

Bereichsgegliedertes Modulhandbuch für das Studienfach

Informatik

als 1-Fach-Master mit dem Abschluss "Master of Science" (Erwerb von 120 ECTS-Punkten)

Prüfungsordnungsversion: 2018

verantwortlich: Fakultät für Mathematik und Informatik

verantwortlich: Institut für Informatik

Qualifikationsziele / Kompetenzen

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen können erweiterte mathematische, technische, theoretische und praktische Konzepte der Informatik anwenden.
- Die Absolventinnen und Absolventen können tiefergehende Kenntnisse in mindestens einem Teilgebiet abrufen.
- Die Absolventinnen und Absolventen können fortgeschrittene hard- und/oder softwaregetriebene Experimente durchführen, analysieren, auswerten und die erhaltenen Ergebnisse darstellen.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, fortgeschrittene Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, fortgeschrittene Methoden der Informatik auf konkrete praktische oder theoretische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen setzen die erlernten theoretischen und praktischen Methoden in geschlossener Form ein, um zu zeigen, dass sie zur Anwendung der Konzepte wissenschaftlichen Arbeitens befähigt sind.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegen\u00fcber darstellen und vertreten.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem Team zusammenzuarbeiten und auftretende Konflikte zu lösen (Teamfähigkeit).
- Die Absolventinnen und Absolventen können ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in international zusammengesetzten Teams anwenden.
- Die Absolventinnen und Absolventen kennen wichtige Anforderungen und Arbeitsweisen im gewerblichen Umfeld sowie in Forschung und Entwicklung.
- Die Absolventinnen und Absolventen sind befähigt, Probleme zu analysieren und zu lösen und sich in weniger vertraute Themenkomplexe einzuarbeiten.

Persönlichkeitsentwicklung

- Eigenverantwortlichkeit, Selbstständigkeit, Zeitmanagement, Teamfähigkeit
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegen\u00fcber darstellen und vertreten.

Befähigung zum gesellschaftlichen Engagement

- Die Absolventinnen und Absolventen k\u00f6nnen Entwicklungen im Informationssektor kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt in Ans\u00e4tzen erfassen (Technikfolgenabsch\u00e4tzung).
- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, kultureller etc. Fragestellungen erweitert und können in Ansätzen begründet Position beziehen.
- Die Absolventinnen und Absolventen entwickeln die Bereitschaft und Fähigkeit, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Verwendete Abkürzungen

Veranstaltungsarten: **E** = Exkursion, **K** = Kolloquium, **O** = Konversatorium, **P** = Praktikum, **R** = Projekt, **S** = Seminar, **T** = Tutorium, **Ü** = Übung, **V** = Vorlesung

Semester: **SS** = Sommersemester, **WS** = Wintersemester

Bewertungsarten: **NUM** = numerische Notenvergabe, **B/NB** = bestanden / nicht bestanden

Satzungen: **(L)ASPO** = Allgemeine Studien- und Prüfungsordnung (für Lehramtsstudiengänge), **FSB** = Fachspezifische Bestimmungen, **SFB** = Studienfachbeschreibung

Sonstiges: **A** = Abschlussarbeit, **LV** = Lehrveranstaltung(en), **PL** = Prüfungsleistung(en), **TN** = Teilnehmende, **VL** = Vorleistung(en)

Konventionen

Sofern nichts anderes angegeben ist, ist die Lehrveranstaltungs- und Prüfungssprache Deutsch, der Prüfungsturnus ist semesterweise, es besteht keine Bonusfähigkeit der Prüfungsleistung.

Anmerkungen

Gibt es eine Auswahl an Prüfungsarten, so legt die Dozentin oder der Dozent in Absprache mit der/dem Modulverantwortlichen spätestens zwei Wochen nach LV-Beginn fest, welche Form für die Erfolgsüberprüfung im aktuellen Semester zutreffend ist und gibt dies ortsüblich bekannt.

Bei mehreren benoteten Prüfungsleistung innerhalb eines Moduls werden diese jeweils gleichgewichtet, sofern nachfolgend nichts anderes angegeben ist.

Besteht die Erfolgsüberprüfung aus mehreren Einzelleistungen, so ist die Prüfung nur bestanden, wenn jede der Einzelleistungen erfolgreich bestanden ist.

Satzungsbezug

Muttersatzung des hier beschriebenen Studienfachs:

ASP02015

zugehörige amtliche Veröffentlichungen (FSB/SFB):

14.03.2018 (2018-15)

Dieses Modulhandbuch versucht die prüfungsordnungsrelevanten Daten des Studienfachs möglichst genau wiederzugeben. Rechtlich verbindlich ist aber nur die offizielle amtliche Veröffentlichung der FSB/SFB. Insbesondere gelten im Zweifelsfall die dort angegebenen Beschreibungen der Modulprüfungen.

Bereichsgliederung des Studienfachs

Kurzbezeichnung	Modulbezeichnung		Bewertung	Seite
Pflichtbereich (Erwerb von	20 ECTS-Punkten)			
10-I=SEM3-161-m01	Seminar 1 - Aktuelle Themen der Informatik	5	NUM	103
10-I=SEM4-161-m01	Seminar 2 - Aktuelle Themen der Informatik	5	NUM	104
10-I=PRAK-161-m01	Praktikum - Aktuelle Themen der Informatik	10	B/NB	90
Wahlpflichtbereich (Erwer	b von 70 ECTS-Punkten)			l.
Allgemeiner Wahlpflichth	Allgemeiner Wahlpflichtbereich (Erwerb von 50 ECTS-Punkten)			
10-l=3D-161-m01	3D Point Cloud Processing	5	NUM	16
10-l=BS-161-m01	Betriebssysteme	5	NUM	45
10-l=DM-161-m01	Data Mining	5	NUM	51
10-l=DB-161-m01	Datenbanken	5	NUM	48
10-l=DB2-161-m01	Datenbanken 2	5	NUM	49
10-l=ICG-161-m01	Interaktive Computergraphik	5	NUM	68
10-l=KT-161-m01	Komplexitätstheorie	5	NUM	76
10-l=KD-161-m01	Kryptografie und Datensicherheit	5	NUM	72
10-l=APR-161-m01	Fortgeschrittenes Programmieren	5	NUM	39
10-l=SSS-172-m01	Sicherheit von Softwaresystemen	5	NUM	106
10-I=RAK-161-m01	Rechnerarchitektur	5	NUM	93
10-l=RK-161-m01	Rechnernetze und Kommunikationssysteme	8	NUM	96
10-l=WBS-161-m01	Wissensbasierte Systeme	5	NUM	114
10-I=PRJAK-162-m01	Projekt - Aktuelle Themen der Informatik	5	NUM	91
10-l=AA-152-m01	Advanced Automation	8	NUM	17
10-l=AGIS-161-m01	Algorithmen für Geographische Informationssysteme	5	NUM	23
10-l=AG-161-m01	Algorithmische Geometrie	5	NUM	19
10-l=APA-161-m01	Approximationsalgorithmen	5	NUM	37
10-l=AUT-161-m01	Automatentheorie	5	NUM	41
10-l=AVS-161-m01	Avionik Systeme	5	NUM	42
10-HCI=MMUI-161-m01	Multimodale Benutzerschnittstellen	5	NUM	12
10-l=BER-161-m01	Berechenbarkeitstheorie	5	NUM	44
07-BI-161-m01	Bioinformatik	5	NUM	7
10-l=CB-161-m01	Compilerbau	5	NUM	46
10-l=DDB-172-m01	Deduktive Datenbanken	5	NUM	50
10-l=LP-172-m01	Logische Programmierung	5	NUM	78
10-l=EL-161-m01	E-Learning	5	NUM	52
10-l=PNN-182-m01	Programmieren mit neuronalen Netzen	5	NUM	89
10-l=NLP-182-m01	Machine Learning for Natural Language Processing	5	NUM	83
10-l=HCl-161-m01	Einführung in die Mensch-Computer-Interaktion	5	NUM	66
10-l=ES-161-m01	Eingebettete Systeme	8	NUM	54
10-I=PA-161-m01	Entwurf und Analyse von Programmen	5	NUM	84
10-I=IR-161-m01	Information Retrieval	5	NUM	70
10-HCl=3DUl-161-m01	3D Benutzerschnittstellen	5	NUM	8
10-l=KT2-161-m01	Komplexitätstheorie II	5	NUM	77
10-l=Kl1-161-m01	Künstliche Intelligenz 1	5	NUM	73

10-l=Kl2-161-m01	Künstliche Intelligenz 2	5	NUM	75
10-I=LVS-161-m01	Leistungsbewertung verteilter Systeme	8	NUM	
10-l=ML-161-m01	Mathematische Logik		NUM	79 82
10-I=MI-161-m01	Medizinische Informatik	5	NUM	81
10-I=PEB-161-mo1	Performance Engineering & Benchmarking von Computersy-	5	NUM	86
	stem			
10-l=PM-182-m01	Professionelles Projektmanagement in der Praxis	5	NUM	88
10-I=RAM-161-m01	Rechnerarithmetik	5	NUM	94
10-l=RO1-182-m01	Robotics 1	8	NUM	97
10-l=RO2-152-m01	Robotics 2	8	NUM	98
10-l=ST-161-m01	Simulationstechnik zur Systemanalyse	8	NUM	108
10-HCI=RIS-182-m01	Interaktive Echtzeitsysteme	5	NUM	14
10-l=SAR-161-m01	Software-Architektur	5	NUM	101
10-l=SSD-152-m01	Spacecraft System Design	8	NUM	105
10-HCl=MLUI-161-m01	Maschinelles Lernen (für Benutzerschnittstellen)	5	NUM	10
10-l=Pl-172-m01	Probabilistische Inferenz	5	NUM	87
10-I=VG-161-m01	Visualisierung von Graphen	5	NUM	112
10-I=AGE-191-m01	Ausgewählte Kapitel des Games Engineering	5	NUM	22
10-I=AKA-161-m01	Ausgewählte Kapitel der Algorithmik	5	NUM	25
10-I=AKT-161-m01	Ausgewählte Kapitel der Theorie	5	NUM	36
10-I=AKSE-161-m01	Ausgewählte Kapitel des Software Engineering	5	NUM	35
10-I=AKITS-172-m01	Ausgewählte Kapitel der IT-Sicherheit	5	NUM	32
10-I=AKIT-161-m01	Ausgewählte Kapitel der Internet Technologie	5	NUM	30
10-I=AKIS-161-m01	Ausgewählte Kapitel der Intelligenten Systeme	5	NUM	29
10-I=AKES-161-m01	Ausgewählte Kapitel der Embedded Systems	5	NUM	26
10-l=STM-162-m01	Sprachverarbeitung und Text Mining	5	NUM	110
10-l=AKLR-161-m01	Ausgewählte Kapitel der Luft- und Raumfahrttechnik	5	NUM	33
10-l=AKHCl-182-m01	Ausgewählte Kapitel der HCI	5	NUM	27
10-l=AKII-182-m01	Ausgewählte Kapitel der Informatik	5	NUM	28
Projekte und Praktika		,		
10-I=RSE-182-m01	Raumfahrtsystementwurf	10	NUM	100
10-l=EPB-182-m01	Entwurf von planetaren Basen und Orbitalstationen	10	NUM	53
10-I=PRT-182-m01	Praktikum Raketentechnik und Nutzlasten	10	B/NB	92
10-l=FZB-182-m01	Flugzeugbau	10	NUM	57
10-I=FSIM-182-m01	Flugsimulator	10	NUM	56
10-I=GRLT-182-m01	Game Research Lab - Theory	10	NUM	64
10-I=GRAR-182-m01	Game Research Lab - Architectures	10	NUM	60
10-I=GRDE-182-m01	Game Research Lab - Design	10	NUM	62
10-I=GRAP-182-m01	Game Research Lab - Applications	10	NUM	58
10-l-PAT1-182-m01	Praktikum Algorithmik und Theorie 1	10	NUM	117
10-I-PAT2-182-m01	Praktikum Algorithmik und Theorie 2	10	NUM	118
10-I-PSE1-182-m01	Praktikum Software Engineering 1	10	NUM	127
10-I-PSE2-182-m01	Praktikum Software Engineering 2	10	NUM	128
10-I-PIT1-182-m01	Praktikum Internet Technologie 1	10	NUM	125
10-I-PIT2-182-m01	Praktikum Internet Technologie 2	10	NUM	126
10-I-PIS1-182-m01	Praktikum Intelligente Systeme 1	1	NUM	_
ach-Master Informatik (2018)	IMU Würzburg • Erzeugungsdatum 10.04.2025	10		123

10-l-PIS2-182-m01	Praktikum Intelligente Systeme 2	10	NUM	124
10-I-PES1-182-m01	10-I-PES1-182-mo1 Praktikum Embedded Systems 1		NUM	119
10-I-PES2-182-m01	Praktikum Embedded Systems 2	10	NUM	120
10-I-PHCl1-182-m01	Praktikum Human Computer Interaction 1	10	NUM	121
10-I-PHCl2-182-m01	Praktikum Human Computer Interaction 2	10	NUM	122
10-l=AGE-182-m01	Ausgewählte Kapitel des Games Engineering	5	NUM	21
10-l=AKA-161-m01	Ausgewählte Kapitel der Algorithmik	5	NUM	25
10-l=AKT-161-m01	Ausgewählte Kapitel der Theorie	5	NUM	36
10-I=AKSE-161-m01	Ausgewählte Kapitel des Software Engineering	5	NUM	35
10-I=AKITS-172-m01	Ausgewählte Kapitel der IT-Sicherheit	5	NUM	32
10-I=AKIT-161-m01	Ausgewählte Kapitel der Internet Technologie	5	NUM	30
10-I=AKIS-161-m01	Ausgewählte Kapitel der Intelligenten Systeme	5	NUM	29
10-I=AKES-161-m01	Ausgewählte Kapitel der Embedded Systems	5	NUM	26
10-I=STM-162-m01	Sprachverarbeitung und Text Mining	5	NUM	110
10-I=AKLR-161-m01	10-l=AKLR-161-m01 Ausgewählte Kapitel der Luft- und Raumfahrttechnik		NUM	33
Abschlussbereich (Erwerb von 30 ECTS-Punkten)				
10-I-MA-MK-182-m01	Abschlusskolloquium zur Master-Thesis Informatik	5	B/NB	116
10-I-MA-161-m01	Master-Thesis Informatik	25	NUM	115

Modulbezeichnung	Kurzbezeichnung
Bioinformatik	07-BI-161-m01

Modulverantwortung anbietende Einrichtung

Inhaber/-in des Lehrstuhls für Bioinformatik Fakultät für Biologie

ECTS	Bewertungsart		zuvor bestandene Module
5	numerische Notenvergabe		
Modulo	lauer	Niveau	weitere Voraussetzungen
1 Seme	ster	grundständig	

Inhalte

Grundzüge der Bioinformatik.

