Module Catalogue
for the Subject

Physics

as vertieft studiertes Fach (studied with a focus on the scientific discipline)
with the degree "Erste Staatsprüfung für das Lehramt an Gymnasien"

Examination regulations version: 2020
Responsible: Faculty of Physics and Astronomy
Contents

The subject is divided into
Abbreviations used, Conventions, Notes, In accordance with

Scientific Discipline

Compulsory Courses
Foundations of Experimental Physics
Classical Physics 1 (Mechanics)
Classical Physics 2 (Heat and Electromagnetism)
Optics and Waves

Advanced Experimental Physics
Modern Physics 1
Modern Physics 2 (Molecule and Solid State Physics)
Modern Physics 3 (Nuclear, Particle and Astrophysics)
General Concepts of Physics

Theoretical Physics
Theoretical Physics 1 for Pre Service Teachers
Theoretical Physics 2 for Pre Service Teachers

Computational Methods
Mathematical Methods of Physics

Laboratory Course I
Laboratory Course Physics A (Mechanics, Heat, Electromagnetism)
Data and Error Analysis
Laboratory Course Physics B (Electricity, Circuits, Atomic and Nuclear Physics)
Advanced Laboratory Course

Laboratory Course II
Demonstration Laboratory Course 1
Practical Training in Student Lab / Demonstration Laboratory Course 2

Teaching
Compulsory Courses
Physics Teaching Concepts
Physics Teaching Concepts Seminar
Student Lab Preparation Course (Physics) German Gymnasium

Thesis
Physics: Practical Training and Theory of Classroom

Extra Skills
Physics
Teaching Seminar Fundamental Principles
Selected Topics in Physics Didactics
MINT Preparatory Course Mathematical Methods of Physics
Student Lab Supervision (Physics)
Low Cost - High Impact. Low-budget Experiments for Science Courses (Physics)
Teaching Science with Hands-on-Exhibits (Physics)
Astrophysics
Principles of Energy Technologies
Current Topics of Teaching Concepts in Physics
Scientific Work in Teaching Concepts
Current Topics in Physics
Selected Topics of Physics

Thesis
Thesis in Physics (Teaching Degree at German Gymnasium)
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Discipline</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>92</td>
<td>6</td>
</tr>
<tr>
<td>Foundations of Experimental Physics</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>Advanced Experimental Physics</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Computational Methods</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Laboratory Course I</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Laboratory Course II</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Teaching</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Thesis</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>Extra Skills</td>
<td>0-15</td>
<td>38</td>
</tr>
<tr>
<td>Physics</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td>10</td>
<td>52</td>
</tr>
</tbody>
</table>
Abbreviations used

Course types: \(E = \) field trip, \(K = \) colloquium, \(O = \) conversatorium, \(P = \) placement/lab course, \(R = \) project, \(S = \) seminar, \(T = \) tutorial, \(Ü = \) exercise, \(V = \) lecture

Term: \(SS = \) summer semester, \(WS = \) winter semester

Methods of grading: \(NUM = \) numerical grade, \(B/NB = \) (not) successfully completed

Regulations: \((L)ASPO = \) general academic and examination regulations (for teaching-degree programmes), \(FSB = \) subject-specific provisions, \(SFB = \) list of modules

Other: \(A = \) thesis, \(LV = \) course(s), \(PL = \) assessment(s), \(TN = \) participants, \(VL = \) prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

\(LASPO2015 \)

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

\(19\text{-Feb-2020 (2020-21)} \)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Scientific Discipline
(92 ECTS credits)
Compulsory Courses
(92 ECTS credits)
Foundations of Experimental Physics
(23 ECTS credits)
Classical Physics 1 (Mechanics)

Module title

Classical Physics 1 (Mechanics)

