Module Catalogue
for the Subject
Physics
as Unterrichtsfach
with the degree "Erste Staatsprüfung für das Lehramt an
Realschulen"

Examination regulations version: 2009
Responsible: Faculty of Physics and Astronomy
Contents

The subject is divided into

Abbreviations used, Conventions, Notes, In accordance with 4

Scientific Discipline 5

Compulsory Courses 6
 Demonstration Practical Course 1 7
 Experimental Physics 1 and 2 · Teaching Post (Mechanics, Thermodynamics, Oscillations, Waves, Electrics, Magnetism and Optics) 8
 Modern Physics 1 10
 Modern Physics and General Concepts 11
 Lab Course A 12
 Lab Course B 13
 Practice in Student Lab 14

Teaching 15
 Teaching 1 16
 Teaching Seminar Fundamental Principles 18
 Student Lab Supervision (Physics) 19

Freier Bereich (general as well as subject-specific electives) 20

Physics 21
 Student Lab Supervision (Physics) 22
 Preparatory Course Mathematics 23
 Low Cost · High Impact. Low-Budget Experiments for Science Courses (Physics) 24
 Teaching Science with Hands-on-Exhibits (Physics) 25

Thesis 26
 Thesis in Physics Intermediate School 27
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Discipline</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Teaching</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Freier Bereich (general as well as subject-specific electives)</td>
<td>0-15</td>
<td>20</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Thesis</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>
Abbreviations used

Course types: \(E \) = field trip, \(K \) = colloquium, \(O \) = conversatorium, \(P \) = placement/lab course, \(R \) = project, \(S \) = seminar, \(T \) = tutorial, \(Ü \) = exercise, \(V \) = lecture

Term: \(SS \) = summer semester, \(WS \) = winter semester

Methods of grading: \(\text{NUM} \) = numerical grade, \(B/NB \) = (not) successfully completed

Regulations: \((L)\text{ASPO} \) = general academic and examination regulations (for teaching-degree programmes), \(\text{FSB} \) = subject-specific provisions, \(\text{SFB} \) = list of modules

Other: \(\text{A} \) = thesis, \(\text{LV} \) = course(s), \(\text{PL} \) = assessment(s), \(\text{TN} \) = participants, \(\text{VL} \) = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

\(\text{LASPO}2009 \)

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

\(20\text{-Feb-2013 (2012-76)} \)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Scientific Discipline

(60 ECTS credits)
Compulsory Courses

(60 ECTS credits)
Module title	Abbreviation
Demonstration Practical Course 1 | 11-P-DP1-092-m01

Module coordinator | Module offered by
holder of the Chair of Physics and its Didactics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents

Fundamental experiments of physics education in primary and secondary level I, knowledge of tools typically used in school, goal setting and didactic potential of demonstration experiments, student experiments, free-hand experiments, model experiments, etc.; computer-aided experiments; measured value acquisition, interactive screen experiments, etc.; presentation of experiments; safety in physics education, presentation competencies.

Intended learning outcomes

Competencies in working with teaching tools and experimenting materials used in commerce and school; systematic analysis of error sources of own experiments; identification of categories of experiments, their functions and their didactic potential; experience in choosing, constructing and presenting experiments according to the learning goals and group of pupils, experience in using computerised demonstration and pupils experiments; safety standards of Physics classes.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (approx. 10 minutes) or oral examination in groups (groups of 2, approx. 20 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. c) Physik physikalische Grundpraktika
§ 77 (1) 1. d) Physik "physikalische Praktika"
Module title	Abbreviation
Experimental Physics 1 and 2 - Teaching Post (Mechanics, Thermodynamics, Oscillations, Waves, Electrics, Magnetism and Optics) | 11-P-E-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
22 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | Bridge course Mathematik (Mathematics) for first-semester students and sound reading, writing and maths skills as well as logical thinking skills.

Contents

Physical laws and elementary mathematical calculation methods of mechanics, thermodynamics, vibration, waves, science of electricity, magnetism, electromagnetic vibration and waves, radiation and wave optics.

Intended learning outcomes

The students understand the basic principles, connections and calculation methods of mechanics, thermodynamics, vibrations, waves, science of electricity, magnetism, electromagnetic vibrations and waves, radiation and wave optics.