Qualifikationsziele / Kompetenzen

Die Studierenden haben Kompetenzen über Methoden zur Analyse von DNA- und Proteindatenbanken erworben.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
3D Benutzerschnittstellen					10-HCl=3DUI-161-m01	
Modulverantwortung				anbietende Einrichtung		
Inhaber/-in des Lehrstuhls für Informa		atik IX	Institut für Informatik			
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetz	ungen			
1 Semester weiterführend						
Inhalto						

Dieses Modul führt Studierende in die Möglichkeiten und Besonderheiten von 3D-Benutzerschnittstellen (engl. 3D User Interface, 3DUI) im Bereich der Virtuellen, Erweiterten und Gemischten Realität ein.

Der Inhalt befasst sich überwiegend mit den erforderlichen theoretischen und praktischen Fähigkeiten für das Design und die Implementierung hochwertiger 3D-Interaktionstechniken. Sowohl Design-Richtlinien als auch klassische und innovative Techniken der Interaktion werden vermittelt.

Darüber hinaus behandelt der Kurs neuartige Forschungsgebiete wie etwa 3D-Interaktion für große Bildschirme und Computerspiele sowie die Integration von 3DUIs in mobile Geräte, Robotik und die Umwelt.

Die Benotung erfolgt im Rahmen eines praxisorientierten Projekts (Gruppenarbeit), das sich mit der Entwicklung von 3D Interaktions-Techniken (ITs) hinsichtlich einer speziellen Aufgabe befasst.

In vergangenen Jahren wurde dabei das Ergebnis der IEEE 3DUI Contest 2011 reproduziert, wobei die einzelnen Gruppen in einem Wettbewerb um die beste Lösung gegeneinander angetreten sind (die Ergebnisse finden Sie unter https://www.youtube.com/watch?v=gYs-pBW7Agc und https://www.youtube.com/watch?v=gYs-pBW7Agc c).

Qualifikationsziele / Kompetenzen

Nach Abschluss des Kurses haben die Studierenden fundiertes Hintergrundwissen hinsichtlich Theorie und Methoden zur Erstellung eigener räumlicher 3D-Schnittstellen erworben. Sie besitzen ein breites Verständnis der spezifischen Schwierigkeiten des Designs, der Entwicklung als auch der Evaluation räumlicher Schnittstellen. Darüber hinaus haben sie Kenntnis bezüglich traditioneller wie auch neuartiger 3D Ein- und Ausgabegeräte (z.B. Systeme zur Bewegungs-Erfassung oder Head-mounted Displays).

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Präsentation der Projektergebnisse (ca. 30 Min.) Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI,GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 8 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Moduli	bezeich	nnung	Kurzbezeichnung		
Maschinelles Lernen (für Benutzerschnittstellen)					10-HCI=MLUI-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informat			ik IX Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Maschinelles Lernen beschäftigt sich mit Verfahren, um das Verhalten von Computersystemen automatisch über die Bereitstellung von Beispielen zu programmieren. Die Verfahren haben sich bereits vielfältig als nützlich bewiesen, ob in der Spracherkennung, der Interpretation natürlich menschlicher Äußerungen in Gestik und Mimik, der effektiven Websuche, bei selbstfahrenden Autos oder für das umfassendere Verständnis des menschlichen Genoms. Maschinelles Lernen ist heute allgegenwärtig und ein bedeutendes Paradigma in der Informatik, speziell in der Künstlichen Intelligenz und der Human-Computer Interaction (HCI).

Im Rahmen des Kurses werden grundlegende Techniken maschinellen Lernens sowie praktische Erfahrung hinsichtlich ihrer Implementierung vermittelt. Neben der zugrunde liegenden Theorie wird praktisches Know-how sowie Best Practices vermittelt, damit Studierende schnell, effektiv und selbstständig neue Probleme lösen kön-

Dieser Kurs bietet eine breite Einführung in maschinelles Lernen, Gestenverarbeitung, Data-Mining und statistische Mustererkennung. Die Themen beinhalten: (i) Überwachtes Lernen (parametrische/non-parametrische Algorithmen, Stützvektormaschinen, Kernels, neuronale Netze). (ii) Unüberwachtes Lernen (Clustern, Dimensionsdeduktion, Hauptachsentransformation). (iii) Best Practices des maschinellen Lernens (Fehler/ Varianz-Theorie; Innovations-Prozess bei maschinellem Lernen und künstlicher Intelligenz).

Der Kurs verwendet zahlreiche Fallstudien und Anwendungen aus den Bereichen Gesten-basierter und multimodaler Interfaces, Text- und Spracherkennung (Websuche, Anti-Spam), intelligenter Roboter (Wahrnehmung, Kontrolle), maschinellen Sehens, medizinischer Informatik, Data-Mining und anderer Gebiete.

Qualifikationsziele / Kompetenzen

Nach Abschluss des Kurses besitzen die Studierenden die nötigen Kompetenzen, um Aufgaben im Bereich des maschinellen Lernens mit Hilfe verschiedener Werkzeuge, etwa Octave, selbstständig zu lösen. Darüber hinaus vermögen sie es, grundlegende Prinzipien abzuleiten und in eigenen Programmen anzuwenden. Sie werden in der Lage sein, geeignete Ansätze und Werkzeuge auszuwählen, um Aufgaben maschinellen Lernens in zahlreichen Anwendungsgebieten, speziell in der HCI, zu lösen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Präsentation der Projektergebnisse (ca. 40 Min.) Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI,GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Moduli	Modulbezeichnung				Kurzbezeichnung
Multimodale Benutzerschnittstellen					10-HCI=MMUI-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informat			itik IX	k IX Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Multimodale Interaktionen bedienen sich unterschiedlicher Modalitäten, um mit Computern oder Maschinen zu interagieren. Das Gebiet beinhaltet sowohl die Analyse als auch die Synthese multimodaler Äußerungen. Dieser Kurs konzentriert sich auf die Analyse, d.h. die Verarbeitung von Eingaben aus Sprache, Gestik, Berührungen, Blickrichtung oder auch Biosensoren. Das Ziel ist es dabei, Bedeutung aus mehreren Kanälen und Signalen zu ermitteln, um gewünschte Interaktionen auszuführen.

Im Rahmen des Kurses lernen Studierende die für die Verarbeitung von unimodalen wie auch multimodalen Eingaben notwendigen Schritte. Typische Phasen uni- sowie multimodaler Verarbeitung werden näher betrachtet:

- 1. A/D-Wandlung
- 2. Segmentierung
- 3. Syntaktische Verarbeitung
- 4. Semantikanalyse
- 5. Pragmatikanalyse
- 6. Diskursanalyse

Auf allen Ebenen werden Möglichkeiten zur Fusion multimodaler Signale betrachtet. Typische Aspekte multimodaler Abhängigkeiten, z.B. zeitliche und semantische Verflechtungen werden vermittelt und Konsequenzen für eine algorithmische Verarbeitung abgeleitet. Prominente Ansätze multimodaler Integration (alias multimodaler Fusion) wie Transducer, Zustandsautomaten oder Unifikation werden vorgestellt.

Qualifikationsziele / Kompetenzen

Nach Abschluss des Kurses werden die Studierenden in der Lage sein, selbstständig multimodale Eingabesysteme zu entwickeln. Sie werden ein breites Verständnis hinsichtlich aller notwendigen Schritte besitzen und zu jedem dieser Schritte geeignete Lösungs-Algorithmen kennen. Sie werden verfügbare Werkzeuge für typische auftretende Aufgaben kennenlernen und ihre Vor- und Nachteile kennen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Präsentation der Projektergebnisse (ca. 40 Min.) Prüfungssprache: Deutsch und/oder Englisch bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI,GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 12 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Interal	Interaktive Echtzeitsysteme				10-HCI=RIS-182-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informa		tik IX Institut für Informatik		tik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalta			,		

Dieser Kurs vermittelt Anforderungen, Konzepte und praktische Lösungen im Bereich hoch interaktiver Mensch-Computer-Systeme des perceptual computings, der Virtua*, Augmented und Mixed Reality, der Computerspiele und der Cyber-physical Systems. Aufgrund ihrer gemeinsamen Eigenschaften werden besagte Systeme in jüngster Zeit oftmals als Interaktive Echtzeit-Systeme (engl. Real-Time Interactive Systems (RIS)) bezeichnet. Der Kurs behandelt theoretische Modelle, leitet darauf Anforderungen des Anwendungsbereichs ab und stellt aktuelle und neuartige konzeptionelle und praktische Lösungen vor, um diese zu erfüllen.

Der erste Abschnitt des Kurses konzentriert sich auf konzeptuelle Prinzipien zur Charakterisierung von Echtzeit-Interaktiven Systemen. Bearbeitete Fragestellungen sind: Was sind die hauptsächlichen Anforderungen? Wie geht man mit multiplen Modalitäten um? Wie definiert man die zeitlichen Randbedingungen eines RIS? Warum ist das wichtig? Was muss man tun um zeitlichen Randbedingungen zu gewährleisten?

Im zweiten Abschnitt wird ein konzeptuelles Modell der erfolgskritischen Aspekte von Zeit, Latenzen, Prozessen und Ereignissen eingeführt, die notwendig sind, um das Verhalten eines Systems zu beschreiben.

Der dritte Abschnitt stellt den Anwendungs-Zustand vor, seine Anforderungen an Verteilung und Kohärenz sowie die Konsequenzen dieser Anforderungen an Entkopplung und Softwarequalität im Allgemeinen.

Der letzte Abschnitt behandelt potentielle Lösungen für Daten-Redundanz, Verteilung, Synchronisation und Interoperabilität.

Nebenbei werden verbreitete Ansätze für wiederkehrende Fragestellungen im Zuge der Entwicklung diskutiert. Dies beinhaltet Pipeline-Systeme, Szenengraphen, Anwendungsgraphen (alias Datenflussnetzwerke), Ereignis-basierte Systeme, Objekt- und Komponenten-Modelle etc. Alternative Konzepte wie das Aktor-Modell und Ontologien werden vorgestellt.

Theoretische und konzeptuelle Diskussionen finden in einem praktischen Kontext heutiger handels- und forschungsüblicher Systeme statt. Diese wären beispielsweiße X3D, Instant Reality, Unity3d, Unreal Engine 4, und Simulator X.

Qualifikationsziele / Kompetenzen

Nach Abschluss des Kurses besitzen die Teilnehmer fundiertes Wissen über die gegebenen Rahmenbedingungen, welche sich aus den physiologischen und psychologischen Charakteristika menschlicher Nutzer als auch aus den Architekturen und Eigenschaften heutiger Computersysteme ableiten. Die Teilnehmer werden aktuelle technische Lösungen einschätzen und beurteilen können. Sie werden in der Lage sein, geeignete Lösungsansätze und Werkzeuge für Aufgaben während der Entwicklung zu wählen. Ein solides theoretisches Fundament wird es ihnen ermöglichen, alternative Ansätze für zukünftige Interaktive Echtzeit-Systeme zu entwickeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI.

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 14 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Vgl. § 3 Abs. 3 S. 7 FSB.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Information Systems (2022)

Master (1 Hauptfach) Informatik (2023)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Modul	bezeich	nnung			Kurzbezeichnung
3D Point Cloud Processing					10-l=3D-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	atik XVII	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Laserscannen, Kinect und Kamera-Modelle, grundlegende Datenstrukturen (Listen, Arrays, OC-Bäume), Berechnung von Normalen, k-d Bäume, Registrierung, Features, Segmentierung, Tracking, Anwendungen auf Airbone Mapping, Anwendungen auf Mobile Mapping.

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen die grundlegenden Prinzipien aller Aspekte des 3D Point Cloud Processing und können mit Ingenieuren, Geometern, etc. kommunizieren. Sie können Probleme der modernen Sensordatenverarbeitung lösen und haben erfahren, dass echte Anwendungsszenarien eine Herausforderung bezüglich der rechentechnischen Anforderungen, der Speicheranforderungen und der Implementierungsfragen sind.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IS,LR,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulbezeichnung					Kurzbezeichnung
Advanced Automation					10-l=AA-152-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik VII	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Fortgeschrittene Themen der Automatisierungstechnik, sowie der Mess- und Regelungstechnik, beispielsweise aus dem Umfeld Sensordatenverarbeitung, Aktuatorik, kooperierende Systeme, Missions- und Trajektorienplanung.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse zu ausgewählten aktuellen Aspekten der Automatisierungstechnik. Sie beherrschen die Realisierung fortgeschrittener Automatisierungssysteme.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IT,IS,ES,LR,GE

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Space Science and Technology (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2015)

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulstudium (Master) Informatik (2019)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Algorit	hmisch	ne Geometrie			10-l=AG-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik I	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

In vielen Bereichen der Informatik -- z.B. Robotik, Computergrafik, Virtual Reality und Geografische Informationssysteme -- ist es notwendig räumliche Daten zu speichern, analysieren, erzeugen oder zu manipulieren. Diese Vorlesung beschäftigt sich mit algorithmischen Aspekten dieser Aufgaben: Wir werden Techniken erlernen, die man für den Entwurf und die Analyse geometrischer Algorithmen und Datenstrukturen benötigt. Jede Technik wird anhand eines Problems aus einem der oben genannten Anwendungsbereiche illustriert.

Qualifikationsziele / Kompetenzen

Die Studierenden können entscheiden, welche Algorithmen oder Datenstrukturen geeignet sind, um ein gegebenes geometrisches Problem zu lösen. Die Studierenden sind in der Lage neue Probleme zu analysieren und sich auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene effiziente Lösungen zu überlegen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT, HCI, GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 19 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Moduli	oezeich	inung	Kurzbezeichnung		
Ausgev	vählte	Kapitel des Games Engin	eering		10-I=AGE-182-m01
Modul	/erantv	vortung		anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informat	tik IX	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	lodule	
5	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte					
Ausgewählte Kapitel des Games Engineering.					

