Module Catalogue
for the Subject
Mathematics
as a minor in a Bachelor’s degree programme
(60 ECTS credits)

Examination regulations version: 2008
Responsible: Institute of Mathematics
Contents

The subject is divided into

Content and Objectives of the Programme 3

Abbreviations used, Conventions, Notes, In accordance with 4

Compulsory Courses 5

Propaedeutics of Mathematics 6
Analysis 7
Linear Algebra 8
Preparatory Course Mathematics 10

Compulsory Electives 12

Ordinary Differential Equations 13
Seminar in Analysis 14
Seminar in Linear Algebra 16
Seminar in Algebra 17
Seminar in Geometry 18
Seminar in Number Theory 19
Seminar in Ordinary Differential Equations 20
Seminar in Complex Analysis 21
Seminar in Numerical Mathematics 22
Seminar in Stochastics 23
Seminar in Functional Analysis 24
Seminar in Operation Research 25
Seminar in Discrete Mathematics 26
Introduction to Discrete Mathematics 27
Introduction to Functional Analysis 28
Operations Research 29
Introduction to Number Theory 30
Non-Linear Dynamics 31
Computational Mathematics, advanced 32
Introduction to Geometry 33
Programming course for students of Mathematics and other subjects, simple 35
Number Theory and Algebra 36
Numerical Mathematics 1 38
Stochastics 1 39
Numerical Mathematics 2 40
Stochastics 2 41
Programming course for students of Mathematics and other subjects 42
Computeroriented Mathematics 43
Ordinary Differential Equations and Complex Analysis 44
Advanced Analysis 46
Small Reading Course Mathematics 47
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>26</td>
<td>13</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme
The Bachelor programme in Mathematics as Subsidiary Subject is offered by the Department of Mathematics, with a total of currently (SS 2010) 9 chairs.
At the end of this course of study, the student should be familiar with the basics of mathematics, taught methods of mathematical reasoning and working as well as analytical thinking, abstract concepts and the ability to recognize and construct complex structures and interconnections.
The main emphasis is put on basic mathematical knowledge, method knowledge and the development of the mental constructs which are typical for mathematics. The acquisition of special topics in different secondary branches of mathematics is subordinate.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2007

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

24-Mar-2010 (2010-12)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses
(34 ECTS credits)
Propaedeutics of Mathematics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propaedeutics of Mathematics</td>
<td>10-M-PPM-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of courses (as specified at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Fundamental proof methods and questions in mathematics, insight into examples of abstract concepts of mathematics, e.g. by reference to its historical development, approach to axiomatic and deduction.

Intended learning outcomes

The student is acquainted with the basic proof methods and techniques in mathematics. He/She is able to perform easy mathematical arguments independently and present them adequately and reasonably in written and oral form.

Courses

- **V + Ü**: (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- **project assignments**: (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- **Assessment offered**: once a year, winter semester
- **Language of assessment**: German, English if agreed upon with the examiner

Allocation of places

- --

Additional information

- --

Referred to in LPO I

- (examination regulations for teaching-degree programmes)

- --
Module title
Analysis

Abbreviation
10-M-ANA-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
17

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
2 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, power series, Taylor series, fundamental calculus in one and several variables (including inverse and implicit function theorem); fundamental integral calculus in one variable (Riemann integral and improper integrals).

Intended learning outcomes
The student knows and masters the essential methods and notions of analysis. He/She is able to perform easy mathematical arguments and present them adequately in written and oral form. He/She is acquainted with the central proof methods and concepts in analysis, their analytic background and geometric interpretation.

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.

• 10-M-ANA-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
• 10-M-ANA-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
• 10-M-ANA-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ANA-1-082: Analysis 1 Analysis 1
• 8 ECTS, Method of grading: (not) successfully completed
 a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 Language of assessment: German, English if agreed upon with the examiner
 Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended.

Assessment in module component 10-M-ANA-2-082: Analysis 2 Analysis 2
• 7 ECTS, Method of grading: (not) successfully completed
 a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 Language of assessment: German, English if agreed upon with the examiner
 Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended; in addition, module component 10-M-ANA-1 is recommended for module component 10-M-ANA-2.

Assessment in module component 10-M-ANA-P-082: Examination in Analysis
• 2 ECTS, Method of grading: numerical grade
 oral examination of one candidate each (approx. 30 minutes)
 Language of assessment: German, English if agreed upon with the examiner
 Only after successful completion of module components: Successful completion of any one of the module components 10-M-ANA-1, 10-M-ANL-1, 10-M-ANA-2, 10-M-ANL-2 is a prerequisite for participation in module component 10-M-ANA-P.
Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module title	Abbreviation
Linear Algebra | 10-M-LNA-082-m01

Dean of Studies Mathematik (Mathematics) | Institute of Mathematics
ECTS	Method of grading
14 | numerical grade
Duration | Module level | Other prerequisites
2 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Sets, relations and maps; notions of groups, rings and fields (in particular, polynomial rings); vector spaces (subspaces, quotient spaces, linear independency, basis, dimension); linear maps (isomorphism theorem, image, kernel, rank); matrix calculus; systems of linear equations, determinants, eigenvalues, eigenvectors and eigenspaces, diagonalisability (including characteristic polynomial, minimal polynomial), normal forms, bilinear forms; Euclidean and unitary vector spaces (orthonormal bases, isometries, principal axis transformation).