Courses

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentelle Physik 1 (Experimental Physics 1):</td>
<td>V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)</td>
</tr>
<tr>
<td>Experimentelle Physik 2 (Experimental Physics 2):</td>
<td>V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)</td>
</tr>
<tr>
<td>Mathematische Rechenmethoden 1 (Mathematical Methods 1):</td>
<td>V (2 weekly contact hours) + Ü (1 weekly contact hour), once a year (winter semester)</td>
</tr>
<tr>
<td>Mathematische Rechenmethoden 2 (Mathematical Methods 2):</td>
<td>V (2 weekly contact hours) + Ü (1 weekly contact hour), once a year (summer semester)</td>
</tr>
</tbody>
</table>

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises in part 1 (Experimentelle Physik 1 (Experimental Physics 1)): written examination (approx. 120 minutes, usually chosen) or oral examination of one candidate each (approx. 20 minutes) or oral examination in groups (approx. 30 minutes, groups of 2 candidates).
2. Topics covered in lectures and exercises in part 2 (Experimentelle Physik 2 (Experimental Physics 2)): written examination (approx. 120 minutes, usually chosen) or oral examination of one candidate each (approx. 20 minutes) or oral examination in groups (approx. 30 minutes, groups of 2 candidates).
3. Topics covered in lectures and exercises in part 2 (Mathematische Rechenmethoden 1 (Mathematical Methods 1)): exercises or talk (approx. 15 minutes, usually chosen) or written examination (approx. 60 minutes)
4. Topics covered in lectures and exercises in part 2 (Mathematische Rechenmethoden 2 (Mathematical Methods 2)): exercises or talk (approx. 15 minutes, usually chosen) or written examination (approx. 60 minutes)
5. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 through 4.

To qualify for admission to assessment component 5, students must pass assessment component 1 and/or 2 as well as assessment components 3 and 4. Students are highly recommended to attend both courses Experimentelle Physik 1 (Experimental Physics 1) and Experimentelle Physik 2 (Experimental Physics 2). The topics discussed in these two courses, together with the topics discussed in Mathematische Rechenmethoden (Mathematical Methods) 1 and 2, will be covered in assessment component 5.

Students must register for assessment components 1 through 5 online (details to be announced).

To pass this module, students must first pass assessment component 1 or 2 as well as assessment components 3 and 4 and must then pass assessment component 5.
The grade achieved in assessment component 5 will be the overall grade awarded for the module as a whole.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie</td>
</tr>
<tr>
<td>§ 77 (1) 1. a) Physik "Grundlagen der Experimentalphysik"</td>
</tr>
</tbody>
</table>
Module title
Modern Physics 1

Abbreviation
11-P-MP1-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Only after succ. compl. of module(s)

Numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Prior completion of module 11-P-E is recommended. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Fundamental experiments: Atoms: Specification of atomic values, masses and energies, Rutherford scattering; photons: Radiation laws, photoelectric effect, Compton effect; electrons: Elementary charge, e/m determination, interference experiments, matter wave, Schrödinger equation, uncertainty relation, simple quantum mechanical systems, questions of interpretation, recent experiments; quantum mechanics of hydrogen atoms, magnetic moment and spin, atomic structure, Periodic Table of the Elements

Intended learning outcomes
The students gain insights into the basic differences between classical and quantum physical description, they have consolidated and structured knowledge of the mentioned contents; they have knowledge of the relevant central thoughts and key experiments and of measuring methods and scales of central values and are able to apply and process relevant problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 120 minutes; usually chosen) or b) oral examination of one candidate each or c) oral examination in groups (approx. 30 minutes per candidate)

Allocation of places
--

Additional information
--

Referred to in LPO I
§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. b) Physik Aufbau der Materie
§ 77 (1) 1. c) Physik "Theoretische Physik"
Module title: Modern Physics and General Concepts

Abbreviation: 11-P-MPR-092-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 11

Method of grading: Only after succ. compl. of module(s)