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen die prinzipielle Herangehensweise des Games Engineering. Sie können die Lösung von komplexen Problemen dieser Gebiete nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Modult	Modulbezeichnung Kurzbezeichnung					
Ausgev	Ausgewählte Kapitel des Games Engineering				10-I=AGE-191-m01	
Moduly	erantv	vortung		anbietende Einrich	itung	
Inhabe	r/-in de	es Lehrstuhls für Inform	atik IX	Institut für Informa	tik	
ECTS	Bewe	rtungsart	zuvor bestandene I	Module		
5	nume	rische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ster	weiterführend				
Inhalte						
Ausgev	vählte I	Kapitel des Games Engi	neering.			
Qualifi	kations	sziele / Kompetenzen				
					ineering. Sie können die Lösung agestellungen übertragen.	
Lehrve	ranstal	tungen (Art, SWS, Sprache so	ofern nicht Deutsch)			
V (2) +	Ü (2)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache	sofern nicht Deutsch / Turnus	s sofern nicht semesterweis	se / Bonusfähigkeit sofern möglich)	
Klausu fung (c	r kann a. 20 N	o-120 Min.) nach Ankündigung der l lin.) oder mündliche Gru	uppenprüfung (2 TN, c		durch eine mündliche Einzelpr etzt werden.	

bonusfähig Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE.

Prüfungssprache: Deutsch und/oder Englisch

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Modull	Modulbezeichnung				Kurzbezeichnung	
Algorithmen für Geographische Informationssysteme					10-I=AGIS-161-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Inhabe	r/-in de	es Lehrstuhls für Informa	atik I	Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Algorithmische Grundlagen geographischer Informationssysteme und deren Anwendung in ausgewählten Problemen bei der Erfassung, Verarbeitung, Analyse und Präsentation raumbezogener Information. Verfahren der diskreten und kontinuierlichen Optimierung. Anwendungen wie die Erstellung digitaler Höhenmodelle, die Arbeit mit GPS-Trajektorien, Aufgaben der räumlichen Planung sowie die kartographische Generalisierung.

Qualifikationsziele / Kompetenzen

Die Studierenden können algorithmische Probleme aus dem Anwendungsgebiet der geographischen Informationssysteme formalisieren sowie geeignete Lösungsansätze auswählen und weiterentwickeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,IS,HCI

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Ausgewählte Kapitel der Algorithmik				-	10-l=AKA-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik I	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene I	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Ausgewählte Kapitel der Algorithmik.

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen die prinzipielle Herangehensweise der Algorithmik. Sie können die Lösung von komplexen Problemen dieser Gebiete nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Modulbezeichnung					Kurzbezeichnung	
Ausge	wählte	Kapitel der Embedded S	Systems	-	10-I=AKES-161-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Studie	ndekan	ı/-in Informatik		Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Ausgewählte Kapitel der Embedded Systems.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über spezielle Kenntnisse im Bereich der Embedded Systems. Sie können die Lösung von komplexen Problemen dieses Bereiches nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: ES.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung
Ausgewählte Kapitel der HCI					10-l=AKHCl-182-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Inform	atik IX	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene l	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Ausgewählte Kapitel der HCI.

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen die prinzipielle Herangehensweise der Mensch-Computer Interaktion. Sie können die Lösung von komplexen Problemen dieser Gebiete nachvollziehen und auf verwandte Fragestellungen über-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}/S(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung	
Ausgewählte Kapitel der Informatik					10-l=AKII-182-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Studier	ndekan	/-in Informatik		Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule		
5	nume	rische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Ausgewählte Kapitel aus der Informatik.

Qualifikationsziele / Kompetenzen

Die Studierenden können die Lösung von komplexen Problemen der Informatik nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}/S(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) eXtended Artificial Intelligence (xtAl) (2020)

Master (1 Hauptfach) Informatik (2021)

Modull	Modulbezeichnung				Kurzbezeichnung
Ausgev	wählte	Kapitel der Intelligente	n Systeme		10-I=AKIS-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	atik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Ausgewählte Kapitel der Intelligenten Systeme.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über spezielle Kenntnisse im Bereich der Intelligenten Systeme. Sie können die Lösung von komplexen Systemen in diesem Gebiet nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IS.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Moduli	bezeich	nnung			Kurzbezeichnung
Ausgewählte Kapitel der Internet Technologie					10-I=AKIT-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	tik III	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
5 numerische Notenvergabe					
Modulo	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Ausgewählte Kapitel aus der Rechnerkommunikation, z.B. - Designaspekte zukünftiger Internetstrukturen: Aufbau und Kontrollstrukturen des Internets, Multicast-Protokolle, Protokolle zur Multimedia-Kommunikation, Optische Netze, Steuermechanismen für ausfallsichere und echtzeitfähige Kommunikationsnetze, P2P-Netze, Ad-Hoc Netze, oder - Neue Konzepte und Technologien in der Mobilkommunikation: Digitale Modulation, Signalausbreitung, Kanalcodierung, Moderne Übertragungstechnologien (Adaptive Modulation und Codierung, Hybrid ARQ, OFDM, MIMO), MAC Schicht, MobileIP, Routing in Ad-Hoc Netzen, Vertikaler Handover, UMTS IP Multimedia Subsystem oder - Planungs- und Managementmethoden in Telekommunikationsnetzen: Planungsmethoden (Forward Engineering, Reverse Engineering), Netzmanagementparadigmen (zentral und dezentral), Rahmenwerke zum Netzmanagement (IETF Traffic Engineering, ITU-T TMN, OSI-Management), Planungs- und Managementmethoden (IP Management Mechanismen, Netzdesign, Messung, Erfassung und Auswertung von Verkehrs- und Leistungsdaten, Visualisierung, Ereignisbehandlung, Simulation und Analyse von Netzen), Management Tools, Ausblick und Perspektiven, oder - andere aktuelle Themen

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Wissen fortgeschrittener und vor allem aktueller Themen aus dem Bereich Management und Design von modernen drahtgebundenen und drahtlosen Kommunikationssystemen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IT.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung				Kurzbezeichnung	
Ausgewählte Kapitel der IT-Sicherheit					10-I=AKITS-172-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS Bewertungsart zu		zuvor bestandene M	Nodule		
5	5 numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Ausgewählte Kapitel der IT-Sicherheit.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über spezielle Kenntnisse im Bereich der IT-Sicherheit. Sie können die Lösung von komplexen Systemen in diesem Gebiet nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE,IS,LR, HCI, ES.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modul	bezeich	nnung		Kurzbezeichnung	
Ausge	wählte	Kapitel der Luft- und Ra	umfahrttechnik		10-I=AKLR-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik VII			Institut für Informatik	
ECTS	ECTS Bewertungsart zuvor bestandene		zuvor bestandene M	Module	
5 numerische Notenvergabe					
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Ausgewählte Kapitel der Luft- und Raumfahrttechnik, z.B.: Satellitenkommunikation, Raketentechnik, Antriebssysteme, Sensoren und Aktuatoren zur Lageregelung, gestörte Umlaufbahnen, interplanetare Bahnen, Randezvous und Docking, Entwurf von Raumfahrzeugen, Entwurf von planetaren Basen, Lebenserhaltungssystem, spezielle Aspekte des Betriebs, Nutzlasten, optische Systeme, RADAR, Erdbeobachtung, Thermalhaushalt, Struktur von Raumfahrzeugen, Sondergebiete der Navigation, Weltraumumgebung, Umweltsimulation, Verifikation und Test von Raumfahrtsystemen, Weltraumastronomie und Planetenmissionen, Weltraummedizin und Biologie, Materialwissenschaften, Qualitätsmanagement, Raumfahrtrecht, Luftfahrt Themen, Avionics für Flugzeuge, Air trafic Control, Areal Navigation, Pilot-interfaces, Flugregelung, Flugmanagement

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über ein vertieftes Wissen über das jeweilige Thema des ausgewählten Bereichs und können diese Grundlagen in ihren zukünftigen Entwürfen von Luft- und Raumfahrtsystemen berücksichtigen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 33 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Informatik (2021) Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Modulbezeichnung				Kurzbezeichnung	
Ausgewählte Kapitel des Software Engineering				-	10-I=AKSE-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informati			atik II	Institut für Informatik	
ECTS	ECTS Bewertungsart zuv		zuvor bestandene M	Module	
5	nume	nerische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Ausgewählte Kapitel der Softwaretechnik.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse zu ausgewählten aktuellen Aspekten der Softwaretechnik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung
Ausgewählte Kapitel der Theorie					10-I=AKT-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	ntik I	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
5	5 numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Ausgewählte Kapitel der Theorie.

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen die prinzipielle Herangehensweise der Theoretischen Informatik. Sie können die Lösung von komplexen Problemen dieser Gebiete nachvollziehen und auf verwandte Fragestellungen übertragen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Modulbezeichnung					Kurzbezeichnung
Approximationsalgorithmen					10-l=APA-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik I			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Die Aufgabe eine optimale Lösung für ein gegebenes Problem zu ermitteln ist allgegenwärtig in der Informatik. Leider ist für eine Vielzahl solcher Probleme kein effizienter Algorithmus bekannt, der eine optimale Lösung ermittelt. In der Praxis verwendet man daher häufig Verfahren, die zwar nicht immer optimale aber dafür stets gute Lösungen liefern. In dieser Vorlesung beschäftigen wir uns mit Entwurfs- und Analysetechniken für Algorithmen, die eine nachweisbare Approximationsgüte besitzen. Es werden wichtige Entwurfstechniken wie beispielsweise Greedy, lokale Suche, Skalierung, und Methoden, die auf linearer Programmierung basieren, anhand konkreter Optimierungsprobleme vorgestellt.

Qualifikationsziele / Kompetenzen

Die Studierenden können einfache Approximationsverfahren bezüglich ihrer Güte analysieren. Sie verstehen grundlegende Entwurfstechniken, wie Greedy, lokale Suche, Skalierung sowie Methoden, die auf linearer Programmierung basieren, und können diese auch auf neue Probleme anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,IT,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulstudium (Master) Informatik (2019)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung					Kurzbezeichnung
Fortgeschrittenes Programmieren					10-l=APR-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalto					

Mit den in Einführungsvorlesungen vermittelten Grundkenntnissen der Programmierung ist es möglich, einfachere Programme zu realisieren. Sollen komplexere Probleme angegangen werden, kommt es zu suboptimalen Ergebnissen wie langen, unverständlichen Funktionen und Code-Duplikaten. In dieser Vorlesung soll weiterführendes Wissen vermittelt werden, wie man Programmen und Code eine sinnvolle Struktur geben kann. Außerdem werden weitere Themen aus den Bereichen Softwaresicherheit und parallele Programmierung besprochen.

Qualifikationsziele / Kompetenzen

Die Studierenden lernen fortgeschrittene Programmierparadigmen kennen. Verschiedene Muster werden dann in mehreren Sprachen implementiert und ihre Effizienz anhand von Standardmetriken gemessen. Darüber hinaus werden Konzepte der Parallelverarbeitung eingeführt, die in der Verwendung von GPU-Architekturen für extrem schnelle Verarbeitung gipfeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IS,LR, HCI, ES,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Modulbezeichnung					Kurzbezeichnung
Automatentheorie					10-l=AUT-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Endliche Automaten, reguläre Sprachen, sternfreie Sprachen, natürliche Äquivalenzrelation, Prädikatenlogik über Wörtern, Sprachakzeptierung durch Monoide, syntaktisches Monoid, prädikatenlogische und algebraische Charakterisierungen regulärer und sternfreier Sprachen, Zwei-Weg-Automaten.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten endliche Automaten, reguläre Sprachen, sternfreie Sprachen, natürliche Äquivalenzrelation, Prädikatenlogik über Wörtern, Sprachakzeptierung durch Monoide, syntaktisches Monoid, prädikatenlogische und algebraische Charakterisierungen regulärer und sternfreier Sprachen, Zwei-Weg-Automaten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT, IT, ES, HCI, GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Avionik Systeme					10-l=AVS-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik VIII			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalto					

Avionik-Systeme bietet eine Übersicht über Software, Hardware, Sensoren, Aktuatoren und Kommunikation bei Flugzeugen und Satelliten:

- 1. Softwaremodule und die Softwarestruktur
- 2. Steuerung
- 3. Bodenkontrolle
- 4. Sensoren und Aktuatoren
- 5. Sensorfusion
- 6. Verlässlichkeit

Qualifikationsziele / Kompetenzen

Nach dem Kurs sollen die Studenten typische Strukturen von Avionik-Systemen für Satelliten und Flugzeuge kennen. Sie sollen in der Lage sein, selbst grob solche zu entwerfen. Sie sollen in der Lage sein, eine einfache Steuerung zu programmieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: ES,LR

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 42 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	1

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung K					Kurzbezeichnung
Berechenbarkeitstheorie					10-l=BER-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Gödelisierungen, berechenbare Funktionen, entscheidbare und aufzählbare Mengen, Halteproblem, m-Reduzierbarkeit, kreative und produktive Mengen, relativierte Berechenbarkeit, Turing-Reduzierbarkeit, aufzählbare Grade, arithmetische Hierarchie.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Gödelisierungen, berechenbare Funktionen, entscheidbare und aufzählbare Mengen, Halteproblem, m-Reduzierbarkeit, kreative und produktive Mengen, relativierte Berechenbarkeit, Turing-Reduzierbarkeit, aufzählbare Grade, arithmetische Hierarchie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,SE,IT,IS,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 44 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	ĺ

Moduli	bezeich	nnung			Kurzbezeichnung	
Betriebssysteme					10-I=BS-161-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Batch, Time-Sharing, Realtime Virtuelle Maschinen, Systemaufrufe Prozesse und Threads, Kooperierende Prozesse, Scheduling-Disziplinen, Prozess-Synchronisation, Semaphore, Monitore, kritische Regionen, Deadlocks Dynamische Hauptspeicherverwaltung, Segmentierung, Seitenaustauschverfahren Dateisysteme, Schnittstellen, Verzeichnisstrukturen, netzbasierte Dateisysteme, Festplattenorganisation, Grundlagen MS-Betriebssysteme.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über die Kenntnisse und die praktischen Fähigkeiten zu Aufbau und Nutzung der wesentlichen Komponenten von Betriebssystemen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,ES,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modul	bezeich	nnung	Kurzbezeichnung		
Compilerbau					10-l=CB-161-m01
Modulverantwortung				anbietende Einrich	<u> </u> tung
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Lexikalische Analyse, Syntaktische Analyse, Semantik, Compilergeneratoren, Codegenerierung, Codeoptimierung.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse in der formalen Beschreibung von Programmiersprachen und deren Übersetzung. Sie sind in der Lage Transformationen zwischen ihnen mit Hilfe von endlichen Automaten, Kellerautomaten und, Compilergeneratoren durchzuführen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IT,IS,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 46 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Information Systems (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung K					Kurzbezeichnung
Datenbanken					10-l=DB-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalto					