Abbreviation

11-E-M-152-m01

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

8

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents

1. Principles: Physical quantities, prefactors, derived quantities, dimensional analysis, time / length / mass (definition, measurement procedures, SI), importance of metrology;
2. Point Mechanics: Kinematics, motion in 2D and 3D / vectors, special cases: Uniform and constant accelerated motion, free fall, slate litter; circular motion in polar coordinates;
3. Newton's laws: Forces and momentum definition, weight vs. mass forces on the pendulum, forces on an atomic scale, isotropic and anisotropic friction. Preparation of the equations of motion and solutions;
4. Work and energy: (Kinetic) performance, examples;
5. Elastic, inelastic and super-elastic collision: Energy and momentum conservation, surges in centre of mass and balance system, rocket equation;
6. Conservative and non-conservative force fields: Potential, potential energy; law, weight scale, field strength and potential of gravity (general relations);
7. Rotational motion: Angular momentum, angular velocity, torque, rotational energy, moment of inertia, analogies to linear translation, applications, satellites (geostationary and interstellar), escape velocities, trajectories in the central potential;
8. Tidal forces: Inertial system, reference systems, apparent forces, Foucault pendulum, Coriolis force, centrifugal force;
9. Galilean transformation: Brief digression to Maxwell’s equations, ether, Michelson interferometer, Einstein’s postulates, problem of simultaneity, Lorentz transformation, time dilation and length contraction, relativistic impulse;
10. Rigid body and gyroscope: Determining the centre of mass, inertia tensor and -ellipsoid, principal axes and their stability, tensor on the example of the elasticity tensor, physics of the bike; gyroscope: Precession and nutation, the Earth as a spinning top;
11. Friction: Static and dynamic friction, stick-slip motion, rolling friction, viscous friction, laminar flow, eddy formation;
12. Vibration: Representation by means of complex e-function, equation of motion (DGL) on forces, torque and power approach, Taylor expansion, harmonic approximation; spring and pendulum, physical pendulum, damped vibration (resonant case, Kriechfall, aperiodic limit), forced vibration, Fourier analysis;
13. Coupled vibrations: Eigenvalues and eigenfunctions, double pendulum, deterministic vs. chaotic motion, non-linear dynamics and chaos;
14. Waves: Wave equation, transverse and longitudinal waves, polarisation, principle of superposition, reflection at the open and closed end, speed of sound; interference, Doppler effect; phase and group velocity, dispersion relation;
15. Elastic deformation of solid bodies: Elastic modulus, general Hooke’s law, elastic waves;
16. Fluids: Hydrostatic pressure and buoyancy, surface tension and contact angle, capillary forces, steady flows, Bernoulli equation; Boyle-Mariotte, gas laws, barometric height formula, air pressure, compressibility and compressive modulus;
17. Kinetic theory of gases: ideal and real gas, averages, distribution functions, equipartition theorem, Brownian motion, collision cross section, mean free path, diffusion and osmosis, degrees of freedom, specific heat
Intended learning outcomes

The students understand the basic contexts and principles of mechanics, vibration, waves and kinetic theory of gases. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>+ Ü (2)</td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language — if other than German</th>
<th>Examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>(approx. 120 minutes)</td>
<td>German and/or English</td>
<td></td>
</tr>
</tbody>
</table>

Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 a)
§ 77 I Nr. 1 a)
Module title	Abbreviation
Classical Physics 2 (Heat and Electromagnetism) | 11-E-E-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents

