-M=SGPC-161-m01</td>
<td>Seminar in Applied Differential Geometry</td>
<td>5</td>
<td>NUM</td>
<td>335</td>
</tr>
<tr>
<td>10-M=SFSD-161-m01</td>
<td>Seminar in Dynamical Systems and Control</td>
<td>5</td>
<td>NUM</td>
<td>338</td>
</tr>
<tr>
<td>10-M=SVFA-161-m01</td>
<td>Seminar in Financial and Insurance Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>339</td>
</tr>
<tr>
<td>10-M=SNL-161-m01</td>
<td>Seminar in Complex Analysis</td>
<td>5</td>
<td>NUM</td>
<td>340</td>
</tr>
<tr>
<td>10-M=SVDA-161-m01</td>
<td>Seminar in Non-linear Analysis</td>
<td>5</td>
<td>NUM</td>
<td>343</td>
</tr>
<tr>
<td>10-M=VOST-161-m01</td>
<td>Optimal Control</td>
<td>5</td>
<td>NUM</td>
<td>344</td>
</tr>
<tr>
<td>10-M=SOPT-161-m01</td>
<td>Seminar in Optimization</td>
<td>5</td>
<td>NUM</td>
<td>345</td>
</tr>
<tr>
<td>10-M=SVTT-161-m01</td>
<td>Seminar in Topology</td>
<td>5</td>
<td>NUM</td>
<td>346</td>
</tr>
<tr>
<td>10-M=VAGE-192-m01</td>
<td>Algebraic Geometry</td>
<td>10</td>
<td>NUM</td>
<td>32</td>
</tr>
<tr>
<td>10-M=VAGT-192-m01</td>
<td>Algorithmic Number Theory</td>
<td>10</td>
<td>NUM</td>
<td>38</td>
</tr>
<tr>
<td>10-M=GAAG-192-m01</td>
<td>Research in Groups - Applied Differential Geometry</td>
<td>10</td>
<td>NUM</td>
<td>44</td>
</tr>
<tr>
<td>10-M=GLAG-192-m01</td>
<td>Research in Groups - Lie Theory</td>
<td>10</td>
<td>NUM</td>
<td>52</td>
</tr>
<tr>
<td>10-M=GMAP-192-m01</td>
<td>Research in Groups - Mathematical Physics</td>
<td>10</td>
<td>NUM</td>
<td>56</td>
</tr>
<tr>
<td>10-M=SNMA-192-m01</td>
<td>Seminar in Numerical Mathematics and Applied Analysis</td>
<td>10</td>
<td>NUM</td>
<td>82</td>
</tr>
<tr>
<td>10-M=VCAL-192-m01</td>
<td>Computer Algebra</td>
<td>10</td>
<td>NUM</td>
<td>121</td>
</tr>
<tr>
<td>10-M=VGFT-192-m01</td>
<td>Geometric Complex Analysis</td>
<td>10</td>
<td>NUM</td>
<td>164</td>
</tr>
<tr>
<td>10-M=VKRY-192-m01</td>
<td>Cryptography/Coding Theory</td>
<td>10</td>
<td>NUM</td>
<td>208</td>
</tr>
<tr>
<td>10-M=SAMA-192-m01</td>
<td>Seminar Applied Mathematics</td>
<td>5</td>
<td>NUM</td>
<td>336</td>
</tr>
</tbody>
</table>

Focus Subject Computer Physics (0 or 60 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-EXE5-161-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>5</td>
<td>NUM</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXE6-161-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>6</td>
<td>NUM</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXE7-161-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>7</td>
<td>NUM</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXE8-161-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>8</td>
<td>NUM</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXE6A-161-m01</td>
<td>Current Topics in Experimental Physics</td>
<td>6</td>
<td>NUM</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXP6-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXP6A-161-m01</td>
<td>Current Topics in Physik</td>
<td>6</td>
<td>NUM</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXT5-161-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>5</td>
<td>NUM</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXT6-161-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXT7-161-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>7</td>
<td>NUM</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXT8-161-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>8</td>
<td>NUM</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EXT6A-161-m01</td>
<td>Current Topics of Theoretical Physics</td>
<td>6</td>
<td>NUM</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-ASM-161-m01</td>
<td>Methods of Observational Astronomy</td>
<td>6</td>
<td>NUM</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-ATTP-161-m01</td>
<td>Selected Topics of Theoretical Elementary Particle Physics</td>
<td>6</td>
<td>NUM</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credits</td>
<td>ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-BSV-161-m01</td>
<td>Image and Signal Processing in Physics</td>
<td>6</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-BMT-161-m01</td>
<td>Biophysical Measurement Technology in Medical Science</td>
<td>6</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-BWW-161-m01</td>
<td>Bosonisation and Interactions in One Dimension</td>
<td>6</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-CMS-161-m01</td>
<td>Computational Materials Science (DFT)</td>
<td>8</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-ASP-161-m01</td>
<td>Introduction to Space Physics</td>
<td>6</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-FKS-161-m01</td>
<td>Solid State Spectroscopy</td>
<td>6</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-FPA-161-m01</td>
<td>Visiting Research</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-CSAM-161-m01</td>
<td>Advanced Topics in Astrophysics</td>
<td>6</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-CSFM-161-m01</td>
<td>Advanced Topics in Solid State Physics</td>
<td>6</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-L-GKP-152-m01</td>
<td>General Concepts of Physics</td>
<td>6</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-APL-161-m01</td>
<td>High Energy Astrophysics</td>
<td>6</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-APM-161-m01</td>
<td>Cosmology</td>
<td>6</td>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-BSM-161-m01</td>
<td>Models Beyond the Standard Model of Elementary Particle Physics</td>
<td>6</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-L-M3-152-m01</td>
<td>Modern Physics 3 (Nuclear, Particle and Astrophysics)</td>
<td>6</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-CRP-161-m01</td>
<td>Renormalization Group and Critical Phenomena</td>
<td>6</td>
<td>237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-L-Ti-161-m01</td>
<td>Theoretical Physics 1 for Pre Service Teachers</td>
<td>7</td>
<td>324</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-L-Ti-161-m01</td>
<td>Theoretical Physics 2 for Pre Service Teachers - Exercises</td>
<td>7</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NMA-161-m01</td>
<td>Computational Astrophysics</td>
<td>6</td>
<td>382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-GGD-161-m01</td>
<td>Introduction to Gauge/Gravity Duality</td>
<td>8</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-TFE-161-m01</td>
<td>Experimental Particle Physics</td>
<td>6</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-KFT-161-m01</td>
<td>Conformal Field Theory</td>
<td>6</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-KFT2-161-m01</td>
<td>Conformal Field Theory 2</td>
<td>6</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MAG-161-m01</td>
<td>Magnetism</td>
<td>6</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MAS-161-m01</td>
<td>Multi-wavelength Astronomy</td>
<td>6</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-NOP-161-m01</td>
<td>Nano-Optics</td>
<td>6</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-HNS-161-m01</td>
<td>Optical Properties of Semiconductor Nanostructures</td>
<td>6</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-OHL-161-m01</td>
<td>Organic Semiconductors</td>
<td>6</td>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-PKS-161-m01</td>
<td>Physics of Complex Systems</td>
<td>6</td>
<td>272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-PMM-161-m01</td>
<td>Physics of Advanced Materials</td>
<td>6</td>
<td>288</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-QFT2-161-m01</td>
<td>Quantum Field Theory II</td>
<td>8</td>
<td>289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-QM2-161-m01</td>
<td>Quantum Mechanics II</td>
<td>8</td>
<td>312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-RTT-161-m01</td>
<td>Theory of Relativity</td>
<td>6</td>
<td>313</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-RMFT-161-m01</td>
<td>Renormalization Group Methods in Field Theory</td>
<td>8</td>
<td>322</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-SPi-161-m01</td>
<td>Spintronics</td>
<td>6</td>
<td>323</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-TEP-161-m01</td>
<td>Theoretical Elementary Particle Physics</td>
<td>8</td>
<td>358</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-TFK-161-m01</td>
<td>Theoretical Solid State Physics</td>
<td>8</td>
<td>377</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-TFK2-161-m01</td>
<td>Theoretical Solid State Physics 2</td>
<td>8</td>
<td>378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-MRI-171-m01</td>
<td>Advanced Magnetic Resonance Imaging</td>
<td>6</td>
<td>379</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-EPP-161-m01</td>
<td>Introduction to Plasma Physics</td>
<td>6</td>
<td>389</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-SSC-172-m01</td>
<td>Surface Science</td>
<td>6</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-STRG1-171-m01</td>
<td>String Theory 1</td>
<td>8</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-STRG2-171-m01</td>
<td>String Theory 2</td>
<td>6</td>
<td>366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-AST-161-m01</td>
<td>Theoretical Astrophysics</td>
<td>6</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-AKTF-201-m01</td>
<td>Selected Topics of Theoretical Solid State Physics</td>
<td>6</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-FFK-201-m01</td>
<td>Field Theory in Solid State Physics</td>
<td>8</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subdivided Module Catalogue for the Subject MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-FK2-201-m01</td>
<td>Solid State Physics 2</td>
<td>8</td>
<td>NUM</td>
<td>144</td>
</tr>
<tr>
<td>11-QIC-201-m01</td>
<td>Advanced Theory of Quantum Computing and Quantum Information</td>
<td>6</td>
<td>NUM</td>
<td>160</td>
</tr>
<tr>
<td>11-GRTM-201-m01</td>
<td>Group Theory</td>
<td>6</td>
<td>NUM</td>
<td>178</td>
</tr>
<tr>
<td>11-HPF-201-m01</td>
<td>Semiconductor Physics</td>
<td>6</td>
<td>NUM</td>
<td>180</td>
</tr>
<tr>
<td>11-PTS-201-m01</td>
<td>Phenomenology and Theory of Superconductivity</td>
<td>6</td>
<td>NUM</td>
<td>282</td>
</tr>
<tr>
<td>11-QFT1-201-m01</td>
<td>Quantum Field Theory I</td>
<td>8</td>
<td>NUM</td>
<td>311</td>
</tr>
<tr>
<td>11-QTR-201-m01</td>
<td>Quantum Transport</td>
<td>6</td>
<td>NUM</td>
<td>315</td>
</tr>
<tr>
<td>11-TPSM-201-m01</td>
<td>Particle Physics (Standard Model)</td>
<td>6</td>
<td>NUM</td>
<td>371</td>
</tr>
<tr>
<td>11-TEFK-201-m01</td>
<td>Topological Effects in Solid State Physics</td>
<td>8</td>
<td>NUM</td>
<td>390</td>
</tr>
</tbody>
</table>

Module Area A: Focus Subject-based Didactics (10 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINT-B1-162-m01</td>
<td>Advanced Subject Didactics 1</td>
<td>5</td>
<td>NUM</td>
<td>401</td>
</tr>
<tr>
<td>MINT-B2-162-m01</td>
<td>Advanced Subject Didactics 2</td>
<td>5</td>
<td>NUM</td>
<td>402</td>
</tr>
</tbody>
</table>

Module Area C: International, interdisciplinary research (10 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINT-C1-162-m01</td>
<td>Research in Groups</td>
<td>5</td>
<td>B/NB</td>
<td>326</td>
</tr>
<tr>
<td>MINT-C2-162-m01</td>
<td>Scientific Internship</td>
<td>5</td>
<td>B/NB</td>
<td>149</td>
</tr>
</tbody>
</table>

Module Area D: Subject specific key skills (10 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINT-D1-162-m01</td>
<td>Key Competences for Teaching Professions 1</td>
<td>5</td>
<td>B/NB</td>
<td>301</td>
</tr>
<tr>
<td>MINT-D2-162-m01</td>
<td>Key Competences for Teaching Professions 2</td>
<td>5</td>
<td>B/NB</td>
<td>302</td>
</tr>
</tbody>
</table>

Module Area E: Master Thesis (30 ECTS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINT-MA-162-m01</td>
<td>Master-Thesis</td>
<td>30</td>
<td>NUM</td>
<td>221</td>
</tr>
</tbody>
</table>
Module title

3D User Interfaces

Abbreviation

10-HCI=3DUI-161-m01

Module coordinator

holder of the Chair of Computer Science IX

Module offered by

Institute of Computer Science

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Contents

This module will give students the opportunity to learn about the specificities of 3D User Interfaces (3DUI) development using Virtual, Augmented or Mixed Reality technologies. The module content will be mainly dedicated to learn and practice the skills essential to the design and implementation of high-quality 3D interaction techniques. Design guidelines as well as classical and innovative 3D Interaction techniques will be studied. In addition, the course will address novel research themes such as 3D interaction for large displays and games; and integrating 3DUIs with mobile devices, robotics, and the environment. Students will be assessed through a group practical project (team work), which will consist of a program, a presentation, a technical report (2 ages) and a video. Previous years, the assignment replicated the IEEE 3DUI Contest 2011, where teams of students competed between each other to find the best solution (see results at https://www.youtube.com/watch?v=gYs-pBW7Agc and https://www.youtube.com/watch?v=gYs-pBW7Agc)

Intended learning outcomes

After the course, the students will gain a solid background on the theory and the methods to create your own 3D spatial interfaces. They will have a broad understanding of the particular difficulties of designing and developing spatial interfaces, as well as evaluating them. Students will also learn about traditional and novel 3D input/output devices (e.g. motion tracking system and Head-mounted Display).

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation of project results (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Point Cloud Processing</td>
<td>10-I-3D-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Laser scanning, Kinect and camera models, basic data structures (lists, arrays, oc-trees), calculating normals, k-d trees, registration, features, segmentation, tracking, applications for airborne mapping, applications to mobile mapping.

Intended learning outcomes
Students understand the fundamental principles of all aspects of 3D point cloud processing and are able to communicate with engineers / surveyors / CV people / etc. Students are able to solve problems of modern sensor data processing and have experienced that real application scenarios are challenging in terms of computational requirements, in terms of memory requirements and in terms of implementation issues.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Automation</td>
<td>10-l=AA-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VII
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Advanced topics in automation systems as well as instrumentation and control engineering, for example from the field of sensor data processing, actuators, cooperating systems, mission and trajectory planning.

Intended learning outcomes
The students have an advanced knowledge of selected topics in automation systems. They are able to implement advanced automation systems.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes)
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Advanced Magnetic Resonance Imaging

Abbreviation
11-MRI-171-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon that, through magnetic resonance imaging (MRI), has played a major role in the revolution of medical imaging over the last 30 years. Based on the fundamental principles of nuclear magnetic resonance (resonance principle, relaxation times, chemical shift) this course covers:

1. the NMR signal theory and signal evolution (Bloch equations),
2. the principles of spatial encoding, magnetic resonance imaging (MRI) and corresponding imaging sequences and measurement parameters,
3. the concept of k-space and Fourier imaging, and
4. the physical, methodological and technical possibilities and limits of MRI. As a last point, exemplary applications of MRI of biomedical research, clinical imaging and non-destructive testing are introduced.

Intended learning outcomes
The students have advanced knowledge of the mathematical-theoretical and physical principles of modern imaging magnetic resonance, image generation and processing. They gain a broad overview of the field of modern MRI and its interdisciplinary contexts and applications.

Courses
(V (3) + R (1)
Module taught in: English
In the semester in which the course is offered and in the subsequent semester

Method of assessment
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Contents

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

Intended learning outcomes

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>3</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title

Current Methods in Biology B

Abbreviation

07-MS31B-152-m01

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

7

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

Intended learning outcomes

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>3</td>
<td>English</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Current Topics in Experimental Physics | 11-EXE5-161-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Approval from examination committee required.

Contents
Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Current Topics in Experimental Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE6-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master’s programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE7-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Approval from examination committee required.

Contents

Current topics in Experimental Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Experimental Physics</td>
<td>11-EXE8-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Contents
Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master’s programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + R (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Current Topics in Experimental Physics | 11-EXE6A-161-m01

Module coordinator | Module offered by
chairperson of examination committee | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Approval from examination committee required.

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Master's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physik</td>
<td>11-EXP6-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in experimental or theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physik</td>
<td>11-EXP6A-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
Graduate

Other prerequisites
Approval from examination committee required.

Contents

Current topics in Experimental or Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental or Theoretical Physics of the Master's programme of Nanostructure Technology. They have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT5-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Approval from examination committee required.

Contents

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + R (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Current Topics of Theoretical Physics
Abbreviation | 11-EXT6-161-m01

Module coordinator | chairperson of examination committee
Module offered by | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | 1 semester
Module level | graduate
Other prerequisites | Approval from examination committee required.

Contents
Current topics in theoretical physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT7-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Approval from examination committee required.

Contents
Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes
The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master’s programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT8-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics of Theoretical Physics</td>
<td>11-EXT6A-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in Theoretical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Theoretical Physics of the Master's programme. They have advanced specialist knowledge of a subdiscipline of Theoretical Physics and have mastered the required methods. They are able to apply the acquired methods to current problems of Theoretical Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic Geometry</td>
<td>10-M=VAGE-192-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Affine and projective space, affine and projective varieties, morphisms and rational maps; function fields, divisors and Riemann-Roch theorem for curves; genus, singularities and Plücker formula; dual curve, dual surface; Bezout's theorem; Grassmann and flag varieties; 27 lines in a cubic surface.

Intended learning outcomes

The student is acquainted with fundamental concepts, methods and results in algebraic geometry, is able to classify these results within more general theories and knows about the connections of algebraic geometry with other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester

Allocatable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Algebraic Topology | 10-M=VATP-161-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Homology, homotopy invariance, exact sequences, cohomology, application to the topology of Euclidean spaces.

Intended learning outcomes
The student is acquainted with advanced results in algebraic topology.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra and dynamics of Quantum Systems</td>
<td>10-M=MP2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Modern algebraic methods for dynamics of quantum systems, e.g. operator algebras with applications in algebraic quantum field theory, spectral theory, symmetries and representation theory.

Intended learning outcomes
The student gains insight into modern methods in mathematics, which are applied in quantum physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Algorithms for Geographic Information Systems

Abbreviation

10-I=AGIS-161-m01

Module coordinator

holder of the Chair of Computer Science I

Module offered by

Institute of Computer Science

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Algorithmic foundations of geographic information systems and their application in selected problems of acquisition, processing, analysis and presentation of spatial information. Processes of discrete and continuous optimisation. Applications such as the creation of digital height models, working with GPS trajectories, tasks of spatial planning as well as cartographic generalisation.

Intended learning outcomes

The students are able to formalise algorithmic problems in the field of geographic information systems as well as to select and improve suitable approaches to solving these problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Geometry</td>
<td>10-I=AG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In many areas of computer science -- for example robotics, computer graphics, virtual reality and geographic information systems -- it is necessary to store, analyse, create or manipulate spatial data. This class is about the algorithmic aspects of these tasks: We will acquire techniques that are needed to plan and analyse geometric algorithms and data structures. Every technique will be illustrated with a problem in the practical areas listed above.

Intended learning outcomes

The students are able to decide which algorithms or data structures are suitable for the solution of a given geometric problem. The students are able to analyse new problems and to come up with their own efficient solutions based on the concepts and techniques acquired in the lecture.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject

MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic Graph Theory</td>
<td>10-I-AGT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes

The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English credible for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic Number Theory</td>
<td>10-M=VAZT-192-m01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Module offered by</td>
</tr>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>10</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
</tr>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Analysis and Geometry of Classical Systems</td>
<td>10-M=MP1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Modern analytic methods (such as partial differential equations) and geometric methods (such as differential geometry) for the description of classical physics. Examples include movements of deformable bodies as reaction to outer load (deformation of elastic bodies, flow of a fluid, stream of a gas). Additional examples include geometric mechanics and symplectic geometry, classical field theory and classical gauge theory, general relativity theory.

Intended learning outcomes

The student gains insight into modern methods in mathematics, which are applied in classical physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Analysis</td>
<td>10-M=AAAN-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
10 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | -- |

Contents

Intended learning outcomes
The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Differential Geometry</td>
<td>10-M=VADG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module builds on the topics covered in module 10-M=ADGM and discusses selected applications of differential geometry, e.g. at the interface of control theory and mechanics (subriemannian geometry), in the smooth optimisation on manifolds or applications in physics.

Intended learning outcomes

The student is acquainted with selected advanced applications of differential geometry. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation Algorithms</td>
<td>10-I=APA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The task of finding the optimal solution for a given problem is omnipresent in computer science. Unfortunately, there are many problems without an efficient algorithm for an optimal solution. As a result, in practice, methods are used which do not always give the optimal solution but always give good solutions. This lecture will discuss drafting and analysing techniques for algorithms which have a proven approximation quality. With the help of practical optimisation problems, the lecture will introduce students to important drafting techniques such as greedy, local search, scaling as well as methods based on linear programming.

Intended learning outcomes

The students are able to analyse easy approximation methods in terms of their quality. They understand fundamental drafting techniques such as greedy, local search and scaling as well as methods based on linear programming and are able to apply these to new problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Algebra</td>
<td>10-M=GALG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in algebra (e.g. ring theory, commutative algebra, differential algebra, local fields, computer algebra, algebras, division rings, quadratic forms).

Intended learning outcomes

The student gains insight into contemporary research problems in algebra. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Applied Differential Geometry</td>
<td>10-M=GADG-192-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in Applied Differential Geometry.

Intended learning outcomes

The student gains insight into contemporary research problems in Applied Differential Geometry. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 to 120 minutes)

Language of assessment: German or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Research in Groups - Deformation Quantization | 10-M=GDFQ-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | -- |

Contents

Selected modern topics in deformation quantization.

Intended learning outcomes

The student gains insight into contemporary research problems in Deformation Quantization. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Differential Geometry</td>
<td>10-M=GDGE-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in differential geometry.

Intended learning outcomes

The student gains insight into contemporary research problems in Differential Geometry. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Discrete Mathematics</td>
<td>10-M=GDIM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in discrete mathematics.

Intended learning outcomes

The student gains insight into contemporary research problems in discrete mathematics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2) Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes) Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Research in Groups - Dynamical Systems and Control Theory

Abbreviation
10-M=GDSC-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
Selected modern topics in dynamical systems and control theory.

Intended learning outcomes
The student gains insight into contemporary research problems in dynamical systems and control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses
(V (2) + S (2))
Module taught in: German and/or English

Method of assessment
(Talk (60 to 120 minutes))
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Complex Analysis</td>
<td>10-M=GCOA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in complex analysis (e.g. in approximation theory, potential theory, complex dynamics, geometric complex analysis, value distribution theory).

Intended learning outcomes

The student gains insight into contemporary research problems in complex analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

- V (2) + S (2)

 Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- talk (60 to 120 minutes)

 Assessment offered: In the semester in which the course is offered and in the subsequent semester

 Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Geometry and Topology</td>
<td>10-M=GGMT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in geometry and topology.

Intended learning outcomes

The student gains insight into contemporary research problems in geometry and topology. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Control Theory of Quantum Mechanical Systems</td>
<td>10-M=GCQS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in control theory of quantum mechanical systems.

Intended learning outcomes

The student gains insight into contemporary research problems in control theory of quantum mechanical systems. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Research in Groups - Lie Theory

Abbreviation: 10-M=GLIE-192-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: numerical grade

Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
Selected modern topics in Lie Theory.

Intended learning outcomes:
The student gains insight into contemporary research problems in Lie Theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German):
V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
talk (approx. 60 to 120 minutes)
Language of assessment: German or English
Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Measure and Integral</td>
<td>10-M=GMAI-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Aspects of measure and integration theory: sigma algebras and Borel sets, volume and measure, measurable functions and Lebesgue integrals, selected applications, e.g. product measures (with Fubini's theorem and the transformation rule), L^p spaces and absolute continuity, measures on topological spaces.

Intended learning outcomes

The student gains insight into contemporary research problems in measure and integration theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Research in Groups - Mathematics in Context

Abbreviation
10-M=GMCX-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Reflection on mathematics in a cultural context, for example by discussing part of the history of mathematics, given by a historical period, a geographic region or a particular field of mathematics. Other possibilities arise from the connection of mathematics with literature, language, music, art or the media.

Intended learning outcomes
The student realises the cultural dimension of mathematics and its relation to other cultural fields.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Mathematics in the Sciences</td>
<td>10-M=GMSC-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in mathematics in the sciences.

Intended learning outcomes

The student gains insight into contemporary research problems in mathematics in the sciences. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Mathematical Physics</td>
<td>10-M=GMAP-192-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in Mathematical Physics.

Intended learning outcomes

The student gains insight into contemporary research problems in Mathematical Physics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 to 120 minutes)

Language of assessment: German or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Non-linear Analysis</td>
<td>10-M=GNLA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in non-linear analysis.