Relationenalgebra und komplexe SQL-Statements; Datenbankentwurf und Normalformen, XML-Datenmodellierung; Transaktionsverwaltung

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse zu Datenmodellierung und -anfragen in SQL, Transaktionen sowie zur einfachen Datenmodellierung in XML.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IS, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Digital Humanities (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Physics International (2020)

Master (1 Hauptfach) Quantum Engineering (2020)

Master (1 Hauptfach) Quantum Engineering (2024)

Master (1 Hauptfach) Physics International (2024)

Modulbezeichnung Kurzbezeichnung					Kurzbezeichnung
Datenbanken 2				10-I=DB2-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Informatik Institut für Informatil			tik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Data Warehouses und Data Mining; Web-Datenbanken; Einführung in Datalog.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über fortgeschrittene Kenntnisse zu relationalen Datenbanken, XML und Data Mining.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IS, HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Wirtschaftsinformatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) eXtended Artificial Intelligence (xtAl) (2020)

Modulbezeichnung					Kurzbezeichnung
Deduk	Deduktive Datenbanken				10-l=DDB-172-m01
Modulverantwortung				anbietende Einrich	tung
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Syntax und Semantik von definiten und normalen Logikprogrammen; Modell-, Beweis- und Fixpunkttheorie; Bezug zu relationalen Datenbanken; Auswertungsmethoden für Datalog; Negation und Stratifizierung; Struktureigenschaften von Logikprogrammen: Rekursion, Äquivalenz, Transformation; Ausblick auf disjunktive Logikprogram-

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse im Umgang mit Datalog (inklusive Negation).

Sie können kompakt deklarative Anfragen in Datalog implementieren und existierende Programme hinsichtlich ihrer Äquivalenz und anderer Eigenschaften diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) eXtended Artificial Intelligence (xtAI) (2020)

Master (1 Hauptfach) Artificial Intelligence & Extended Reality (2024)

Modulbezeichnung				Kurzbezeichnung	
Data Mining					10-l=DM-161-m01
Modulverantwortung				anbietende Einrich	tung
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend		Ī			
Inhalte					

Grundlagen in folgenden Bereichen: Definition für Data Mining und Knowledge Discovery in Databases, Prozeßmodell, Beziehung zu Datawarehouse und OLAP Datenvorverarbeitung, Datenvisualisierung unüberwachte Lernverfahren (Cluster- und Assoziationsregelverfahren) überwachte Lernverfahren (u.a. Bayes Klassifikator, KNN, Entscheidungsbäume, Regellerner, SVM) Lernverfahren für besondere Datentype, Weitere Lernparadigmen

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das theoretische und praktische Wissen der typischen Verfahren und Algorithmen im Bereich des Data Mining und Maschinellen Lernens. Sie sind in der Lage, praktische Wissensentdeckungsprobleme mit Hilfe der vermittelten Methoden unter Anwendung des KDD-Prozesses zu lösen. Sie haben Erfahrungen in der Anwendung oder Umsetzung von Data Mining Algorithmen gesammelt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IT, IS, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Digital Humanities (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulbezeichnung				Kurzbezeichnung	
E-Learning					10-l=EL-161-m01
Modulverantwortung				anbietende Einrich	l tung
Inhabe	Inhaber/-in des Lehrstuhls für Informatik VI			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalto				

Lernparadigmen, Lernsystemtypen, Autorensysteme, Lernplattformen, Standards für Lernsysteme, Intelligente Tutorsysteme, Studentenmodellierung, Didaktik, Problemorientiertes Lernen und fallbasierte Trainingssysteme, Adaptive Tutorsysteme, Computer Supported Cooperative Learning, Evaluation von Lernsystemen.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über theoretisches und praktisches Wissen über E-Learning und können die Einsatzmöglichkeiten einschätzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IT,IS,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Medienkommunikation (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Moduli	Modulbezeichnung				Kurzbezeichnung
Entwur	f von p	lanetaren Basen und Or	bitalstationen		10-I=EPB-182-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik VIII			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte					

Vor dem Hintergrund einer zukünftigen Besiedlung des Sonnensystems soll in der Lehrveranstaltung auf die besonderen Aspekte zum Entwurf von planetaren Basen eingegangen und diese im Rahmen einer Studie näher untersucht werden. Damit wird der Entwurf eines sehr komplexen Raumfahrtsystems jenseits von einzelnen Komponenten, wie z.B. Satelliten, geübt. Das inhaltliche Ziel wird in jedem Semester neu festgelegt (z.B. Mondbasis, Marsbasis usw.) Die wichtigsten Aspekte wie Motivation, Ziele, Anforderungen, Randbedingungen, Umwelt, Standortbestimmung, Aufbau und Betriebsszenarien, Entwurf von Modulen und Anlagen, Lebenserhaltung, Energie, Kommunikation, Produktion, Transport zwischen Erde und Mond sowie Mobilität auf der Mondoberfläche usw. werden konzeptionell entworfen und untersucht.

Qualifikationsziele / Kompetenzen

Der/Die Studierenden erwerben grundlegende Kenntnisse zum Entwurf von planetaren Basen und Orbitalstationen. Sie sind in der Lage die elementaren Entwurfsaspekte zu analysieren, entsprechende Anforderungen aufzustellen und im Systementwurf zu berücksichtigen. Mit Hilfe der erworbenen Methodenkenntnisse sind sie fähig, dedizierte Werkzeuge und Verfahren zur Unterstützung des Entwurfs im Bereich der planetaren Basen und Orbitalstationen zu erstellen. Geübt wird auch das Projektmanagement für die Entwicklung von planetaren Basen und Orbitalstationen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Jedes Projekt wird nur einmal durchgeführt. Eine Wiederholung des Projekts mit demselben Thema findet nicht statt. Daher kann die Prüfung nur zu dem im Semester durchgeführten Projekt durchgeführt werden.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Vgl. § 3 Abs. 3 S. 8 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung					Kurzbezeichnung
Eingebettete Systeme					10-l=ES-161-m01
Modulverantwortung				anbietende Einrich	tung
Studiendekan/-in Informatik				Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalto				

Modelle eingebetteter Systeme, Implementierungstechniken (ASIC, AISIP, Mikrocontroller), Verifikation eingebetteter Systeme, Ablaufplanung statisch, periodisch und dynamisch, Bindungsprobleme Hardwaresynthese, Softwaresynthese.

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den technischen Möglichkeiten zum Entwurf eingebetteter Systeme vertraut und beherrschen die wichtigsten Techniken zur Modellierung, Verifikation und Optimierung solcher Systeme in Hardware wie in Software.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,SE,ES,LR,GE

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 54 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2023)

Moduli	bezeich	nnung			Kurzbezeichnung	
Flugsimulator					10-l=FSIM-182-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	er/-in de	es Lehrstuhls für Informa	atik VIII	k VIII Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

- Aufbau der A320 Cockpit - Instrumente in A320 Cockpit - Flugvorbereitung - Cold-and-Dark Start von A320 - Flugrouteneingabe - Flug- Durchführung - Taxing, Takeoff, Strecke, Landen, Taxing - Anomalien und Notfälle

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das technische, theoretische und praktische Wissen und Fertigkeiten, um einen Flug mit einem A320 durchzuführen. Wichtig: Dies ist keine Fluglizenz wir machen keinen Pilotenausbildung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Erfolgsüberprüfung für Master-Studierende separat.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Vgl. § 3 Abs. 3 S. 8 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung
Flugzeugbau					10-l=FZB-182-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informatik VIII			atik VIII	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalto				

- Aufbau eines RV12 Kleinflugzeug
- Elemente des RV12 (Aluminiumverarbeitung)
- Aufbau eines Projektteams
- Aufgaben und Verantwortungsverteilung
- Qualitätssicherung
- Dokumentation der Arbeiten
- Bauen einiger Elemente des RV12
- Marketing und PR-Aktivitäten

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Soft-Skills, Projektmanagementwissen und Erfahrung, für die Durchführung von komplexen und sicherheitskritischen Projekten. Die Studierenden verfügen über technisches, theoretisches und praktisches Wissen bezüglich Flugzeugbau. Die Studierenden üben handwerkliche Fähigkeiten in relevanten Bereichen des Flugzeugbaus z.B elektrische Systeme und Aluminiumverarbeitung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Vgl. § 3 Abs. 3 S. 8 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Informatik (2025)

Modul	Modulbezeichnung				Kurzbezeichnung
Game I	Game Research Lab - Applications				10-l=GRAP-182-m01
Modul	verantv	vortung		anbietende Einrich	tung
Inhabe	Inhaber/-in des Lehrstuhls für Informatik IX			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalto				

Die Game Research Labs sind projektorientierte Masterkurse. In Einklang mit der Definition des Games Engineering haben sie die zielorientierte Bereitstellung und systematische Verwendung von Prinzipien, Methoden und Werkzeugen für die arbeitsteilige, ingenieurmäßige Entwicklung und Anwendung von umfangreichen Softwaresystemen für Computerspiele zum Gegenstand. Es gibt vier verschiedene Richtungen der Game Research Labs: Theorie, Anwendung, Design und Architektur. Alle implementieren einen wissenschaftlichen Prozess, in dem die Studierenden Projekte auf Basis existierender Literatur und neuartiger Ideen entwickeln. Entsprechend sind allen Game Research Labs die Schritte der Recherche, der Konzeptentwicklung, seiner Umsetzung und Evaluation gemein. Die Schwerpunkte im Prozess werden aufgrund der Ausrichtung und des Umfangs des Projekts und der besonderen Anwendbarkeit gesetzt. Das "Game Research Lab - Applications" zielt auf die Weiterentwicklung und Innovation konkreter Anwendungen. Es gibt eine Menge möglicher Kategorien von Anwendungen, darunter Unterhaltung und Serious Games. Diese Anwendungskategorien wiederum eröffnen viele konkrete Anwendungsdomänen, bspw. Grundlagenforschung, Lehre/Training und Konstruktion. Neben der inhaltlichen Ausrichtung dient auch die Entwicklung entsprechender Anwendungen auf speziellen Zielplattformen, bspw. Video Konsolen, als Gegenstand dieses Kurses.

Qualifikationsziele / Kompetenzen

Einführende Kurse des Games Engineering, bspw. Interaktive Computergraphik, Mensch-Computer-Interaktion oder Spieleentwicklung (entspr. GameLab I) werden empfohlen. Die Game Research Labs ermöglichen es den Studierenden, wissenschaftlich relevante Themen im Detail nachzuvollziehen, ihre wissenschaftliche Arbeitsweise zu verbessern und ihre Expertise bzgl. konkreter Fragestellungen im Games Engineering zu vertiefen. Die inhaltlichen Kompetenzen des "Game Research Lab - Applications" umfassen Wissen und Fähigkeiten, den (agilen) Entwicklungszyklus von Games durchzuführen, den interdisziplinären Diskurs zu führen, um Spiele und interaktive Anwendungen für bestimmte Domänen zu entwickeln und plattformspezifische Anforderungen der Programmierung zu erlernen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE.

Vgl. § 3 Abs. 3 S. 7 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

__

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 58 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	ĺ

Master (1 Hauptfach) Informatik (2025)

Verwendung des Moduls in Studienfächern Master (1 Hauptfach) Informatik (2018) Master (1 Hauptfach) Informatik (2021) Master (1 Hauptfach) Informatik (2023)

Modull	bezeich	nnung		Kurzbezeichnung		
Game Research Lab - Architectures					10-I=GRAR-182-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Inhabe	er/-in de	es Lehrstuhls für Informa	atik IX	Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Die Game Research Labs sind projektorientierte Masterkurse. In Einklang mit der Definition des Games Engineering haben sie die zielorientierte Bereitstellung und systematische Verwendung von Prinzipien, Methoden und Werkzeugen für die arbeitsteilige, ingenieurmäßige Entwicklung und Anwendung von umfangreichen Softwaresystemen für Computerspiele zum Gegenstand. Es gibt vier verschiedene Richtungen der Game Research Labs: Theorie, Anwendung, Design und Architektur. Alle implementieren einen wissenschaftlichen Prozess, in dem die Studierenden Projekte auf Basis existierender Literatur und neuartiger Ideen entwickeln. Entsprechend sind allen Game Research Labs die Schritte der Recherche, der Konzeptentwicklung, seiner Umsetzung und Evaluation gemein. Die Schwerpunkte im Prozess werden aufgrund der Ausrichtung und des Umfangs des Projekts und der besonderen Anwendbarkeit gesetzt. Das "Game Research Lab - Architectures" behandelt Software Engineering Perspektiven im Games Engineering. Dazu zählt die Integration verschiedener Repräsentationen, Modelle, Kalküle und der Anspruch, diese effizient und gleichzeitig modular für Erweiterbarkeit, Pflege und vielseitige Einsatzweisen zu nutzen. So ergeben sich beispielsweise als Gegenstand der Projektarbeit die Auseinandersetzung mit existierenden Design Patterns in Game Engines, die funktionale Erweiterung oder die Überarbeitung existieren-

der (Sub-)Engines. Neben der Abbildung und Diskussion konkreter Architekturen, wird die Effektivität von Projekten bspw. auch durch Performanzanalysen von Profilern nachgewiesen. Die sich ergebenden Programmierschnittstellen sind ein weiteres wichtiges Feld, das im Rahmen des "Game Research Lab - Architectures" bearbeitet wird.