1. Thermodynamics (linked to 11-E-M); temperature and quantity of heat, thermometer, Kelvin scale;
2. Heat conduction, heat transfer, diffusion, convection, radiant heat;
3. Fundamental theorems of thermodynamics, entropy, irreversibility, Maxwell’s demon;
4. Heat engines, working diagrams, efficiency, example: Stirling engine;
5. Real gases and liquids, states of matter (also solids), van der Waals, critical point, phase transitions, critical phenomena (opalescence), coexistence region, Joule-Thomson;
6. Electrostatics, basic concepts: Electrical charge, forces; electric field, reps. field concept, field lines, field of a point charge;
7. Gaussian sentence, related to Coulomb’s law, definition of "river”; Gaussian surface, divergence theorem; special symmetries; divergence and GS in differential form;
8. Electrical potential, working in the E-box, electric. potential, potential difference, voltage; potential equation, equipotential surfaces; several important examples: Sphere, hollow sphere, capacitor plates, electric dipole; lacce effects, Segner wheel;
9. Matter in the E-field, charge in a homogeneous field, Millikan experiment, Braun tube; electron: Field emission, thermionic emission, dipole in homogeneous and inhomogeneous field; induction, Faraday cage;
10. Capacitor, mirror charge, definition, capacity; plate and spherical capacitor; combination of capacitors; media in the capacitor; electrical polarisation, displacement and orientation polarisation, microscopic image; dielectric displacement; electrolytic capacitor; Piezoelectric effect;
11. Electricity, introduction, current density, drift velocity, conduction mechanisms;
12. Resistance and conductivity, resistivity, temperature dependence; Ohm’s law; realisations (resistive and non-ohmic, NTC, PTC);
13. Circuits, electrical networks, Kirchhoff’s rules (meshes, nodes); internal resistance of a voltage source, measuring instruments; Wheatstone bridge;
14. Power and energy in the circuit; Capacitor charge; galvanic element; thermovoltage;
15. Transfer mechanisms, conduction in solids: Band model, semiconductor; line in liquids and gases;
16. Magnetostatics, fundamental laws; permanent magnet, field properties, definitions and units; Earth’s magnetic field; Amper’s Law, analogous to e-box, magn. river, swirl;
17. Vector potential, formal derivation, analogous to electric scalar potential; calculation of fields, examples, Helmholtz coils;
18. Moving charge in the static magnetic field, current balance, Lorentz force, right-hand rule, electric motor; dipole field; movement paths, mass spectrometer, Wien filters, Hall effect; electron: e / m determination;
19. Matter in the magnetic field, effects of the field on matter, relative permeability, susceptibility; para-, dia-, ferromagnetism; magn. moment of the electron, behaviour at interfaces;
20. Induction, Faraday’s law of induction, Lenz’s rule, flux change, eddy electric field, Waltenhofen’s pendulum; inductance, self-induction; applications: Transformer, generator;
21. Maxwell’s displacement current, choice of integration area, displacement current; Maxwell’s extension, wave equation; Maxwell equations;
22. AC: Fundamentals, sinusoidal vibrations, amplitude, period and phase; power and RMS value, ohmic resistance; Capacitive & inductive resistor, capacitor and coil, phase shift and frequency dependence; impedance: Complex resistance; performance of the AC;
23. Resonant circuits, combinations of RLC; series and parallel resonant circuit; forced vibration, damped harmonic oscillator (related to 11-E-M);
24: Hertz dipole, characteristics of irradiation, near field, far field; Rayleigh scattering; accelerated charge, synchrotron radiation, X-rays; 25: Electromagnetic waves: Principles, Maxwell’s determination to electromagnetism, radiation pressure (Poynting vector, radiation pressure).

Intended learning outcomes
The students understand the basic principles and contexts of thermodynamics, science of electricity and magnetism. They know relevant experiments to observe and measure these principles and contexts. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (4)</th>
<th>Ü (2)</th>
</tr>
</thead>
</table>

Module taught in: Ü: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 a)
§ 77 I Nr. 1 a)
Module title
Optics and Waves

Abbreviation
11-L-OW-172-m01

Module coordinator
unknown

Module offered by
Faculty of Physics and Astronomy

ECTS
7

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
unknown

Other prerequisites
Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
No information on contents available.

Intended learning outcomes
No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes)

Registration: If a student registers for the seminar and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 53 I Nr. 1 a)
§ 77 I Nr. 1 a)
Advanced Experimental Physics
(23 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics 1</td>
<td>11-L-M1-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 b)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics 2 (Molecule and Solid State Physics)</td>
<td>11-L-M2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Mechanical, dielectric and magnetic properties of molecules, rotational, vibrational and electronic excitation of molecules, measuring methods, structure of solids, scattering methods, lattice vibrations, thermal properties of insulators.

Intended learning outcomes

Understanding of the structure of molecules and chemical bonding, knowledge of experimental methods for the examination of molecules, understanding of the structure of crystalline solids, their modelling as translation-invariant lattices and the consequences.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 b)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics 3 (Nuclear, Particle and Astrophysics)</td>
<td>11-L-M3-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Die Studierenden besitzen strukturiertes Wissen zu den genannten Begriffen; haben Kenntnis der einschlägigen Kerngedanken und Schlüsselexperimente sowie der Messmethoden und Größenordnungen der zentralen Größen; verfügen über die Fähigkeit zur quantitativen Behandlung einfacher einschlägiger Probleme.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 b)
Module title: General Concepts of Physics

Abbreviation: 11-L-GKP-152-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 6

Method of grading: Only after succ. compl. of module(s)

Numerical grade: --

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:
This module focuses on important concepts and applications that constitute interconnections between the sub-disciplines of Physics (and partly other Natural Sciences). When it comes to concepts, these interconnections are structural, they are elements of the physical terminology and belong to the mental structure of the subject. Applied Physics: synergetic interconnections between elements of knowledge of the corresponding subdiscipline and beyond which are necessary for the solution of many important problems. On both levels, the specific contents and the resulting interconnections have the same significance. Structures and concepts: Dimensional analysis, scaling, similitude theory; fields; interactions; symmetries and conserved quantities, wave equation, waves; multipoles among other mode analysis; non-linear dynamics, self-organisation, deterministic chaos; analogies of transport phenomena; Virial theorem as a structural element; microscopic modelling of macroscopic phenomena; scattering and structure determination; aspects of the history of ideas of important concepts and their controversies (e.g. atomism, determinism); Applied and Technical Physics: Physics and information/communication technology; rules and process technology, sensors; medical technology; climate and weather; Biophysics; ecology; energy; celestial mechanics, satellites, GPS; measuring devices; el. light sources; displays