Numerical grade: --

Duration: 1 semester

Module level: undergraduate

Other prerequisites: 11-P-E; 11-P-MP1

Contents:
Basics of Solid-State Physics; Nuclear Physics, Elementary Particle Physics and Astrophysics; introduction of important concepts and applications of Physics; interconnections between the physical subdisciplines (and partly with other Natural Sciences); aspects of the history of ideas of important concepts and their controversies (e.g. atomism, determinism); Applied and Technical Physics: Physics and information/communication technology; rules and process technology, sensors; medical technology; climate and weather; Biophysics; ecology; energy; celestial mechanics, satellites, GPS; measuring devices; electrical light sources; displays

Intended learning outcomes:
The students have structured knowledge of the aforementioned terms. Their understanding of important shared concepts enables them to connect different subdisciplines of Physics, they know the similarities and differences of different usage contexts and therefore have in-depth knowledge of these concepts; they understand complex systems of nature and engineering and are able to connect their own physical knowledge in a synergetic manner by analysing the solutions to selected, complex problems.

Courses:
Moderne Physik (Modern Physics): V (2 weekly contact hours) + Ü (1 weekly contact hour), once a year (winter semester)

Gebietsübergreifende Konzepte (General Concepts): V (1 weekly contact hour) + Ü (2 weekly contact hours), once a year (winter semester)

Begleitseminar (vertiefend) (Accompanying Seminar for Advanced Students): S (2 weekly contact hours), once a year (winter semester)

Method of assessment:
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Moderne Physik/ Modern Physics): written examination (approx. 90 minutes, usually chosen) or oral examination of one candidate each (approx. 20 minutes)
2. Topics covered in lectures and exercises in part 2 (Gebietsübergreifende Konzepte (Interdisciplinary Aspects)): written examination (approx. 90 minutes, usually chosen) or oral examination of one candidate each (approx. 20 minutes)
3. Seminar: written examination (approx. 45 minutes) or term paper (approx. 8 pages) or presentation (approx. 30 minutes) or oral examination (approx. 30 minutes)

Students must register for assessment components 1 through 3 online (details to be announced). To pass this module, students must pass each of the assessment components 1 through 3.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
§ 53 (i) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (i) 1. b) Physik Aufbau der Materie
Module title	Lab Course A
Abbreviation | 11-P-PA-112-m01

Module coordinator | Managing Director of the Institute of Applied Physics
Module offered by | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | (not) successfully completed | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Physical laws of mechanics, thermodynamics, science of electricity, types of error, error approximation and propagation, graphs, linear regression, average values and standard deviation, distribution functions, significance tests, writing of lab reports and publications.

Intended learning outcomes
The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)
Auswertung von Messungen und Fehlerrechnung (Measurements and Data Analysis): V (1 weekly contact hour) + Ü (1 weekly contact hour), once a year (winter semester)
Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity, BAM): P (2 weekly contact hours)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 120 minutes)
2. Lab course: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

Successful completion of approx. 50% of practice work is a prerequisite for admission to assessment component 1.

To pass assessment component 2, students must pass both elements a) and b). Students will be offered one opportunity to retake element a) and/or element b).
Students must register for assessment components 1 and 2 online (details to be announced).

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 53 (i) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (i) 1. c) Physik physikalische Grundpraktika
§ 77 (i) 1. a) Physik "Grundlagen der Experimentalphysik"
§ 77 (i) 1. d) Physik "physikalische Praktika"
Module title: Lab Course B
Abbreviation: 11-P-PB-L-092-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: undergraduate

Other prerequisites: --

Contents:
Physical laws of the science of electricity, circuits with electrical components and Atomic and Nuclear Physics.

Intended learning outcomes:
The students have knowledge and skills of physical measuring instruments and experimental techniques. They are able to independently plan and conduct experiments in cooperation with others, and to document the results in a measurement protocol.

Courses:
Elektrizitätslehre und Schaltungen (Electricity and Circuits, ELS): P (2 weekly contact hours)
Atom- und Kernphysik (Atomic and Nuclear Physics, AKP): P (2 weekly contact hours)

Method of assessment:
This module has the following assessment components
1. Lab course in part 1: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).
2. Lab course in part 2: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

Students must register for assessment components 1 and 2 online (registration deadline to be announced). Students will be offered one opportunity to retake element a) and/or element b). To pass an assessment component, they must pass both elements a) and b).