Qualifikationsziele / Kompetenzen

Die erfolgreiche Teilnahme an grundlegenden Kursen des Games Engineering wie GameLab II und III, komplementärer (bspw. Softwarequalität, Networked and Concurrent Programming) sowie weiterführender Kurse (bspw. Principles of Realtime Interactive Systems) werden empfohlen. Die Game Research Labs ermöglichen es den Studierenden, wissenschaftlich relevante Themen im Detail nachzuvollziehen, ihre wissenschaftliche Arbeitsweise zu verbessern und ihre Expertise bzgl. konkreter Fragestellungen im Games Engineering zu vertiefen. Die inhaltlichen Kompetenzen des "Game Research Lab - Architecture" umfassen Wissen und Fähigkeiten, mit und an der Architektur großer Softwaresysteme zu arbeiten, Software Engineering Ansätze im Games Engineering oder Programmierschnittstellen (bspw. über Domain-Specific Languages oder Visual Programming) zu innovieren sowie deren Effektivität zu dokumentieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE. Vgl. § 3 Abs. 3 S. 7 FSB.

Arbeitsaufwand

300 h

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 60 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

		_			
Le	h	rt	111	rn	110
LE		ш	ш		иэ

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung					Kurzbezeichnung	
Game Research Lab - Design					10-l=GRDE-182-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik IX			k IX Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
10	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester weiterführend						
Inhalte	Inhalte					

Die Game Research Labs sind projektorientierte Masterkurse. In Einklang mit der Definition des Games Engineering haben sie die zielorientierte Bereitstellung und systematische Verwendung von Prinzipien, Methoden und Werkzeugen für die arbeitsteilige, ingenieurmäßige Entwicklung und Anwendung von umfangreichen Softwaresystemen für Computerspiele zum Gegenstand. Es gibt vier verschiedene Richtungen der Game Research Labs: Theorie, Anwendung, Design und Architektur. Alle implementieren einen wissenschaftlichen Prozess, in dem die Studierenden Projekte auf Basis existierender Literatur und neuartiger Ideen entwickeln. Entsprechend sind allen Game Research Labs die Schritte der Recherche, der Konzeptentwicklung, seiner Umsetzung und Evaluation gemein. Die Schwerpunkte im Prozess werden aufgrund der Ausrichtung und des Umfangs des Projekts und der besonderen Anwendbarkeit gesetzt. Das Design virtueller Welten und Games steht im Mittelpunkt des "Game Research Lab - Design". Das umfasst insbesondere das Erstellen, den Import und die Darstellung komplexer sowie neuartiger Repräsentationen aus der Computergraphik, Sound & Musik und Haptik, deren (teil-)automatisierte Generierung, die Konzipierung und Ausgestaltung virtueller Umgebungen und Levels, die Darbietung und Ausgestaltung von Benutzerschnittstellen und innovativer Spielemechaniken.

Qualifikationsziele / Kompetenzen

Einführende Kurse des Games Engineering, bspw. Interaktive Computergraphik, Mensch-Computer-Interaktion, Asset Development oder Spieleentwicklung (entspr. GameLab I) werden empfohlen. Die Game Research Labs ermöglichen es den Studierenden, wissenschaftlich relevante Themen im Detail nachzuvollziehen, ihre wissenschaftliche Arbeitsweise zu verbessern und ihre Expertise bzgl. konkreter Fragestellungen im Games Engineering zu vertiefen. Im Fokus des "Game Research Lab - Design" stehen Wissen und Fähigkeiten der Gestaltung virtueller Welten und ihrer Darbietung. Dazu lernen die Studierenden bspw. sich mit einer Vielzahl existierender Softwarelösung im gestalterischen Bereich auseinanderzusetzen, weit verbreitete und hochspezialisierte Datenformate zu verstehen und programmatisch zu verwenden, sowie inhaltliche Konzepte der Interaktion und der Darstellung mit technischen Mitteln zu unterstützen und zu realisieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE.

Vgl. § 3 Abs. 3 S. 7 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 62 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Verwendung des Moduls in Studienfächern Master (1 Hauptfach) Informatik (2018) Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023) Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung					Kurzbezeichnung	
Game Research Lab - Theory					10-I=GRLT-182-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik IX			k IX Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
10	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetz	ungen			
1 Semester weiterführend -						
Inhalte	Inhalte					

Die Game Research Labs sind projektorientierte Masterkurse. In Einklang mit der Definition des Games Engineering haben sie die zielorientierte Bereitstellung und systematische Verwendung von Prinzipien, Methoden und Werkzeugen für die arbeitsteilige, ingenieurmäßige Entwicklung und Anwendung von umfangreichen Softwaresystemen für Computerspiele zum Gegenstand. Es gibt vier verschiedene Richtungen der Game Research Labs: Theorie, Anwendung, Design und Architektur. Alle implementieren einen wissenschaftlichen Prozess, in dem die Studierenden Projekte auf Basis existierender Literatur und neuartiger Ideen entwickeln. Entsprechend sind allen Game Research Labs die Schritte der Recherche, der Konzeptentwicklung, seiner Umsetzung und Evaluation gemein. Die Schwerpunkte im Prozess werden aufgrund der Ausrichtung und des Umfangs des Projekts und der besonderen Anwendbarkeit gesetzt. Theoretische Grundlagen des Games Engineering sowie deren Fortführung und Anwendung stehen im Fokus des "Game Research Lab - Theory". Das umfasst die Anwendung, Erweiterung und Innovation formaler Repräsentationen, Mathematik und Algorithmik bspw. in den Bereichen der Computergraphik, echtzeitfähiger physikalischer Berechnung oder künstlicher Intelligenz. Auch die Anwendung, Adaption und Innovation von Optimierungsansätzen, formale Prozessbeschreibungen und Verifikation im Kontext interaktiver Simulationen sind ebenfalls diesem Game Research Lab zugeordnet.

Qualifikationsziele / Kompetenzen

Einführende Kurse des Games Engineering, bspw. Interaktive Computergraphik, Asset Development und Interactive Artificial Intelligence werden empfohlen. Die Game Research Labs ermöglichen es den Studierenden, wissenschaftlich relevante Themen im Detail nachzuvollziehen, ihre wissenschaftliche Arbeitsweise zu verbessern und ihre Expertise bzgl. konkreter Fragestellungen im Games Engineering zu vertiefen. Im Fokus des "Game Research Lab - Theory" stehen formale Systeme und ihre Anwendung auf Fragestellungen des Games Engineering. Entsprechend werden die Studierenden sich tief in relevante Themen einlesen, um existierende theoretische Ansätze kennen und anwenden zu lernen. Durch die Anwendung auf die jeweiligen Fragestellungen werden Kompetenzen sowohl in der Theorie als auch im Games Engineering selbst erlernt bzw. intensiviert.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: GE.

Vgl. § 3 Abs. 3 S. 7 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 64 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Verwendung des Moduls in Studienfächern Master (1 Hauptfach) Informatik (2018) Master (1 Hauptfach) Informatik (2021) Master (1 Hauptfach) Informatik (2023) Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung				Kurzbezeichnung		
Einführung in die Mensch-Computer-Interaktion			Interaktion		10-I=HCI-161-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	er/-in de	es Lehrstuhls für Inform	atik IX	Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau weitere Vor		weitere Voraussetz	ungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Das Gebiet der Mensch-Computer-Interaktion beschäftigt sich mit dem Design, der Evaluation und der Implementierung interaktiver Computersysteme. Besonderes Augenmerk liegt auf den grundlegenden psychologischen und physiologischen Eigenschaften der menschlichen Benutzer, den technischen Prinzipien und Modellen heutiger Computersysteme sowie auf den sich daraus ableitenden Randbedingungen der Gestaltung gebrauchstauglicher und menschengerechter Interaktionen mit technischen Systemen.

Der Kurs behandelt Themen zur menschlichen Wahrnehmung und Kognition, zum Gedächtnis und zur Aufmerksamkeit, zum Entwurf interaktiver Systeme, zu verbreiteten Evaluationsmethoden, zu Prinzipien von Computersystemen, zu Techniken der Eingabeverarbeitung, zu Schnittstellentechnologien und zu typischen Interaktionsmetaphern, von textbasierten Eingaben über grafische Desktopanwendungen hin zu multimodalen Schnittstellen. Begleitende Praxisaufgaben vermitteln Studierende typische Methoden der Bedarfsanalyse, Prototypentwicklung und Evaluation.

Qualifikationsziele / Kompetenzen

Nach Abschluss des Kurses besitzen die Studierenden ein grundlegendes Verständnis der Entwurfsprinzipien für Schnittstellen zwischen menschlichen Nutzern und Computersystemen. Sie verstehen die Möglichkeiten und Beschränkungen von Technik und Benutzer und die Einsatzmöglichkeiten aktueller Benutzerschnittstellen und sie kennen sich mit den notwendigen Schritten benutzerzentrierten Designs und typischer Entwicklungsansätze aus.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Präsentation der Projektergebnisse (ca. 30 Min.) Prüfungssprache: Deutsch und/oder Englisch bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Digital Humanities (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 66 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung		
Interaktive Computergraphik				10-l=ICG-161-m01		
Modul	Modulverantwortung			anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik IX			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau weit		weitere Voraussetz	ungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Computergraphik-Methoden für digitales Synthesizing und die Manipulation visueller Inhalte. Dieser Kurs konzentriert sich speziell auf interaktive Graphik mit einem zusätzlichen Fokus auf 3D Graphik als eine Voraussetzung für viele aktuelle und innovative Mensch-Computer-Interfaces und Computer-Spiele. Der Kurs wird sich mit Licht und Bildern, Lighting Models, Datendarstellung, mathematischer Formulierung von Bewegungen, Projektion und Textur-Methoden beschäftigen. Theoretische Aspekte der Abläufe beim Ray-Tracing und die Raster Pipeline werden durch algorithmische Zugänge zu interaktiver Bildsynthese mit Computer-Systemen vervollständigt. Begleitende Software-Lösungen werden moderne Graphik-Pakete und -Sprachen wie OpenGL, GLSG und/oder DirectX benutzen.

Qualifikationsziele / Kompetenzen

Die Studierenden haben nach dem Kurs ein breites Verständnis der der Computergraphik zu Grunde liegenden theoretischen Modelle. Sie können eine bedeutende Vielzahl dieser Modelle implementieren, um ihre eigene interaktive Graphikanwendung zu bauen und dafür die richtige Software auszuwählen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) eXtended Artificial Intelligence (xtAI) (2020)

Master (1 Hauptfach) Informatik (2021)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 68 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Bachelor (1 Hauptfach) Mathematik (2023)

Modulbezeichnung					Kurzbezeichnung	
Information Retrieval					10-I=IR-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Informatik			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau weitere Voraussetz		ungen				
1 Semester weiterführend						
Inhalte	Inhalte					

IR Modelle (z.B. Boolesches- und Vektorraum-Modell, Evaluation), Verarbeitung von Text (Tokenizing, Texteigenschaften), Datenstrukturen (z.B. Invertierter Index), Anfrageelemente (z.B. Anfrage-Operationen, Relevance Feedback, Anfragesprachen und -paradigmen, Strukturelle Anfragen), Suchmaschine (z.B. Architektur, Crawling, Interfaces, Link-Analyse), Methoden zur Unterstützung des IR (z.B. Empfehlungssysteme, Text-Clustering und -Klassifikation, Informations-Extraktion)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über theoretisches und praktisches Wissen im Bereich des Information Retrieval und erhalten das technische Know-how um eine Suchmaschine erstellen zu können.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IT,IS,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Digital Humanities (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung				Kurzbezeichnung	
Kryptografie und Datensicherheit					10-I=KD-161-m01
Modulverantwortung				anbietende Einrichtung	
Studier	ndekan	/-in Informatik		Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzu			weitere Voraussetz	ungen	
1 Semester weiterführend					
Inhalte					

Private-Key-Kryptosysteme, Vernam-One-Time-Pad, AES, perfekte Sicherheit, Public-Key-Kryptosysteme, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digitale Signatur, Challenge-Response-Verfahren, Secret Sharing, Millionärsproblem, Secure Circuit Evaluation, homomorphe Verschlüsselung.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Private-Key-Kryptosysteme, Vernam-One-Time-Pad, AES, perfekte Sicherheit, Public-Key-Kryptosysteme, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digitale Signatur, Challenge-Response-Verfahren, Secret Sharing, Millionärsproblem, Secure Circuit Evaluation, homomorphe Verschlüsselung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulbezeichnung					Kurzbezeichnung
Künstliche Intelligenz 1				-	10-l=Kl1-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Informa	ntik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
1114.	1-1-14-				

Intelligente Agenten, uninformierte und heuristische Suche, Constraint Problem Solving, Suche mit partieller Information, Aussagen- und Prädikatenlogik und Inferenz, Wissensrepräsentationen.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über theoretisches und praktisches Wissen über die Künstliche Intelligenz im Bereich Agenten, Suche und Logik und können ihre Einsatzmöglichkeiten einschätzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,SE,IS,HCI

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Physics International (2020)

Master (1 Hauptfach) Quantum Engineering (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Künstl	Künstliche Intelligenz 2				10-l=Kl2-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Informa	atik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend		1			
Inhalte	Inhalto				

Planen, Probabilistisches Schließen und Bayessche Netze, Nutzentheorie und Entscheidungsprobleme, Lernen aus Beobachtungen, Wissen beim Lernen, neuronale Netze und statistische Lernmethoden, Verstärkungslernen, Verarbeitung natürlicher Sprache.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über theoretisches und praktisches Wissen über die Künstliche Intelligenz im Bereich Probabilistisches Schließen, Lernen und Sprachverarbeitung und können ihre Einsatzmöglichkeiten einschätzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,SE,IS,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Modulbezeichnung					Kurzbezeichnung
Komplexitätstheorie					10-l=KT-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau v		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalto				

Komplexitätsmaße und -klassen, allgemeine Beziehungen zwischen Raum- und Zeitklassen, Speicherplatz versus Rechenzeit, Determinismus versus Nichtdeterminismus, Hierarchiesätze, Translationstechnik, P-NP-Problem, vollständige Probleme, Turing-Reduktionen, Relativierbarkeit, interaktive Beweissysteme.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Komplexitätsmaße und -klassen, allgemeine Beziehungen zwischen Raum- und Zeitklassen, Speicherplatz versus Rechenzeit, Determinismus versus Nichtdeterminismus, Hierarchiesätze, Translationstechnik, P-NP-Problem, vollständige Probleme, Turing-Reduktionen, Relativierbarkeit, interaktive Beweissysteme.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, IT, IS, ES, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulbezeichnung					Kurzbezeichnung
Komplexitätstheorie II					10-l=KT2-161-m01
Modulverantwortung				anbietende Einrich	<u> </u> tung
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalto				