Intended learning outcomes:
Their understanding of important shared concepts enables the students to connect different subdisciplines of Physics, they know the similarities and differences of different usage contexts and therefore have in-depth knowledge of these concepts and are able to mathematically describe and process relevant problems on the level of Theoretical Physics; they understand complex systems of nature and engineering and are able to connect their own physical knowledge in a synergetic manner by analysing the solutions to selected, complex problems, they are able to explain the interactions of knowledge of different disciplines for the solution of complex problems on the basis of selected examples.

Courses (type, number of weekly contact hours, language — if other than German):

V (2) + Ü (1) + S (2)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
§ 77 I Nr. 1 b)
Theoretical Physics
(14 ECTS credits)
Module title

Theoretical Physics 1 for Pre Service Teachers

Abbreviation

11-L-T1-172-m01

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Method of grading

Only after succ. compl. of module(s)

Contents

- Basic physical laws and elementary methods of theoretical physics.
- Quantum Mechanics: Schrödinger equation, one-dimensional quantum mechanics, quantum mechanics Abstract (operator formalism), angular momentum, spin.
- Thermodynamics: Heat, entropy, thermal equilibrium, measured variables, efficiency, Thermodynamic potentials, phase transitions.

Intended learning outcomes

Students have an understanding of the fundamental laws of the interrelationships and elementary methods of theoretical physics from the theoretical mechanics, quantum mechanics, thermodynamics, electrodynamics and statistical physics. They can use the acquired theoretical concepts and fit into larger physical context and discuss.

Courses

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment

written examination (approx. 120 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 c)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Physics 2 for Pre Service Teachers</td>
<td>11-L-T2F-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 c)
Computational Methods
(6 ECTS credits)
Module Title

Mathematical Methods of Physics

Abbreviation

11-M-MR-202-m01

Module Coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module Offered by

Faculty of Physics and Astronomy

ECTS

6

Method of Grading

Only after successfully completed module(s)

Duration

2 semester

Module Level

Undergraduate

Other Prerequisites

--

Contents

German contents available but not translated yet.

Grundlagen der Mathematik und elementare Rechenmethoden jenseits des Schulstoffes, insbesondere zur Einführung und Vorbereitung auf die Module der Theoretischen Physik und der Klassischen bzw. Experimentellen Physik

Intended Learning Outcomes

German intended learning outcomes available but not translated yet.

Der/Die Studierende verfügt über die Kenntnisse der Grundlagen der Mathematik und der elementaren Rechnetechniken, welche in der Theoretischen Physik und der Experimentellen Physik benötigt werden.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2) + V (2) + Ü (2)

Module taught in: German or English

Method of Assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Exercises (successful completion of approx. 50% of approx. 13 exercise sheets) or Talk (approx. 15 minutes)

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 a)

§ 77 I Nr. 1 a)
Laboratory Course I
(14 ECTS credits)
Module Title

Laboratory Course Physics A(Mechanics, Heat, Electromagnetism)

Abbreviation: 11-P-LA-152-m01

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physics A(Mechanics, Heat, Electromagnetism)</td>
<td>11-P-LA-152-m01</td>
</tr>
</tbody>
</table>

Module Coordinator

Managing Director of the Institute of Applied Physics

Module Offered by

Faculty of Physics and Astronomy

ECTS Method of Grading

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Method of Grading

Only after succ. compl. of module(s)

Duration Module Level Other Prerequisites

1 semester undergraduate --

Contents

Measurement tasks in mechanics, thermodynamics and electricity theory, e.g. measurement of voltages and currents, heat capacity, calorimetry, density of bodies, dynamic viscosity, elasticity, surface tension, spring constant, drafting of graphs and drafting of measurement protocols.

Intended Learning Outcomes

The student has knowledge and mastery of physical measuring instruments and experimental techniques. He/She is able to plan experiments independently and to perform well in cooperation with others, and to document the measurement results in a measurement protocol.