Intended learning outcomes

The student gains insight into contemporary research problems in Non-linear Analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- talk (60 to 120 minutes)
 - Assessment offered: In the semester in which the course is offered and in the subsequent semester
 - Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Research in Groups - Numerical Mathematics and Applied Analysis

Abbreviation
10-M=GNMA-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Selected topics in numerical mathematics, applied analysis or scientific computing.

Intended learning outcomes
The student gains insight into a contemporary research problems in numerical mathematics or applied analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses
(V (2) + S (2))

Module taught in: German and/or English

Method of assessment
(talk (60 to 120 minutes))

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Operator Algebras</td>
<td>10-M=GOPA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in operator algebras.

Intended learning outcomes

The student gains insight into contemporary research problems in Operator algebras. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Research in Groups - Robotics, Optimization and Control Theory

Abbreviation
10-M=GROC-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

ECTS | **Method of grading** | **Only after succ. compl. of module(s)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | **Module level** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Selected modern topics in robotics, optimisation and control theory.

Intended learning outcomes
The student gains insight into contemporary research problems in robotics, optimization and control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- **talk (60 to 120 minutes)**
 - Assessment offered: In the semester in which the course is offered and in the subsequent semester
 - Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Statistics</td>
<td>10-M=GSTA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in statistics.

Intended learning outcomes

The student gains insight into contemporary research problems in statistics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Research in Groups - Number Theory

Abbreviation

10-M=GNTH-161-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

10 numerical grade

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Selected modern topics in number theory (e.g. algebraic number theory, modular forms, diophantine analysis).

Intended learning outcomes

The student gains insight into contemporary research problems in number theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + S (2) Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes) Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups - Time Series Analysis</td>
<td>10-M-GTSA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in time series analysis.

Intended learning outcomes

The student gains insight into contemporary research problems in time series analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Topics in Algebra

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics in Algebra</td>
<td>10-M=AALG-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Contemporary topics in algebra, for example coding theory, elliptic curves, algebraic combinatorics or computer algebra.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in a contemporary field of algebra, and is able to apply these skills to complex questions.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects of Geometry</td>
<td>10-M=V GEO-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In-depth discussion of a special type of geometry taking into account recent developments and interrelations with other mathematical structures, e.g. topological geometries, diagram geometries.

Intended learning outcomes

The student is acquainted with advanced results in a selected field of geometry and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of Observational Astronomy</td>
<td>11-ASM-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Methods of observational astronomy across the electromagnetic spectrum. Evaluation of observational data from radio, optical, X-ray and gamma-ray telescopes.

Intended learning outcomes
Overview of the methods used in observational astronomy in various parts of the electromagnetic spectrum (radio, optical, X-ray and gamma-ray energies). Knowledge of principles and applications of these methods and ability to conduct astronomical observations.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Algorithms</td>
<td>10-I-AKA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in algorithmics and theory.

Intended learning outcomes

The students understand the basic approach of algorithmic computer science. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Embedded Systems</td>
<td>10-I=AKES-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Selected topics in embedded systems.

Intended learning outcomes
The students possess specialised knowledge in the area of embedded systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Selected Topics in HCI

Abbreviation
10-I=AKHCI-182-m01

Module coordinator
holder of the Chair of Computer Science IX

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Selected topics in HCI.

Intended learning outcomes
The students understand the basic approach of human-computer interaction. They are able to understand the solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Computer Science</td>
<td>10-I=AKII-182-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | -- |

Contents
Selected topics in computer science.

Intended learning outcomes
The students are able to understand the solutions to complex problems in computer science and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Intelligent Systems</td>
<td>10-I=AKIS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Selected topics in intelligent systems.

Intended learning outcomes
The students possess an advanced knowledge in the area of intelligent systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): IS.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB)
, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Internet Technologies</td>
<td>10-I=AKIT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in computer communication, for example design aspects of future internet structures: setup and control structures of the internet, multicast protocols, protocols for multimedia communication, optical networks, control mechanisms for redundant and real-time communication networks, p2p networks, ad-hoc networks, or -- new concepts and technologies in mobile communication: digital modulation, signal propagation, channel coding, modern transmission technologies (adaptive modulation and coding, hybrid ARQ, OFDM, MIMO), mac layer, mobileIP, routing in ad-hoc networks, vertical handover, UMTS IP multimedia subsystem, or -- planning and management methods in telecommunication networks: planning methods (forward engineering, reverse engineering), network management paradigms (central and decentral), framework for network management (IETF traffic engineering, ITU-T TMN, OSI management), planning and management methods (IP management mechanisms, network design, measurement, acquisition and evaluation of traffic and performance data, visualisation, result handling, simulation and analysis of networks), management tools, outlook and perspectives, or -- other current topics.

Intended learning outcomes

The students have a knowledge of advanced and current topics in the management and design of modern wired and wireless communication systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): IT.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in IT Security</td>
<td>10-I=AKITS-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in IT security.

Intended learning outcomes

The students possess an advanced knowledge in the area of IT security. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)

- V (2) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
- Language of assessment: English
- creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): SE, IS, LR, HCI, ES.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Selected Topics in Aerospace Engineering

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-I=AKLR-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Computer Science VII

Module offered by

Institute of Computer Science

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Selected topics in aerospace engineering, for example: satellite communication, rocket science, propulsion systems, sensors and actuators for orientation control, perturbation of orbits, interplanetary orbits, rendezvous and docking, design of space ships, design of planetary bases, life support systems, special aspects of operations, payloads, optical systems, RADAR, earth monitoring, thermo management, structure of space ships, special areas of navigation, space environment, environment simulation, verification and test of space faring systems, space astronomy and planet missions, space medicine and biology, material science, quality management, space law, aeroflight topics, avionics for airplanes, air traffic control, areal navigation, pilot interfaces, air traffic control, air traffic management.

Intended learning outcomes

The students possess an advanced knowledge about the respective topic of the selected area and are able to consider these foundations in their future plans of air or spaceborne systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Separate written examination for Master’s students.

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): LR.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Selected Topics of Theoretical Elementary Particle Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics of Theoretical Elementary Particle Physics</td>
<td>11-ATTP-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

ECTS
<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A selection of topics from the following fields will be covered in different years:
1. Advanced techniques for precision calculations of scattering amplitudes
2. Phenomenology of particle accelerators
3. Higgs physics
4. Top quark physics

Intended learning outcomes
The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses
(V (3) + R (1)
Module taught in: German or English

Method of assessment
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Selected Topics of Theoretical Solid State Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics of Theoretical Solid State Physics</td>
<td>11-AKTF-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In this lecture, selected topics of condensed matter theory are addressed. We intend to present new developments to bring the students in touch with actual research topics. Possible subjects are many-body localization and dynamic quantum matter.

Intended learning outcomes

The students learn how to describe condensed matter systems in presence of disorder and interactions from a theoretical point of view. This happens on the basis of analytical and numerical methods. Therefore, we envisage a smooth crossover of these students to the next step of becoming a researcher.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Theory</td>
<td>10-I=AKT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in algorithmics and theory.

Intended learning outcomes

The students understand the basic approach of theoretical computer science. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Software Engineering</td>
<td>10-I=AKSE-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in software engineering.

Intended learning outcomes

The students possess an advanced knowledge about selected aspects of software engineering.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 60 to 120 minutes).
- If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
- Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Selected Topics in Analysis
Abbr.: 10-M=VANA-161-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
In-depth discussion of a specialised topic in analysis taking into account recent developments and interrelations with other mathematical concepts.

Intended learning outcomes:
The student is acquainted with advanced results in a selected topic in analysis, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German):
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title	Selected Topics in Financial Mathematics
Abbreviation | 10-M=VFNM-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in financial mathematics, e.g. conditional expectation and martingales, fundamental theorem of asset pricing in discrete time for finite spaces, American put, Snell envelope, stopping time, optimal stopping, stochastic integration, stochastic differential equations and Ito calculus, Black-Merton-Scholes model.

Intended learning outcomes

The student is acquainted with advanced results in financial mathematics. He/She gains the ability to work on contemporary research questions in financial mathematics and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Mathematical Physics</td>
<td>10-M=VMPH-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in mathematical physics, for example continuum mechanics, fluid dynamics, mathematical material sciences, geometric field theory, advanced topics in quantum theory.

Intended learning outcomes

The student is acquainted with an advanced topic in mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocatable for bonus

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Numerical and Applied Mathematics</td>
<td>10-M=VNAM-192-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In-depth discussion of a specialised topic in numerical or applied mathematics taking into account recent developments and interrelations with other mathematical concepts.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in numerical or applied mathematics, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Selected Topics in Optimization

Abbreviation
10-M=VOPT-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Selected topics in optimization, e.g. inner point methods, semidefinite programs, non-smooth optimization, game theory, optimization with differential equations.

Intended learning outcomes
The student is acquainted with advanced methods in continuous optimization. He gains the ability to work on contemporary research questions in continuous optimization.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Control Theory</td>
<td>10-M=VTRT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected topics in linear and non-linear control theory, e.g. networked linear control systems, controllability of bilinear systems.

Intended learning outcomes

The student gains insight into contemporary research problems in control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected topics in theoretical chemistry</td>
<td>08-TCM1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Theoretische Chemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module introduces students to theoretical chemistry.

Intended learning outcomes

Students are able to describe the mathematical and physical principles underlying the quantum chemical and quantum dynamical approaches of theoretical chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Internship 1</td>
<td>07-MSA1-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Coordinator BioCareers

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Please consult with course advisory service in advance.

Contents

Practical course during stay abroad on a selected topic in biology (duration: 2-3 weeks).

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>P (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

External Internship 2

Abbreviation

07-MSA2-152-m01

Module coordinator

Coordinator BioCareers

Module offered by

Faculty of Biology

ECTS

10

Method of grading

(only after successfully completed module(s))

Other prerequisites

Please consult with course advisory service in advance.

Duration

1 semester

Module level

graduate

Contents

External placement on a biological topic. Students spend 4-6 weeks working on a well-defined scientific project and learn how to present their data.

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language — if other than German)

P (15)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title

Module Internship 3

Abbreviation

07-MSA3-152-m01

Module coordinator

Coordinator BioCareers

Module offered by

Faculty of Biology

ECTS

15

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

Please consult with course advisory service in advance.

Contents

External placement on a biological topic. Students spend 6-9 weeks working on a well-defined scientific lab project and learn how to present their data.

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

(type, number of weekly contact hours, language — if other than German)

P (30)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automata Theory</td>
<td>10-I=AUT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Finite automata, regular languages, star-free languages, natural equivalence relations, predicate logic with words, language acceptance through monoids, syntactic monoid, predicate logical and algebraic characterisation of regular languages and star-free languages, two-way automata.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of finite automata, regular languages, star-free languages, natural equivalence relations, predicate logic with words, language acceptance through monoids, syntactic monoid, predicate logical and algebraic characterisation of regular and star-free languages, two-way automata.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avionics Systems</td>
<td>10-l=AVS-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Computer Science VIII

Module offered by

Institute of Computer Science

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | -- |

Contents

The course *Avionik-Systeme (Avionics Systems)* offers an overview of software, hardware, sensors, actuators and communication of airplanes and satellites: 1. software module and the software structure 2. control 3. ground control, 4. sensors and actuators, 5. sensor fusion, 6. reliability

Intended learning outcomes

At the end of the course, the students should be familiar with typical structures of avionic systems for satellites and airplanes. They should be able to design these. They should be able to program simple controls.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Computability Theory

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-I=BER-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

- **ECTS:** 5
- **Method of grading:** numerical grade
- **Only after succ. compl. of module(s):** --

- **Duration:** 1 semester
- **Module level:** graduate
- **Other prerequisites:** --

Contents

Gödel numbering, computable functions, decidable and countable sets, halting problem, m-reducibility, creative and productive sets, relative computability, Turing reduction, countable degrees, arithmetic hierarchy.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of Gödel numbers, countable functions, decidable and countable sets, halting problem, m-reducibility, creative and productive sets, relative computability, Turing reduction, countable degrees, arithmetic hierarchy.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image and Signal Processing in Physics</td>
<td>11-BSV-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Periodic and aperiodic signals; principles of discreet and exact Fourier transformation; principles of digital signal and image processing; discretisation of signals/sampling theorem (Shannon); homogeneous and linear filters, convolution product; tapering functions and interpolation of images; the Parsival theorem, correlation and energetic observation; statistical signals, image noise, moments, stationary signals; tomography: Hankel and Radon transformation.

Intended learning outcomes

The students have advanced knowledge of digital image and signal processing. They know the physical principles of image processing and are familiar with different methods of signal processing. They are able to explain different methods and to implement them, especially in the field of tomography.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinorganic Chemistry</td>
<td>08-ACM2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Anorganische Aspekte der Biochemie und Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes

Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Courses (type, number of weekly contact hours, language — if other than German)

S (3)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 90 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (15 to 30 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Biochemistry and Structural Biology F1 | 07-MS3BSBF1-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
The module provides an in-depth insight into strategies and methods in protein biochemistry and structural biology. The students will be integrated into research projects on current topics in biochemistry and structural biology.

Intended learning outcomes
The students have knowledge about general strategies and methods of protein biochemistry and structural biology with a focus on membrane proteins. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language — if other than German)
P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry and Structural Biology F2</td>
<td>07-MS3BSBF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students perform their research work within the context of a current research project on biochemistry and structural biology in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes

The students are able to independently perform and organise their scientific laboratory work in the fields of biochemistry and structural biology and to document the results obtained. They are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Bioinformatics
Abbreviation: 07-MS2BI-152-m01

Module coordinator: holder of the Chair of Bioinformatics
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e.g. net generation sequences, proteomics data), analysis of different functional RNAs (e.g. miRNAs, IncRNAs).

Intended learning outcomes:
Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language — if other than German):
V (2) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics</td>
<td>07-BI-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of bioinformatics.

Intended learning outcomes

Students are proficient in methods for the analysis of DNA and protein databases.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics B</td>
<td>07-MBI-B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e.g. net generation sequences, proteomics data), analysis of different functional RNAs (e.g. miRNAs, IncRNAs).

Intended learning outcomes

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Bioinformatics F1
Abbreviation | 07-MS2BIF1-152-m01

Module coordinator | holder of the Chair of Bioinformatics
Module offered by | Faculty of Biology

ECTS | 10
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration | 1 semester
Module level | graduate
Other prerequisites | --

Contents
Detailed insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Students have gained knowledge on experimental setups and methods used in the field of bioinformatics. They are able to design experiments, collect data and interpret them statistically, adhering to the principles of good scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)
P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Bioinformatics F2

Abbreviation
07-MS2BIF2-152-m01

Module coordinator
holder of the Chair of Bioinformatics

Module offered by
Faculty of Biology

ECTS
15

Method of grading
Only after succ. compl. of module(s)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Advanced insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Proficiency in one or more methods in bioinformatics that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses
(type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Methods in Biology</td>
<td>07-GY-BFM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Overview of important traditional and modern methods in biology that are applied at the Chairs at the Biocentre, ranging from microscopy and chromatography to polymerase chain reaction (PCR).

Intended learning outcomes

Knowledge of the fields of research the Faculty of Biology at the University of Würzburg is investigating.

Courses (type, number of weekly contact hours, language — if other than German)

5 (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours) or g) term paper (approx. 10 to 30 pages) or h) project (approx. 10 to 30 pages) or i) portfolio. Students will be informed about the method and length of the assessment prior to the course.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 I Nr. 7
Module title: Bioorganic Chemistry
Abbreviation: 08-SCM3-152-m01

Module coordinator: Lecturer of lecture "Bioorganische Chemie" (Bioorganic Chemistry)
Module offered by: Institute of Organic Chemistry

ECTS: 5
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: Graduate
Other prerequisites: --

Contents:
This module discusses topics at the interface of organic chemistry, biology and medicine. It focuses on molecular interactions and recognition, molecular diversity, active agent development, new aspects of DNA, RNA, proteins and carbohydrates.

Intended learning outcomes:
Students are able to describe molecular interactions and detection mechanisms of bioorganic chemistry. They can explain the molecular diversity of biological systems. They can characterise the fabrication of agents. They can describe modern aspects of DNA, RNA, proteins and carbohydrates.

Courses (type, number of weekly contact hours, language — if other than German):
S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 45 to 90 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (15 to 30 minutes per candidate)
Language of assessment: German and/or English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
<table>
<thead>
<tr>
<th>Module title</th>
<th>Biophysical Measurement Technology in Medical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>11-BMT-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The lecture covers the physical principles of imaging techniques and their application in Biomedicine. The main topics are conventional X-ray technique, computer tomography, imaging techniques of nuclear medicine, ultrasound and MR-tomography. The lecture additionally addresses the systems theory of imaging systems and digital image processing.

Intended learning outcomes
The students know the physical principles of imaging techniques and their application in Biomedicine. They understand the principles of image generation and are able to explain different techniques and interpret simple images.

Courses
V (3) + R (1)

Module taught in: German or English

Method of assessment
(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Biophysics of Plant Membrane Proteins F1

Abbreviation
07-MS3BPF1-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides an in-depth insight into biophysical strategies and methods which are used for the functional characterisation of plant membrane proteins. The students will be integrated into research projects on current topics in molecular plant membrane biology.

Intended learning outcomes

The students have knowledge of general biophysical strategies and methods with a focus on plant membrane proteins, they are able to independently work on related scientific issues and to document the results obtained.

Courses

(type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics of Plant Membrane Proteins F2</td>
<td>07-MS3BPF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students perform their research work within the context of a current research project on the biophysics of plant membrane proteins in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes

The students are able to address scientific issues in biophysics, using appropriate biophysical methods. They are able to independently design the appropriate experiments as well as to analyse, document, present and discuss the results.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject MINT Teacher Education PLUS, Elite Network Bavaria (ENB) 120 ECTS credits

Module title
Biophysics and Biochemistry

Abbreviation
07-MS3BB-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Biochemistry B</td>
<td>07-MS3BBB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Molecular Biotechnology</td>
<td>07-MS2BT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biotechnology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Biophysics and Molecular Biotechnology B

Abbreviation

07-MS2BTB-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biotechnology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, electrophoresis, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Biophysics and Molecular Biotechnology F1
Abbreviation: 07-MS2BTF1-152-m01

Module coordinator: holder of the Chair of Biotechnology and Biophysics
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
This practical course provides students with an insight into different biotechnological and biophysical topics and methods. Under expert guidance, students will perform selected experiments on the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells.

Intended learning outcomes
Students will have acquired a knowledge of fundamental biotechnological and biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms. Students will have acquired practical experience performing experiments, using a variety of scientific tools. In the seminar, students will have acquired detailed theoretical knowledge on these experiments and will have delivered a short presentation (15 minutes) on one of the experiments they performed.

Courses (type, number of weekly contact hours, language — if other than German)
P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Molecular Biotechnology F2</td>
<td>07-MS2BTF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biotechnology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This practical course provides students with an insight into different biotechnological and biophysical topics and is close to laboratory research. Under expert guidance, students will perform selected experiments on one of the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells. Performing experiments under expert guidance, students will become acquainted with techniques and instruments. Over the duration of the course, students will then be required to work increasingly independently on current research topics. Work on current research topics will spark the students' interest in topics and will help them select a topic for their Master's thesis.

Intended learning outcomes

Students will become acquainted with modern biophysical methods and their applications in biotechnology. They will be able to independently work on scientific problems, to independently study relevant literature and to develop a quantitative understanding of biophysical mechanisms. In the seminar, students will acquire further theoretical knowledge on experiments and will give short presentations on experiments performed.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Bosonisation and Interactions in One Dimension

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-BWW-161-m01</th>
</tr>
</thead>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents

1. Instability of Fermi systems in one dimension (1D)
2. Abelian bosonisation and Luttinger liquids (spinless fermions, correlation functions, models with spin, renormalization group, and the sine-Gordon model).

The below mentioned topics will be presented in different years:
3. Interacting fermions on a lattice (Hubbard model, t/J model, transport properties)
4. Bethe ansatz
5. Spin-1/2 chains
6. Disordered systems
7. Non-abelian bosonisation and the WZW model (Kac-Moody algebras, Sugawara construction, Knizhnik-Zamolodchikov equation, applications of the WZW model)

Intended learning outcomes

The students become familiar with the peculiarities of one-dimensional (1D) electron systems and acquire the theoretical tools to understand phenomena relevant to experiments, including disorder effects and transport in 1D.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemically and bio-inspired Nanotechnology for Material Synthesis</td>
<td>08-FU-NT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Synthesis methods and parameters in sol-gel chemistry as well as characterisation and application of created materials. Basic principles of bio-mineralisation, structure of biomaterials and introduction to bio-inspired materials synthesis.

Intended learning outcomes

The student possesses profound knowledge about sol-gel chemistry and biomineralisation.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endogenous Clocks</td>
<td>07-MS1CB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction into endogenous clocks of unicellular organisms, fungi, plants and animals, with a focus on the neuronal organisation of the clock in the brain of mammals and insects. The biological functions of endogenous clocks and the underlying mechanisms will be discussed on the molecular, cellular and organismic levels. It will be explained how clocks adjust to a 24h day with variable photoperiods. Applied aspects regarding e. g. shift work or jetlag will also be discussed.

Intended learning outcomes

The students learn fundamental principles underlying chronobiology/endogenous clocks and obtain an insight into current research in the field. In the seminar, they practise their presentation skills and the discussion of research findings in English.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Endogenous Clocks B

Abbreviation

07-MECB-152-m01

Module coordinator

holder of the Chair of Neurobiology and Genetics

Module offered by

Faculty of Biology

ECTS

5

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Introduction into endogenous clocks of unicellular organisms, fungi, plants and animals, with a focus on the neuronal organisation of the clock in the brain of mammals and insects. The biological functions of endogenous clocks and the underlying mechanisms will be discussed on the molecular, cellular and organismic levels. It will be explained how clocks adjust to a 24h day with variable photoperiods. Applied aspects regarding e.g. shift work or jetlag will also be discussed.

Intended learning outcomes

The students learn fundamental principles underlying chronobiology/endogenous clocks and obtain an insight into current research in the field.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Compiler Construction

Abbreviation
10-I=CB-161-m01

Module coordinator
holder of the Chair of Computer Science II

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Lexical analysis, syntactic analysis, semantics, compiler generators, code generators, code optimisation.

Intended learning outcomes
The students possess knowledge in the formal description of programming languages and their compilation. They are able to perform transformations between them with the help of finite automata, push-down automata and compiler generators.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Computational Astrophysics
Abbreviation: 11-NMA-161-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:

Intended learning outcomes:
The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses (type, number of weekly contact hours, language — if other than German):
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB)
, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Biology F1</td>
<td>07-MS3COBF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Detailed insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the field of bioinformatics. They are able to design experiments, collect data and interpret them statistically, adhering to the principles of good scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Biology F2</td>
<td>07-MS3COBF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>(not) successfully completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents
Advanced insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Proficiency in one or more methods in bioinformatics that allows students to successfully conduct scientific research (for their Master's thesis). Ability to independently address topics in bioinformatics as well as document and interpret findings, adhering to the principles of good scientific practice.

Courses
(type, number of weekly contact hours, language — if other than German)
P (29) + S (1)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Computational Materials Science (DFT)
Abbreviation: 11-CMS-161-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
1. Density functional theory (DFT)
2. Wannier functions and localized basis functions
3. Numerical evaluation of topological invariants
4. Hartree-Fock and static mean-field theory
5. Many-body methods for solid state physics
6. Anderson impurity model (AIM) and Kondo physics
7. Dynamical mean-field theory (DMFT)
8. DFT + DMFT methods for realistic modeling of solids
9. Strongly correlated electrons

Intended learning outcomes:
Aside from the theoretical discussion of these topics, the students carry out hands-on exercises from the CIP pool. The participants are introduced to the use of DFT software packages such as VASP or Wien2k and to the construction of maximally localised Wannier functions through the projection of DFT results on atom orbitals with the software wannier90. Furthermore, the students learn how to construct many-particle solutions of AIM and observe border cases such as the Kondo regime. Impurity solvers such as exact diagonalisation or continuous-time quantum Monte Carlo are utilised to solve the self consistency equations of dynamic molecular field theory (DMFT). These steps are necessary to reach the peak of the lecture: a DFT-DMFT calculation of a strongly correlated transition metal oxide such as SrVO3.