Eigenschaften NP-vollständiger Mengen, Autoreduzierbarkeit, interaktive Beweissysteme, Polynomialzeithierarchie, Komplexität probabilistischer Algorithmen.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Eigenschaften NP-vollständiger Mengen, Autoreduzierbarkeit, interaktive Beweissysteme, Polynomialzeithierarchie, Komplexität probabilistischer Algorithmen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, ES

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Moduli	bezeich	nnung		Kurzbezeichnung	
Logische Programmierung					10-I=LP-172-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	atik I	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Logisch-relationales Programmierparadigma, Top-down-Auswertung mit SLD(NF)-Resolution. Einführung in die logische Programmiersprache Prolog: Rekursion, prädikatenorientiertes Programmieren, Backtracking und Cut, Seiteneffekte, Aggregationen. Verbindung zu (deduktiven) Datenbanken. Vergleich mit Datalog und kurze Einführung weitergehender Konzepte wie Constraint Logic Programming.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse im Bereich der Logikprogrammierung. Sie können kompakte und deklarative Programme in Prolog implementieren und diesen Lösungsansatz zur klassischen imperativen Programmierung abgrenzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Leistu	Leistungsbewertung verteilter Systeme				10-l=LVS-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik III	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend			-		
Inhalte	Inhalto				

Verkehrstheoretische Modelle, Grundbegriffe der Wahrscheinlichkeitstheorie, Transformationsmethoden, Stochastische Prozesse, Methodik zur Leistungsuntersuchung technischer Systeme, Warteschlangen-/Verkehrstheorie, Analyse Markovscher, nicht- Markovscher und zeitdiskreter Systeme, Matrixanalytische Methode, Anwendungsbeispiele zur Leistungsanalyse von Rechnersystemen und -netzen: Durchsatz- und Durchlaufzeitanalyse und andere Charakteristiken.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen danach über das methodische Wissen und die praktischen Fähigkeiten zur Modellierung technischer Systeme mit Mitteln der Wahrscheinlichkeitstheorie und der mathematischen Statistik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,IT,GE

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 79 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Modulbezeichnung					Kurzbezeichnung
Medizinische Informatik					10-l=Ml-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	itik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

elektronische Patientenakte, Kodierung medizinischer Daten, Krankenhausinformationssysteme, Einsatz von Computern auf Stationen und Funktionseinheiten, Medizinische Entscheidungsfindung und -unterstützungssysteme, Statistik und Data Mining in der medizinischen Forschung, fallbasierte Trainingssysteme in der medizinischen Ausbildung.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über theoretisches und praktisches Wissen über den Einsatz von Informatik-Methoden in der Medizin.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IT,IS,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Mathematische Logik					10-l=ML-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	ı/-in Informatik		Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalto				

Aussagenlogik, Prädikatenlogik der 1. Stufe, Folgern und Ableiten, Gödelscher Vollständigkeitssatz, Satz von Tarski, Gödelscher Unvollständigkeitssatz, Nichtentscheidbarkeit und Nichtaxiomatisierbarkeit der elementaren Arithmetik.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Aussagenlogik, Prädikatenlogik der 1. Stufe, Folgern und Ableiten, Gödelscher Vollständigkeitssatz, Satz von Tarski, Gödelscher Unvollständigkeitssatz, Nichtentscheidbarkeit und Nichtaxiomatisierbarkeit der elementaren Arithmetik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,SE,IS,ES

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Machir	ne Lear	ning for Natural Langua	ge Processing		10-I=NLP-182-m01
Moduly	Modulverantwortung			anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Module	Moduldauer Niveau w		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Die Vorlesung vermittelt fortgeschrittenes Wissen zu Techniken der maschinellen Textverarbeitung. Dazu werden aktuelle Modelle und Methoden des maschinellen Lernens sowie deren technische Hintergründe vorgestellt und ihre jeweiligen Anwendungsmöglichkeiten in der Textverarbeitung aufgezeigt. Als eine wichtige Grundlage moderner NLP-Techniken werden zunächst verschiedene Techniken zum Lernen von Wortrepräsentationen, sogenannten Word Embeddings, vermittelt. Darauf aufbauend werden unter anderem Modelle aus dem Bereich des Deep Learning, wie CNNs, RNNs und Sequence-to-Sequence-Architekturen, behandelt. Auch die theoretischen

Grundlagen dieser Modelle, wie das Training durch Backpropagation, werden ausführlich beleuchtet. Für alle behandelten Modelle wird gezeigt, wie sie in der Praxis für konkrete Probleme wie Sentiment Analysis, Textgenerierung und maschinelle Übersetzung eingesetzt werden.

Qualifikationsziele / Kompetenzen

Die Teilnehmer besitzen fundiertes Wissen über Probleme und Techniken im Bereich der maschinellen Textverarbeitung und sind in der Lage, selbständig geeignete Methoden für konkrete Probleme zu identifizieren und anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

__

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, IS, HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Entwu	Entwurf und Analyse von Programmen				10-l=PA-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau w		weitere Voraussetzungen		
1 Semester weiterführend					

Programmanalyse, Modellbildung in der Softwaretechnik, Programmqualität, Test von Programmen, Prozessmodelle.

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen es, Programme zu analysieren, Testgerüste und Metriken einzusetzen sowie die Programmqualität zu beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IS,ES,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Physics International (2020)

Master (1 Hauptfach) Quantum Engineering (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Modulbezeichnung					Kurzbezeichnung
Performance Engineering & Benchmarking von Computersy			rking von Computers	/stem	10-I=PEB-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik II	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalto				

Einführung in Performance-Engineering von betrieblichen Softwaresystemen, Performance-Messtechniken, Benchmarking von betrieblichen Softwaresystemen, Modellierung zur Performanz-Vorhersage, Fallstudien.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse auf den Gebieten Performance-Metriken, Messverfahren, mehrfaktorielle Varianzanalyse, Datenanalyse mit R, Benchmarking-Ansätze, Modellierung mit Warteschlangennetze, Modellierungsmethodiken, Ressourcen-Demand Schätzverfahren, Petri-Netze.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IT,ES,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Modull	bezeich	nung			Kurzbezeichnung	
Probabilistische Inferenz					10-I=PI-172-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	Studiendekan/-in Informatik			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau weiter		weitere Voraussetz	ungen		
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Englische Inhaltsangabe verfügbar aber noch nicht übersetzt.

Introduction, Review, and Decision Theory, Independence, Belief Networks, Markov Networks, Factor Graphs, Inference in Trees, Maximum likelihood, Learning Markov Random Fields, Approximate Inference, Sampling, Support Vector Machines, Computer Vision Kernels, Gaussian Processes

Qualifikationsziele / Kompetenzen

Englische Kompetenzbeschreibung verfügbar aber noch nicht übersetzt.

The students are able to master probabilistic inference and to program small python programs for applying these methods.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, IT, IS, HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modul	bezeich	nnung	Kurzbezeichnung		
Profes	Professionelles Projektmanagement in der Praxis				10-l=PM-182-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Informa	atik III	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weite		weitere Voraussetz	weitere Voraussetzungen		
1 Semester weiterführend		Es wird empfohlen, das Modul 10-I=PRJAK parallel zu absolvieren.			
Inhalte	Inhalto				

Projektziele, Projektauftrag, Projekterfolgskriterien; Businessplan; Umfeldanalyse und Stakeholdermanagement; Initialisierung, Definition, Planung, Durchführung/Steuerung, Abschluss von Projekten; Reporting, Projektkommunikation und -marketing; Projektorganisation, Teambildung und -entwicklung; Chancen- und Risikomanagement; Konflikt- und Krisenmanagement; Change- und Claimmanagement; Vertrags- und Beschaffungsmanagement; Qualitätsmanagement; Arbeitstechniken, Methoden und Tools; Führungskompetenzen und soziale Kompetenzen im Projektmanagement; Programmmanagement, Multiprojektmanagement, Projektportfoliomanagement, PMOs; Besonderheiten von Softwareprojekten; Agiles Projektmanagement/SCRUM; Kombination von klassischen und agilen Methoden.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen danach über praxisrelevantes Wissen über Themen des Produktionsmanagements und/oder professionellen Projektmanagements. Sie kennen die kritischen Erfolgskriterien und können ein Projekt initiieren, definieren, planen, steuern und nachbetrachten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IT, IS, ES, LR, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Management (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Exchange Austauschprogramm Wirtschaftswissenschaft (2022)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 88 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	ĺ

Modulbezeichnung					Kurzbezeichnung
Programmieren mit neuronalen Netzen			en		10-I=PNN-182-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Übersicht über NN, Implementierung wichtiger NN-Architekturen wie FCN, CNN und LSTMs, praktische Anwendungsbeispiele für die NN-Architekturen, u.a. im Bereich der Bild- und Sprachverarbeitung.

Qualifikationsziele / Kompetenzen

Kenntnisse zu Einsatzmöglichkeiten und Grenzen von NN, zu wichtigen Architekturen (u.a. FCN, CNN, LSTM) und wie sie in NN-Tools wie Tensorflow/Keras implementiert sind, zur Fähigkeit der Nachprogrammierung von Netzstrukturen aus der Literatur, zur Datenaufbereitung und zum Lösen konkreter Aufgaben für NN.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IT, IS, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung	Kurzbezeichnung
Praktikum - Aktuelle Themen der Informatik	10-I=PRAK-161-m01

Modulverantwortung anbietende Einrichtung

Studiendekan/-in Informatik Institut für Informatik

ECTS Bewertungsart zuvor bestandene Module

10 bestanden / nicht bestanden -
Moduldever Nickery vertexenterungen

ModuldauerNiveauweitere Voraussetzungen1 Semesterweiterführend--

Inhalte

Bearbeitung einer Praktikumsaufgabe.

Qualifikationsziele / Kompetenzen

Das Praktikum befähigt die Teilnehmer eine Fragestellung der Informatik im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Hausarbeit (5-15 S.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS, ES, LR, HCI, GE

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung	
Projekt - Aktuelle Themen der Informatik			atik		10-I=PRJAK-162-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Studie	ndekan	/-in Informatik		Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Seme	ester	weiterführend				

Bearbeitung einer Projektaufgabe (in Gruppen).

Qualifikationsziele / Kompetenzen

Das Projekt befähigt die Teilnehmer eine Fragestellung der Informatik im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Jedes Projekt wird nur einmal durchgeführt. Eine Wiederholung des Projekts mit demselben Thema findet nicht statt. Daher kann die Prüfung nur zu dem im Semester durchgeführten Projekt durchgeführt werden.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS, ES, LR, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Management (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Medienkommunikation (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung Kurzbezeic				Kurzbezeichnung	
Praktikum Raketentechnik und Nutzlasten			sten		10-I=PRT-182-m01
Modul	verantv	vortung		anbietende Einrich	tung
Inhabe	r/-in de	es Lehrstuhls für Informat	ik VIII	Institut für Informat	ik
ECTS	Bewe	rtungsart	zuvor bestandene M	lodule	
10	besta	nden / nicht bestanden			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Seme	ester	weiterführend			
Inhalte	•				
Im Praktikum Raketentechnik und Nutzlasten sollen Studierende praktische Erfahrungen in der Planung, Bau, Ausführung und der Auswertung von Raketenexperimenten (inklusive ihrer Nutzlasten) erlangen. Ziel ist der Entwurf, Bau und Test von Raketenexperimenten mit Nutzlasten.					
Qualifikationsziele / Kompetenzen					
Die Stu	ıdieren	den erwerben grundleger	nde Kenntnisse zum I	Entwurf von Raketen	experimenten, grundlegende

Werkzeuge und Verfahren in größeren Projekten anzuwenden. **Lehrveranstaltungen** (Art, SWS, Sprache sofern nicht Deutsch)

P (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Kenntnisse zu Raketentechnik inkl. Startvorbereitungen sowie zur Durchführung. Sie sind in der Lage die elementaren Entwurfsaspekte von Raketennutzlasten zu analysieren, entsprechende Anforderungen aufzustellen und im Entwurf zu berücksichtigen. Mit Hilfe der erworbenen Methodenkenntnisse sind sie fähig, dedizierte

Praktikumsbericht (4-5 S.) und Präsentation der Ergebnisse (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Vgl. § 3 Abs. 3 S. 8 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Modulbezeichnung					Kurzbezeichnung
Rechnerarchitektur					10-l=RAK-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Informatik		Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau wei		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalta	Inhalta				

Befehlssatzarchitekturen, Befehlsverarbeitung durch Pipelining, Statisches und dynamisches Instruction Scheduling, Caches, Vektorprozessoren, Mehrkernprozessoren

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen die wichtigsten Techniken beim Entwurf schneller Rechner und deren Wechselwirkung mit Compilern und Betriebssystemen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IT, ES, LR, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung
Rechnerarithmetik					10-l=RAM-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalta				

Räume des numerischen Rechnens, Raster und Rundungen, Definition und Implementierung der Rechnerarithmetik und Intervallrechnung

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse der Räume des numerischen Rechnens, Raster und Rundungen, Definition und Implementierung der Rechnerarithmetik und Intervallrechnung. Sie beherrschen die Anwendung der Algorithmen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,ES

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Moduli	bezeich	inung		Kurzbezeichnung	
Rechnernetze und Kommunikationssysteme			steme		10-l=RK-161-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	tik III	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modulo	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Merkmale von Rechner- und Kommunikationssystemen: Vermittlungsprinzipien und Datenverkehr in verteilten Systemen. Leistungsanalyse von Rechnernetzen und Kommunikationssystemen: Problemstellung und Einführung in die Methodik Architektur und Struktur von Rechnernetzen: Netzstruktur, Netzzugang, Zugriffsverfahren, digitale Übertragungshierarchien, Datenflusssteuerung und Verkehrslenkung, Verbindungsnetzwerke, Vermittlungssysteme. Kommunikationsprotokolle: Grundprinzip und ISO- Architekturmodelle. Internet: Struktur und Grundmechanismen, TCP/IP, Routing, Network Management. Mobile Kommunikationsnetze: Grundkonzepte, GSM, UMTS. Zukünftige Kommunikationssysteme und -netze.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über ausführliche Kenntnisse über Struktur und Architektur von Rechnernetzen und Kommunikationssystemen, sowie über grundlegende Verfahren zur Bewertung dieser Systeme.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IT, ES, LR.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Robotics 1					10-l=RO1-182-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik XVII			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Vorgeschichte, Einsatzfelder und Charakteristika von Robotern, Direkte Kinematik von Manipulatoren: Koordinatensysteme, Rotationen, Homogene Koordinaten, Achskoordinaten, Armgleichung. Inverse Kinematik: Lösungseigenschaften, Endeffektor-Konfiguration, numerische und analytische Ansätze, Beispiele verschiedener Roboter zu analytischen Ansätzen. Arbeitsraumanalyse und Trajektorienplanung, Dynamik von Manipulatoren: Lagrange-Euler Modell, Direkte und inverse Dynamik. Mobile Roboter: Direkte und inverse Kinematik, Antriebstypen, Dreirad, Ackermann-Steuerung, Holonome und nichtholonome Beschränkungen, Kinematische Klassifizierung mobiler Roboter, Posture kinematic model. Bewegungssteuerung und Pfadplanung: Roadmap-Methoden, Zelldekompositionsmethoden, Potentialfeldmethoden. Sensorik: Positionssensoren, Geschwindigkeitssensoren, Abstandssensoren

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen die Grundlagen von Robotermanipulatoren und -fahrzeugen und kennen insbesondere deren Kinematik und Dynamik sowie die Planung von Pfaden und Arbeitsabläufen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-90 Min.)