Courses

Type, number of weekly contact hours, language — if other than German

P (2)

Method of Assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

Practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate's understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(Examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 c)

§ 77 I Nr. 1 d)
Module title: Data and Error Analysis

Abbreviation: 11-P-FR1-152-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 2

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: undergraduate

Other prerequisites: Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents:
Types of errors, error approximation and propagation, graphic representations, linear regression, mean values and standard deviation.

Intended learning outcomes:
The students are able to evaluate measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses:
V (1) + Ü (1)

Module taught in: Ü: German or English

Method of assessment:
written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 53 I Nr. 1 c)
§ 77 I Nr. 1 d)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physics B (Electricity, Circuits, Atomic and Nuclear Physics)</td>
<td>11-P-LB-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>Students are highly recommended to complete modules 11-P-LA and 11-P-FR1 prior to completing module 11-P-LB.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of the science of electricity, circuits with electrical components and Atomic and Nuclear Physics.

Intended learning outcomes

The students have knowledge and skills of physical measuring instruments and experimental techniques. They are able to independently plan and conduct experiments in cooperation with others, and to document the results in a measurement protocol.

Courses (type, number of weekly contact hours, language — if other than German)

P (2) + P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate's understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 b) (3 LP) und c) (2 LP)
§ 53 I Nr. 1 c)
§ 77 I Nr. 1 d)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Laboratory Course</td>
<td>11-P-LFP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Students are highly recommended to complete module 11-P-LB prior to completing module 11-P-LFP.</td>
</tr>
</tbody>
</table>

Contents

Experiments of modern physics (Atom and Molecular Physics, Solid-State Physics, Nuclear Physics).

Intended learning outcomes

The students have knowledge of conducting an experiment and of analysing and documenting the experimental results. They have basic knowledge of modern evaluation systems. They have gained insights into the experimental methods of modern Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

P (4)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 d)
Laboratory Course II
(12 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstration Laboratory Course 1</td>
<td>11-P-DP1-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Kompetenter Umgang mit handels- und schulüblichen Lehrgeräten und Experimentiermaterialien; Strategien zur systematischen Analyse von Fehlerquellen beim eigenen Experimentieren; Erkennen von Kategorien von Experimenten, ihre Funktion und ihr didaktisches Potential; Erfahrung, Experimente lernziel- und schülerorientiert auszuwählen, aufzubauen und zu präsentieren sowie rechnergestützte Demonstrations- und Schülerexperimente einzusetzen; Sicherheitsvorschriften im Physikunterricht.

Courses

(type, number of weekly contact hours, language — if other than German)

P (4)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) oral examination of one candidate each (approx. 10 minutes) or b) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 53 l Nr. 1 c), § 77 l Nr. 1 d)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Practical Training in Student Lab / Demonstration Laboratory Course 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>11-P-LLL-DP2-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)

P (3) + P (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) oral examination of one candidate each (approx. 10 minutes) or b) oral examination in groups (groups of 2, approx. 10 minutes per candidate) or c) term paper (6 to 12 pages) or d) portfolio (10 to 15 hours total)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 1 d)
Teaching
(10 ECTS credits)
Compulsory Courses

(10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Teaching Concepts</td>
<td>11-L-PD-172-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>unknown</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + V (2) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 60 minutes) or b) oral examination of one candidate each (approx. 15 minutes) or c) oral examination in groups (groups of 2, approx. 15 minutes per candidate) or d) term paper (approx. 8 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 36 I Nr. 7
§ 38 I Nr. 1
§ 53 I Nr. 2
§ 77 I Nr. 2
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Teaching Concepts Seminar</td>
<td>11-L-PDS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Different topics of current subject-didactic research; examples: Interest and physics education, girls in physics education, evaluation, task culture, interdisciplinary classes, language in physics education, effects of subject media and their application for learning support, especially regarding computers, epistemological and working methods, new teaching methods.

Intended learning outcomes

Knowledge of selected methods of didactic physical research, evaluation of didactic physical research projects, knowledge of didactic physical literature. Ability to critically evaluate Physics classes in view of different aspects and to discuss different prioritisations and approaches.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (2)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 45 minutes) or b) oral examination of one candidate each (approx. 10 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate) or d) term paper (approx. 8 pages) Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 2
Module title

Student Lab Preparation Course (Physics) German Gymnasium

Abbreviation

11-L-L3SGY-152-m01

Module coordinator

holder of the Chair of Physics and its Didactics

Module offered by

Faculty of Physics and Astronomy

ECTS

3

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

The module gives an overview of applicable physical experiments that provide an introduction to science and can be performed in teaching-learning-laboratories (M!ND center). In these experiments, different working methods are employed.