Courses:
Type, number of weekly contact hours, language — if other than German: V (4) + R (2)
Module taught in: German or English

Method of assessment:
Type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus:
- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title	Abbreviation
Computer Algebra | 10-M=VCAL-192-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fast multiplication of numbers, polynomials and matrices, fast chinese remainder theorem; factorisation of polynomials over finite fields; lattices, lattice basis reduction and LLL-algorithm; factorisation of rational polynomials, symbolic integration of rational functions; exact arithmetic with algebraic numbers; multivariate polynomials, Gröbner basis, Buchberger’s algorithm, algorithms for permutation groups.

Intended learning outcomes

The student knows about the theoretical foundations and the possible applications of several methods in computer algebra.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>10-I-DM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: definition of data mining and knowledge discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e.g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases 2</td>
<td>10-I=DB2-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Data warehouses and data mining; web databases; introduction to Datalog.

Intended learning outcomes
The students have advanced knowledge about relational databases, XML and data mining.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
- written examination (approx. 60 to 120 minutes).
- If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
- Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): SE, IS, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deductive Databases</td>
<td>10-I=DDB-172-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Syntax and semantics of definite and normal logic programs; Model, proof, and fixpoint theory; Connection to relational databases; Evaluation methods for Datalog; Negation and stratification; Structural properties of logic programs: recursion, equivalence, transformation; Outlook on disjunctive logic programs.

Intended learning outcomes
The students have fundamental and practicable knowledge about Datalog (including negation). They are able to compactly implement declarative programs in Datalog and to compare existing programs w.r.t. their equivalence and other properties.

Courses
(V (2) + Ü (2))

Method of assessment
(written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching 4</td>
<td>07-DR4-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 2 weekly contact hours.

Intended learning outcomes

Ability to independently organise courses.

Courses (type, number of weekly contact hours, language — if other than German)

S (3)
Module taught in: German and/or English
Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Successful completion as certified by the lecturer
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Differential Geometry

Abbreviation
10-M=ADGM-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Geometry</td>
<td>10-M=ADGM-161-m01</td>
</tr>
</tbody>
</table>

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Intended learning outcomes
The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geometry.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Mathematics</td>
<td>10-M=VDIM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advanced methods and results in a selected field of discrete mathematics (e.g. coding theory, cryptography, graph theory or combinatorics)

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Introduction to Gauge/Gravity Duality | 11-GGD-161-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy |

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | -- |

Contents

1. Elements of quantum field theory:
 - Quantisation of the free field
 - Interactions
 - Renormalisation Group
 - Gauge Fields
 - Conformal Symmetry
 - Large N expansion
 - Supersymmetry

2. Elements of gravity
 - Manifolds, coordinate covariance and metric
 - Riemann curvature
 - Maximally symmetric spacetimes
 - Black holes

3. Elements of string theory
 - Open and closed strings
 - Strings in background fields
 - Type IIB String Theory
 - D-Branes

4. The AdS/CFT correspondence
 - Statement of the correspondence
 - Near-horizon limit of D3-Branes
 - Field-operator correspondence
 - Tests of the correspondence: Correlation functions
 - Tests of the correspondence: Conformal anomaly
 - Holographic principle

5. Extensions to non-conformal theories
 - Holographic renormalisation group
 - Holographic C-Theorem

6. Applications I: Thermo- and hydrodynamics
 - Quantum field theory at finite temperature
 - Black holes
 - Holographic linear response formalism
 - Transport coefficients: Shear viscosity and conductivities

7. Applications II: Condensed matter physics
 - Finite charge density and Reissner-Nordström black holes
 - Quantum critical behaviour
 - Holographic fermions
 - Holographic superconductors
- Entanglement entropy

8. Applications III: Particle physics
- Gravity dual of confinement
- Gravity dual of chiral symmetry breaking
- Quark-gluon plasma

Intended learning outcomes

The students acquire a thorough understanding of the foundations of gauge/gravity duality and the ability to carry out basic tests. Depending on the pre-existing knowledge and interests of the students, the module addresses a selection of the aforementioned topics. Knowledge of quantum mechanics and classical electrodynamics is a prerequisite for this course. Knowledge of quantum field theory and general relativity is useful, but not a prerequisite.

Courses

| (type, number of weekly contact hours, language — if other than German) |
|-----------------|-----------------|
| V (4) + R (2) | Module taught in: German or English |

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes)
- or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamical Systems</td>
<td>10-M=VDSY-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals of dynamical systems, e.g. stability theory, ergodic theory, Hamiltonian systems.

Intended learning outcomes

The student masters the mathematical methods in the theory of dynamic systems, and is able to analyse their quality.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Introduction into Human-Computer Interaction

Abbreviation

10-I=HCI-161-m01

Module coordinator

holder of the Chair of Computer Science IX

Module offered by

Institute of Computer Science

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Human-Computer Interaction is concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. This course gives an introduction into the principle biological, physiological, and psychological constraints as defined by the human user and relates these constraints to the conceptual and technical solutions of today's computer systems and existing as well as prospective interaction metaphors between humans and computers.

The course covers topics about human perception and cognition, memory and attention, the design of interactive systems, prominent evaluation methods, the principles of computer systems, typical input processing techniques, interface technology, and examples of typical interaction metaphors, from text-based input to graphical desktops to multimodal interfaces. Accompanying lab-work will introduce students to typical tasks involved in this field, i.e., prominent evaluation methods and prototyping of interfaces.

Intended learning outcomes

After the course, the students will have a broad understanding of the underlying principles of human users and computer systems. They will understand the constraints and capabilities of current user interfaces and they will learn about the necessary steps applied in user-centered design and development approaches.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation of project results (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Plasma Physics</td>
<td>11-EPP-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>---</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites

Contents
Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, magnetohydrodynamics, transport equations for energetic particles, properties of magnetic turbulence, propagation of solar particles within the solar wind, particle acceleration via shock waves and via interaction with plasma turbulence, particle acceleration and transport in galaxies and other astrophysical objects, cosmic radiation.

Intended learning outcomes
The students have knowledge of the basic processes of Plasma Astrophysics.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Space Physics</td>
<td>11-ASP-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Overview
2. Dynamics of charged particles in magnetic and electric fields
3. Elements of space physics
4. The sun and heliosphere
5. Acceleration and transport of energetic particles in the heliosphere
6. Instruments to measure energetic particles in extraterrestrial space

Intended learning outcomes

The students acquire basic knowledge of Space Physics, in particular regarding the characterisation of the dynamics of charged particles in space and the heliosphere. They know relevant parameters and theoretical concepts and corresponding measuring methods.

Courses *(type, number of weekly contact hours, language — if other than German)*

V (3) + R (1)
Module taught in: German or English

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Systems</td>
<td>10-I=ES-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Computer Science V

Module offered by

Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Models of embedded systems, implementation methods (ASIC, AISIP, micro controller), verification of embedded systems, implementation planning static, periodic and dynamic, binding problems, hardware synthesis, software synthesis.

Intended learning outcomes

The students are familiar with the technical possibilities for the design of embedded systems and master the most important techniques for the modelling, verification and optimisation of such systems in hardware and software.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Learning</td>
<td>10-I=EL-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Computer Science VI

Module offered by

Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Learning paradigms, learning system types, author systems, learning platforms, standards for learning systems, intelligent tutoring systems, student models, didactics, problem-oriented learning and case-based training systems, adaptive tutoring systems, computer-supported cooperative learning, evaluation of learning systems.

Intended learning outcomes

The students possess a theoretical and practical knowledge about eLearning and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Elemental Organic Chemistry | 08-AC-ELO-152-m01

Module coordinator | Module offered by
| |
lecturer of lecture "Elementorganische Chemie" (Elemental Organic Chemistry) | Institute of Inorganic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module equips students with an advanced knowledge of organometallics. It focuses on their structures and properties, special material classes, reactivity and technical processes.

Intended learning outcomes

Students are able to describe the structure and properties of organometallics in an appropriate manner. They are able to systemise them and characterise their structure and reactivity. In addition, they are able to develop and explain principles for the synthesis of elementary organic compounds.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis and Design of Programs</td>
<td>10-I=PA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Program analysis, model creation in software engineering, program quality, test of programs, process models.

Intended learning outcomes
The students are able to analyse programs, to use testing frameworks and metrics as well as to judge program quality.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
Module title
Experimental Sociobiology

Abbreviation
07-MS1ES-152-m01

Module coordinator
holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The lecture covers the diversity and the development of social behaviour as well as the behavioural physiology and mechanisms of neurobiology that are the basis of the organisation of social groups. A special focus is on current research in the Faculty. With the help of selected publications, the seminar will discuss and explore in more detail the topics covered in the lecture.

Intended learning outcomes
Students understand the value of an integrative approach when looking at complex correlations in behavioural biology. Students are able to recognise and interpret relationships between various aspects of sociobiology. They are able to formulate scientific questions in the context of sociobiology and are able to discuss cutting edge literature in depth.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + S (1)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Experimental Sociobiology B

Abbreviation
07-MESB-152-m01

Module coordinator
holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by
Faculty of Biology

ECTS
7

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The lectures highlight the diversity and the evolution of social behaviour, but also focus on the physiological, neurobiological and behavioural mechanisms underlying the organisation of social groups. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

Intended learning outcomes
Students understand the value of an integrative approach when looking at complex correlations in behavioural biology. Students are able to recognise and interpret relationships between various aspects of sociobiology. They are able to formulate scientific questions in the context of sociobiology and are able to discuss cutting edge literature in depth.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(2) + S (1)</td>
<td>English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes).

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Particle Physics</td>
<td>11-TPE-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Physics with modern particle detectors at the LHC and at the Tevatron. Discovery of the Higgs boson. Search for supersymmetry and other physics beyond the standard model. Determination of the top quark mass and W mass as well as other parameters of the standard model. Introduction to modern methods of analysis and assessment of systematic errors.

Intended learning outcomes

The students are familiar with the principles of modern particle detector physics, especially with currently open questions of Particle Physics, which are examined by using these detectors. They know modern methods of analysis and are able to put results into context and to assess their systematic uncertainties.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Theory in Solid State Physics</td>
<td>11-FFK-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This will usually be a course on quantum many particle physics approached by the perturbative methods using Green's functions.

An outline could be:

1. Single-particle Green's function
2. Review of second quantization
3. Diagrammatic method using many particle Green's functions at temperature $T=0$
4. Diagrammatic method for finite T
5. Landau theory of Fermi liquids
6. Superconductivity
7. One-dimensional systems and bosonization

Intended learning outcomes

Working knowledge of the methods of quantum field theory in a non-relativistic context. Ability to study properties of Fermi liquids (and bosonic systems) beyond the one-particle picture. Acquisition of methods which are essential for the understanding the effects of interactions, including superconductivity and the Kondo effect.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Chemistry</td>
<td>08-AC-FK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Festkörperchemie" (Solid State Chemistry)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module equips students with an advanced knowledge of metals, alloys and saline compounds. It focuses on their structures and properties, special material classes, reactivity and technical processes.

Intended learning outcomes

Students are able to describe the structure and properties of metals, alloys and saline compounds in an appropriate manner. They are able to systemise them and characterise their structure and reactivity.

Courses

(type, number of weekly contact hours, language — if other than German)

| V (2) |

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 62 I Nr. 1
Module title: Solid state chemistry and inorganic materials
Abbreviation: 08-ACM3-161-m01

Module coordinator:
Module offered by: Institute of Inorganic Chemistry

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This module provides an introduction to solid-state chemistry. It focuses on the structure, chemical and physical properties, synthesis methods and selected materials of solids.

Intended learning outcomes:
Students are able to describe the structure and properties of solids. They can explain methods for solid-state synthesis. They can describe important aspects of selected materials regarding the corresponding solids.

Courses (type, number of weekly contact hours, language — if other than German):
S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics 2</td>
<td>11-FK2-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

1. Electrons in a periodic potential - the band structure
 a. Electrical and thermal transport
 b. Bloch theorem
 c. Electrons
2. Semi-classical models of dynamic processes
 a. Electrical transport in partially and completely filled bands
 b. Fermi surfaces; measurement techniques
 c. Electrical transport in external magnetic fields
 d. Boltzmann-equations of transport
3. The dielectric function and ferroelectrics
 a. Macroscopic electrodynamics and microscopic theory
 b. Polarizability of solids, of lattices, of valence electrons and quasi-free electrons; optical phonons, polaritons, plasmons, inter-band transitions, Wannier-Mott excitons
 c. Ferromagnetism
4. Semiconductors
 a. Characteristics
 b. Intrinsic semiconductors
 c. Doped semiconductors
 d. Physics and applications of p-n junctions
 e. Heterostructures
5. Magnetism
 a. Atomic dia- and paramagnetism
 b. Dia- and paramagnetism in metals
 c. Ferromagnetism
6. Superconductivity
 a. Phenomena
 b. Models of superconductivity
 c. Tunnel experiments und applications

Intended learning outcomes

Knowledge of effects, concepts and models in advanced solid state physics. Familiarity with the theoretical principles and with applications of experimental methods.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
<p>| Language of assessment: German and/or English |
| Assessment offered: In the semester in which the course is offered and in the subsequent semester |</p>
<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
Solid State Spectroscopy

Module title: Solid State Spectroscopy
Abbreviation: 11-FKS-161-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents

Intended learning outcomes

The students have specific and advanced knowledge in the field of solid-state spectroscopy. They know different types of spectroscopy and their fields of application. They understand the theoretical principles and the current developments in research.

Courses

Type: V (3) + R (1)
Module taught in: German or English

Method of assessment

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
- If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(Examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research-oriented working in Biology</td>
<td>07-GY-FOP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module will acquaint students with procedures in biological laboratories. In the research-oriented practical course, students may choose from a range of topics offered by the Faculty of Biology. They will complete a scientific lab course.

Intended learning outcomes

Familiarity with fundamental concepts in statistics, e.g. mean value, standard deviation, standard error, creating graphs from raw data, insight into procedures in biological laboratories, deeper familiarity with research methods in a branch of biology, ability to experimentally address scientific problems, ability to design, perform and analyse experiments.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours) or g) term paper (approx. 10 to 30 pages) or h) project (approx. 10 to 30 pages) or i) portfolio.

Students will be informed about the method and length of the assessment prior to the course.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 I Nr. 7
Module title	Visiting Research
Abbreviation | 11-FPA-161-m01

Module coordinator | chairperson of examination committee
Module offered by | Faculty of Physics and Astronomy

ECTS | 10
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration	Module level	Other prerequisites
graduate | Approval from examination committee required.

Contents
Independent work on a current research topic of Experimental and Theoretical Physics. Implementation of scientific experiments including analysis and documentation of the results, especially in the context of research visits to other universities or research institutes.

Intended learning outcomes
The students are able to independently work on a current research area of Experimental or Theoretical Physics, to conduct and analyse scientific experiments and to document the results.

Courses (type, number of weekly contact hours, language — if other than German)
R (o)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project report (10 to 20 pages)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

Module title
Scientific Internship

Abbreviation
MINT-C2-162-m01

Module coordinator
Chair of MIND Center

Module offered by
M!nd-Center

ECTS
5

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed

Duration
1 semester

ggraduate

Other prerequisites

Contents
The students examine international research in an interdisciplinary manner and study current research areas of scientific disciplines and/or subject didactics in order to advance their competencies acquired in the module areas A and B. The module also includes courses offered by external guest researchers. The specific forms of teaching and the university-didactic concept of "exploratory learning" especially promote advanced professional skills and transferable skills for scientific work.

Intended learning outcomes
Research placements at university and non-university research institutions; scientific work; interdisciplinary research

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)

Module taught in: German and/or English

Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)

Language of assessment: German and/or English
creditable for bonus

Allocation of places

Additional information

Referred to in LPO I
(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Research Course for Grammar School Teachers</td>
<td>08-Forsch-LAGY-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the respective research group</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>undergraduate</td>
<td>Depending on their choice of topic, students who are writing their Hausarbeit (thesis) pursuant to Section 29 LPO I (examination regulations for teaching-degree programmes) in the vertieft studiertes Fach (subject studied with a focus on the scientific discipline) Chemie (Chemistry) are highly recommended to complete module 08-Forsch-LAGY directly before completing module 08-Ch-HA-GY.</td>
</tr>
</tbody>
</table>

Contents

The module enables the processing of a defined problem within a specified period by applying the scientific methods learned in the course of study.

Intended learning outcomes

The student has the ability to deal with a defined problem/issue using scientific methods and to document the results.

Courses *(type, number of weekly contact hours, language — if other than German)*

| P | 16 |

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)*

Log (approx. 20 pages)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

§ 62 I Nr. 4
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Research Project Organic Chemistry</td>
<td>08-OCM-AKP1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Organic Chemistry and learn some advanced synthesis and analytical methods.

Intended learning outcomes

Students are able to describe and use some of the synthesis and analytical methods typically used by the research group as well as to describe theoretical aspects.

Courses (type, number of weekly contact hours, language — if other than German)

P (20)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 15 to 20 pages) and talk (approx. 15 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry (Advanced Lab)</td>
<td>08-PCM6-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers Physikalische Chemie (Physical Chemistry)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Physical Chemistry and learn some advanced synthesis and analytical methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students have become proficient in the research methods typically used by the relevant physical chemistry research group. They are able to analyse their findings and thus help answer topical questions in physical chemistry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (4)</td>
</tr>
<tr>
<td>Module taught in: German or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>presentation (approx. 20 minutes)</td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramolecular Chemistry (Advanced Lab)</td>
<td>08-SCM4-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Supramolekularen Chemie (Organische Chemie/Physikalische Chemie)"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>08-SCM2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module deepens special synthetic and analytical methods of Supramolecular Chemistry. The students work independently in the laboratory, record their research results and present them in a talk.

Intended learning outcomes

The students are able to carry out demanding synthetic and analytical methods in the field of Supramolecular Chemistry experimentally and to evaluate the results. He/She can present their research results in a talk.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation (approx. 20 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title

Advanced Inorganic Chemistry

Abbreviation

08-ACM1-161-m01

Module coordinator

Managing Director of the Institute of Inorganic Chemistry

Module offered by

Institute of Inorganic Chemistry

ECTS Method of grading

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Duration Module level

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in main group chemistry and transition metal chemistry. It focuses on special compounds of the main group elements (MGEs), bonding situations of MGEs and MGE compounds, the chemistry of transition metals and coordination chemistry.

Intended learning outcomes

Students are able to characterise and explain special compounds of the main group elements. They can describe the chemical properties of transition metals and analyse the structure as well as chemical and physical aspects of coordination compounds.

Courses (type, number of weekly contact hours, language — if other than German)

S (3) + S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Topics in Astrophysics</td>
<td>11-CSAM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
<td></td>
</tr>
</tbody>
</table>

Contents

In-depth study of particular current topics of Astrophysics. The concepts of Astrophysics which will be discussed include: Stellar structure, formation and development, radiation transport, gas dynamics, heating and cooling processes of the interstellar medium, astrochemistry, accretion and jets, galaxy formation or similar topics.

Intended learning outcomes

The students have advanced knowledge of the subdisciplines of Astrophysics and are able to work on current scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>type</th>
<th>number of weekly contact hours</th>
<th>language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3)</td>
<td>R (1)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Advanced Topics in Solid State Physics

Abbreviation: 11-CSFM-161-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Approval from examination committee required.

Contents:
This module will enable the lecturers of Condensed Matter Physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes:
The students advance their knowledge and understanding of an advanced topic of Condensed Matter Physics and acquire insights into the connections between research and teaching.

Courses (type, number of weekly contact hours, language — if other than German):
V (3) + R (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemistry practical course for advanced</td>
<td>08-ACPM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>focus point coordinator "Inorganic Chemistry"</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in inorganic chemistry. The focus will be on working under inert atmospheres, purification methods, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes

Students are able to use advanced synthesis and analytical methods in inorganic chemistry in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses (type, number of weekly contact hours, language — if other than German)

P (24)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

report on practical course (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Advanced Programming

Abbreviation
10-I=APR-161-m01

Module coordinator
holder of the Chair of Computer Science II

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes
Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Advanced Programming

Abbreviation
10-I-APR-172-m01

Module coordinator
holder of the Chair of Computer Science II

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes
Students learn advanced programming paradigms especially suited for space applications. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Theory of Quantum Computing and Quantum Information</td>
<td>11-QIC-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
1. Brief summary of classical information theory
2. Quantum theory seen from the perspective of information theory
3. Composite systems and the Schmidt decomposition
4. Entanglement measures
5. Quantum operations, POVMs, and the theorems of Kraus and Stinespring
6. Quantum gates and quantum computers
7. Elements of the theory of decoherence

Intended learning outcomes
Comprehensive understanding of quantum states and identity matrix beyond the usual textbook interpretation. Knowledge of handling tensor products and dealing with quantum effects in multipartite quantum systems. In-depth understanding of the phenomenon of entanglement. Knowledge of the fundamental mathematical concepts of quantum information theory. Ability to assess the limitations of quantum computing arising from decoherence.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Analysis</td>
<td>10-M=AFAN-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Banach and Hilbert spaces, bounded operators, principles of functional analysis, further contemporary topics in functional analysis and applications to other fields of mathematics.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in a contemporary field of functional analysis, and is able to apply these skills to complex questions.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td></td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English.

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Analysis</td>
<td>10-M=AFTH-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e. g. elliptic functions).

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title: General Concepts of Physics
Abbreviation: 11-L-GKP-152-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate

Contents:
This module focuses on important concepts and applications that constitute interconnections between the sub-disciplines of Physics (and partly other Natural Sciences). When it comes to concepts, these interconnections are structural, they are elements of the physical terminology and belong to the mental structure of the subject. Applied Physics: synergetic interconnections between elements of knowledge of the corresponding subdiscipline and beyond which are necessary for the solution of many important problems. On both levels, the specific contents and the resulting interconnections have the same significance. Structures and concepts: Dimensional analysis, scaling, similitude theory; fields; interactions; symmetries and conserved quantities, wave equation, waves; multipoles among other mode analysis; non-linear dynamics, self-organisation, deterministic chaos; analogies of transport phenomena; Virial theorem as a structural element; microscopic modelling of macroscopic phenomena; scattering and structure determination; aspects of the history of ideas of important concepts and their controversies (e.g. atomism, determinism); Applied and Technical Physics: Physics and information/communication technology; rules and process technology, sensors; medical technology; climate and weather; Biophysics; ecology; energy; celestial mechanics, satellites, GPS; measuring devices; el. light sources; displays

Intended learning outcomes:
Their understanding of important shared concepts enables the students to connect different subdisciplines of Physics, they know the similarities and differences of different usage contexts and therefore have in-depth knowledge of these concepts and are able to mathematically describe and process relevant problems on the level of Theoretical Physics; they understand complex systems of nature and engineering and are able to connect their own physical knowledge in a synergetic manner by analysing the solutions to selected, complex problems, they are able to explain the interactions of knowledge of different disciplines for the solution of complex problems on the basis of selected examples.

Courses (type, number of weekly contact hours, language — if other than German):
V (2) + Ü (1) + S (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
§ 77 I Nr. 1 b)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Complex Analysis</td>
<td>10-M=VGFT-192-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advanced methods and results in geometric complex analysis (e.g. conformal maps, conformal Riemannian metrics, quasiconformal maps, harmonic functions, biholomorphic maps).

Intended learning outcomes

The student is acquainted with fundamental concepts, methods and results in geometric complex analysis, is able classify these results within more general theories and knows about the connections of geometric complex analysis with other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Geometrical Mechanics

Abbreviation
10-M=VGEM-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: symplectic geometry, cotangent bundles and other examples of symplectic manifolds, symmetries and Noether theorem, phase space reduction, normal forms, introduction to Poisson geometry.

Intended learning outcomes
The student is acquainted with selected advanced applications of differential geometry to geometric mechanics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Structures</td>
<td>10-M=AGMS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dean of Studies Mathematik (Mathematics)</th>
<th>Institute of Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>10</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Tits buildings, generalised polygons or related geometric structures, automorphisms, BN pairs in groups, Moufang conditions, classification results.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results concerning a type of geometric structure. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Creditable for bonus

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

Overview Algebra and Geometry (Differential Geometry or Projective Geometry) for Teaching Degree (German Gymnasium)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Algebra and Geometry (Differential Geometry or Projective Geometry) for Teaching Degree (German Gymnasium)</td>
<td>10-M-HAG-Ü-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Algebra (fundamental algebraic structures: groups, rings, fields; Galois theory) and either

Differential Geometry (curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds in Euclidean spaces, in particular hypersurfaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces) or

Projective Geometry (projective and affine planes, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces).