Students must attend Elektrizitätslehre und Schaltungen (Electricity and Circuits) courses before attending Atom- und Kernphysik (Atomic and Nuclear Physics) courses.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places:
--

Additional information:
--

Referred to in LPO I:
§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. b) Physik Aufbau der Materie
§ 53 (1) 1. c) Physik physikalische Grundpraktika
§ 77 (1) 1. b) Physik "Fortgeschrittene Experimentalphysik"
§ 77 (1) 1. d) Physik "physikalische Praktika"
Module title
Practice in Student Lab

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>11-P-LLL-092-m01</th>
</tr>
</thead>
</table>

Module coordinator
holder of the Chair of Physics and its Didactics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Modules 11-P-E, 11-P-FD1, 11-P-DP1 are recommended.</td>
</tr>
</tbody>
</table>

Contents

The module gives an overview of applicable physical experiments that provide an introduction to science and can be performed in teaching-learning-laboratories (M!ND center). In these experiments, different working methods are employed.

Intended learning outcomes

The students know how to prepare and follow-up a visit in a teaching-learning-laboratory (M!ND-Center) and have gained an overview of current didactic research topics and further possibilities for development in the field of subject-didactic research. They are able to evaluate and assess the (affective) learning achievements of pupils, to hold scientific-propaedeutic classes, to positively influence the motivation of pupils in the subject of Physics and to raise their interest for current physical research questions. The students are able to select, set up or build pupils experiments in a target-oriented manner, and to supervise pupils while experimenting.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes, unless different length and mode of oral examination of one candidate each or oral examination in groups stated) or b) term paper (approx. 6 to 12 pages, time to complete: 1 to 4 weeks)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. c) Physik physikalische Grundpraktika
§ 77 (1) 1. d) Physik "physikalische Praktika"
Teaching
(12 ECTS credits)
Module title: Teaching 1
Abbreviation: 11-P-FD1-092-m01

Module coordinator: holder of the Chair of Physics and its Didactics
Module offered by: Faculty of Physics and Astronomy

ECTS: 4
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: Prior completion of module 11-P-E recommended.

Contents
Student preconceptions and typical learning difficulties in school physics, corresponding teaching methods and techniques to change student preconceptions; epistemological and working methods of physics. Justification/legitimation of physics education, educational goals of physics, qualification models and educational standards: elementarisation and didactic reconstruction of physical contents, methods of physics education, media in physics education and their application to support learning.

Intended learning outcomes
In-depth understanding of school-relevant areas of Physics; knowledge of typical student preconceptions and learning difficulties; knowledge of how to change student preconceptions; knowledge of alternative teaching approaches for selected topics; knowledge of epistemological methods of Physics; knowledge of the legitimation and goals of the school subject Physics; knowledge of elementarising and teaching methods; knowledge of physical teaching and working tools.

Courses
(type, number of weekly contact hours, language — if other than German)

Einführung Fachdidaktik 1 (Introduction to Didactics 1): S (2 weekly contact hours), once a year (summer semester)
Einführung Fachdidaktik 2 (Introduction to Didactics 2): V (1 weekly contact hour) + Ü (1 weekly contact hour), once a year (summer semester)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following assessment components
1. Seminar (Einführung Fachdidaktik 1/Introduction to Didactics 1): term paper (approx. 8 pages) or presentation (approx. 30 minutes) or oral examination of one candidate each (approx. 10 minutes) or oral examination in groups (approx. 20 minutes, groups of 2 candidates).
2. Topics covered in lectures and exercises (Einführung Fachdidaktik 2/Introduction to Didactics 2): written examination (approx. 45 minutes) or term paper (approx. 8 pages) or presentation (approx. 30 minutes) or oral examination of one candidate each (approx. 10 minutes) or oral examination in groups (approx. 20 minutes, groups of 2 candidates).