Intended learning outcomes

The students know how to prepare and follow-up a visit in a teaching-learning-laboratory (M!ND-Center) and have gained an overview of current didactic research topics and further possibilities for development in the field of subject-didactic research. They are able to evaluate and assess the (affective) learning achievements of pupils, to hold scientific-propaedeutic classes, to positively influence the motivation of pupils in the subject of Physics and to raise their interest for current physical research questions. The students are able to select, set up or build pupils experiments in a target-oriented manner, and to supervise pupils while experimenting.

Courses

(type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 minutes) or b) oral examination of one candidate each (approx. 10 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate) or d) term paper (approx. 8 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 77 I Nr. 2
Thesis

(4 ECTS credits)

Students studying for a teaching degree Gymnasium must complete a practical training in didactics and teaching methodology (studienbegleitendes fachdidaktisches Praktikum) which refers to one of the subjects they selected as vertieft studiertes Fach (subject studied with a focus on the scientific discipline) pursuant to Section 34 Subsection 1 No. 4 LPO I (examination regulations for teaching-degree programmes). The obligatory accompanying tutorial is offered by the respective subject. The ECTS credits obtained are counted in the subject Erziehungswissenschaften pursuant to Section 10 Subsection 3 LASPO (general academic and examination regulations for teaching-degree programmes).
Module title	Abbreviation
Physics: Practical Training and Theory of Classroom | 11-L-SBPGY-152-m01

Module coordinator | Module offered by
holder of the Chair of Physics and its Didactics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | -- |

Contents

The module introduces teaching practice. The students gain insights into the pedagogical, didactic and methodical practice of Physics by observing and discussing classes. They consolidate their knowledge by preparing and holding classes themselves. In the corresponding seminar, the following topics (among others) will be discussed in agreement with the teachers: Introduction to the curriculum of Gymnasium; criteria to observe and analyse classes; basics of general school and class pedagogics; subject-specific work methods; planning of class sequences and models; introduction to the usage of modern media; development of blackboard pictures and transparency sketches. The main focus will be on class practice, the corresponding seminar also helps the students in developing own classes.

Intended learning outcomes

The students have gained deep insights into the main steps of planning, preparing and organising classes; they are able to implement the contents of the curricula for different grades in a practical manner; they are able to select and use media, methods and social forms according to learning goals; they are able to connect findings of school pedagogics and learning psychology with subject-didactic knowledge and to integrate these findings into the organisation of classes.

Courses (type, number of weekly contact hours, language — if other than German)
P (0) + S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
term paper (15 to 20 pages)
Contents and duration of placement as specified in Section 34 Subsection 1 Sentence 1 No. 4 LPO I (examination regulations for teaching-degree programmes); participation in mandatory teaching practice, completion of all set tasks as specified by placement school.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 34 I 1 Nr. 4
Extra Skills

(0-15 ECTS credits)

Teaching degree students must take modules worth a total of 15 ECTS credits in the area Freier Bereich (general as well as subject-specific electives) (Section 9 LASPO (general academic and examination regulations for teaching-degree programmes)). To achieve the required number of ECTS credits, students may take any modules from the areas below.

Freier Bereich -- interdisciplinary: The interdisciplinary additional offer for a teaching degree can be found in the respective Annex "Ergänzende Bestimmungen für den "Freien Bereich" im Rahmen des Studiums für ein Lehramt".
Physics
(ECTS credits)

(Freier Bereich (general as well as subject-specific electives) -- subject specific)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Seminar Fundamental Principles</td>
<td>11-L-EL1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Physical and interdisciplinary aspects of selected topics of physics education, corresponding student preconceptions and typical learning difficulties, elementarisation and didactic reconstruction of physical contents based on specific contents of physics education, verbalisation of physical contents, possible teaching methods, typical school experiments and suitable media.

Intended learning outcomes

Advanced, qualitative knowledge of school-relevant areas of Physics; knowledge of common methods, typical student preconceptions and special media on relevant topics; awareness of the differences between teaching Physics at university and school regarding contents and methods.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) term paper (approx. 8 pages) or b) presentation (approx. 45 minutes) or c) written examination (approx. 45 minutes) or d) oral examination of one candidate each (approx. 15 minutes) or e) oral examination in groups (groups of 2, approx. 15 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 22 II Nr. 1 h)
- § 22 II Nr. 2 f)
- § 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Physics Didactics</td>
<td>11-L-EL2-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Applied Physics

Module offered by

Faculty of Physics and Astronomy

ECTS

3

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Current topics in physics education.