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and geometry (differential geometry or projective geometry). He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

| V (4) + Ü (2) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Oral examination of one candidate each (20 to 40 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Overview Higher Analysis for Teaching Degree (German Gymnasium) (Differential Equations and Complex Analysis, or Advanced Analysis and Complex Analysis)

Abbreviation: 10-M-HHA-Ü-162-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:

Complex Analysis: (complex differentiability and the Cauchy-Riemann differential equation, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstrass factorization theorem and Mittag-Leffler theorem, conformal maps) and either

Advanced Analysis: (advanced analysis in several variables, Lebesgue integration)

or

Ordinary Differential Equations: (existence and uniqueness theorem, continuous dependance of solutions on initial data, systems of linear differential equations, matrix exponential series, higher order linear differential equations).

Intended learning outcomes:
The student is acquainted with fundamental concepts and methods in complex analysis and a further topic in higher analysis (theory of ordinary differential equations or Lebesgue integration). He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses:

V (4) + Ü (2)

Method of assessment:

oral examination of one candidate each (20 to 40 minutes)

Language of assessment: German and/or English

Allocation of places: --

Additional information: --

Referred to in LPO I: (examination regulations for teaching-degree programmes)
Overview Stochastics and Applied Mathematics (Numerical Mathematics 1 or Discrete Mathematics) for Teaching Degree (German Gymnasium)

Abbreviation: 10-M-HSA-Ü-162-m01

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Stochastics and Applied Mathematics (Numerical Mathematics 1 or Discrete Mathematics) for Teaching Degree (German Gymnasium)</td>
<td>10-M-HSA-Ü-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Stochastics (discrete stochastics, in particular stochastic modelling, motivation of conceptualisation and discussion of basic assumptions: basic notions of descriptive statistics, discrete probability spaces, random variables, important discrete distributions, elements of combinatorics, principle of inclusion and exclusion, multistage experiments, conditional probability, stochastic independence, common distributions, expected value and variance, covariance and correlation, waiting time problems, law of the large numbers, central limit theorem, confidence intervals and statistical tests in binomial models, stochastical paradoxes)

and either

Numerical Mathematics 1 (solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration)

or

Discrete Mathematics (techniques from combinatorics, introduction to graph theory including applications, cryptographic methods, error-correcting codes).

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics and a further topic in applied mathematics (numerical mathematics or discrete mathematics). He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

- V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- oral examination of one candidate each (20 to 40 minutes)
- Language of assessment: German and/or English

Allocation of places

-

Additional information

-

Referred to in LPO I

(examination regulations for teaching-degree programmes)

-

Subdivided Module Catalogue for the Subject MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni Prodi Lecture (Master)</td>
<td>10-M=AGPC-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni Prodi Lecture Advanced Topics (Master)</td>
<td>10-M=VGPA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Giovanni Prodi Lecture Modern Topics (Master)

Abbreviation
10-M=VGPM-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni Prodi Lecture Selected Topics (Master)</td>
<td>10-M=VGPS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Giovanni Prodi Seminar (Master)

Abbreviation
10-M=SGPC-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

An modern topic in the research expertise of the current holder of the Giovanni Prodi Chair.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics in Optimization</td>
<td>10-M=AOPT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental methods and techniques in continuous optimization, unrestricted optimization, conditions for optimality, restricted optimization, examples and applications in natural and engineering sciences as well as economics.

Intended learning outcomes

The student knows the fundamental methods of continuous optimization, can judge their strengths and weaknesses and can decide which method is the most suitable in applications.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramolecular Chemistry (Basics)</td>
<td>08-SCM1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Organischen Chemie"</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of supramolecular chemistry. It focuses on interactions between molecules, molecular recognition by receptors, complexes, supramolecular polymers, coordination polymers and networks, liquid crystals, self-assembly in aqueous media, synthetic ion channels and modern applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain interactions between molecules demonstrating a high degree of expertise in the field as well as to describe the formation, structure and polymers of coordination compounds. They are able to describe the self-assembly of polymers in aqueous media as well as to identify the characteristics of synthetic ion channels. They can name modern applications of supramolecular chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics and applications of quantum chemistry</td>
<td>08-TCM2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture “Computational Chemistry”</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module introduces students to computational chemistry.

Intended learning outcomes

Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Theory</td>
<td>11-GRTM-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 3, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups and their Representations</td>
<td>10-M=VGDS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Intended learning outcomes

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Physics</td>
<td>11-HPH-201-M01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lecture deals with the fundamental properties of semiconductors. It begins with an analysis of the crystal structure, leading to methods for describing band structures. These form a basis for discussing optical and electronic properties of monolithic semiconductors. It then turns to examining semiconductor heterostructures, and studies how these can be used to modify and design optical and electrical properties, especially in the case of lowered dimensionality systems. Examples are selected from current research activities.

Intended learning outcomes

To provide the student with a working knowledge semiconductors pertaining to crystal structure, symmetries, and band structures, as well as electrical and optical properties. This establishes a solid basis preparing him for the more targeted specially lectures in the program.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Practical course in hardware

Abbreviation
10-I-HWP-152-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
10

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Practical experiments on hardware aspects, for example in communication technology, robots or the structure of a complete microprocessor.

Intended learning outcomes
The students are able to independently review, prepare and perform experiments with the help of experiment descriptions, to independently search for additional information as well as to document and evaluate experiment results.

Courses (type, number of weekly contact hours, language — if other than German)
P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
portfolio: completion of approx. 3 to 10 project assignments (approx. 250 hours total) and presentation of results (approx. 10 minutes per project)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Energy Astrophysics</td>
<td>11-APL-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents
Radiative processes, interaction of light with matter, particle acceleration processes, pair creation, nuclear processes, pion production, astrophysical shock waves, kinetic equations

Intended learning outcomes
The student gains knowledge in fundamentals of High-Energy Astrophysics, such as particle acceleration and non-thermal radiative processes in astrophysical objects

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Human Biology I - GY</td>
<td>07-LA-HUBIO-1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module will be divided up into three sections covering the following topics:
- human genetics (genetic disease, inheritance),
- human physiology (human sensory physiology, nutrition, maintaining physical health),
- human developmental physiology (sex organs, impregnation, embryonic development, evolutionary history of modern humans).

Intended learning outcomes

- Familiarity with the fundamental principles of human genetics

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 90 minutes)
credible for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 I Nr. 5
Module title	**Abbreviation**
Basic Human Biology II | 07-LA-HUBIO-2-152-m01

Module coordinator
holder of the Chair of Zoology I

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>07-LA-HUBIO-1 or 07-GMR-HUBIO-1</td>
</tr>
</tbody>
</table>

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --

Contents
Experiments to consolidate the students’ knowledge of the topics covered in the lecture: We will examine preparations under the microscope, make drawings, develop genetic diagrams showing the inheritance of diseases, perform experiments on human physiology.

Intended learning outcomes
Students will be proficient in the theory and practice of research in the field of integrative behavioural biology and will have developed skills required for a career in research.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Logs (approx. 30 hours) and 10 to 15 drawings creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 5
§ 41 I Nr. 5
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Statistics 1</td>
<td>10-M=AIST-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Theory of parameter and domain estimates, tests for statistical estimates, distribution models, empirical distribution analysis, comparative analysis, statistical product testing, survey sampling, audit sampling.

Intended learning outcomes

The student masters the fundamental statistical methods for industrial applications.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Industrial Statistics 2

Abbreviation
10-M=VIST-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Linear models, regression analysis, nonlinear regression, experimental design, basics in time series modeling, basics in empirical time series analysis, methods of exponential smoothing, predictions and prediction domains, statistical process monitoring.

Intended learning outcomes
The student masters advanced statistical methods for industrial applications.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection Biology</td>
<td>07-MS2INF-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

Intended learning outcomes

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection Biology B</td>
<td>07-MS2INF-B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

Intended learning outcomes

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Information Retrieval
Abbreviation: 10-I=IR-161-m01

Module coordinator: Dean of Studies Informatik (Computer Science)
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
IR models (e.g., Boolean and vector space model, evaluation), processing of text (tokenising, text properties), data structures (e.g., inverted index), query elements (e.g., query operations, relevance feedback, query languages and paradigms, structured queries), search engine (e.g., architecture, crawling, interfaces, link analysis), methods to support IR (e.g., recommendation systems, text clustering and classification, information extraction).

Intended learning outcomes
The students possess theoretical and practical knowledge in the area of information retrieval and have acquired the technical know-how to create a search engine.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Interactive Computer Graphics

Module title	**Abbreviation**
Interactive Computer Graphics | 10-I-ICG-152-m01

Module coordinator	**Module offered by**
holder of the Chair of Computer Science IX | Institute of Computer Science

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --

Contents

Computer graphics studies methods for digitally synthesising and manipulating visual content. This course specifically concentrates on interactive graphics with an additional focus on 3D graphics as a requirement for many contemporary as well as for novel human-computer interfaces and computer games. The course will cover topics about light and images, lighting models, data representations, mathematical formulations of movements, projection as well as texturing methods. Theoretical aspects of the steps involved in ray-tracing and the raster pipeline will be complemented by algorithmical approaches for interactive image syntheses using computer systems. Accompanying software solutions will utilise modern graphics packages and languages like OpenGL, GLSL and/or DirectX.

Intended learning outcomes

At the end of the course, the students will have a broad understanding of the underlying theoretical models of computer graphics. They will be able to implement a prominent variety of these models, to build their own interactive graphics applications and to choose the right software tool for this task.

Courses (type, number of weekly contact hours, language — if other than German)

type	number of weekly contact hours	language — if other than German
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 60 to 120 minutes).
- If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
- Language of assessment: German and/or English
- creditable for bonus

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module title: Real-Time Interactive Systems
Abbreviation: 10-HCI=RIS-182-m01

Module coordinator: holder of the Chair of Computer Science IX
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This course provides an introduction into the requirements, concepts, and engineering art of highly interactive human-computer systems. Such systems are typically found in perceptual computing, Virtual, Augmented, Mixed Reality, computer games, and cyber-physical systems. Lately, these systems are often termed Real-Time Interactive Systems (RIS) due to their common aspects.

The course covers theoretical models derived from the requirements of the application area as well as common hands-on and novel solutions necessary to tackle and fulfill these requirements. The first part of the course will concentrate on the conceptual principles characterizing real-time interactive systems. Questions answered are: What are the main requirements? How do we handle multiple modalities? How do we define the timeliness of RIS? Why is it important? What do we have to do to assure timeliness? The second part will introduce a conceptual model of the mission-critical aspects of time, latencies, processes, and events necessary to describe a system's behavior. The third part introduces the application state, its requirements of distribution and coherence, and the consequences these requirements have on decoupling and software quality aspects in general. The last part introduces some potential solutions to data redundancy, distribution, synchronization, and interoperability. Along the way, typical and prominent state-of-the-art approaches to reoccurring engineering tasks are discussed. This includes pipeline systems, scene graphs, application graphs (aka field routing), event systems, entity and component models, and others. Novel concepts like actor models and ontologies will be covered as alternative solutions. The theoretical and conceptual discussions will be put into a practical context of today's commercial and research systems, e.g., X3D, instant reality, Unity3d, Unreal Engine 4, and Simulator X.

Intended learning outcomes:
After the course, the students will have a solid understanding of the boundary conditions defined by both, the physiological and psychological characteristics of the human users as well as by the architectures and technological characteristics of today's computer systems. Participants will gain a solid understanding about what they can expect from today's technological solutions. They will be able to choose the appropriate approach and tools to solve a given engineering task in this application area and they will have a well-founded basis enabling them to develop alternative approaches for future real-time interactive systems.

Courses:
V (2) + Ü (2)

Method of assessment:
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Additional information:
Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).
Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Seminar</td>
<td>10-M=SICD-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | -- |

Contents
A modern topic in mathematics with interdisciplinary aspects.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse Problems</td>
<td>10-M=VPR-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Linear operator equations, ill-posed problems, regularisation theory, Tikhonov regularisation, iterative regularisation methods, examples of ill-posed problems.

Intended learning outcomes
The student can judge whether a given problem is well posed or ill posed. He/She can apply regularisation methods and examine them regarding stability and convergence, and is familiar with selected inverse problems.

Courses
(type, number of weekly contact hours, language — if other than German)
V (3) Ü (1)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Nucleus Workshop

Abbreviation
07-MKEWO-152-m01

Module coordinator
degree programme coordinator Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
7

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This course will use a combination of lectures (daily) and practical experiments. Topics to be covered in the lecture (subject to change): - nuclear envelope, nuclear pores and nuclear-cytoplasmic transport. - nuclear envelope, nuclear lamina and their role in chromatin organisation and genetic diseases. - DNA, chromatin and chromosomes. - structure and function of nucleoli. - nuclear-cytoskeletal interactions.

Intended learning outcomes
Students are able to perform practical experiments, applying their theoretical knowledge.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (5) + V (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical-analytical Chemistry</td>
<td>08-PH-KAC-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers specific topics of clinical analytical chemistry.

Intended learning outcomes

Students have developed an advanced knowledge of molecular biology.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Animal Communication | 07-MS1K-152-m01

| holder of the Chair of Behavioral Physiology and Sociobiology |

| Faculty of Biology |

| 10 |

| numerical grade |

| -- |

| graduate |

| -- |

Contents

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

Intended learning outcomes

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Animal Communication B

| Abbreviation | 07-MKB-152-m01 |

Module coordinator

holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by

Faculty of Biology

ECTS

7

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling.

Intended learning outcomes

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Geometry</td>
<td>10-M=VKGE-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Wirtinger calculus, complex structures and complex manifolds, metrics on complex manifolds (e.g. conformal, hermitian, Kähler), differential operators on complex manifolds, classification of complex manifolds.

Intended learning outcomes

The student knows and masters advanced methods and notions in complex differential geometry. He is familiar with the central concepts in this field and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Complexity</td>
<td>10-I-KT-191-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Complexity II</td>
<td>10-I=KT2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchy, complexity of probabilistic algorithms.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchies, complexity of probabilistic algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Conformal Field Theory was developed in the 1980s and found immediate application in string theory and two-dimensional statistical mechanics, where critical exponents and correlation functions for many models (Ising, tricritical Ising, 3-state Potts, etc.) could be exactly calculated. The physical idea is that the principle of scale invariance is elevated from a global to a local invariance, which, for reasons of consistency, amounts to invariance under conformal transformations. This, in turn, yields a rich and fascinating mathematical structure for two-dimensional systems (either two space dimensions or one time and one space dimension). CFT has become relevant to many interesting areas of condensed matter physics, including Abelian and non-Abelian bosonisation, quantised Hall states (where the bulk wave function is described in terms of conformal correlators, and the edge in terms of 1+1 dimensional CFTs), the two-channel Kondo effect, fractional topological insulators, and in particular fault-tolerant topological quantum computers involving non-Abelian anyons (Ising and Fibonacci anyons, for example, owe their names to the fusion rules of the associated conformal fields.) A potential syllabus for the first term of the course is:

0. Introduction (scale and conformal invariance, critical exponents, the transverse Ising model at the self-dual point)
1. Conformal theories in D dimensions (conformal group, conformal algebra in 2D, constraints on correlation functions)
2. Conformal theories in D=2 (primary fields and correlation functions, quantum field theory, canonical quantisation and Noether’s theorem, radial quantisation and Polyakov’s theorem, time ordering and functional integration, the free boson and vertex operators, conformal Ward identities)
3. Central charge and Virasoro algebra (central charge, the Schwarzian derivative, free fermion, (Abelian) bosonisation, mode expansions and Virasoro algebra, cylinder geometry and Casimir effect, in- and out-states, highest weight states, descendant fields and operator product expansions, conformal blocks, duality and bootstrap)

Intended learning outcomes
The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.
of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB) , 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformal Field Theory 2</td>
<td>11-KFT2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

5. Minimal models (critical statistical mechanics models (Ising, tricritical Ising, 3 state Potts model, restricted solid-on-solid models), correlation functions of the critical Ising model, fusion rules and Verlinde algebra, Landau-Ginzburg description of minimal models, modified Coulomb gas method and its application to the Ising model, superconformal models)

6. Free bosons and fermions (mode expansions, twist fields, fermionic zero modes and fermion parity)

7. Free fermions on the torus (operator implementation of the partition function, vacuum energies, representations of Virasoro algebra, modular group and fermionic spin structures, Virasoro characters, critical Ising model on the torus, Jacobi theta function identities)

8. Free bosons on the torus (Lagrangian formulation of the partition function, fermionisation, orbifolds in general, S1/Z2 orbifold, Gaussian and Ashkin-Teller models, duality between original and orbifold theories, marginal operators, the space of c=1 theories)

Intended learning outcomes

The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Arithmetics</td>
<td>10-M=VKAR-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Combination of Galois theory, group theory and the theory of function fields with the aim of application in number theory, e.g. topics around Hilbert's irreducibility theorem, permutation polynomials (e.g. Calitz-Wan-conjecture) and the inverse problem in Galois theory.

Intended learning outcomes
The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in algebra and can apply his/her skills to complex problems.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Cosmology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>11-AKM-161-m01</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
</tr>
<tr>
<td>Module offered by</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Method of grading</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module level</td>
<td>graduate</td>
</tr>
<tr>
<td>Other prerequisites</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, galaxies and galaxy clusters, intergalactic medium, cosmological parameters.

Intended learning outcomes
The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to process scientific questions.

Courses
V (3) + R (1)
Module taught in: German or English

Method of assessment
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment
German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptography and Data Security</td>
<td>10-I-KD-191-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes
The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English
credible for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Cryptography/Coding Theory

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptography/Coding Theory</td>
<td>10-M=VKRY-192-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Error detection and error correction, linear codes, channel coding theorems of Shannon, classical and contemporary codes, bounds, network codes, connections to cryptography.

Intended learning outcomes

The student is acquainted with fundamental concepts, methods and results in coding theory and cryptography, is able to classify these results within more general theories and knows about the connections of coding theory and cryptography with other fields of mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence 1</td>
<td>10-I=KI1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation.

Intended learning outcomes
The students possess theoretical and practical knowledge about artificial intelligence in the area of agents, search and logic and are able to assess possible applications.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence 2</td>
<td>10-I=KI2-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VI

Module offered by
Institute of Computer Science

ECTS | **Method of grading** | **Only after succ. compl. of module(s)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | **Module level** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Planning, probabilistic closure and Bayesian networks, utility theory and decidability problems, learning from observations, knowledge while learning, neural networks and statistical learning methods, reinforcement learning, processing of natural language.

Intended learning outcomes
The students possess theoretical and practical knowledge about artificial intelligence in the area of probabilistic closure, learning and language processing and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Spectroscopy</td>
<td>08-PCM1a-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Laserspektroskopie" (Laser Spectroscopy)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of laser spectroscopy. It discusses absorption and emission spectroscopy.

Intended learning outcomes

Students are able to explain the components and operating principles of lasers as well as the optical principles of laser technology. They are able to describe the principles of absorption and emission spectroscopy.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Evaluation of Distributed Systems</td>
<td>10-I=LVS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Traffic theoretic models, fundamental concepts of theory of probability, transformation techniques, stochastic processes, methods for performance analysis of technical systems, queue-/traffic theory, analysis of Markov, non-Markov and time critical systems, matrix analytical method, practical examples for performance analysis of computer systems and networks: throughput and goodput analysis and other characteristics.

Intended learning outcomes

The students possess the methodic knowledge and the practical skills necessary to model technical systems by means of the theory of probability and mathematical statistics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie Theory</td>
<td>10-M=ALTH-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e.g. in physics and control theory.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux and Perl</td>
<td>07-ML-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to the Linux operating system, writing computer programs using the programming language Perl to answer bioinformatic questions.

Intended learning outcomes

Students are able to use Linux as user and to write simple Perl scripts to answer bioinformatic questions.

Courses (type, number of weekly contact hours, language — if other than German)

5 (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic for informatics</td>
<td>10-I-LOG-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes

The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Logic Programming

Module title
Logic Programming

Abbreviation
10-I=LP-172-m01

Module coordinator
holder of the Chair of Computer Science I

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

Logic-relational programming paradigm, top-down evaluation with SLD(NF) resolution. Introduction to the logic programming language Prolog: recursion, predicate-oriented programming, backtracking, cut, side effects, aggregations. Connection to (deductive) databases. Comparison with Datalog, short introduction of advanced concepts like constraint logic programming.

Intended learning outcomes

The students have fundamental and practicable knowledge of logic programming. They are able to implement compact and declarative programs in Prolog, and to compare this approach to the traditional imperative programming paradigm.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English
creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS.

Referred to in LPO I
(examination regulations for teaching-degree programmes)
Module title: Machine learning for Natural Language Processing

Abbreviation: 10-I=NLP-182-m01

Module coordinator: Dean of Studies Informatik (Computer Science)
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
The lecture conveys advanced knowledge about methods in computational text processing. To this end, it presents state of the art models and techniques in the area of machine learning, as well as their technical background, and their respective applications in Natural Language Processing. As one important building block of almost all modern NLP-models, different techniques for learning representations of words, so called Word Embeddings, are presented. Starting from this we cover, among others, models from the area of Deep Learning, like CNNs, RNNs and Sequence-to-Sequence architectures. The theoretical foundations of these models, like their training with Backpropagation, are also covered in depth. For all models presented in the lecture, we show their application to problems like sentiment analysis, text generation and machine translation in practice.

Intended learning outcomes:
The participants have solid knowledge on problems and methods in the area of computational text processing and are able to identify and apply suitable methods for a specific task.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English
creditable for bonus

Allocation of places:
--

Additional information:
Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, IS, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetism</td>
<td>11-MAG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents
Dia- and paramagnetism, exchange interaction, ferromagnetism, antiferromagnetism, anisotropy, domain structure, nanomagnetism, superparamagnetism, experimental methods to measure magnetic properties, Kondo effect.

Intended learning outcomes
The students know basic terms, concepts and phenomena of magnetism and measuring methods for magnetic experiments; they are skilled in simple model building and in the formulation of mathematical-physical approaches and are able to apply them to tasks in the stated areas; they have competencies in independently working on problems of these areas; they are able to evaluate the accuracy of observations and analyses.

Courses
V (3) + R (1) Module taught in: German or English

Method of assessment
write examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Machine Learning (for User Interfaces)

Abbreviation: 10-HCI=MLUI-161-m01

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning (for User Interfaces)</td>
<td>10-HCI=MLUI-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator: holder of the Chair of Computer Science IX
Module offered by: Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us practical speech recognition, effective web search, self-driving cars, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. It is one of today's prominent paradigms in HCI applicable in all areas where the understanding of user input of high variability, specifically for natural interactions using, e.g., gesture, speech, or eye-gaze, is paramount. Many researchers also think it is the best way to make progress towards human-level AI.

In this course, students will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work. Students not only learn the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, they learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, data-mining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building gesture-based and multimodal interfaces, text and speech understanding (web search, anti-spam), smart robots (perception, control), computer vision, medical informatics, audio, database mining, and other areas.

Intended learning outcomes

After the course, the students will be able to solve machine learning tasks on their own using assistive technologies, e.g., like Octave. In addition, they will be able to derive main principles and apply these in own programs. Students will be able to choose the appropriate approach and tools to solve a given machine learning task in various application area, specifically in HCI.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2</td>
<td>German</td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td>German</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- Presentation of project results (approx. 40 minutes)
- Language of assessment: German and/or English
- Creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Physical Chemistry (Lab)</td>
<td>08-PCM1b-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Laserspektroskopie" (Laser Spectroscopy)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to use modern experimental methods in physical chemistry in the laboratory. After a safety briefing, the students autonomously conduct experiments in the laboratory. Students will be expected to take tests and write lab reports to demonstrate their knowledge.

Intended learning outcomes

Students have developed a high level of proficiency in modern experimental methods in physical chemistry. They are able to analyse the resulting measurements and write a lab report.

Courses (type, number of weekly contact hours, language — if other than German)

P (4)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical performance (2 to 4 random examinations)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject MINT Teacher Education PLUS, Elite Network Bavaria (ENB), 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master-Thesis</td>
<td>MINT-MA-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair of MIND Center</td>
<td>Centre for Teacher Training and Educational Research (ZfL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students carry out independent research to examine a complex question for their Master’s thesis. In doing so, they are allowed to flexibly set their own priorities. All work groups of the subjects involved of both universities are available for the supervision of the Master’s thesis. Therefore, the students can also write their Master’s theses in an inter-university manner. They are integrated into research projects of the corresponding work groups. This enables them to experience how current research is almost always conducted in (inter-)national cooperation.