Students must register for assessment components 1 and 2 online (details to be announced).
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
Important information on number and allocation of places: There is a restricted number of places. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will be allocated according to the number of subject semesters/ECTS credits (1st: studying in 3rd subject semester or higher, 2nd: has achieved a minimum of 50 ECTS credits, and 3rd: highest number of subject semesters if studying in 1st or 2nd subject semester). Among applicants with the same number of subject semesters/ECTS credits, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.
<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 36 (1) 7. Didaktik der Grundschule Physik</td>
</tr>
<tr>
<td>§ 38 (1) 1. Didaktik der Hauptschule Physik</td>
</tr>
<tr>
<td>§ 38 (1) 1. Didaktik der Mittelschule Physik</td>
</tr>
<tr>
<td>§ 53 (1) 2. Physik Fachdidaktik</td>
</tr>
<tr>
<td>§ 77 (1) 1. a) Physik "Grundlagen der Experimentalphysik"</td>
</tr>
<tr>
<td>§ 77 (1) 2. Physik Fachdidaktik</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Teaching Seminar Fundamental Principles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Prior completion of module 11-P-E is recommended. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physical and interdisciplinary aspects of selected topics of physics education, corresponding student preconceptions and typical learning difficulties, elementarisation and didactic reconstruction of physical contents based on specific contents of physics education, verbalisation of physical contents, possible teaching methods, typical school experiments and suitable media.

Intended learning outcomes

Advanced, qualitative knowledge of school-relevant areas of Physics; knowledge of common methods, typical student preconceptions and special media on relevant topics; awareness of the differences between teaching Physics at university and school regarding contents and methods.

Courses (type, number of weekly contact hours, language — if other than German)

| S (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) term paper (approx. 8 pages, time to complete: 1 to 4 weeks) or b) presentation/seminar presentation (approx. 45 minutes) or c) written examination (approx. 45 minutes) or d) oral examination of one candidate each (approx. 15 minutes) or e) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 2. Physik Fachdidaktik
Module Catalogue for the Subject
Physics
LA Realschulen

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Lab Supervision (Physics)</td>
<td>11-P-FD-LLL-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

The module gives an overview of applicable physical experiments that provide an introduction to science and can be performed in teaching-learning-laboratories (M!ND center). In these experiments, different working methods are employed.

Intended learning outcomes

The students know how to prepare and follow-up a visit in a teaching-learning-laboratory (M!ND-Center) and have gained an overview of current didactic research topics and further possibilities for development in the field of subject-didactic research. They are able to evaluate and assess the (affective) learning achievements of pupils, to hold scientific-propaedeutic classes, to positively influence the motivation of pupils in the subject of Physics and to raise their interest for current physical research questions. The students are able to select, set up or build pupils experiments in a target-oriented manner, and to supervise pupils while experimenting.

Courses

(no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 45 minutes) or b) term paper (approx. 8 pages, time to complete: 1 to 4 weeks) or c) oral examination of one candidate each (approx. 10 minutes) or oral examination in groups (approx. 20 minutes, groups of 2)</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 2. Physik Fachdidaktik
§ 77 (1) 2. Physik Fachdidaktik
Freier Bereich (general as well as subject-specific electives) (0-15 ECTS credits)

Teaching degree students must take modules worth a total of 15 ECTS credits in the area Freier Bereich (general as well as subject-specific electives) (Section 9 LASPO (general academic and examination regulations for teaching-degree programmes)). To achieve the required number of ECTS credits, students may take any modules from the areas below.

Freier Bereich -- interdisciplinary: The interdisciplinary additional offer for a teaching degree can be found in the respective Annex "Ergänzende Bestimmungen für den "Freien Bereich" im Rahmen des Studiums für ein Lehramt".
Physics

(ECTS credits)

(Freier Bereich (general as well as subject-specific electives) -- subject specific)
Student Lab Supervision (Physics)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>11-P-FB-LLL-121-m01</td>
</tr>
</tbody>
</table>

Module coordinator
- holder of the Chair of Physics and its Didactics

Module offered by
- Faculty of Physics and Astronomy

ECTS
- 2

Method of grading
- Only after succ. compl. of module(s)

Duration
- 1 semester

Module level
- undergraduate

Other prerequisites
- This module can be chosen by students studying at least one subject in the natural sciences.

Contents
The module provides an introduction to successful supervision of pupils independently carrying out experiments in the teaching-learning-laboratory.

Intended learning outcomes
The students learn to classify different groups of pupils according to their subject-specific and experimental level of performance, to support the pupils according to their needs and age and to help them during independent experimenting (supervision competencies in open classroom situations). The students are able to methodically and critically evaluate their own actions. A lecturer gives individual feedback to the students to avoid negative behaviour patterns and to support the students’ strengths. The students develop professional behaviour patterns by repeatedly working on the same topic with different groups of pupils (reflection competencies and self-control competencies).