Erfolgsüberprüfung für Master-Studierende separat.

Prüfungssprache: Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IS, ES, LR, HCI, GE.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Moduli	Modulbezeichnung				Kurzbezeichnung
Robotics 2					10-l=RO2-152-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	itik XVII	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Grundlagen zu dynamischen Systemen, Steuerbarkeit und Beobachtbarkeit, Reglerentwurf durch Polzuweisung: Zustandsrückführung, Ausgangsrückführung, Beobachterentwurf, Zustandsrückführung mit Beobachter, Zeitdiskrete Systeme, Stochastische Systeme: Grundlagen der Stochastik, Zufallsprozesse, stochastische dynamische Systeme, Kalmanfilter: Herleitung, Initialisierung, Anwendungsbeispiele, Probleme des Kalmanfilters, erweiterter Kalmanfilter

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen alle notwendigen Grundlagen für das Verständnis des Kalmanfilters und dessen Einsatz in Anwendungen der Robotik. Sie verfügen über Kenntnisse fortgeschrittener Regler- und Beobachterentwurfsmethoden und erkennen die Zusammenhänge zwischen den dualen Paaren Steuerbarkeit-Beobachtbarkeit und Regler- und Beobachterentwurf sowie die Beziehung zwischen Kalmanfilter als Zustandsschätzer und einem Beobachter.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-90 Min.)

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IT, ES, LR

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Space Science and Technology (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2015)

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 98 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Moduli	bezeich	nnung			Kurzbezeichnung	
Raumfahrtsystementwurf					10-I=RSE-182-m01	
Modulverantwortung				anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik VIII			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	dene Module		
10	nume	rische Notenvergabe				
Moduldauer Niveau weitere Voraus			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Im Rahmen des Semesterprojekts wird ein Raumfahrtsystem im Team entworfen. Die Auswahl des Raumfahrtsystems erfolgt jedes Semester neu und lehnt sich an aktuelle Entwicklungen und konkrete Forschungsthemen an, oft aus dem Bereich der Kleinsatellitenmissionen, beispielsweise "Entwurf einer Nanosatellitenmission für die Detektion und Beobachtung des Transient Lunar Phenomenons (TLP).

Qualifikationsziele / Kompetenzen

Der/Die Studierenden erwerben grundlegende Kenntnisse zum Entwurf von Raumfahrtsystemen. Sie sind in der Lage die elementaren Entwurfsaspekte zu analysieren, entsprechende Anforderungen aufzustellen und im Systementwurf zu berücksichtigen. Mit Hilfe der erworbenen Methodenkenntnisse sind sie fähig, dedizierte Werkzeuge und Verfahren zur Unterstützung des Entwurfs im Bereich der Raumfahrtsysteme zu erstellen. Geübt wird auch das Projektmanagement für die Entwicklung von Raumfahrtsystemen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektbericht (10-15 S.) und Präsentation des Projekts (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV (Jedes Projekt wird nur einmal durchgeführt. Eine Wiederholung des Projekts mit demselben Thema findet nicht statt. Daher kann die Prüfung nur zu dem im Semester durchgeführten Projekt durchgeführt werden.)

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: LR.

Vgl. § 3 Abs. 3 S. 8 FSB.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung					Kurzbezeichnung
Software-Architektur					10-l=SAR-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weite			weitere Voraussetz	ungen	
1 Semester weiterführend					
Inhalte	Inhalte				

Einführung in die Softwarearchitektur, Architekturstile und -muster, Softwaremetriken, Evaluierung von Architekturstilen, Softwarekomponenten, Interface Modelle und Designrichtlinien, Design-by-Contract, komponentenbasierte Entwicklung, serviceorientierte Architektur, Microservices, Skalierbarkeit von Datenbanken, Cloud-native und Serverless Computing, Continuous Integration, Continuous Delivery, Continuous Deployment, modellgetriebene Architektur

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende und anwendbare Kenntnisse über fortgeschrittene Themen der Softwaretechnik mit Fokus auf moderne Softwarearchitekturen und Ansätze zur modellgetriebenen Softwareentwicklung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: SE,IT,ES

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Modulstudium (Master) Informatik (2019)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 101 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Information Systems (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Management (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Information Systems (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Information Systems (2025)

Master (1 Hauptfach) Management (2025)

Master (1 Hauptfach) Informatik (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Seminar 1 - Aktuelle Themen der Informatik			rmatik		10-l=SEM3-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau weitere Voraussetzungen				
1 Semester weiterführend					
Inhalte	Inhalto				

Selbständige Aufarbeitung eines aktuellen Themas aus der Informatik auf der Basis von Literatur und ggf. Software mit schriftlicher und mündlicher Präsentation.

Qualifikationsziele / Kompetenzen

Die Studierenden besitzen die Fähigkeit, ein aktuelles Thema aus der Informatik selbständig zu erarbeiten, das Wesentliche schriftlich zusammenzufassen und mündlich ansprechend zu präsentieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Hausarbeit (10-15 S.) und Präsentation (30-45 Min.) mit anschließender Diskussion zu einem Thema aus der Informatik

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS, ES, LR, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Digital Humanities (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Seminar 2 - Aktuelle Themen der Informatik					10-I=SEM4-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	ı/-in Informatik		Institut für Informat	tik
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz			weitere Voraussetz	ungen	
1 Semester weiterführend					
Inhalte					

Selbständige Aufarbeitung eines aktuellen Themas aus der Informatik auf der Basis von Literatur und ggf. Software mit schriftlicher und mündlicher Präsentation.

Qualifikationsziele / Kompetenzen

Die Studierenden besitzen die Fähigkeit, ein aktuelles Thema aus der Informatik selbständig zu erarbeiten, das Wesentliche schriftlich zusammenzufassen und mündlich ansprechend zu präsentieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Hausarbeit (10-15 S.) und Präsentation (30-45 Min.) mit anschließender Diskussion zum Seminarthema Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT, SE, IT, IS, ES, LR, HCI, GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Modulbezeichnung					Kurzbezeichnung
Spacecraft System Design					10-l=SSD-152-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	r/-in de	es Lehrstuhls für Informa	tik VII	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	8 numerische Notenvergabe				
Moduldauer Niveau w			weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Einleitung: Geschichte der Raumfahrt, Systemdesign eines Raumfahrzeugs. Space Dynamics: Zwei-Körper-Dynamik, Keplersche Orbits, Störungskräfte, Transferorbits. Missionsanalyse: Erd- und Sonnensynchrone Orbits, Schattenzeiten, Sonneninzidenz. Thermische Kontrolle von Satelliten: Thermische Analyse, Thermisches Design und Technologien, Verifikation des Thermischen Designs, Telekommunikation: Bodenkontakt-Analyse, Datenübertragung, Satellitenmonitoring (Telemetrie, Telekommando). Struktur und Mechanismen. Energiesysteme: Primäre, Sekundäre, Management, Energieerzeugung: Solarzellen. On-Board-Datenverarbeitung. Antriebssysteme. Tests (Mechanisch, Elektrisch). Betrieb von Raumfahrzeugen. Bodensegment.

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen Systemaspekte bei der Auslegung technischer Systeme. Am Beispiel von Raumfahrzeugen werden wesentliche Untersysteme und deren Integration in ein funktionierendes Gesamtsystem analysiert.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: ES, LR

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Space Science and Technology (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2015)

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Modulbezeichnung					Kurzbezeichnung	
Sicherheit von Softwaresystemen					10-l=SSS-172-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik II			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau weitere V			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Die Vorlesung gibt eine Übersicht über häufig auftretende Schwachstellen in Software, aktuellen Angriffstechniken gegen moderne Computersysteme, sowie Schutzmaßnahmen. In der Veranstaltung werden folgende Themen behandelt:

- x86-64-Befehlssatz und Assembly-Programmierung
- Angriffe zur Programmlaufzeit (Einschleusen oder Wiederverwenden von Code, Verteidigungsmaßnahmen)
- Sicherheit im Web
- **Blockchains und Smart Contracts**
- Angriffe über Seitenkanäle
- Hardwaresicherheit

Qualifikationsziele / Kompetenzen

Die Studierenden erhalten detaillierte Kenntnisse über Softwaresicherheit, von Hardware-basierten und hardwarenahen Angriffen bis hin zu modernen Konzepten wie Blockchains. Durch die Vorlesung wird auf die Forschung im Bereich Sicherheit und Datenschutz vorbereitet, während die Übungen den Studierenden erlauben, selbst Angriffe zu simulieren und somit die Analyse von Systemen aus der Perspektive der Angreifer zu trainieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + Ü (2)

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE,IS,LR, HCI, ES. Grundlegende Programmierkenntnisse in C werden vorausgesetzt.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Informatik (2018)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-	Seite 106 / 128
	Datensatz Master (120 ECTS) Informatik - 2018	

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) eXtended Artificial Intelligence (xtAI) (2020)

Moduli	bezeich	nnung			Kurzbezeichnung	
Simulationstechnik zur Systemanalyse					10-l=ST-161-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Inhabe	Inhaber/-in des Lehrstuhls für Informatik III			Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
8	8 numerische Notenvergabe					
Moduldauer Niveau weitere Vorauss			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Einführung in die Simulationstechnik, statistische Grundlagen, Erzeugung von Zufallszahlen und Zufallsvariablen, Stichprobentheorie und Schätzverfahren, Statistische Auswertung von Simulationsgrößen, Untersuchung von Messdaten, Planung und Auswertung von Simulationsexperimenten, spezielle Zufallsprozesse, Möglichkeiten und Grenzen von Modellbildung und Simulation, fortgeschrittene Konzepte und Techniken, praxisorientierte Durchführung von Simulationsprojekten.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das methodische Wissen und die praktischen Fähigkeiten zur stochastischen Simulation (technischer) Systeme, zur Auswertung der Ergebnisse und zur richtigen Einschätzung der Möglichkeiten und Grenzen der Simulationsmethodik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IT,IS,ES,GE

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Master (1 Hauptfach) Luft- und Raumfahrtinformatik (2020) Master (1 Hauptfach) eXtended Artificial Intelligence (xtAI) (2020)

Modulbezeichnung					Kurzbezeichnung
Sprachverarbeitung und Text Mining					10-l=STM-162-m01
Modulverantwortung				anbietende Einrich	tung
Inhabe	r/-in de	es Lehrstuhls für Informa	atik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Grundlagen in folgenden Bereichen: Definition für NLP und Text Mining, Eigenschaften von Text, Satzgrenzenerkennung, Tokenization, Kollokationen, N-Gram-Modelle, Morphologie, Hidden Markov Modelle für Tagging, Probabilistic Parsing, Word Sense Disambiguation, Term Extraction Methoden, Information Extraction, Sentiment Analysis Die Studierenden verfügen über das theoretische und praktische Wissen der typischen Verfahren und Algorithmen im Bereich des Text Mining und Sprachverarbeitung meist für Englisch. Sie sind in der Lage, praktische Probleme mit Hilfe der vermittelten Methoden zu lösen. Sie haben Erfahrungen in der Anwendung oder Umsetzung von Text Mining Algorithmen gesammelt.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das theoretische und praktische Wissen der typischen Verfahren und Algorithmen im Bereich des Text Mining und der Sprachverarbeitung. Sie sind in der Lage, praktische Probleme mit Hilfe der vermittelten Methoden zu lösen. Sie haben Erfahrungen in der Anwendung oder Umsetzung von Text Mining Algorithmen gesammelt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT, IT, HCI.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Information Systems (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Information Systems (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Information Systems (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung			Kurzbezeichnung		
Visualisierung von Graphen				-	10-I=VG-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Informa	atik I	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Wir beschäftigen uns mit den wichtigsten Algorithmen zum Zeichnen von Graphen. Dabei kommen Methoden aus der Vorlesung Algorithmische Graphentheorie wie Teile und Herrsche, Flussnetzwerke, ganzzahlige Programmierung und das Planar-Separator-Theorem zum Einsatz. Wir werden Maße für die Qualität einer Graphzeichnung kennenlernen und Algorithmen, die diese Maße optimieren.

Qualifikationsziele / Kompetenzen

Die Studierenden bekommen einen Überblick über das Thema Graphvisualisierung und lernen typische Werkzeuge dafür kennen. Sie vertiefen ihre Kenntnisse über das Modellieren und Lösen von Problemen mithilfe von Graphen und Graphalgorithmen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder eine mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: AT,IT,HCI,GE

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Informatik (2017)

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Informatik (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung					Kurzbezeichnung
Wissensbasierte Systeme				-	10-l=WBS-161-m01
Modulverantwortung				anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Inform	atik VI	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Grundlagen in folgenden Bereichen: Wissensmanagementsysteme, Wissensrepräsentationen, Lösungsmethoden, Wissensakquisition, Lernen, Beratungsdialoge, Semantic Web.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das theoretische und praktische Wissen zum Verständnis und der Entwicklung von Wissensbasierten Systemen einschließlich Wissensformalisierung und haben Erfahrungen in einem kleinen Projekt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min. je TN) ersetzt werden.