Intended learning outcomes

Writing and publishing scientific works; applied research; scientific examination of subject-specific, subject-didactic and/or educational-scientific topics

Courses (type, number of weekly contact hours, language — if other than German)

No courses assigned to module

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Master’s thesis (approx. 60 pages)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Science 1 (Basic introduction)</td>
<td>08-FU-MaWi1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students possess comprehensive knowledge about various techniques from different areas of the field of chemical process engineering. For a given objective they are able to weigh the pros and cons of different techniques and can suggest ways of fabrication, processing and treatment of materials. Furthermore they are confident in handling of measurement data as well as statistical and systematic errors and possess extensive knowledge about nomenclature, significance as well as practically determining characteristic material properties.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Science 2 (The Material Groups)</td>
<td>08-FU-MaWi2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students acquire fundamental knowledge about fabrication and properties of the major classes of materials and are able to apply this to scientific problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Course Material Science</td>
<td>08-FMM-MP-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
lecturers specialisation subject Funktionsmaterialien (Functional Materials)
Maximum number of students: 10

Module offered by
Chair of Chemical Technology of Material Synthesis

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | (not) successfully completed | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | -- |

Contents
Ten selected experiments in materials science.

Intended learning outcomes
Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses (type, number of weekly contact hours, language — if other than German)
P (8)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical performance (2 to 4 random examinations)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Imaging</td>
<td>10-M=VMBV-161-m01</td>
</tr>
</tbody>
</table>

Dean of Studies Mathematik (Mathematics)	Institute of Mathematics	
ECTS	Method of grading	Only after succ. compl. of module(s)
5	numerical grade	--

| Duration | Module level | Other prerequisites |
| 1 semester | graduate | -- |

Contents

Mathematical fundamentals of image processing and computer vision such as elementary projective geometry, camera models and camera calibration, rigid and non-rigid registration, reconstruction of 3D objects from camera pictures; algorithms; module might also include an introduction to geometric methods and tomography.

Intended learning outcomes

The student masters the mathematical methods in the theory of image processing and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Mathematical Continuum Mechanics

| Abbreviation | 10-M=VKOM-161-m01 |

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Partial differential equations and/or variational methods in the context of continuum mechanics.

Intended learning outcomes

The student masters the mathematical methods in mathematical continuum mechanics and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1) Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Logic</td>
<td>10-I=ML-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Propositional logic, first-order predicate logic, proof and deduction, Gödel's completeness theorem, Tarski theorem, Gödel's incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of propositional logic, first-order predicate logic, proof and deduction, Gödel's completeness theorem, Tarski theorem, Gödel's incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course medicinal chemistry</td>
<td>08-MCM1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazie Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Selected methods and topics in medicinal chemistry (synthesis, testing, analysis, theory, pharmacokinetics).

Intended learning outcomes
Students have developed a knowledge of medicinal chemistry and are able to apply it to practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)
P (10)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations) as well as report (30 to 50 pages)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Informatics</td>
<td>10-I=MI-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Electronic patient folder, coding of medical data, hospital information systems, operation of computers in inpatient and functional units, medical decision making and assistance systems, statistics and data mining in medical research, case-based training systems in medical training.

Intended learning outcomes

The students possess theoretical and practical knowledge about the application of computer science methods in medicine.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods in Life Sciences</td>
<td>07-MLS1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

Intended learning outcomes

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods in Life Sciences B</td>
<td>07-MLS1B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator</td>
<td>Biologie (Biology)</td>
</tr>
<tr>
<td>Faculty of Biology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

Intended learning outcomes

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Microbiology F1

Abbreviation
07-MS2MF1-152-m01

Module coordinator
holder of the Chair of Microbiology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Under guidance, participants will work on a current research project dealing with microbial pathogens and their interactions with the host. Participants will employ a variety of state-of-the-art methods within the fields of molecular biology, microbiology, cell biology, and immunology as well as data analysis and literature search techniques. Results will be documented and discussed in a seminar paper or an oral presentation.

Intended learning outcomes
Participants will acquire the skills to experimentally address scientific questions in molecular biology and infection biology, properly document experimental results and adhere to the standards of good scientific practice.

Courses
(P (14) + S (1))
Module taught in: German and/or English

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes).

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology F2</td>
<td>07-MS2MF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Participants will independently work on a current research project dealing with microbiology and infection biology. They will apply advanced experimental techniques in microbiology, cell biology and molecular biology according to the project requirements. Progress of the research project will be reported in a seminar paper, a research paper or an oral presentation.

Intended learning outcomes

The participants will acquire the skills to independently perform basic research on microbiology and infection biology according to the standards of good scientific practice and to properly document, interpret and present experimental results.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Microbiology - GY</td>
<td>07-GY-MIBI-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Microbiology

Module offered by
Faculty of Biology

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**	**Duration**	**Module level**	**Other prerequisites**
5 | numerical grade | -- | 1 semester | undergraduate | Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment. |

Contents
During this lab course, students will deepen their knowledge of the topics covered in the module *Grundlagen der Mikrobiologie* (*Basic Microbiology*). Performing practical laboratory work, students will become familiar with molecular biological methods and approaches.

Intended learning outcomes
Students have acquired a fundamental knowledge of methods in both classical microbiology and molecular biology. They are able to use these methods and to discuss current problems in these fields.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 minutes) creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 3
Module title	Models Beyond the Standard Model of Elementary Particle Physics
Abbreviation | 11-BSM-161-m01

Module coordinator | Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by | Faculty of Physics and Astronomy

ECTS | 6
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration | 1 semester
Module level | graduate
Other prerequisites | --

Contents
1. Principles of the standard model of Elementary Particle Physics
2. Tests of the standard model in low energy experiments and at high energy colliders
3. Neutrino physics
4. Higgs physics.

In addition, a selection of topics from the following fields will be covered in different years:
- Phenomenology of experiments at the LHC,
- particle cosmology,
- extended gauge theories,
- models with extended Higgs sectors,
- supersymmetry,
- models with additional space-time dimensions

Intended learning outcomes
The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Modern Aspects of Natural Product Chemistry and Biological Chemistry

Abbreviation
08-OCM-NAT-172-m01

Module coordinator
lecturer of the seminar

Module offered by
Institute of Organic Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module provides practical skills in the fields of recombinant engineering and characterization of macromolecular complexes, current biomolecular techniques, analysis of biochemical processes in vivo, and up-to-date imaging techniques.

Intended learning outcomes
The student has knowledge of molecular biology and is able to apply the contents in practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>German or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 90 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (15 to 30 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

Master's degree programme Chemie (Chemistry): no limitation. Master's degree programme Biochemie (Biochemistry): 20 places. Places will be allocated according to the number of subject semesters; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Modern Physics 3 (Nuclear, Particle and Astrophysics)

Abbreviation
11-L-M3-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)

Duration
2 semester

Module level
Undergraduate

Other prerequisites
--

Contents
Nuclear Physics: experimental methods, detectors, structure of the atomic nucleus, radioactivity, nuclear fission, technical and medical applications, radiation protection. Elementary Particle Physics: Particle accelerator, classification of elementary particles, fundamental interactions. Astrophysics: Stellar development, structure of the Sun, cosmology.

Intended learning outcomes
The students have structured knowledge of the aforementioned terms; they know relevant key concepts and experiments as well as measuring methods and dimensions of central values; they are able to work on simple relevant problems in a quantitative manner.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + Ü (1)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 77 I Nr. 1 b)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Synthetic Methods</td>
<td>08-OCM-SYNT-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses modern stereoselective synthesis methods. It focuses on selected total syntheses, organometallic chemistry and catalysis.

Intended learning outcomes

Students are able to stereoselectively plan complex chemical syntheses and to stereochemically analyse them. They can explain total syntheses. They can describe aspects of organometallic chemistry and catalysis in synthesis chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Theory</td>
<td>10-M=VMTH-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics in module theory: modules and module spaces, canonical decomposition and representations, simple, semi-simple and complex modules, module trees and their defibrations, distortion theorems, reduction theorems.

Intended learning outcomes

The student masters mathematical methods in module theory and is able to analyse their quality.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Molecular Biology for advanced students

Abbreviation
08-BC-MOLMC-161-m01

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module covers specific topics of molecular physiology and functional biochemistry in lectures and exercises.

Intended learning outcomes
After attending the module events, students have solid knowledge in molecular biology.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology laboratory course</td>
<td>08-BC-MOLP-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes

The student masters theoretical and experimental methods and aspects of drug design.

Courses (type, number of weekly contact hours, language — if other than German)

P (5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 90 minutes) or b) log (10 to 20 pages) or c) oral examination of one candidate each (20 to 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 15 to 20 minutes per candidate) or e) presentation (20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours)

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places

Biochemie (Biochemistry) 24 places. Selection process Biochemie (Biochemistry), Bachelor's (180 ECTS credits): Should the number of applications exceed the number of available places, places will be allocated according to the following quotas: Quota 1 (two thirds of places): current average grade of successfully completed modules; among applicants with the same average grade, places will be allocated by lot. Quota 2 (one third of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Chemie (Chemistry), Master's and MINT-Lehramt PLUS Master's: 6 places. Selection process: 1. Applications of Master's degree programme Chemie (Chemistry) (120 ECTS credits) will be considered first: Places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available. 2. In case that there are places left after procedure 1 is finished completely, theses places will be distributed among the students in the Master's degree programme MINT-Lehramt PLUS as follows: Places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology</td>
<td>07-MS2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Molecular Biology B
Abbreviation: 07-MS2B-152-m01

Module coordinator: Dean of Studies Biologie (Biology)
Module offered by: Faculty of Biology

ECTS: 7
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes:
Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses (type, number of weekly contact hours, language — if other than German):
V (3)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Materials (Lecture)</td>
<td>08-FU-MoMaV-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemical bonds and molecular interactions, supramolecular chemistry, molecular materials, colloids, nanoparticles, thin films.

Intended learning outcomes

The students gain fundamental knowledge in the relationships of physical, chemical and technological properties of materials and their structure. They understand the significance of various inter- and intramolecular interactions and how they determine the properties of molecular materials. They learn how to familiarize themselves with a scientific topic including a literature search, and how to give a presentation including discussion and feedback.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + S (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

[a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)] as well as talk (approx. 30 minutes), weighted 3:1

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Molecular Plant Physiology F1

Abbreviation

07-MS31MPPF1-152-m01

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

Method of grading

Only after succ. compl. of module(s)

10

numerical grade

--

Duration

Module level

Other prerequisites

1 semester

graduate

--

Contents

The module provides an in-depth insight into molecular biological strategies and methods applied in plant physiology. The students will be integrated into research projects on current topics in molecular plant physiology.

Intended learning outcomes

The students have knowledge about basic molecular biological strategies and methods focusing on plant physiology. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Molecular Plant Physiology F2

Abbreviation
07-MS31MPPF2-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
15

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The students perform their research work within the context of a current research project in molecular plant physiology in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes
Students are able to work on a scientific question, to design an experimental setup as well as to interpret, document and present their results.

Courses
(type, number of weekly contact hours, language — if other than German)

- P (29) + S (1)

 Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Chemical Plant Ecology F1</td>
<td>07-MS3MCPEF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Under the guidance of an experienced scientist, students will work on a current research topic from the field of molecular and chemical plant ecology. Particular emphasis will be placed on the molecular and chemical bases of the interactions between plants and abiotic and biotic environmental factors (e.g. cuticular barrier properties, plant-insect, and plant-fungus interactions). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of presentations, publications or logs. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in molecular biology in particular but also in chemical analysis.

Intended learning outcomes

The participants are able to perform scientific experiments in the field of molecular and chemical plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of molecular biology/chemical ecology, adhering to the rules of good scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Molecular and Chemical Plant Ecology F2

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Chemical Plant Ecology F2</td>
<td>07-MS3MCPEF2-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

15

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Students will work on projects taken from ongoing research in the supervisors' labs from the field of molecular and chemical plant ecology (e.g. cuticular barrier properties, plant-insect, and plant-fungus interactions). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the analytical, molecular biological and/or microbiological methods applied (e.g. PCR, cloning strategies, chromatography, mass spectrometry) will be critically assessed and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

Intended learning outcomes

The participants are able to independently perform scientific experiments in the field of molecular and chemical plant ecology and to modify them according to the outcome. They are able to independently address, document and interpret questions in the field of molecular/chemical plant ecology, adhering to the rules of good scientific practice. Students are also able to apply specific techniques required to answer scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Molecular structure and spectroscopy | 08-PC-MBS-152-m01

Module coordinator | Module offered by
lecturer of lecture "Molekülbau und Spektroskopie" | Institute of Physical and Theoretical Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
The module provides an introduction to the fundamental basics of molecular structure, spectroscopy and quantum mechanics. Via the particle in a box model and a quantum mechanical view of the hydrogen atom one gets to atomic orbitals, molecular orbitals and a basic understanding of the chemical bond. Molecules are analyzed based on the harmonic oscillator and the rigid rotor models. Spectroscopical focuses are UV/Vis spectroscopy, vibrational spectroscopy and rotational spectroscopy.

Intended learning outcomes
The student is able to explain basic models of quantum mechanics and to apply them on molecules. He/She can outline different spectroscopical methods.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 62 I Nr. 1
Module title	Abbreviation
Multimodal User Interfaces | 10-HCI-MMUI-161-m01

Module coordinator	Module offered by
holder of the Chair of Computer Science IX | Institute of Computer Science |

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | -- |

Contents

The multimodal interaction paradigm simultaneously uses various modalities like speech, gesture, touch, or gaze, to communicate with computers and machines. Basically, multimodal interaction includes the analysis as well as the synthesis of multimodal utterances. This course concentrates on the analysis, i.e., the input processing. Input processing has the goal to derive meaning from signal to provide a computerized description and understanding of the input and to execute the desired interaction. In multimodal systems, this process is interleaved between various modalities and multiple interdependencies exist between simultaneous utterances necessary to take into account for a successful machine interpretation.

In this course, students will learn about the necessary steps involved in processing unimodal as well as multimodal input. The course will highlight typical stages in multimodal processing. Using speech processing as a primary example, they learn about:

1. A/D conversion
2. Segmentation
3. Syntactical analysis
4. Semantic analysis
5. Pragmatic analysis
6. Discourse analysis

A specific emphasize will be on stages like morphology and semantic analysis. Typical aspects of multimodal interdependencies, i.e., temporal and semantic interrelations are highlighted and consequences for an algorithmic processing are derived. Prominent multimodal integration (aka multimodal fusion) approaches are described, including transducers, state machines, and unification.

Intended learning outcomes

After the course, the students will be able to build their own multimodal interfaces. They will have a broad understanding of all the necessary steps involved and will know prominent algorithmic solutions for each of them. Students will learn about available tools for reoccurring tasks and their pros and cons.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

presentation of project results (approx. 40 minutes)
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-wavelength Astronomy</td>
<td>11-MAS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Phenomenology of active galactic nuclei and extragalactic jets
2. Jet-emission processes
3. VLBI observations of jets
4. High-energy observations of jets
5. Multimessenger signatures of jets

Intended learning outcomes

The students acquire knowledge of multiwavelength astronomy by studying the observations of active galactic nuclei and their extragalactic jets. They gain insights into a special, not yet solved astrophysical question and practice writing an observational proposal.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Nano-Optics

Abbreviation
11-NOP-161-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The lecture conveys theoretical fundamentals, experimental techniques, and applications of nano-optics starting from the discussion of the focusing of light. Based on this, the fundamentals of modern far-field optical microscopy are discussed. In the following, the near-field optical microscopy is introduced and discussed. As a further basis, quantum emitters are introduced and their light emission in nano-environments is derived. Plasmons in 2D, 1D and 0 dimensions are introduced and discussed in detail. This finally leads to the concept of optical antennas.

Intended learning outcomes
The students have specific and advanced knowledge in the field of nano-optics. They are familiar with the theoretical principles and application areas of nano-optics and with current developments in this field.

Courses
(V (3) + R (1))
Module taught in: German or English

Method of assessment
(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscale Materials</td>
<td>08-PCM3-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
lecturer of the seminar "Nanoskalige Materialien"

Module offered by
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in nanoscale materials. It focuses on the structure, properties, fabrication, modern characterisation methods and application areas of nanoscale materials.

Intended learning outcomes
Students are able to characterise nanoscale materials. They are able to name analytical methods and application areas of nanoscale materials.

Courses
(type, number of weekly contact hours, language — if other than German)
S (2) + Ü (1)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)

Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Neurobiology, Behavioural Physiology and Animal Ecology

Abbreviation
07-MS1-152-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

Intended learning outcomes
Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

Courses
(type, number of weekly contact hours, language — if other than German)
V (3)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Neurobiology, Behavioural Physiology and Animal Ecology B

Abbreviation
07-MS1B-152-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
7

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

Intended learning outcomes
Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses (type, number of weekly contact hours, language — if other than German)
V (3)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology F1</td>
<td>07-MS1NF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A current topic in the field of neurobiology will be investigated. The practical course will be offered in different specialisations: molecular, clinical, cellular, developmental or behavioural neurobiology or in neurogenetics. In addition to a literature search, a variety of neurobiological methods (for example: electrophysiology, immunohistochemistry, molecular biological techniques, clinical and neurogenetic techniques) and different model systems are offered. The experimental results will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

Intended learning outcomes

The participants are able to conduct scientific research within the field of neurobiology. They have acquired the knowledge and skills (e.g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to carry out and document neurobiological experiments according to best practice.

Courses

(type, number of weekly contact hours, language — if other than German)

P (14) + S (1)
Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB)
120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology F2</td>
<td>07-MS1NF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students will independently work on a smaller project within a current line of research at the Chair. Neurobiological, genetic or molecular techniques will be tested and adapted according to the research aim. The progress of the experiments and the current line of research will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

Intended learning outcomes

The participants are able to independently conduct scientific research within the field of neurobiology and to adapt a research plan according to the experimental progress. They have acquired the knowledge and skills (e.g., basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to independently carry out, document and interpret neurobiological experiments according to best practice.

Courses

(type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Neurogenetics of Behaviour | 07-MS1NB-152-m01

Module coordinator | Module offered by
holder of the Chair of Neurobiology and Genetics | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents

To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the-art view on current and important topics of behavioural neurobiology (incl. e.g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

Intended learning outcomes

In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour. In the seminar, students practise presenting and discussing research findings in English.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + S (1)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Neurogenetics of Behaviour B

Abbreviation
07-MNBB-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the-art view on current and important topics of behavioural neurobiology (incl. e.g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

Intended learning outcomes
In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour.

Courses (type, number of weekly contact hours, language — if other than German)
V (3)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Neuromodulation and Neuronal Development | 07-MS1NMND-152-m01

Module coordinator | Module offered by
holder of the Chair of Neurobiology and Genetics | Faculty of Biology

ECTS | Method of grading | Only after succ. compl. of module(s)
10 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | --

Contents
Neuromodulation: cellular and molecular biology of neuromodulators and their receptors, modulation of synaptic transmission and membrane potential, theoretical and functional aspects of neuromodulation, model systems used to study modulation of neuronal circuits. Fundamental principles of molecular developmental neurobiology. Focus is on the establishment of the neuroectoderm, pattern generation and regional specification, neuronal precursors, neuronal growth, differentiation of neurons, axonal pathfinding, neuronal connectivity.

Intended learning outcomes
The students learn fundamental principles underlying neuromodulation and neuronal development and obtain an insight into current research in the field. In the seminar, students practise presenting and discussing research findings in English.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + S (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuromodulation and Neuronal Development B</td>
<td>07-MENMNDB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Neuromodulation: cellular and molecular biology of neuromodulators and their receptors, modulation of synaptic transmission and membrane potential, theoretical and functional aspects of neuromodulation, model systems used to study modulation of neuronal circuits. Fundamental principles of molecular developmental neurobiology. Focus is on the establishment of the neuroectoderm, pattern generation and regional specification, neuronal precursors, neuronal growth, differentiation of neurons, axonal pathfinding, neuronal connectivity.

Intended learning outcomes

The students learn fundamental principles underlying neuromodulation and neuronal development and obtain an insight into current research in the field.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(3)</td>
<td>English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-linear Analysis</td>
<td>10-M=VNAN-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Methods in nonlinear analysis (e.g. topological methods, monotony and variational methods) with applications.

Intended learning outcomes

The student is acquainted with the concepts of non-linear analysis, can compare them and assess their applicability on practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric of Large Systems of Equations</td>
<td>10-M=ANGG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Discretisation of elliptic differential equations, classical iteration methods, preconditioners, multigrid methods.

Intended learning outcomes
The student is acquainted with the most important methods for solving large systems of equations, and knows the most efficient way to solve a given system of equations.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric of Partial Differential Equations</td>
<td>10-M=VNPE-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Numerical Methods and Programming

Abbreviation
08-TCM3-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Programmieren in Theoretischer Chemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module provides an introduction to the fundamentals of programming in theoretical chemistry and discusses its application areas.

Intended learning outcomes
Students are able to explain and use one of the programming languages typically used in theoretical chemistry as well as to name its application areas.

Courses (type, number of weekly contact hours, language — if other than German)
S (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
Module title: Surface Science

Abbreviation: 11-SSC-172-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 6

Method of grading: numerical grade

Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:

Intended learning outcomes:

The students have gained an overview of the diverse aspects of surface physics and especially know the causes and contexts of physical peculiarities of surfaces and interfaces. Additionally, they know the most important experimental techniques and their specific application possibilities in the context of surface physics.

Courses (type, number of weekly contact hours, language — if other than German):

V (3) + R (1)

Module taught in: Englisch

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal Control</td>
<td>10-M=VOST-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics in optimal control of ordinary and partial differential equations, theory of optimal control, conditions for optimality, methods for numerical solution.

Intended learning outcomes

The student is acquainted with advanced methods in optimal control. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Properties of Semiconductor Nanostructures</td>
<td>11-HNS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Semiconductor nanostructures are frequently referred to as "artificial materials". In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored by changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, 0D). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks for quantum communication and quantum computing architectures.

Intended learning outcomes

The students know the theoretical principles and characteristics of semiconductor nanostructures. They have knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices. They are able to apply their knowledge to problems in this field of research.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry 3</td>
<td>08-OC3-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Organic Chemistry</td>
</tr>
<tr>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module focuses on polar rearrangements, olefination reactions, pericyclic reactions, carbenes, nitriles and radicals. It imparts basic knowledge of stereoselective synthesis, assymetric catalysis, organometallic chemistry and retrosynthesis.

Intended learning outcomes

Students are able to formulate olefination reactions. They are able to develop stereoselective syntheses and asymmetric catalyses. Students are able to describe organometallic reactions. They are able to conduct retrosynthetic analyses of molecules.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry 4</td>
<td>08-OC4-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Organic Chemistry II</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses biologically important bonding classes, their reactions and syntheses, working with special hazardous substances, complicated working and synthesis techniques, purification methods and product analysis.

Intended learning outcomes

Students are able to name important heteroaromatics and to formulate their reactions and syntheses. They are able to characterise and categorise dyes. Students are able to describe the structure and selective synthesis of proteins. In addition, they are able to describe the structure of the DNA, carbohydrates, fats, terpenes and steriods.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 62 I Nr. 2
Module title
Organic Functional Materials

| Abbreviation | 08-OCM-FM-161-m01 |

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organische Funktionsmaterialien"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in organic functional materials. It focuses on basic physical effects, organic solids, the application of organic functional materials as well as organic and metal-organic polymer chemistry.

Intended learning outcomes
Students are able to explain the basic physical properties of organic functional materials. They are able to name and characterise organic solids and their applications in modern chemistry. Students are able to outline the fundamental principles of organic and metal-organic polymer chemistry and to name polymers of technological importance.

Courses
(type, number of weekly contact hours, language — if other than German)

S (3)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Organic Semiconductors

Abbreviation
11-OHL-161-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Duration
1 semester

Module level
Graduate

Other prerequisites

Contents
Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applications.

Intended learning outcomes
The students have advanced knowledge of organic semiconductors.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)

Module taught in:
German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or **b)** oral examination of one candidate each (approx. 30 minutes) or **c)** oral examination in groups (groups of 2, approx. 30 minutes per candidate) or **d)** project report (approx. 8 to 10 pages) or **e)** presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered:
In the semester in which the course is offered and in the subsequent semester

Language of assessment:
German and/or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organo- and Biokatalyse"</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses (type, number of weekly contact hours, language — if other than German)

S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 45 to 90 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (15 to 30 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title: Partial Differential Equations of Mathematical Physics

Abbreviation: 10-M=VPDP-161-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
Elliptic, parabolic, and hyperbolic equations; Laplace equation, heat equation and wave equation as standard examples; initial and boundary value problems; well-posed and ill-posed problems; solution methods; extensions and generalizations; Hilbert space methods; Sobolev spaces and Fourier transforms.