Intended learning outcomes

The students have knowledge of a current subdiscipline of physics education and are able to classify the acquired knowledge according to subject-specific contexts and implement it into classes.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) term paper (approx. 8 pages) or b) presentation (approx. 45 minutes) or c) written examination (approx. 45 minutes) or d) oral examination of one candidate each (approx. 15 minutes) or e) oral examination in groups (groups of 2, approx. 15 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINT Preparatory Course Mathematical Methods of Physics</td>
<td>11-P-VKM-202-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Mathematical basics and elementary calculus refreshing and extending knowledge from school, especially as an introduction and preparation for the modules of experimental and theoretical physics.

1. Basic geometry and algebra, 2. differential calculus and series, 3. integral calculus, 4. vectors – directional quantities, 5. coordinate systems, 6. complex numbers

Intended learning outcomes

Students are in command of knowledge of basic mathematics and possess skills in elementary calculus as required for the successful start into the studies of experimental and theoretical physics.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>V (1) + Ü (2)</th>
</tr>
</thead>
</table>

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

exercises (successful completion of approx. 50% of approx. 6 exercise sheets) or talk (approx. 15 minutes)

Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title
Student Lab Supervision (Physics)

Abbreviation
11-L-L3B-152-m01

Module coordinator
holder of the Chair of Physics and its Didactics

Module offered by
Faculty of Physics and Astronomy

ECTS
2

Method of grading
Only after succ. compl. of module(s)

(Not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
The module provides an introduction to successful supervision of pupils independently carrying out experiments in the teaching-learning-laboratory.

Intended learning outcomes
The students learn to classify different groups of pupils according to their subject-specific and experimental level of performance, to support the pupils according to their needs and age and to help them during independent experimenting (supervision competencies in open classroom situations). The students are able to methodically and critically evaluate their own actions. A lecturer gives individual feedback to the students to avoid negative behaviour patterns and to support the students' strengths. The students develop professional behaviour patterns by repeatedly working on the same topic with different groups of pupils (reflection competencies and self-control competencies).

Courses
(type, number of weekly contact hours, language — if other than German)
P (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 45 minutes) or b) oral examination of one candidate each (approx. 10 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate) or d) term paper (approx. 8 pages)

Allocation of places
--

Additional information
This module is designed for students studying at least one subject in the natural sciences.

Referred to in LPO I
(examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title	Abbreviation
Low Cost - High Impact. Low-budget Experiments for Science Courses (Physics) | 11-MIND-Ph1-152-m01

Module coordinator | Module offered by
holder of the Chair of Physics and its Didactics | Faculty of Physics and Astronomy

ECTS | Method of grading | Only after succ. compl. of module(s)
2 | (not) successfully completed | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

Conception and realisation of experimental stations with ordinary and inexpensive consumables for classes of Grundschule and secondary level I.

Intended learning outcomes

The students develop simple scientific experimenting stations to use for the transition from primary to secondary level I for small groups from different types of schools. In doing so, they learn to simplify and convey scientific contents relevant to the curriculum in due consideration of the target group.

Courses (type, number of weekly contact hours, language — if other than German)
S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 45 minutes) or b) oral examination of one candidate each (approx. 10 minutes) or c) oral examination in groups (groups of 2, approx. 20 minutes) or d) term paper (approx. 8 pages)

Allocation of places
--

Additional information

This module is designed for students studying at least one subject in the natural sciences.

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title
Teaching Science with Hands-on-Exhibits (Physics)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-MIND-Ph2-152-m01</th>
</tr>
</thead>
</table>

Module coordinator
holder of the Chair of Physics and its Didactics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Designing and creating hands-on exhibits for STEM subjects.

Intended learning outcomes
The students evaluate the advantages and disadvantages of the hands-on approach for teaching scientific contents in and out of school. They plan and implement an interdisciplinary science exhibition as an example of project-oriented work with pupils of secondary level I and II.

Courses
(type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

A) written examination (approx. 45 minutes) or B) oral examination of one candidate each (approx. 10 minutes) or C) oral examination in groups (groups of 2, approx. 20 minutes) or D) term paper (approx. 8 pages)

Allocation of places
--

Additional information
This module is designed for students studying at least one subject in the natural sciences.