Separate Erfolgsüberprüfung für Master-Studierende.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE, IT, IS, HCI, GE.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2016)

Master (1 Hauptfach) Informatik (2017)

<u> Modul</u> bezeic	Modulbezeichnung Kurzbezeichnung					
Master-Thes				10-I-MA-161-m01		
Modulverant	wortung		anbietende Einrich	l tung		
	n/-in Informatik		Institut für Informa			
ECTS Bewe	ertungsart	zuvor bestandene M	Module			
25 nume	erische Notenvergabe					
Moduldauer	Niveau	weitere Voraussetz	ungen			
1 Semester	weiterführend					
Inhalte						
	Erschließung und Bearb nengebiets der Informatil		ache mit einem Doze	enten oder einer Dozentin ausge-		
Qualifikation	sziele / Kompetenzen					
dabei die im		orbenen Kenntnisse u		der Informatik einarbeiten und zen. Er/Sie kann das Ergebnis		
Lehrveransta	ltungen (Art, SWS, Sprache so	fern nicht Deutsch)				
keine LV zugo	eordnet					
Erfolgsüberp	rüfung (Art, Umfang, Sprache s	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)		
Master-Thesi Prüfungsspra	s (50-100 S.) che: Deutsch und/oder E	inglisch				
Platzvergabe						
weitere Anga	ben					
Bearbeitungs	zeit: 6 Monate					
Arbeitsaufwa	nd					
750 h						
Lehrturnus						
k. A.						
Bezug zur LP	01					
Verwendung	des Moduls in Studienfä	chern				
Master (1 Hauptfach) Informatik (2016)						

Master (1 Hauptfach) Informatik (2017) Master (1 Hauptfach) Informatik (2018) Master (1 Hauptfach) Informatik (2021) Master (1 Hauptfach) Informatik (2023) Master (1 Hauptfach) Informatik (2025)

Modulbezeichnung					Kurzbezeichnung	
Abschl	usskol	loquium zur Master-Thes	is Informatik		10-I-MA-MK-182-m01	
Moduly	erantw	vortung		anbietende Einrichtung		
Studier	ıdekan	/-in Informatik		Institut für Informat	tik	
ECTS		rtungsart	zuvor bestandene N	lodule		
5	besta	nden / nicht bestanden				
Modulo	lauer	Niveau	weitere Voraussetzu	ıngen		
1 Seme	ster	weiterführend				
Inhalte						
Präsent	tation ι	und Verteidigung der Erge	ebnisse der Masterarl	oeit in offener Disku	ssion.	
Qualifil	kations	sziele / Kompetenzen				
Die Stu	dieren	den können die Ergebnis	se ihrer Masterarbeit	präsentieren und in	einer Diskussion verteidigen.	
Lehrvei	anstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
K (o)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
		oquium (ca. 60 Min.) che: Deutsch und/oder E	nglisch			
Platzve	rgabe					
weitere	Angal	pen				
Arbeits	aufwai	ıd				
150 h						
Lehrtur	nus					
k. A.	k. A.					
Bezug	Bezug zur LPO I					
Verwen	dung	les Moduls in Studienfäc	hern			
Master	(1 Hau	ptfach) Informatik (2018)				

Modulbezeichnung					Kurzbezeichnung
Praktikum Algorithmik und Theorie 1					10-I-PAT1-182-m01
Modulverantwortung				anbietende Einrich	tung
Studie	ndekar	/-in Informatik		Institut für Informat	ik
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzı	ungen	
1 Seme	ester	grundständig			
Inhalte	e				
Bearbe	eitung e	iner Praktikumsaufgabe.			
Qualifi	ikations	sziele / Kompetenzen			
Das Pr	aktikun	n befähigt die Teilnehme	r eine Fragestellung d	er Algorithmik und T	heorie im Team zu bearbeiten.
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)		
R (6)					
Erfolgs	süberpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweise	e / Bonusfähigkeit sofern möglich)
	gsspra	S.) und Präsentation der che: Deutsch und/oder E		in.)	
Platzv	ergabe				
weiter	e Angal	pen			
Mögliche Schwerpunkte für den MA 120 Informatik: AT.					
Arbeits	saufwa	nd			
300 h					
Lehrtu	rnus				

Lemtu

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modulbezeichnung					Kurzbezeichnung
Praktikum Algorithmik und Theorie 2					10-I-PAT2-182-m01
Modulverantwortung				anbietende Einrich	tung
Studier	ndekan	/-in Informatik		Institut für Informat	ik
ECTS	Bewei	rtungsart	zuvor bestandene M	Nodule	
10	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Seme	ster	grundständig			
Inhalte	<u> </u>				
Bearbe	itung e	iner Praktikumsaufgabe.			
Qualifi	kations	sziele / Kompetenzen			
Das Pra	Das Praktikum befähigt die Teilnehmer eine Fragestellung der Algorithmik und Theorie im Team zu bearbeiten.				
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)		

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Prüfungssprache: Deutsch und/oder Englisch bonusfähig

Platzvergabe

--

R (6)

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: AT.

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modulbezeichnung		Kurzbezeichnung
Praktikum Embedded Systems 1		10-I-PES1-182-m01
Modulverantwortung	anbietende Einrich	tung

Studiendekan/-in Informatik			Institut für Informatik
ECTS	Bewertungsart	zuvor bestandene M	Nodule

ECTS Bewertungsart		rtungsart	zuvor bestandene Module
10	numerische Notenvergabe		
Modulo	lauor	Niveau	weitere Voraussetzungen
	iauei	niveau	weitere voidussetzungen

Bearbeitung einer Praktikumsaufgabe.

Qualifikationsziele / Kompetenzen

Das Praktikum befähigt die Teilnehmer eine Fragestellung der Embedded Systems im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: ES.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modulbezeichnung					Kurzbezeichnung
Praktikum Embedded Systems 2					10-I-PES2-182-m01
Modulverantwortung anbietende Einrichtung			tung		
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester grundständig					
Inhalte	Inhalte				

Bearbeitung einer Praktikumsaufgabe.

Qualifikationsziele / Kompetenzen

Das Praktikum befähigt die Teilnehmer eine Fragestellung der Embedded Systems im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

 $\textbf{Erfolgs\"{u}berpr\"{u}fung} \ (Art, \ Umfang, \ Sprache \ sofern \ nicht \ Deutsch \ / \ Turnus \ sofern \ nicht \ semesterweis\underline{e} \ / \ Bonusf\"{a}higkeit \ sofern \ m\"{o}glich)$

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: ES.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modulbezeichnung					Kurzbezeichnung		
Prakti	kum Hu	man Computer Interaction	on 1		10-I-PHCI1-182-m01		
Modu	lverantv	vortung		anbietende Einrich	tung		
		n/-in Informatik		Institut für Informa			
ECTS		rtungsart	zuvor bestandene M	lodule			
10		rische Notenvergabe					
Modu	ldauer	Niveau	weitere Voraussetz	ıngen			
1 Sem	ester	grundständig					
Inhalt	e						
Bearb	eitung e	einer Praktikumsaufgabe.					
Qualif	ikation	sziele / Kompetenzen					
Das Pi ten.	raktikun	n befähigt die Teilnehme	r eine Fragestellung d	er Human Compute	r Interaction im Team zu bearbei-		
Lehrve	eransta	l tungen (Art, SWS, Sprache sof	ern nicht Deutsch)				
R (6)	,						
Erfolg	süberpı	"üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)		
	ngsspra	S.) und Präsentation der che: Deutsch und/oder E		in.)			
Platzv	ergabe						
	,						
weite	re Angal	ben					
Möglid	che Sch	werpunkte für den MA 12	o Informatik: HCI.				
	saufwa						
300 h							
Lehrtu			-				
k. A.							
Bezug	zur LP(D1					
Verwe	endung	des Moduls in Studienfäd	:hern				
		ptfach) Informatik (2018)					
	-	ptfach) Informatik (2021)					

Master (1 Hauptfach) Informatik (2023) Master (1 Hauptfach) Informatik (2025)

Modul	Modulbezeichnung Kurzbezeichnung					
Prakti	Praktikum Human Computer Interaction 2				10-I-PHCl2-182-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studiendekan/-in Informatik				Institut für Informat		
ECTS		rtungsart	zuvor bestandene M	lodule		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau weitere Voraussetzu		ıngen			
1 Sem	ester	grundständig				
Inhalt	е					
Bearb	eitung e	iner Praktikumsaufgabe.				
Qualif	ikations	sziele / Kompetenzen				
Das Pr ten.	aktikun	n befähigt die Teilnehmei	r eine Fragestellung d	er Human Computer	Interaction im Team zu bearbei-	
Lehrve	eranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
R (6)						
Erfolg	süberpr	üfung (Art, Umfang, Sprache sc	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
	igsspra	S.) und Präsentation der che: Deutsch und/oder E		in.)		
	ergabe					
weiter	e Angal	pen				
		werpunkte für den MA 12	o Informatik: HCI.			
Arbeit	saufwa	nd				
300 h						
Lehrtu	Lehrturnus					
k. A.						
Bezug	zur LP() I				
Verwe	ndung	des Moduls in Studienfäc	:hern			
Master (1 Hauptfach) Informatik (2018) Master (1 Hauptfach) Informatik (2021) Master (1 Hauptfach) Informatik (2023)						

Modult	Modulbezeichnung Kurzbezeichnung					
Praktik	um Int	elligente Systeme 1			10-I-PIS1-182-m01	
Moduly	erantw	vortung		anbietende Einrichtung		
	·	/-in Informatik		Institut für Informat		
ECTS		rtungsart	zuvor bestandene M	lodule		
10	nume	rische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzi	ıngen		
1 Seme	ster	grundständig				
Inhalte						
Bearbe	itung e	iner Praktikumsaufgabe.				
Qualifil	kations	sziele / Kompetenzen				
Das Pra	ktikum	n befähigt die Teilnehme	r eine Fragestellung d	er intelligenten Syst	eme im Team zu bearbeiten.	
		tungen (Art, SWS, Sprache sof		·		
R (6)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
	gssprac	S.) und Präsentation der che: Deutsch und/oder E		in.)		
Platzve	rgabe					
weitere	Angal	pen				
Möglich	ne Schv	werpunkte für den MA 12	o Informatik: IS.			
Arbeits			,			
300 h	300 h					
Lehrturnus						
k. A.						
Bezug zur LPO I						
Verwen	Verwendung des Moduls in Studienfächern					
Master	Master (1 Hauptfach) Informatik (2018)					

Modult	Modulbezeichnung Kurzbezeichnung					
Praktik	um Int	elligente Systeme 2			10-I-PIS2-182-m01	
Modulverantwortung				anbietende Einrichtung		
		/-in Informatik		Institut für Informat		
ECTS		rtungsart	zuvor bestandene M	lodule		
10	nume	rische Notenvergabe	-			
Modulo	lauer	Niveau	weitere Voraussetzı	ıngen		
1 Seme	ster	grundständig				
Inhalte						
Bearbe	itung e	iner Praktikumsaufgabe.				
Qualifil	kations	sziele / Kompetenzen				
Das Pra	ıktikun	n befähigt die Teilnehme	r eine Fragestellung d	er intelligenten Syst	eme im Team zu bearbeiten.	
		tungen (Art, SWS, Sprache sof		·		
R (6)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
	gsspra	S.) und Präsentation der che: Deutsch und/oder E		in.)		
Platzve	rgabe					
weitere	Angal	pen				
Möglich	ne Sch	werpunkte für den MA 12	o Informatik: IS.			
Arbeits			,			
300 h	300 h					
Lehrturnus						
k. A.						
Bezug zur LPO I						
Verwendung des Moduls in Studienfächern						
Master	Master (1 Hauptfach) Informatik (2018)					

Moduli	Modulbezeichnung				Kurzbezeichnung
Praktik	cum Int	ernet Technologie 1			10-l-PlT1-182-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Studie	Studiendekan/-in Informatik			Institut für Informatik	
ECTS	S Bewertungsart		zuvor bestandene Module		
10	numerische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzi	ungen	

1 Semester

Bearbeitung einer Praktikumsaufgabe.

grundständig

Qualifikationsziele / Kompetenzen

Das Praktikum befähigt die Teilnehmer eine Fragestellung der Internet Technologie im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IT.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Kurzbezeichnung

Modulbezeichnung

Praktikum Internet Technologie 2					10-l-PIT2-182-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	/-in Informatik		Institut für Informatik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
10	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzi	ungen		
1 Seme	ester	grundständig				
Inhalte	9					
Bearbe	eitung e	iner Praktikumsaufgabe				
Qualifi	kations	sziele / Kompetenzen				
Das Pr	aktikun	n befähigt die Teilnehme	r eine Fragestellung d	er Internet Technolo	gie im Team zu bearbeiten.	
Lehrve	ranstal	tungen (Art, SWS, Sprache so	fern nicht Deutsch)			
R (6)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache s	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.) Prüfungssprache: Deutsch und/oder Englisch bonusfähig						
Platzvergabe						

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: IT.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modul	bezeich	nung			Kurzbezeichnung
Praktikum Software Engineering 1					10-I-PSE1-182-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studie	ndekan	/-in Informatik		Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Seme	ester	grundständig			
Inhalte	•				
Bearbe	eitung e	iner Praktikumsaufgabe.			
Qualifi	kations	sziele / Kompetenzen			
Das Praktikum befähigt die Teilnehmer eine Fragestellung des Software Engineering im Team zu bearbeiten.					
Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)					
R (6)					
Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)					

bonusfähig Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE.

Prüfungssprache: Deutsch und/oder Englisch

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)

Modulbezeichnung	Kurzbezeichr	nung
Praktikum Software Engineering 2	10-I-PSE2-182	2-m01
Modulverantwortung	anbietende Einrichtung	
Studiendekan/-in Informatik	Institut für Informatik	

		1	11.00	
ECTS	Bewertungsart		zuvor bestandene Modu	le
10	numerische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzunge	n
1 Seme	ster	grundständig		

Bearbeitung einer Praktikumsaufgabe.

Qualifikationsziele / Kompetenzen

Das Praktikum befähigt die Teilnehmer eine Fragestellung des Software Engineering im Team zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

R (6)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Bericht (10-15 S.) und Präsentation der Ergebnisse (15-30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

Mögliche Schwerpunkte für den MA 120 Informatik: SE.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2018)

Master (1 Hauptfach) Informatik (2021)

Master (1 Hauptfach) Informatik (2023)