Intended learning outcomes:
The student is acquainted with fundamental concepts and solution methods in the theory of partial differential equations, as well as standard examples from mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses:
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment:
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenicity of Microorganisms</td>
<td>07-MS2PA-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

Intended learning outcomes

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenicity of Microorganisms B</td>
<td>07-MS2PA-B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

Intended learning outcomes

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2</td>
<td>English</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Engineering & Benchmarking of Computer Systems</td>
<td>10-I=PEB-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to performance engineering of commercial software systems, performance measurement techniques, benchmarking of commercial software systems, modelling for performance prediction, case studies.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of performance metrics, measurement techniques, multi-factorial variance analysis, data analysis with R, benchmark approaches, modelling with queue networks, modelling methods, resource demand approximation, petri nets.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Ecology</td>
<td>07-MS31POEK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Ecophysiology and Vegetation Ecology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

Intended learning outcomes

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Ecology B</td>
<td>07-MS31POEKB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Ecophysiology and Vegetation Ecology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e.g., plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated.

Intended learning outcomes

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Plant Immunobiology and Pharmaceutical Biology

Module title
Plant Immunobiology and Pharmaceutical Biology

Abbreviation
07-MS31PIP-152-m01

Module coordinator
holder of the Chair of Ecophysiology and Vegetation Ecology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Immunobiology and Pharmaceutical Biology B</td>
<td>07-MS31PIPB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organisic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenomenology and Theory of Superconductivity</td>
<td>11-PTS-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

Acquisition of basic knowledge about superconductivity as a macroscopic quantum phenomenon. Profound understanding of unconventional superconductivity and its interplay with magnetism in the context of current research. Knowledge of BCS mean-field theory, the quantum-field theory methods necessary to extend BCS theory, as well as the Meissner effect and the Higgs mechanism. Basic understanding of unconventional superconductors and their fascinating connection with competing magnetic phases.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Pharmaceutical/Medicinal Chemistry 1

Abbreviation

08-MCM2a-161-m01

Module coordinator

lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry)

Module offered by

Institute of Pharmacy and Food Chemistry

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Chemistry of drugs by field of indication; principles of drug development, strategies for active agent discovery; structure-activity relationships; molecular effect mechanisms; pharmacological principles of the drugs discussed in the module; drug analysis; drug synthesis; biotransformation, pharmacokinetics of individual drugs; history of drug development: discussion of specific examples.

Intended learning outcomes

The students acquire knowledge of pharmaceutic/medical chemistry and the according methods of their characterization.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical/Medicinal Chemistry 2</td>
<td>08-MCM2b-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemistry of drugs by field of indication; principles of drug development, strategies for active agent discovery; structure-activity relationships; molecular effect mechanisms; pharmacological principles of the drugs discussed in the module; drug analysis; drug synthesis; biotransformation, pharmacokinetics of individual drugs; history of drug development: discussion of specific examples.

Intended learning outcomes

The students acquire knowledge of pharmaceutic/medical chemistry and the according methods of their characterization.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Pharmaceutical Biology and Metabolomics F1
Abbreviation | 07-MS3PBMF1-152-m01

Module coordinator | holder of the Chair of Pharmaceutical Biology
Module offered by | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
All organisms are able to reprogram their metabolism in response to various endogenous or exogenous perturbations. Reprogramming of metabolism is often correlated to phenotypic changes e.g. in disease development, physiology or behaviour. At the Chair of Pharmaceutical Biology, we apply metabolomics for gene function- or stress response analysis. Students can choose a topic from the variety of ongoing projects. Depending on the scientific question addressed by the research team at the Chair, the methodological approach involves techniques in the field of metabolomics/bioanalytics and/or molecular biology. In this module, students will be trained to use quantitative metabolite analysis methods (chromatography, mass spectrometry) and apply advanced molecular biology techniques. Depending on the project, different model organisms are studied. Prior knowledge in metabolite analysis or mass spectrometry is not required. Current scientific questions in the life sciences form the basis to impart scientific concepts and to train students in the laboratory. The module involves the experimental design, realisation and critical evaluation of scientific experiments as well as the documentation and presentation of the progress. More information is available on request or can be found at http://www.pbio.biocentrum.uni-wuerzburg.de/.

Intended learning outcomes
Students will be trained in using specific molecular biology methods and/or metabolomics approaches to address scientific questions, in the documentation of experimental procedures and results, and in the interpretation of data.

Courses (type, number of weekly contact hours, language — if other than German)
P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Pharmaceutical Biology and Metabolomics F2

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>07-MS3PBMF2-152-m01</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents
Students will be involved in current research projects in pharmaceutical biology or in collaborative research projects that focus on the regulation of metabolism and analysis of metabolic pathways (e.g. in the context of reactions towards biotic or abiotic stress, functional and phenotypic analysis of mutants, or drug metabolism). Aspects of the scientific question will be independently addressed by the students. Molecular biology methods and/or metabolomic approaches will be optimised for and adapted to the specific problem. Experimental results and progress in the understanding of biological problems will be documented in the form of a log and presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wuerzburg.de/.

Intended learning outcomes
The participants are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach scientific topics in pharmaceutical biology and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. They are able to apply specific techniques required to answer scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)
P (29) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>08-PCM5-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Physikalische Chemie Supramolekularer Strukturen"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module examines the basic interactions between molecules. It discusses the formation and physical-chemical properties of aggregates as well as key applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain the basic interactions between molecules demonstrating a high degree of expertise in the field. They can describe the formation and physical-chemical properties of aggregates. They can name modern applications of supramolecular chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of Complex Systems</td>
<td>11-PKS-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Theory of critical phenomena in thermal equilibrium
2. Introduction into the physics out of equilibrium
3. Entropy production and fluctuation
4. Phase transitions away from equilibrium
5. Universality
6. Spin glasses
7. Theory of neural networks

Intended learning outcomes

The students acquire in-depth knowledge of a wide variety of concepts and methods essential for a thorough understanding of cooperative phenomena in complex many-particle systems. The main focus includes a thorough understanding of the concepts of entropy, entropy production and universality. The students are prepared for research activities in different areas of physics of complex systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Physics of Advanced Materials

| Abbreviation | 11-PMM-161-m01 |

| Module coordinator | Managing Director of the Institute of Applied Physics |

| Module offered by | Faculty of Physics and Astronomy |

| ECTS | 6 |

| Method of grading | numerical grade |

| Only after succ. compl. of module(s) | -- |

| Duration | 1 semester |

| Module level | graduate |

| Other prerequisites | -- |

Contents

General properties of various material groups such as liquids, liquid crystals and polymers; magnetic materials and superconductors; thin films, heterostructures and superlattices. Methods of characterising these material groups; two-dimensional layer materials.

Intended learning outcomes

The students know the properties and characterization methods of some modern materials.

Courses

| type, number of weekly contact hours, language — if other than German |

| V (3) + R (1) |

| Module taught in: | German or English |

Method of assessment

| type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus |

| written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes). |

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

| Language of assessment: | German and/or English |

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Physiological Plant Ecology F1

Abbreviation

07-MS3PPEF1-152-m01

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

10

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

Under the guidance of an experienced scientist, students will work on a current research topic from the field of ecology/ecophysiology. Particular emphasis will be placed on the physiological bases of the interactions between plants and abiotic and biotic environmental factors (e.g. water relations, stress, biogeography). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of a presentation, a publication or a log. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in ecophysiology in particular but also in chemical analysis.

Intended learning outcomes

The participants are able to perform scientific experiments in the field of physiological plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of ecology/ecophysiology, adhering to the rules of good scientific practice.

Courses

P (14) + S (1)

Module taught in: German and/or English

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Physiological Plant Ecology F2
Abbreviation: 07-MS3PPEF2-152-m01

Module coordinator: holder of the Chair of Plant Physiology and Biophysics
Module offered by: Faculty of Biology

ECTS: 15
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Students will work on projects taken from ongoing research in the supervisors' labs in the field of plant ecology and ecophysiology (e.g., plant-insect-, plant-fungus interactions; biogeography; water relations). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the ecophysiological and analytical methods applied (e.g., measurement of transpiration, fluorescence microscopy, chlorophyll-fluorometry) will be critically assessed, and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

Intended learning outcomes:
Students have gained knowledge on experimental setups and methods used in the field of plant ecophysiology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

Courses (type, number of weekly contact hours, language — if other than German):
P (29) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer Chemistry 1 (Lecture and Practical Course)</td>
<td>03-FU-PM1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Functional Materials in Medicine and Dentistry</td>
<td>Faculty of Medicine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basic methods of polymerisation: free radical polymerisations, polyadditions, ionic polymerisations, controlled radical polymerisations; characterisation of polymers and polymer analytics: gel permeation chromatography, endgroup analysis, mass spectrometry, rheology.

Intended learning outcomes
The students acquire fundamentals of polymer chemistry and the related methods for their characterisation.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) assessment and b) Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical assignments (2 to 4 random examinations)

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Polymers II
Abbreviation: 03-FU-PM2-161-m01

Module coordinator: holder of the Chair of Functional Materials in Medicine and Dentistry
Module offered by: Faculty of Medicine

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
Deepend polymer synthesis methods, special polymers (block copolymers, co-polymerization techniques, complex polymer architectures), biodegradable polymers, polypeptoides, natural polymers. We will discuss the application of the respective polymers: e.g. as biomaterials, for electrospinning, for the production of hydrogels and their behavior on surfaces.

Intended learning outcomes:
The student acquire advanced knowledge in polymer manufacturing, analysis and applications. This involves different synthetic routes with which the different molecules can be prepared from different starting materials. Students can estimate if and how fast a polymer degrades under given circumstances. Furthermore, they gain insight into the field of technically used polymers from nature. Each section also points to possible consequences / disadvantages that synthesis of the various polymers may have, thus drawing students' understanding to ethical concerns.

Courses (type, number of weekly contact hours, language — if other than German):
S (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title: Practical course - Current Topics in Computer Science
Abbreviation: 10-I=PRAK-161-m01

Module coordinator: Dean of Studies Informatik (Computer Science)
Module offered by: Institute of Computer Science

ECTS: 10
Method of grading: Only after successfully completed module(s)

Duration: 1 semester
Module level: Graduate
Other prerequisites: --

Contents:
Completion of a practical task.

Intended learning outcomes:
The practical allows participants to work on a problem in computer science in teams.

Courses (type, number of weekly contact hours, language — if other than German):
P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus):
term paper (5 to 15 pages)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS, ES, LR, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course of clinical-analytical Chemistry</td>
<td>08-PH-KACP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers practical topics in clinical chemistry and clinical diagnostics as well as the related analytical methods.

Intended learning outcomes

Students have developed a knowledge of clinical analytical chemistry and are able to apply it to practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)

P (5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical performance (2 to 4 random examinations)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Practical course “Homogeneous catalysis in Inorganic Chemistry”

Abbreviation

08-HKM3AC-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Spezielle Metallorganische Chemie and deren Anwendung in der Homogenkatalyse"</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in homogeneous catalysis. The focus will be on catalyst synthesis and characterisation, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes

Students are able to use advanced synthesis and analytical methods in homogeneous catalysis in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

report on practical course (approx. 10 pages) and talk (approx. 15 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Practical course "Homogeneous catalysis in Organic Chemistry"

Abbreviation
08-HKM3OC-161-m01

Module coordinator
Lecturer of the seminar "Spezielle Metallorganische Chemie and deren Anwendung in der Homogenkatalyse"

Module offered by
Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
This module gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in homogeneous catalysis. The focus will be on catalyst synthesis and characterisation, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes
Students are able to use advanced synthesis and analytical methods in homogeneous catalysis in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses
(type, number of weekly contact hours, language — if other than German)

P (6)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

report on practical course (approx. 10 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Supramolecular Chemistry (Practical Course)

Abbreviation
08-SCM2-161-m01

Module coordinator
lecturer of lecture "Supramolekularen Chemie (Organische Chemie/Physikalische Chemie)"

Module offered by
Faculty of Chemistry and Pharmacy

ECTS
5

Method of grading
(only) successfully completed

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to perform some of the key experiments in supramolecular chemistry. They will perform syntheses of host-guest complexes, dye aggregates and nanoparticles and use advanced analytical methods to characterise them.

Intended learning outcomes
Students are able to perform syntheses of host-guest complexes and use spectroscopic methods to analyse and characterise them. They are able to produce nanoparticles and to characterise them microscopically.

Courses
(type, number of weekly contact hours, language — if other than German)
P (6)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Vortestate/Nachtestate (pre and post-experiment examination talks approx. 15 minutes each, log approx. 5 to 10 pages each) and assessment of practical performance (2 to 4 random examinations)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Presentation of Scientific Data

Abbreviation
07-MPWD-152-m01

Module coordinator
BioCareers

Module offered by
Faculty of Biology

ECTS
5

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Principles for the preparation of scientific manuscripts, citations and the presentation of scientific data. Students will write a scientific mini review and present this in a talk (15 minutes). Content, structure, coherence and the logical chain of arguments will be discussed. Students will write and publish (where possible) a scientific paper or review on a selected topic in a scientific journal. The students' work will be based on original papers as well as on reviews and will follow the instructions of a scientific journal of the students' choice. These instructions can be found on the website of the respective journal under "Instructions to Authors" or similar. Both length of chapters and structure of the article should be based on the style of the journal selected. Attendance of no less than 20 scientific talks (e.g. defences of doctoral theses, presentations of research projects, retreats) including presentations by guest speakers. Students are to obtain proof of attendance from the organisers or speakers.

Intended learning outcomes
The students are familiar with the details of publishing scientific data in written and oral form. They have become familiar with the methodology of scientific publishing in oral or written fashion. In addition, they have enhanced their English reading, speaking and writing skills.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Project Management</td>
<td>10-l=PM-182-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Simultaneous completion of module 10-l=PRJAK is recommended.</td>
</tr>
</tbody>
</table>

Contents

Project goals, project assignment, project success criteria, business plan, environment analysis and stakeholder management, initialisation, definition, planning, execution/control, finishing of projects, reporting, project communication and marketing, project organisation, team building and development, opportunity and risk management; conflict and crisis management, change and claim management; contract and procurement management, quality management, work techniques, methods and tools; leadership and social skills in project management, program management, multiproject management, project portfolio management, PMOs; peculiarities of software projects; agile project management/SCRUM, combination of classic and agile methods.

Intended learning outcomes

The students possess practically relevant knowledge about the topics of production management and/or professional project management. They are familiar with the critical success criteria and are able to initiate, define, plan, control and review projects.

Courses (type, number of weekly contact hours, language — if other than German)

| V (4) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, IS, ES, LR, HCI, GE.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Key Competences for Teaching Professions 1

Abbreviation

MINT-D1-162-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair of MIND Center</td>
<td>M!nd-Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In the elite programme, the participants have the opportunity to improve key competencies which are of specific importance for occupations in the area of education and science. These competencies include: Intercultural competence (conscious approach to cultural differences); legal expertise and organisational competence (legal framework of educational institutions, sensitive approach to organisational problems); media competence (creating multimedia products for education processes, media analysis, evaluation of the effects of media); personal and social competence (personal qualities such as self-confidence, the ability to take criticism, a sense of responsibility and moral concepts); communication competence (especially communication in the educational and science system); ethical evaluation of science (moral standards of science, ethical framework conditions of science, philosophical aspects of STEM subjects)

Intended learning outcomes

Legal expertise and organisational competence; media competence; personal and social competence; personal qualities such as self-confidence, the ability to take criticism, a sense of responsibility and moral concepts; communication competence, ethical evaluation of science

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)
Module taught in: German and/or English
Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)

Language of assessment: German and/or English
 créditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Key Competences for Teaching Professions 2

Abbreviation
MINT-D2-162-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair of MIND Center</td>
<td>M!nd-Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
In the elite programme, the participants have the opportunity to improve key competencies which are of specific importance for occupations in the area of education and science. These competencies include: Intercultural competence (conscious approach to cultural differences); legal expertise and organisational competence (legal framework of educational institutions, sensitive approach to organisational problems); media competence (creating multimedia products for education processes, media analysis, evaluation of the effects of media); personal and social competence (personal qualities such as self-confidence, the ability to take criticism, a sense of responsibility and moral concepts); communication competence (especially communication in the educational and science system); ethical evaluation of science (moral standards of science, ethical framework conditions of science, philosophical aspects of STEM subjects)

Intended learning outcomes
Legal expertise and organisational competence; media competence; personal and social competence; personal qualities such as self-confidence, the ability to take criticism, a sense of responsibility and moral concepts; communication competence, ethical evaluation of science

Courses (type, number of weekly contact hours, language — if other than German)
- V (2) + Ü (1)
 - Module taught in: German and/or English
 - Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)

Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Programing with neural nets

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programing with neural nets</td>
<td>10-I=PNN-182-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Overview over NN, implementation of important NN-architectures like FCN, CNN and LSTMs, practical example for NN-architectures, among others in the area of image and language processing.

Intended learning outcomes

Knowledge about possible applications and limitations of NN, for important architectures (eg. FCN, CNN, LSTM) and how they are implemented in NN-tools like Tensorflow/Keras, ability to program network structures from literature, to prepare data and solve concrete tasks for NN.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): SE, IT, IS, HCI, GE.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project - Current Topics in Computer Science</td>
<td>10-l=PRJAK-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Completion of a project task (in Teams).

Intended learning outcomes
The project allows participants to work on a problem in computer science in teams.

Courses (type, number of weekly contact hours, language — if other than German)
P (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
project report (10 to 15 pages) and presentation of project (15 to 30 minutes)
Each project is offered one time only. The project will not be repeated; there will not be another project with the same topic. Assessment can, therefore, only be offered for the project offered in the respective semester.
Assessment offered: In the semester in which the course is offered
Language of assessment: German and/or English

Allocation of Places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS, ES, LR, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Work</td>
<td>08-FMM-PA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic under the guidance of a supervisor and to describe their findings.

Intended learning outcomes

Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses (type, number of weekly contact hours, language — if other than German)

P (10)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 15 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Project Presentation

Abbreviation
10-I-PV-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Presentation of a project developed by the student (e. g. Bachelor’s thesis, software project) analogous to a presentation for laypersons with a knowledge of computer science at a trade fair. The project, which may also be work-in-progress, is presented with the help of a poster, a short talk and optionally a live demonstration.

Intended learning outcomes
The students are able to present a project they developed and to create the required media.

Courses (type, number of weekly contact hours, language — if other than German)
S (5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Presentation of a project developed by the candidate analogous to a presentation for laypersons with a knowledge of computer science at a trade fair as well as discussion (approx. 10 to 15 minutes total)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo Riemannian and Riemannian Geometry</td>
<td>10-M=VPRG-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Riemannian and pseudo-Riemannian manifolds, Levi-Civita connection and curvature, geodesics and the exponential map, Jacobi fields, comparison theorems in Riemannian geometry, submanifolds, integration, d’Alembert and Laplace operators, causal structure of Lorenz manifolds, Einstein equations and applications in general relativity theory.

Intended learning outcomes
The student is acquainted with advanced topics in differential geometry on Riemannian and pseudo-Riemannian manifolds. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses
(type, number of weekly contact hours, language — if other than German)

- V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Quality Assurance, Good Practice, Biosafety and Biosecurity

Abbreviation
07-MGLN-152-m01

Coordinator
BioCareers
Module offered by
Faculty of Biology

ECTS
5
Method of grading
numerical grade
Only after succ. compl. of module(s)
--

Duration
1 semester
Module level
graduate
Other prerequisites
--

Contents
Political instruments to conserve biodiversity (convention on biodiversity (CBD), German strategy on biodiversity) as well as corporate social responsibility in the private economy, sponsoring and marketing are discussed. These topics are critically analysed with regard to sustainability, credibility and effectiveness. In addition, the students become familiar with strategies to prevent biodiversity loss and actively contribute to these activities. Good practice in the biosciences, quality assurance approaches and quality culture. Structure, idea and fundamental principles of quality management approaches, DIN EN ISO 9001, regulatory documents and framework in the biosciences including biotechnology, biosafety, biosecurity, risk assessment.

Intended learning outcomes
The students know relevant international conventions and German regulations on the conservation of biodiversity. They have become familiar with the regulatory and political framework for the conservation of biodiversity. They are aware of corporate responsibilities in this regard and know how to support cooperative approaches among companies and organisations on environmental protection. The students are familiar with the fundamental principles of “good practice” in research and development, and have understood the fundamental principles of quality management circles. They have developed a distinct sensitivity towards biosafety and biosecurity issues and know how to properly handle biological agents and organisms, including GMOs. In addition, they have developed a sensitivity towards the complex interdependencies in nature and are able to critically discuss socio-ethical issues in the bioscience area. Students possess the knowledge and skills required of a biosafety officer and are qualified for working in CSR or environmental management at major enterprises or mediating between environmental organisations, governments and the private sector.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, the following option will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Quantum Chemistry

Abbreviation
08-TC-152-m01

Module coordinator
Institute of Physical and Theoretical Chemistry

Module offered by
lecturer of lecture "Quantenchemie"

ECTS
3

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites

Contents
This module provides students with deeper insights into advanced topics in quantum chemistry. It focuses on spin, the Pauli principle, Slater determinants, the Hartree-Fock method, correlation energy, configuration interaction and excited states, the Born-Oppenheimer approximation and bonding models of H2+

Intended learning outcomes
Students are able to describe excited states of molecules with the help of key concepts and models.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Dynamics</td>
<td>08-TCM4-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
lecturer of lecture "Quantendynamik"

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Time-dependent Schrödinger equation, propagators, time-dependent perturbation theory, adiabatic theorem, diabatic and adiabatic states, non-adiabatic dynamics, mixed quantum-classical dynamics.

Intended learning outcomes
The students possess knowledge about the time-dependent description of the nuclear and electronic dynamics in molecules. Their insight into the methods and the numerical realizations allow them to carry out applications in the field of theoretical chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Field Theory I</td>
<td>11-QFT1-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

1. Symmetries.
2. Lagrange formalism for fields.
3. Field quantisation.
4. Asymptotic states, scattering theory and S-matrix
5. Gauge principle and interaction.
6. Perturbation theory.
7. Feynman rules.
8. Quantum electrodynamical processes in Born approximation.
9. Radiative corrections (optional)
10. Renormalisation (optional).

Intended learning outcomes

The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Field Theory II</td>
<td>11-QFT2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Generating Functionals
2. Path Integrals
3. Renormalization
4. Renormalization group
5. Gauge theories
6. Spontaneous Symmetry Breaking
7. Effective Field Theory (optional)

Intended learning outcomes

The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve problems of quantum field theory by using the acquired calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + R (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Quantum Mechanics II

Abbreviation
11-QM2-161-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
The contents of this lecture build upon and will be chosen in accordance with the topics of the Bachelor's degree course "Quantum Mechanics I". Topics might include:

1. Historical introduction
2. Single-particle states in a central potential
3. Principles of quantum mechanics
4. Spin and angular momentum
5. Approximations of energy eigenvalues
6. Approximations for time-dependent problems
7. Second quantisation
8. Potential scattering
9. General scattering theory
10. Canonical formalism
11. Charged particles in electromagnetic fields
12. Quantum theory of radiation
13. Quantum entanglement

Intended learning outcomes
The students acquire in-depth knowledge of advanced quantum mechanics. This knowledge is highly relevant to most of the theoretical Master's degree courses in Astrophysics, Particle Physics and Condensed Matter Physics. The completion of this course is highly recommended.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>German</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
<td>German</td>
</tr>
</tbody>
</table>

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Quantum Transport
Abbreviation | 11-QTR-201-m01

Module coordinator | Managing Director of the Institute of Applied Physics
Module offered by | Faculty of Physics and Astronomy

ECTS | 6
Method of grading | Only after succ. compl. of module(s)

Duration | 1 semester
Module level | graduate
Other prerequisites | --

Contents
The lecture addresses the fundamental transport phenomena of electrons in solids where Electron-electron interaction and the wave nature are the determining factors. This includes the diffusive and ballistic transport regime as well as the Coulomb blockade. Observations of electron interference effects, conductance quantization and the quantum Hall effect will be discussed. Thermoelectric properties of electronic system and the phenomenon of superconductivity will be examined as well. Low dimensional electron systems and its quantum mechanical description are the basis of this lecture. Relevant material systems are semiconductor heterostructures as well as topological insulators, topological semimetals, and topological superconductors. The content will be guided by actual research results.

Intended learning outcomes
Working knowledge of basic transport experiments, its analysis and its interpretation which enables the student to discuss results critical.