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)

Module title	Abbreviation
Astrophysics | 11-AP-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

History of astronomy, coordinates and time measurement, the Solar System, exoplanets, astronomical scales, telescopes and detectors, stellar structure and atmospheres, stellar evolution and end stages, interstellar medium, molecular clouds, structure of the milky way, the local universe, the expanding universe, galaxies, active galactic nuclei, large-scale structures, cosmology.

Intended learning outcomes

The students are familiar with the modern world view of Astrophysics. They know methods and tools for astrophysical observations and evaluations. They are able to use these methods to plan and analyse own observations. They are familiar with the physics and development of the main astrophysical objects such as stars and galaxies.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + R (2)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title
Principles of Energy Technologies

Abbreviation
11-ENT-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents

Intended learning outcomes
The students know the principles of different methods of energy technology, especially energy conversion, transport and storage. They understand the structures of corresponding installations and are able to compare them.

Courses
(V (3) + R (1))
Module taught in: German or English

Method of assessment
(a) written examination (approx. 90 to 120 minutes) or (b) oral examination of one candidate each (approx. 30 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or (d) project report (approx. 8 to 10 pages) or (e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(Examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module title
Current Topics of Teaching Concepts in Physics

Abbreviation
11-L-APD-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
3

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Current topics in physics education.

Intended learning outcomes
The students have knowledge of a current subdiscipline of physics education and are able to classify the acquired knowledge according to subject-specific contexts and implement it into classes.

Courses
(type, number of weekly contact hours, language — if other than German)
S (2)
Module taught in: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 45 minutes) or b) oral examination of one candidate each (approx. 10 minutes) or c) oral examination in groups (groups of 2, approx. 10 minutes per candidate) or d) term paper (approx. 8 pages) or e) talk (30 to 45 minutes) with discussion

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Work in Teaching Concepts</td>
<td>11-L-WPD-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Current topics in scientific work in physics education

Intended learning outcomes

The students have knowledge of a current subdiscipline of physics education and are able to process questions of physics education on the basis of scientific methods.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (30 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Physics</td>
<td>11-LX6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics in physics.

Intended learning outcomes

The students have knowledge of a current subdiscipline of Physics and understand the measuring and/or calculation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + R (1)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Module Title

Selected Topics of Physics

Abbreviation

11-LCS6-152-m01

Module Coordinator

Chairperson of examination committee

Module Offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of Grading</th>
<th>Other Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>Approval from examination committee required.</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module Level

Undergraduate

Other Prerequisites

Approval from examination committee required.

Contents

Current topics in experimental physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended Learning Outcomes

The students have advanced competencies corresponding to the requirements of a module of Experimental Physics of the Bachelor's programme. They have knowledge of a current subdiscipline of Experimental Physics and understand the measuring and/or evaluation methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

<table>
<thead>
<tr>
<th>(Type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (2) + R (1)</td>
</tr>
</tbody>
</table>

Method of Assessment

(a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of Places

Additional Information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Thesis
(10 ECTS credits)

Preparation of a written Hausarbeit (thesis) in accordance with the provisions of Section 29 LPO I (examination regulations for teaching-degree programmes) is a prerequisite for teaching degree students to be admitted to the Erste Staatsprüfung (First State Examination). In accordance with the provisions of Section 29 LPO I, students studying for a teaching degree Gymnasium may write this thesis in one of the subjects they selected as vertieft studiertes Fach (subject studied with a focus on the scientific discipline) or in the subject Erziehungswissenschaften (Educational Science). Pursuant to Section 29 Subsection 1 Sentence 2 LPO I, students may also choose to write an interdisciplinary thesis.
Module title	Abbreviation
Thesis in Physics (Teaching Degree at German Gymnasium) | 11-L-HAGY-152-m01

Module coordinator | **Module offered by**
chairperson of examination committee | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Independent processing of a topic of Physics and/or Didactics of Physics, chosen in consultation with a lecturer.

Intended learning outcomes
The students are able to independently work on a predetermined physical topic while applying the knowledge and methods acquired in the teaching degree programme. They are able to present their results in written form in due consideration of didactic aspects.

Courses (type, number of weekly contact hours, language — if other than German)
No courses assigned to module

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Hausarbeit (thesis) pursuant to Section 29 LPO I (examination regulations for teaching-degree programmes) (approx. 40 pages)
Language of assessment: German; exceptions pursuant to Section 29 Subsection 4 LPO I (examination regulations for teaching-degree programmes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 29