Courses
- (type, number of weekly contact hours, language — if other than German)
- S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
- a) written examination (approx. 45 minutes) or b) term paper (approx. 8 pages, time to complete: 1 to 4 weeks) or c) examination of one candidate each (approx. 10 minutes) or d) examination in groups (approx. 20 minutes, groups of 2)

Allocation of places
- --

Additional information
- --

Referred to in LPO I
- (examination regulations for teaching-degree programmes)
- --
Module title	Abbreviation
Preparatory Course Mathematics | 11-P-VKM-092-m01

Module coordinator
Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)	Other prerequisites
2 | (not) successfully completed | -- |

Duration	Module level	Other prerequisites
1 semester | undergraduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Principles of mathematics and elementary calculation methods from school and partially beyond, especially for the introduction to and preparation of the modules of Experimental and Theoretical Physics. 1. Basic geometry and algebra 2. Coordinate systems and complex numbers 3. Vectors - vectored values 4. Differential calculus 5. Integral calculus

Intended learning outcomes
The students know the principles of mathematics and elementary calculation methods which are required for successfully studying Theoretical and Experimental Physics.

Courses (type, number of weekly contact hours, language — if other than German)
T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
discussion and exercises (approx. 15 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cost - High Impact. Low-Budget Experiments for Science Courses (Physics)</td>
<td>11-MIND-Ph1-121-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physics and its Didactics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>This module can be chosen by students studying at least one subject in the natural sciences.</td>
</tr>
</tbody>
</table>

Contents

Conception and realisation of experimental stations with ordinary and inexpensive consumables for classes of Grundschule and secondary level I.

Intended learning outcomes

The students develop simple scientific experimenting stations to use for the transition from primary to secondary level I for small groups from different types of schools. In doing so, they learn to simplify and convey scientific contents relevant to the curriculum in due consideration of the target group.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) written examination (approx. 45 minutes) or
- b) term paper (approx. 8 pages, time to complete: 1 to 4 weeks) or
- c) examination of one candidate each (approx. 10 minutes) or
- d) examination in groups (approx. 20 minutes, groups of 2)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Physics

LA Realschulen

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Science with Hands-on-Exhibits (Physics)</td>
<td>11-MIND-Ph2-121-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Physics and its Didactics

Module offered by
Faculty of Physics and Astronomy

ECTS
2

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
This module can be chosen by students studying at least one subject in the natural sciences.

Contents
Designing and creating hands-on exhibits for STEM subjects.

Intended learning outcomes
The students evaluate the advantages and disadvantages of the hands-on approach for teaching scientific contents in and out of school. They plan and implement an interdisciplinary science exhibition as an example of project-oriented work with pupils of secondary level I and II.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 45 minutes) or b) term paper (approx. 8 pages, time to complete: 1 to 4 weeks) or c) examination of one candidate each (approx. 10 minutes) or d) examination in groups (approx. 20 minutes, groups of 2)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Thesis

(10 ECTS credits)

Preparation of a written Hausarbeit (thesis) in accordance with the provisions of Section 29 LPO I (examination regulations for teaching-degree programmes) is a prerequisite for teaching degree students to be admitted to the Erste Staatsprüfung (First State Examination). In accordance with the provisions of Section 29 LPO I, students studying for a teaching degree Realschule may write this thesis in one of the subjects they selected as Unterrichtsfach (subject studied with a focus on the scientific discipline) or in the subject Erziehungswissenschaften (Educational Science). Pursuant to Section 29 Subsection 1 Sentence 2 LPO I, students may also choose to write an interdisciplinary thesis.
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis in Physics Intermediate School</td>
<td>11-P-HARS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Where applicable, specific modules/module components as specified by supervisor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independent processing of a topic of Physics and/or Didactics of Physics, chosen in consultation with a lecturer

Intended learning outcomes

The students are able to independently work on a predetermined physical topic while applying the knowledge and methods acquired in the teaching degree programme. They are able to present their results in written form in due consideration of didactic aspects.

Courses (type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

written thesis (approx. 40 pages)

Language of assessment: German, exceptions in accordance with Section 29 Subsection 4 LPO I (examination regulations for teaching degree programmes)

Allocation of places

--

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--