Courses (type, number of weekly contact hours, language — if other than German)
V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital computer systems</td>
<td>10-I-RAL-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes

The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 I Nr. 1c: Rechnerarchitektur

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Arithmetic</td>
<td>10-I=RAM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Spaces of numerical computation, raster and rounding, definition and implementation of computational arithmetic and interval calculation.

Intended learning outcomes
The students possess knowledge about the spaces of numerical computation, raster and rounding, definition and implementation of computational arithmetic and interval calculation. They master the application of algorithms.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Computer Networks and Information Transmission

Abbreviation
10-I-RIÜ-191-m01

Module coordinator
holder of the Chair of Computer Science III

Module offered by
Institute of Computer Science

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
- Computer networks and the Internet: Structure and Mechanisms of Telecommunication
- Communication Protocols: Basic Principles and the Layer Model
- Computer and Communication Systems: Network Systems, Data Traffic in Distributed Systems and inter-network Communication
- The Internet: Important Protocols and Routing
- Coding Theory: Mechanisms for Error Detection and Error Correction
- Information Theory: Entropy of Data
- Digital Communication Systems: Signal Modulation

Intended learning outcomes
Students command the technical, theoretical as well as practical knowledge to understand the structure of computer networks, the Internet and communication systems for telecommunication.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Networks and Communication Systems</td>
<td>10-I=RK-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students possess an intricate knowledge of the structure of computer networks and communication systems as well as fundamental principles to rate these systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate). Separate written examination for Master’s students.
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): IT, ES, LR.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Control Theory

Abbreviation
10-M=ARTH-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
Introduction to mathematical systems theory: stability, controllability and observability, state feedback and stability, basics in optimal control.

Intended learning outcomes
The student is acquainted with the fundamental notions and methods of control theory. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Theory of Relativity

Abbreviation: 11-RTT-161-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Mathematical Foundations
2. Differential forms
3. Brief Summary of the special relativity
4. Elements of differential geometry
5. Electrodynamics as an example of a relativistic gauge theory
6. Field equations of the fundamental structure of general relativity
7. Stellar equilibrium and other astrophysical applications
8. Introduction to cosmology

Intended learning outcomes

The students become familiar with the principal physical and mathematical concepts of general relativity. The main topics include modern formulation on the basis of differential forms. Furthermore, the similarities between electrodynamics as a gauge theory and general relativity are emphasised. The students learn to apply the theory to simple models of stellar equilibrium and are introduced to basic elements of cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

- **V (3) + R (1)**
 - Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Renormalization Group Methods in Field Theory

Abbreviation
11-RMFT-161-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This course is complementary to the discussion of Wilson's renormalisation group (RG) as covered in the course "Renormalisation Group and Critical Phenomena" (11-CRP). It focuses on the diagrammatic formulation of RG flow equations and its relation to diagrammatic perturbation expansions. This is of particular relevance for interacting fermion systems in the context of functional renormalisation groups. An outline of the course might be:

1. Wilson’s RG
2. Path integrals of interacting fermions
3. Bethe-Salpeter equation
4. RG flow equations for the one-particle and two-particle vertex
5. Comparison of flow equations with diagrammatic resummation schemes (such as the random phase approximation)
6. RG flow equations for spin systems.

Intended learning outcomes
The students become familiar with the modern diagram-based description of many-particle systems. This knowledge serves as a theoretical basis for the examination of phenomena such as superconductivity, charge and spin density waves, and nematic instabilities.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renormalization Group and Critical Phenomena</td>
<td>11-CRP-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Phase transitions
2. Mean field theory
3. The concept of the renormalization group (RG) Phase diagrams and fixed points
4. Perturbation-theoretical renormalization group
5. Low-dimensional systems
6. Conformal symmetry

Intended learning outcomes

The students acquire profound knowledge of the principles of scale invariance and of the renormalisation group (RG) in Statistical Physics. They understand the concept of RG flow with respect to effective field theories in both statistical and quantum field theory.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam Tutorial for the German Staatsexamen</td>
<td>10-I-REP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>-</td>
</tr>
</tbody>
</table>

Contents
Revision of contents of modules covering the subject as well as the subject didactics of computer science.

Intended learning outcomes
The students have refreshed their skills for the solution of the type of problems asked in the written state examination.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
One exercise per area covered in the state examination

Allocation of places
-

Additional information
-

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research in Groups</td>
<td>MINT-C1-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair of MIND Center</td>
<td>M!nd-Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The students examine international research in an interdisciplinary manner and study current research areas of scientific disciplines and/or subject didactics in order to advance their competencies acquired in the module areas A and B. The module also includes courses offered by external guest researchers. The specific forms of teaching and the university-didactic concept of "exploratory learning" especially promote advanced professional skills and transferable skills for scientific work.

Intended learning outcomes

Participation in/implementation of qualitative and quantitative research projects; scientific work; interdisciplinary research

Courses (type, number of weekly contact hours, language — if other than German)

- V (2) + Ü (1)
- Module taught in: German and/or English
- Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)
- Language of assessment: German and/or English
- creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Robotics 1

Abbreviation
10-I=RO1-182-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
History, applications and properties of robots, direct kinematics of manipulators: coordinate systems, rotations, homogenous coordinates, axis coordinates, arm equation. Inverse kinematics: solution properties, end effector configuration, numerical and analytical approaches, examples of different robots for analytical approaches. Workspace analysis and trajectory planning, dynamics of manipulators: Lagrange-Euler model, direct and inverse dynamics. Mobile robots: direct and inverse kinematics, propulsion system, tricycle, Ackermann steering, holonomes and non-holonomic restrictions, kinematic classification of mobile robots, posture kinematic model. Movement control and path planning: roadmap methods, cell decomposition methods, potential field methods. Sensors: position sensors, speed sensors, distance sensors.

Intended learning outcomes
The students master the fundamentals of robot manipulators and vehicles and are, in particular, familiar with their kinematics and dynamics as well as the planning of paths and task execution.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 90 minutes)

Separate written examination for Master’s students.

Language of assessment: English

creditable for bonus

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): IS, ES, LR, HCl, GE.

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Robotics 2

Abbreviation
10-I=RO2-152-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Foundations of dynamic systems, controllability and observability, controller design through pole assignment: feedback and feed-forward, state observer, feedback with state observer, time discrete systems, stochastic systems: foundations of stochastics, random processes, stochastic dynamic systems, Kalman filter: derivation, initialising, application examples, problems of Kalman filters, extended Kalman filter.

Intended learning outcomes
The students master all fundamentals that are necessary to understand Kalman filters and their use in applications of robotics. The students possess a knowledge of advanced controller and observer methods and recognise the connections between the dual pairs controllability - observability as well as controller design and observer design. They also recognise the relationship between the Kalman filter as a state estimator and an observer.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 90 minutes)
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course 1</td>
<td>07-MSL1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Practical course, summer school or workshop on specific topics in biology (duration: 2-3 weeks).

Intended learning outcomes

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language — if other than German)

P (5)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes) Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course 2</td>
<td>07-MSL2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

Intended learning outcomes

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language — if other than German)

P (15)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course 3</td>
<td>07-MSL3-152-m01</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Module offered by</td>
</tr>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
</tr>
<tr>
<td></td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td></td>
<td>Duration</td>
</tr>
<tr>
<td>1 semester</td>
<td>Module level</td>
</tr>
<tr>
<td></td>
<td>graduate</td>
</tr>
<tr>
<td></td>
<td>Other prerequisites</td>
</tr>
<tr>
<td></td>
<td>Please consult with course advisory service in advance.</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>Practical course, summer school or workshop on specific topics in biology (duration: 6-9 weeks).</td>
<td></td>
</tr>
<tr>
<td>Intended learning outcomes</td>
<td></td>
</tr>
<tr>
<td>Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>(type, number of weekly contact hours, language — if other than German)</td>
</tr>
<tr>
<td>P (30)</td>
<td></td>
</tr>
<tr>
<td>Module taught in: German and/or English</td>
<td></td>
</tr>
<tr>
<td>Method of assessment</td>
<td>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</td>
</tr>
<tr>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)</td>
<td></td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
<td></td>
</tr>
<tr>
<td>Allocation of places</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Seminar 1 - Current Topics in Computer Science</td>
<td>10-I=SEM3-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independent review of a current topic in computer science based on literature and, where applicable, software with written and oral presentation.

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Term paper (10 to 15 pages) and presentation (30 to 45 minutes) with subsequent discussion on a topic from the field of computer science.

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS, ES, LR, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar 2 - Current Topics in Computer Science</td>
<td>10-l=SEM4-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independent review of a current topic in computer science based on literature and, where applicable, software with written and oral presentation.

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Term paper (10 to 15 pages) and presentation (30 to 45 minutes) with subsequent discussion on the topic of the seminar

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, IS, ES, LR, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Algebra</td>
<td>10-M=SALG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in algebra.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Applied Differential Geometry</td>
<td>10-M=SADG-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in applied differential geometry.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Applied Math.</td>
<td>10-M=SAMA-192-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in applied mathematics.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (approx. 60 to 120 minutes)
Language of assessment: German or English
Assessment offered: Only when announced in the semester in which the courses are offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Seminar 1

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Independent review of a current topic in computer science on the basis of literature and, where applicable, software with written and oral presentation. The topics in modules 10-I-SEM1 and 10-I-SEM2 must come from different areas (this usually means that they are assigned by different lecturers).

Intended learning outcomes
The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses
(type, number of weekly contact hours, language — if other than German)

\(S (2) \)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written elaboration (approx. 10 to 15 pages) and presentation (approx. 30 to 45 minutes) with subsequent discussion on a topic from the field of computer science
- Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module title
Seminar in Dynamical Systems and Control

Abbreviation
10-M=SDSC-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

ECTS
5

Method of grading
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
A modern topic in dynamical systems and control.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S (2)</th>
</tr>
</thead>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Financial and Insurance Mathematics</td>
<td>10-M=SFIM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in financial and insurance mathematics.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Complex Analysis</td>
<td>10-M=SCOA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A modern topic in complex analysis.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Geometry and Topology</td>
<td>10-M=SGTO-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in geometry and topology.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Mathematics in the Sciences</td>
<td>10-M=SMSC-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A modern topic in mathematics in the sciences.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Non-linear Analysis</td>
<td>10-M=SNLA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A modern topic in non-linear analysis.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S (2)</th>
<th>Module taught in: German and/or English</th>
</tr>
</thead>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Seminar in Numerical Mathematics and Applied Analysis

Abbreviation
10-M=SNMA-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A modern topic in numerical mathematics or applied analysis.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Seminar in Optimization

Abbreviation
10-M-SOPT-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
A modern topic in optimisation.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td>German or English</td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- **talk (60 to 120 minutes)**
 - Assessment offered: In the semester in which the course is offered and in the subsequent semester
 - Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Statistics</td>
<td>10-M=SSTA-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
A modern topic in statistics.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)

S (2)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Security of Software Systems

Abbreviation
10-I=SSS-172-m01

Module coordinator
holder of the Chair of Computer Science II

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The lecture provides an overview of common software vulnerabilities, state-of-the-art attack techniques on modern computer systems, as well as the measures implemented to protect against these attacks. In the course, the following topics are discussed:

- x86-64 instruction set architecture and assembly language
- Runtime attacks (code injection, code reuse, defenses)
- Web security
- Blockchains and smart contracts
- Side-channel attacks
- Hardware security

Intended learning outcomes
Students gain a deep understanding of software security, from hardware and low-level attacks to modern concepts such as blockchains. The lecture prepares for research in the area of security and privacy, while the exercises allow students to gain hands-on experience with attacks and analysis of systems from an attacker’s perspective.

Courses (type, number of weekly contact hours, language — if other than German)

- V (2) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 60 to 120 minutes).
- If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

Allocation of places
--

Additional information
Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): SE, IS, LR, HCI, ES.

Basic programming knowledge in C is required.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Signalling F1</td>
<td>07-MS3SPF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Molecular mechanisms of plant signal transduction and regulation of gene expression will be investigated in the context of plant-pathogen interaction, plant responses to abiotic stress, lipid signalling and plant hormone signalling. Specific molecular biology methods which are suitable to address these topics will be applied. In addition, students will gain experience in designing appropriate experimental approaches as well as in the documentation and presentation of results. Students will work on a current research project and learn to independently plan and perform the experiments. More information is available on request or can be found at http://www.p-bio.biozentrum.uni-wuerzburg.de/.

Intended learning outcomes

Students will be trained to apply specific methods in the field of molecular biology, to address scientific questions, to document experimental procedures and results and to interpret experimental data.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Plant Signalling F2

Abbreviation

07-MS3SPF2-152-m01

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

15

Method of grading

Only after succ. compl. of module(s)

(not) successfully completed

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Students will independently work on aspects of current research projects in the area of plant signal transduction and stress responses. Results will be discussed in the context of recent publications. The molecular biology and bioanalytical methods which are used will be evaluated and optimised. The aim and progress of the project will be presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wuerzburg.de/.

Intended learning outcomes

Students are able to independently perform scientific experiments and to use specific techniques in the field of molecular biology and bioanalytics to address scientific questions in the field of plant signal transduction. Students are able to independently work according to the rules of best practice.

Courses

(type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Discrete Event Simulation

Module title
Discrete Event Simulation

Abbreviation
10-I=ST-161-m01

Module coordinator
holder of the Chair of Computer Science III

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Introduction to simulation techniques, statistical groundwork, creation of random numbers and random variables, random sample theory and estimation techniques, statistical analysis of simulation values, inspection of measured data, planning and evaluation of simulation experiments, special random processes, possibilities and limits of model creation and simulation, advanced concepts and techniques, practical execution of simulation projects.

Intended learning outcomes
The students possess the methodic knowledge and the practical skills necessary for the stochastic simulation of (technical) systems, the evaluation of results and the correct assessment of the possibilities and limits of simulation methods.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- Written examination (approx. 60 to 120 minutes).
- If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
- Language of assessment: German and/or English
- Creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Architecture</td>
<td>10-l=SAR-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Current topics in the area of aerospace.

Intended learning outcomes

The students possess a fundamental and applicable knowledge about advanced topics in software engineering with a focus on modern software architectures and fundamental approaches to model-driven software engineering.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft System Design</td>
<td>10-i=SSD-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes)
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Subject Studies Biology and Natural Sciences 4</td>
<td>07-MVMINT4-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents
Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences with a graded assessment.

Intended learning outcomes
Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)
Module taught in: German and/or English
Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Special Subject Studies Biology and Natural Sciences 4B

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Subject Studies Biology and Natural Sciences 4B</td>
<td>07-MVMINT4B-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

BioCareers

Module offered by

Faculty of Biology

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

Graduate

Other prerequisites

Please consult with course advisory service in advance.

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences; assessment ungraded, pass required.

Intended learning outcomes

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>(2)</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Subject Studies Biology and Natural Sciences 5</td>
<td>07-MVMINT5-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours) in biological or natural sciences; assessment ungraded, pass required.

Intended learning outcomes

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S (3)</th>
<th>Module taught in: German and/or English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course type: might also be offered in V, Ü, P, R or E format</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Successful completion as certified by the lecturer

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Advanced organometallic chemistry and its application in homogeneous catalysis

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
<td>08-HKM2-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lecturer of the seminar "Spezielle Metallorganische Chemie und deren Anwendung in der Homogenkatalyse"

Module offered by

Institute of Inorganic Chemistry

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module examines elementary organic compounds of transition metals with homogeneous catalytic applications.

Intended learning outcomes

Students can describe and analyse the structure, reactivity and analysis of elementary organic compounds. They are able to characterise special substance classes. They can formulate homogeneous catalysis reactions.

Courses

(type, number of weekly contact hours, language — if other than German)

- S (3)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Advanced transition metal chemistry

Abbreviation
08-HKM4-161-m01

Module coordinator
Lecturer of the seminar “Spezielle Übergangsmetallchemie” Institute of Inorganic Chemistry

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
This module provides students with deeper insights into topics in the chemistry of transition metals and coordination chemistry. It also provides an introduction to bioinorganic chemistry and discusses recent developments in transition metal chemistry.

Intended learning outcomes
Students are able to explain transition metals and coordination compounds demonstrating a high degree of expertise in the field. They can explain the fundamental principles of bioinorganic chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spintronics</td>
<td>11-SPI-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture covers the basic principles of spin transport, with a particular emphasis on the phenomena of giant magnetoresistance and tunnel magnetoresistance. As a last point, we discuss new phenomena from the field of spin dynamics and current-induced spin phenomena.

Intended learning outcomes

The students know the basic principles of spin transport models and the applications of spin transport in information technology. They have gained an overview of current findings in this field (giant magnetoresistance, tunnel magnetoresistance).

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
NLP and Text Mining | 10-I=STM-162-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science VI | Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents

Foundations in the following areas: definition of NLP and text mining, properties of text, sentence boundary detection, tokenisation, collocation, N-gram models, morphology, hidden Markov models for tagging, probabilistic parsing, word sense disambiguation, term extraction methods, information extraction, sentiment analysis. The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing mostly for English. They are able to solve problems through the methods taught. They have gained experience in the application of text mining algorithms.

Intended learning outcomes

The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing. They are able to solve practical problems with the methods acquired in class. They have gained experience in the application of text mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): AT, IT, HCI.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Statistical Analysis

Abbreviation
10-M=VSTA-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Contingency tables, categorical regression, one-factorial variance analysis, two-factorial variance analysis, discriminant function analysis, cluster analysis, principal component analysis, factor analysis.

Intended learning outcomes
The student is acquainted with the fundamental methods in statistical analysis and can apply them to practical problems.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

<table>
<thead>
<tr>
<th>a) written examination (approx. 90 to 120 minutes, usually chosen)</th>
<th>b) oral examination of one candidate each (approx. 20 minutes)</th>
<th>c) oral examination in groups (groups of 2, 15 minutes per candidate)</th>
</tr>
</thead>
</table>

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Mechanics and Reaction Dynamics</td>
<td>08-PCM2-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Chemische Dynamik" (Chemical Dynamics)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module deals with selected contents of statistical mechanics and reaction dynamics. It introduces the basic principles of statistical thermodynamics and conveys the transition state theory. Other topics are unimolecular and bimolecular reactions as well as charge and energy transfer.

Intended learning outcomes

The students are familiar with selected contents of statistical mechanics and reaction dynamics. They know the basic principles of statistical thermodynamics and can apply them.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module: Stochastic Models of Risk Management

Abbreviation: 10-M=ASMR-161-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Measure theory, risk diagrams, failure mode and effects analysis, risk assessment in auditing, shortfall measures, value at risk, conditional value at risk, axiomatic of risk measures, modelling of interdependencies, copula, modelling of functional interrelations, regression models, basics in time series modelling, aggregated losses, estimates of shortfall measures, estimates of value at risk and conditional value at risk, basics in empirical time series analysis, methods of exponential smoothing, predictions and prediction domains, estimates of value at risk in time series, elementary empirical regression analysis, simulation methods.

Intended learning outcomes

The student is acquainted with the fundamental methods of stochastic risk analysis.

Courses

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus

- a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastical Processes</td>
<td>10-M=ASTP-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Markov chains, queues, stochastic processes in $C[0,1]$, Brownian motion, Donsker's theorem, projective limits.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of stochastical processes and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>String Theory 1</td>
<td>11-STRG1-171-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Classical and quantum theory of the relativistic bosonic string, in particular the Nambu-Goto action and Polyakov action; quantisation of the closed bosonic string and emergent graviton; quantum Lorentz invariance and critical dimension; quantisation of the open bosonic string, D-Branes, Gauge Fields and Yang-Mills theories; relativistic conformal field theory, string path integral, BRST quantisation, string interactions, effective actions and gravity.

Intended learning outcomes

The students are familiar with classical and quantum theory of relativistic bosonic strings. They know the classical actions for relativistic bosonic strings, the Nambu-Goto action and Polyakov action, they have quantised the bosonic string and understand the emergence of the massless graviton in the spectrum of the closed string. They have calculated Lorentz anomaly on quantum level to deduce the critical dimension of the bosonic string. They understand the boundary conditions for the open string and its connection to D-branes. They have knowledge of open string quantisation and of the spectrum of massless gauge fields, as well as of Yang-Mills fields for coincident branes. They are familiar with relativistic conformal field theory, the string path integral, its BRST quantisation and the calculation of string interactions. They understand the low-energy effective actions in target space and the emergence of Einstein gravity.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (4) + R (2)</th>
</tr>
</thead>
</table>

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

String Theory 2

Abbreviation

11-STRG2-171-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Superstring theories and M theory, in particular a short introduction to bosonic string theory, the theory of fermionic fields and representations of Clifford algebra in diverse dimensions, a review of supersymmetry in two and more dimensions, the classical and quantum version of the Ramond-Neveu-Schwarz superstring, type II A/B superstrings, the Gliozzi-Scherck-Olive projection and space-time supersymmetry in 10 dimensions, the type I superstring, heterotic string theories, anomaly cancellation and restrictions on gauge groups, dualities between the five superstring theories as well as their relation to M theory in 11D, D-Branes and supersymmetric gauge theories, supergravity and the AdS/CFT correspondence.

Intended learning outcomes

The students are familiar with supersymmetrical string theory and M theory. They know the basic characteristics of bosonic string theory and fermionic field theory as well as the depiction of Clifford algebra in different dimensions. They have studied the aspects of supersymmetry in two or more dimensions relevant to superstring theory. They are acquainted with classical and quantum theory of the Ramon-Neveu-Schwarz superstring, they understand the deduction of type IIA/B string theories and the ensuring of space-time supersymmetry on the basis of Gliozzi-Scherk-Olive projection. They have gained insights into type I and heterotic superstring theory and into the limiting effects of anomaly freedom on the permitted gauge groups of these theories. They have studied the dualities between the five superstring theories and their connections to M theory in 11 dimensions. They are familiar with the properties of supersymmetric D-branes in type I and II superstring theories and the corresponding supersymmetric gauge theories as well as the supergravity effects in 10 and 11 dimensions and the connection to AdS/CFT correspondence.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)

Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry, chemical bonding and light - Part 1</td>
<td>08-PC-SBL1-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Lecturer of lecture "Symmetrie, chemische Bindung und Licht"

Module offered by

Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

Undergraduate

Other prerequisites

--

Contents

The module provides an introduction to the symmetry of molecules. It focuses on group theory, symmetry operations, point groups, character tables, and selection rules. The module deals with the chemical bond based on the qualitative MO theory and gives an introduction into the basics of computational chemistry.

Intended learning outcomes

The student is able to analyze the symmetry of molecules. He/She can imply on the spectroscopic properties of a molecule by its symmetry.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Subdivided Module Catalogue for the Subject
MINT Teacher Education PLUS, Elite Network Bavaria (ENB)
, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Biology</td>
<td>07-MS3S-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Biology B</td>
<td>07-MS-B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Systems Biology F1

Abbreviation 07-MS3SYF1-152-m01

Module coordinator

holder of the Chair of Bioinformatics

Module offered by

Faculty of Biology

ECTS Method of grading Only after succ. compl. of module(s)

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the field of systems biology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

Contents

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling).

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Systems Biology F2

Abbreviation: 07-MS3SYF2-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling). The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes

Proficiency in one or more methods in systems biology that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (29) + S (1)</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Physics (Standard Model)</td>
<td>11-TPSM-201-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

- Theoretical description of the Standard Model
- Electroweak symmetry breaking through the Higgs mechanism
- Parity Violation
- Bhabha scattering
- Z-Line Shape and forward / reverse asymmetry
- Higgs production and decay
- Experimental setup and results of key experiments to test the Standard Model and for determining its parameters
- Search for the Higgs boson

Intended learning outcomes

Students know the theoretical fundamental laws of the standard model of particle and the key experiments that have established and confirmed the standard model. They have basic knowledge in order to interpret experimental or theoretical results in the framework of the standard model can and knows its significance and limitations.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics and Concepts in Life Sciences</td>
<td>07-MLS2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A broad variety of topics and concepts from the areas of neuroscience, infection and immunity, integrative biology, and biomedicine including for example: protein characterisation, DNA repair, Drosophila, computational biology, and neurocircuits.

Intended learning outcomes

Students have an overview of the current research topics in the Graduate School of Life Sciences and are able to explain their significance and scientific background.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics and Concepts in Life Sciences B</td>
<td>07-MLS2B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A broad variety of topics and concepts from the areas of neuroscience, infection and immunity, integrative biology, and biomedicine including for example: protein characterisation, DNA repair, Drosophila, computational biology, and neurocircuits.

Intended learning outcomes

Students have an overview of the current research topics in the Graduate School of Life Sciences and are able to explain their significance and scientific background.

Courses (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Theoretical Astrophysics

Abbreviation
11-AST-161-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester
Module level
graduate

Other prerequisites
--

Contents
Topics in theoretical astrophysics such as e.g. white dwarfs, neutron stars and black holes, supernovae, pulsars, accretion and jets, shock waves, radiation transport, and gravitational lensing

Intended learning outcomes
Knowledge of basic processes and methods of Theoretical Astrophysics. Ability to formulate theoretical models.

Courses
(V (2) + R (2))
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Chemistry - Project course quantum chemistry</td>
<td>08-TCAP1-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module offers students the opportunity to work in a group of the Institute for Theoretical Chemistry as well as to become familiar with typical working methods. The main focus of the practical course is Quantum Chemistry.

Intended learning outcomes

The students are able to apply typical working methods of the Theoretical Chemistry, especially in the area of Quantum Chemistry. He/She can explain specific contents of Quantum Chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

- **P (5)**

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- presentation (approx. 30 minutes)
- Language of assessment: German and/or English

Allocation of places

- --

Additional information

- --

Referred to in LPO I (examination regulations for teaching-degree programmes)

- --
Module title

Theoretical Chemistry - Project course quantum dynamics

Abbreviation

08-TCAP2-161-m01

Module coordinator

head of the research group offering the module

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS

5

Method of grading

(only) successfully completed

Only after succ. compl. of module(s)

--

Duration

graduate

Other prerequisites

--

Contents

The module offers students the opportunity to work in a group of the Institute for Theoretical Chemistry as well as to become familiar with typical working methods. The main focus of the practical course is Quantum Dynamics.

Intended learning outcomes

The students are able to apply typical working methods of the Theoretical Chemistry, especially in the area of Quantum Dynamics. He/She can explain specific contents of Quantum Dynamics.

Courses (type, number of weekly contact hours, language — if other than German)

P (5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Elementary Particle Physics</td>
<td>11-TEP-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
1. Fundamental particles and forces
2. Symmetries and groups
3. Quark model of hadrons
4. Quark parton model and deep inelastic scattering
5. Principles of quantum field theory
6. Gauge theories
7. Spontaneous symmetry breaking
8. Electroweak standard model
9. Quantum chromo dynamics
10. Extensions of the standard model.

Intended learning outcomes
The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Theoretical Solid State Physics | 11-TFK-161-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
The contents of this two-term course will depend on the choice of the lecturer, and may include parts of the syllabus which could alternatively be offered as "Quantum Many Body Physics" (11-QVTP).

A possible syllabus may be:
1. Band structure (Sommerfeld theory of metals, Bloch theorem, k.p approach and effective Hamiltonians for topological insulators (TIs), bulk-surface correspondence, general properties of TIs)
2. Electron-electron interactions in solids (path integral method for weakly interacting fermions, mean field theory, random phase approximation (RPA), density functional theory)
3. Application of mean field theory and the RPA to magnetism
4. BCS theory of superconductivity

Intended learning outcomes
During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Theoretical Solid State Physics 2

Abbreviation
11-TFK2-161-m01

Module Coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
A continuation of the first semester (11-TFK) might be the following syllabus:

5. Advanced topics of the theory of superconductivity (Bogoliubov-de Gennes equations, effective field theory, Anderson-Higgs description of the Meissner effect)

6. Unconventional superconductors (e.g. copper-oxide high-Tc superconductors)

7. Green's function methods and Feynman diagrammatic technique

8. The Kondo Effect (Anderson's "poor mans scaling", renormalization group)

Intended learning outcomes
During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (2)

Module taught in:
German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
- If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Informatics</td>
<td>10-I-TIV-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 49 I Nr. 1a</td>
</tr>
<tr>
<td>§ 69 I Nr. 1a</td>
</tr>
</tbody>
</table>
Module title

Theoretical Physics 1 for Pre Service Teachers

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-L-T1-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.</td>
</tr>
</tbody>
</table>

Contents

- Physical laws and elementary methods of Theoretical Physics. Mechanics: Newton’s laws, physical values and conservation laws, systems of mass points, reference systems, one-dimensional motion, Lagrange equations, applications, Hamiltonian dynamics.
- Quantum mechanics: Schrödinger equation, one-dimensional quantum mechanics, abstract quantum mechanics (operator formalism), angular momentum, spin.
- Electrodynamics: Maxwell equations, electrostatics, magnetostatics, dynamics of electromagnetic fields, special relativity.
- Thermodynamics: Heat, entropy, thermal equilibrium, measurands, level of efficiency, thermodynamic potentials, phase transitions

Intended learning outcomes

The students know the basic principles, contexts and elementary methods of Theoretical Physics, theoretical mechanics, quantum mechanics, thermodynamics, electrodynamics and Statistical Physics. They are able to discuss the acquired theoretical concepts and to attribute them to bigger physical contexts.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- written examination (approx. 120 minutes)
- Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises or the seminar and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Theoretical Physics 2 for Pre Service Teachers - Exercises | 11-L-T2-161-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
7 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
Exercises in theoretical mechanics, quantum mechanics, Statistical Physics, thermodynamics and electrodynamics. Among others: Newton's laws, physical quantities and conservation laws, systems of mass points, reference systems, one-dimensional motion, Lagrange equations, applications, Hamiltonian dynamics; Schrödinger equation, one-dimensional quantum mechanics, abstract quantum mechanics (operator formalism), angular momentum, spin, Maxwell equations, electrostatics, magnetostatics, dynamic electromagnetic fields, special theory of relativity; heat, entropy, thermal equilibrium, measured variables, efficiency, thermodynamic potentials, phase transitions

Intended learning outcomes
The students are able to independently apply the methods of Theoretical Physics to the solution of problems of theoretical mechanics, quantum mechanics, thermodynamics, electrodynamics and Statistical Physics and to interpret the solutions.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
oral examination of one candidate each (approx. 30 minutes)
Assessment will have reference to the contents of modules 11-L-T1 and 11-L-T2.
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises or the seminar and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Animal Ecology F1 | 07-MS1TÖF1-152-m01

Module coordinator
holder of the Chair of Animal Ecology and Tropical Biology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module consists of several exercises and a seminar series over the course of the entire semester. The exercises can be chosen from the following electives: 1. Wild and honeybee ecology (over the course of the semester): fundamentals and techniques of beekeeping, resource utilisation, behaviour experiments, pollinator diversity and plant-pollinator-interactions. 2. Ecology and taxonomy of insects (block, 2 weeks): observation and recording in the habitat, identification and characters of different arthropod groups, field experiments. 3. Ecological modelling (block, 2 weeks): current methods of ecological processes modelling, simulation models, the students’ own modelling project on current issues in ecology. 4. Agroecology (block, 1 week): insect communities in agroecosystems, biological pest control in landscape context, evaluation of agri-environment schemes. 5. Forest ecology (block, 1 week): arthropod communities in forest ecosystems, methods of detection, influence of management on diversity patterns and functional groups. 6. Tropical ecology (block): small projects ecological or nature conservation-related issues to be implemented in a tropical ecosystem in East Africa. In the seminar, recent scientific publications on the topics covered in the modules listed above will be presented and discussed.

Intended learning outcomes
Students will have expanded their knowledge on ecological theories and current research issues in animal ecology. They will be able to design, perform, statistically analyse and interpret scientific research. They will be familiar with animal ecological methods and possible sources of error in data interpretation. They will have deepened their knowledge of the biology and ecology of important functional taxa of arthropods. Students will have acquired the knowledge and skills necessary to perform scientific activities in the context of an F2 practical course or a Master’s thesis.

Courses (type, number of weekly contact hours, language — if other than German)
P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Animal Ecology and Tropical Biology

Abbreviation

07-MS1TÖ-152-m01

Module coordinator

holder of the Chair of Animal Ecology and Tropical Biology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

Intended learning outcomes

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Animal Ecology and Tropical Biology 2
Abbreviation: 07-MS1TÖ2-152-m01

Module coordinator: holder of the Chair of Animal Ecology and Tropical Biology
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This module provides the fundamentals of the biology of tropical habitats and tropical communities. A special focus is on the global significance of tropical systems (ecosystem goods and ecosystem services), but the biological features of these highly diverse biomes are also highlighted.

Intended learning outcomes:
The students will acquire deep knowledge of ecological theories and up-to-date research issues in the field of animal ecology of the tropics. They will be qualified to interpret scientific work and apply the knowledge they have acquired to the solution of current environmental risks.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (2) + S (1)
Module taught in: English

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Ecology and Tropical Biology 2 B</td>
<td>07-MTÖ2B-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Animal Ecology and Tropical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides the fundamentals of the biology of tropical habitats and tropical communities. A special focus is on the global significance of tropical systems (ecosystem goods and ecosystem services), but the biological features of these highly diverse biomes are also highlighted.

Intended learning outcomes

The students will acquire deep knowledge of ecological theories and up-to-date research issues in the field of tropical ecology. They will be qualified to interpret scientific work and apply the knowledge they have acquired to the solution of current environmental risks.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Animal Ecology and Tropical Biology B
Abbreviation | 07-MTÖB-152-m01

Module coordinator | holder of the Chair of Animal Ecology and Tropical Biology
Faculty of Biology

ECTS | 5
Method of grading | Only after succ. compl. of module(s)

Duration | 1 semester
Module level | graduate
Other prerequisites | --

Contents
This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change.

Intended learning outcomes
The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

Courses (type, number of weekly contact hours, language — if other than German)
V (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Animal Ecology and Tropical Biology F2
Abbreviation: 07-MS1TÖF2-152-m01

Module coordinator: holder of the Chair of Animal Ecology and Tropical Biology
Module offered by: Faculty of Biology

ECTS: 15
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
In the F2 practical course, students will explore a scientific question as independently as possible. They will develop hypotheses, prepare a work schedule, collect data, perform experiments in the field, greenhouse or laboratory and will statistically analyse data. Students will document the results of their work in a log similar to a short scientific paper, including an introduction, material and methods, findings and a discussion of these. Students will also be required to present their findings during a wrap-up seminar. The various research groups at the Chair of Animal Ecology and Tropical Biology offer a wide variety of opportunities for students to complete an F2 practical course in Germany, another country in Europe or in the tropics. F2 practical courses may be completed in the context of an ongoing research project of the Institute or in cooperation with other institutions. For more detailed information on the F2 practical course as well as current topics or appointments for consultations, please refer to WueCampus, check out the notice board of the Chair or contact the research groups directly.

Intended learning outcomes:
Students have gained knowledge on experimental setups and methods used in the fields of animal ecology and tropical ecology. They are qualified to design scientific research and are able to collect data and interpret them statistically. They have developed knowledge and skills that allow them to set up a scientific project for their Master's thesis.

Courses (type, number of weekly contact hours, language — if other than German)
P (29) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>10-M=ATOP-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Set-theoretic topology, topological invariants (e. g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological Effects in Solid State Physics</td>
<td>11-TEFK-201-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
1. Geometric phase in quantum systems
2. Mathematical basics of topology
3. Time-reversal symmetry
4. Hall conductance and Chern numbers
5. Bulk-boundary correspondence
6. Graphene (as a topological insulator)
7. Quantum Spin Hall insulators
8. ZZ invariants
9. Topological superconductors

Intended learning outcomes
In-depth theoretical understanding of the topological concepts in quantum physics related to solid state systems. Ability to connect their knowledge with different research activities at the Department of Physics and Astronomy at Würzburg University.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + R (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 90-120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).
If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.
Language of assessment: German and/or English
Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical Ecology</td>
<td>07-MTROP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Animal Ecology and Tropical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Small projects on ecological or nature conservation-related issues will be implemented in a tropical ecosystem. Students should become familiar with different project stages from experiment design, implementation and data analysis through to data presentation. In evening seminars, recent publications in the field of tropical ecology will be presented and discussed.

Intended learning outcomes

The students will learn about various tropical ecosystems and will acquire advanced knowledge of ecological and nature conservation-related research in the tropics. They will learn field ecological methods for the quantitative detection of insects and their biotic interactions and will acquire statistical knowledge in the field of data analysis.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Ü (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Theoretical Informatics</td>
<td>10-I-TIT-191-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) exercises (consisting in completion of approx. 11 home work exercise sheets, presentation of own solutions in the exercise groups as well as approx. 5 short assessments written in the exercise group) or b) Written examination (approx. 180 to 240 minutes)

Die Prüfungsart ist vom Prüfling festzulegen

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast spectroscopy and quantum-control</td>
<td>08-PCM4-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Nanoskalige Materialien"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Prior completion of modules 08-PCM1a and 08-PCM1b recommended.</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes

Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

Courses (type, number of weekly contact hours, language — if other than German)

S (2) + Ü (1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes) or c) talk (approx. 30 minutes)
- Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Special Subject Studies outside Natural Sciences 4

Abbreviation
07-MV4-152-m01

Module coordinator
Coordinator BioCareers

Module offered by
Faculty of Biology

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Please consult with course advisory service in advance.

Contents
Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (5 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes
Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses
(type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title
Special Subject Studies outside Natural Sciences 4B

| Abbreviation | 07-MV4B-152-m01 |

Module coordinator
Coordinator BioCareers

Module offered by
Faculty of Biology

ECTS
5

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Please consult with course advisory service in advance.

Contents
Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (5 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes
Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses
(type, number of weekly contact hours, language — if other than German)

| S (2) | Module taught in: German and/or English |
| Course type: might also be offered in V, Ü, P, R or E format |

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioural Physiology and Sociobiology F1</td>
<td>07-MS1VF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Behavioral Physiology and Sociobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will gain an insight into the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

Intended learning outcomes

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they are able to process and document the results obtained and to present them to a scientific audience.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Behavioural Physiology and Sociobiology F2 | 07-MS1VF2-152-m01

Module coordinator	Module offered by
holder of the Chair of Behavioral Physiology and Sociobiology | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
15 | (not) successfully completed | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioral physiology and sociobiology. They will learn to plan experimental series and to apply the latest physiological, neurobiological and behavioral methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

Intended learning outcomes
The students are able to independently perform scientific experiments in the field of behavioral physiology and sociobiology. In addition, they have learned to interpret the results obtained, taking into account current literature, and to place them in the context of other research in the field.

Courses (type, number of weekly contact hours, language — if other than German)
P (29) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Networked Systems

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS 5

Method of grading numerical grade

Only after succ. compl. of module(s)

Duration 1 semester

Module level graduate

Other prerequisites

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary topics in networked linear and non-linear dynamical systems (homogenous and non-homogenous systems); analysis of control-theoretical aspects (controllability, accessibility, etc.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student is acquainted with advanced methods in the field of networked systems. He gains the ability to work on contemporary research questions in networked systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + Ü (1)</td>
</tr>
<tr>
<td>Module taught in: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 60 to 90 minutes, usually chosen) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)</td>
</tr>
<tr>
<td>Assessment offered: In the semester in which the course is offered and in the subsequent semester</td>
</tr>
<tr>
<td>Language of assessment: German or English</td>
</tr>
<tr>
<td>creditable for bonus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Insurance Mathematics 1</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The module discusses policies on one life: distributions of future lifetime, life tables, life table approximations, types of benefits, present value, expection principle, premium calculation, commutation functions, reserves and policy values, expenses, bonus, recursive methods, Thiele's differential equation.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of life insurance mathematics and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance Mathematics 2</td>
<td>10-M=VVM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses modern valuation approaches and multiple decrement models regarding one life or two lives: modern valuation in life insurance mathematics, axiomatic derivation of the product measure approach, Markov chain models, Kolmogorov's differential equations, Thiele's differential equations, numerical applications, joint life policies.

Intended learning outcomes

The student is acquainted with advanced methods in insurance mathematics. He gains the ability to work on contemporary research questions in insurance mathematics and can apply his/her skills to complex problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Module title: Advanced Subject Didactics 1

Abbreviation: MINT-B1-162-m01

Module coordinator: Chair of MIND Center

Module offered by: M!nd-Center

ECTS: 5

Method of grading: numerical grade

Only after succ. compl. of module(s): --

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
The students acquire subject-didactic competencies which exceed the requirements of the teaching degree programme. The module especially focuses on subject-didactic research methods and on the examination of current international subject-didactic research. Most of the lectures combine topics of various disciplines. In addition, they establish connections to scientific disciplines and educational sciences. Some exemplary topics might be: Qualitative and quantitative research methods in subject didactics; connections between subject didactics and educational sciences; interdisciplinary connections between subject didactics and scientific disciplines; closer connections between subject didactics and school practice; in-depth analyses of classes (e.g. video studies, "university classroom"); exploratory learning at extracurricular learning facilities (e.g. genetic engineering laboratory in Bayreuth, teaching-learning-laboratories (LLL); M!ND and SFZ (special needs centre), M!ND in Würzburg).

Intended learning outcomes:
In-depth study of subject didactics; interdisciplinary connections; in-depth analyses of classes; connection of scientific disciplines, subject didactics, school practice and educational sciences.

Courses:
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)

Module taught in: German and/or English

Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)

Language of assessment: German and/or English

credible for bonus

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title	Abbreviation
Advanced Subject Didactics 2 | MINT-B2-162-m01

Module coordinator	Module offered by
Chair of M!ND Center | M!nd-Center

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
The students acquire subject-didactic competencies which exceed the requirements of the teaching degree programme. The module especially focuses on subject-didactic research methods and on the examination of current international subject-didactic research. Most of the lectures combine topics of various disciplines. In addition, they establish connections to scientific disciplines and educational sciences. Some exemplary topics might be: Qualitative and quantitative research methods in subject didactics; connections between subject didactics and educational sciences; interdisciplinary connections between subject didactics and scientific disciplines; closer connections between subject didactics and school practice; in-depth analyses of classes (e.g. video studies, "university classroom"); exploratory learning at extracurricular learning facilities (e.g. genetic engineering laboratory in Bayreuth, teaching-learning-laboratories (LLL); M!ND and SFZ (special needs centre), M!ND in Würzburg)

Intended learning outcomes
In-depth study of subject didactics; interdisciplinary connections; in-depth analyses of classes; connection of scientific disciplines, subject didactics, school practice and educational sciences.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)
Module taught in: German and/or English
Course type: alternatively S (2) or P (2) instead of Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (20 to 40 minutes) or c) talk (30 to 60 minutes) or d) practical assignment including report (approx. 10 to 20 pages) and talk (approx. 15 minutes) or e) term paper (approx. 15 to 25 pages, usually chosen)
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Molecular Machines" for advanced students</td>
<td>08-BC-VPMM-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>08-BC-MOLP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic. Selected methods and topics in molecular biology and biochemistry; cloning, mutagenesis, protein expression and purification, RNA-protein and protein-protein interactions, isolation and functional analysis of macromolecular complexes.

Intended learning outcomes

The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses (type, number of weekly contact hours, language — if other than German)

P (10)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Protein Degradation in Eukaryotes" for advanced students</td>
<td>08-BC-VPPD-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>08-BC-MOLP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic in the field of protein degradation in eukaryotes.

Intended learning outcomes

The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses (type, number of weekly contact hours, language — if other than German)

P (10)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course “RNA Biochemistry” for advanced students</td>
<td>08-BC-VPRB-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holder of the Chair of Biochemistry</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>08-BC-MOLP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic in the field of RNA biochemistry. Ribosomes as "molecular machines", regulatory mechanisms of eukaryotic protein biosynthesis. Gradient centrifugation, in vitro translation in different cell-free systems.

Intended learning outcomes

Students are able to explore a specific research topic and deliver an oral presentation on the results of their work. They are able to familiarise themselves with different mechanisms of general and specific translation control with the help of different methods as well as to present their findings in an appropriate and understandable manner.

Courses (type, number of weekly contact hours, language — if other than German)

P (10)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Practical course "Structural Biology" for advanced students
Abbreviation: 08-BC-VPSB-161-m01

Module coordinator: holder of the Chair of Biochemistry
Module offered by: Chair of Biochemistry

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): 08-BC-MOLP

Duration: graduate
Module level: --
Other prerequisites: --

Contents:
This module discusses cloning and the expression of protein constructs for crystallisation. It teaches students the fundamental principles and techniques of crystallisation and crystal optimisation as well as crystallographic data collection.

Intended learning outcomes:
Students have developed an understanding of the method of selecting protein constructs for crystallisation. They master fundamental skills and techniques for protein crystallisation as well as data collection and processing.

Courses:
(type, number of weekly contact hours, language — if other than German)
P (10)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
Log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title: Visualization of Graphs
Abbreviation: 10-I=VG-161-m01

Module coordinator: holder of the Chair of Computer Science I
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
This course covers the most important algorithms to draw graphs. Methods from the course *Algorithmische Graphentheorie* (*Algorithmic Graph Theory*) such as divide and conquer, flow networks, integer programming and the planar separator theorem will be used. We will become familiar with measures of quality of a graph drawing as well as algorithms to optimise these measures.

Intended learning outcomes
The participants get an overview of graph visualisation and become familiar with typical tools. They consolidate their knowledge about the modelling and solving of problems with the help of graphs and graph algorithms.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Drug design | 08-MCM3-172-m01

Module coordinator | Module offered by
lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry) | Institute of Pharmacy and Food Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in natural product chemistry and biological chemistry.

Intended learning outcomes
Students are able to discuss advanced topics in natural product chemistry and biological chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S (2) + Ü (1)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
presentation (approx. 30 minutes) with discussion
Language of assessment: German and/or English

Allocation of places
22 places. 16 places for students of the Master's degree programme Chemie (Chemistry): Places will be allocated according to the same number of subject semesters; students who have chosen Medizinische Chemie (Medicinal Chemistry) as their focus will be given preferential consideration. 6 places for students of the Master’s degree programme Biochemie (Biochemistry): Places will be allocated according to the number of subject semesters; among applicants with the same number of subject semesters, places will be allocated by lot. 2 places for students of the Master's degree programme MINT-Lehramt PLUS: Places will be allocated according to the number of subject semesters; among applicants with the same number of subject semesters, places will be allocated by lot; a waiting list will be maintained and places re-allocated by lot as they become available.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge-based Systems</td>
<td>10-I-WBS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module title
Number Theory

Abbreviation
10-M=AZTH-161-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Intended learning outcomes
The student is acquainted with the fundamental methods of analytics number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4)</td>
<td>Ü (2)</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German or English

Allocatable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series Analysis 1</td>
<td>10-M=AZRA-161-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Additive model, linear filters, autocorrelation, moving average, autoregressive processes, Box-Jenkins method.

Intended learning outcomes
The student is acquainted with the fundamental methods of time series analysis and can apply them to practical problems.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	**Abbreviation**
Time Series Analysis 2 | 10-M=VZRA-161-m01

Module coordinator	**Module offered by**
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
10 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | --

Contents
State-space models, Kalman filter, frequency spaces, Fourier analysis, periodograms, characterisation of autocovariance functions.

Intended learning outcomes
The student is acquainted with advanced methods in time series analysis. He gains the ability to work on contemporary research questions in this field.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)
a) written examination (approx. 90 to 120 minutes, usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, 15 minutes per candidate)
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell and Developmental Biology F1</td>
<td>07-MS2ZEF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. Large parts of this practical course are devoted to small projects, which should provide sustained insights into current research activities of the Chair. Interactions with Master's students, doctoral researchers and post-docs prepare participants for a working in a team-based environment.

Intended learning outcomes

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)
Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell and Developmental Biology F2</td>
<td>07-MS2ZEF2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Well-defined aspects of scientific projects are addressed with independently designed experiments in the context of current research projects in the field of cell and developmental biology. The techniques applied are evaluated on the basis of the results obtained and modified where necessary. The results of all experiments as well as the impact on the research project are presented and discussed in a progress report seminar within the research group.

Intended learning outcomes

The participants are able to independently carry out scientific experiments in the fields of cell and developmental biology and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (15 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell and Developmental Biology Master 1</td>
<td>07-MS2ZE1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

Courses (type, number of weekly contact hours, language — if other than German)

V (1) + S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Cell and Developmental Biology Master 2

Abbreviation: 07-MS2ZE2-152-m01

Module coordinator: holder of the Chair of Cell Biology and Developmental Biology

Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
The module consists of the lecture *Signale und Differenzierung* (Signals and Differentiation) and the seminar *Entwicklungsbiologie - Meilensteine und Perspektiven* (Milestones and Perspectives of Developmental Biology). The lecture *Signals and Differentiation* does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar *Milestones and Perspectives of Developmental Biology*, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

Intended learning outcomes
Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses (type, number of weekly contact hours, language — if other than German)

V (1) + S (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module can be chosen to earn a bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (30 to 60 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--