Intended learning outcomes
The student knows and masters the basic notions and essential methods of linear algebra. He/She is able to perform easy mathematical arguments independently, and can present them adequately in written and oral form. He/She is able to apply the central proof methods and concepts of linear algebra and knows about their algebraic and geometric background.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-LNA-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Assessment in module component 10-M-LNA-1-082: Linear Algebra 1 Linear Algebra 1

- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-2-082: Linear Algebra 2 Linear Algebra 2

- 5 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
• Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-P-082: Examination in Linear Algebra

- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-LNA-1 or module component 10-M-LNA-2 is a prerequisite for participation in module component 10-M-LNA-P.

Allocation of places

[---]

Additional information

[---]

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
Module title
Preparatory Course Mathematics

Abbreviation
10-M-VKM-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
1

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of courses (as specified at the beginning of the course).

Contents
Introduction to the basic techniques in mathematics; approach to sets, propositions, propositional logic.

Intended learning outcomes
The student gets acquainted with the basic working techniques which are prerequisites for the further courses in the Bachelor's degree study programme.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Assessment offered: once a year, winter semester
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Compulsory Electives

(26 ECTS credits)
Module title
Ordinary Differential Equations

Abbreviation
10-M-ODE-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Existence and uniqueness theorem, continuous dependance of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Analysis</td>
<td>10-M-BSA-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A selected topic in analysis.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Linear Algebra</td>
<td>10-M-BSL-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in linear algebra.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (approx. 60 minutes)

Assessment offered: in the semester in which the course is offered

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Algebra</td>
<td>10-M-BSE-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
A selected topic in algebra.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Geometry</td>
<td>10-M-BSG-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in geometry or differential geometry.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (approx. 60 minutes)

Assessment offered: in the semester in which the course is offered

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 4. Mathematik Geometrie
Module Catalogue for the Subject Mathematics

minor in a Bachelor's degree programme, 60 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Number Theory</td>
<td>10-M-BSZ-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in number theory.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (approx. 60 minutes)

Assessment offered: in the semester in which the course is offered

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Ordinary Differential Equations</td>
<td>10-M-BSW-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in the theory of ordinary differential equations.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

<table>
<thead>
<tr>
<th>talk (approx. 60 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment offered: in the semester in which the course is offered</td>
</tr>
<tr>
<td>Language of assessment: German, English if agreed upon with the examiner</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Complex Analysis</td>
<td>10-M-BSC-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)
(Institute of Mathematics)

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | -- |

Duration | **Module level** | **Other prerequisites** |
1 semester | undergraduate | -- |

Contents
A selected topic in complex analysis.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (approx. 60 minutes)
Assessment offered: in the semester in which the course is offered
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Numerical Mathematics</td>
<td>10-M-BSN-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in numerical mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

Talk (approx. 60 minutes)

Assessment offered: in the semester in which the course is offered

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Stochastics</td>
<td>10-M-BSS-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
A selected topic in stochastics.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

- talk (approx. 60 minutes)
- Assessment offered: in the semester in which the course is offered
- Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
§ 73 (1) 3. Mathematik Stochastik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Functional Analysis</td>
<td>10-M-BSF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

A selected topic in functional analysis.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

talk (approx. 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Seminar in Operation Research

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Operation Research</td>
<td>10-M-BSO-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
- 5

Method of grading
- Numerical grade

Only after succ. compl. of module(s)
- --

Duration
- 1 semester

Module level
- Undergraduate

Other prerequisites
- --

Contents
A selected topic in operations research.

Intended learning outcomes
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
- S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- Talk (approx. 60 minutes)

Allocation of places
- --

Additional information
- --

Referred to in LPO I (examination regulations for teaching-degree programmes)
- --
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Discrete Mathematics</td>
<td>10-M-BSD-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in discrete mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (approx. 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Introduction to Discrete Mathematics

| Abbreviation | 10-M-EDM-072-m01 |

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

5

Method of grading

Numerical grade: --

Duration

1 semester

Module level

Undergraduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes).

Language of assessment: German, English if agreed upon with the examiner.

Allocation of places

--

Additional information

--

Referred to in LPO 1

(Examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Functional Analysis</td>
<td>10-M-FAN-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis.

Intended learning outcomes
The student knows the fundamental concepts and methods of functional analysis as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to functional analysis, and realises the broad applicability of the theory to other branches of mathematics.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
§ 73 (1) 1. Mathematik Analysis
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research</td>
<td>10-M-ORS-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Number Theory</td>
<td>10-M-EZT-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of elementary number theory. He/She is able to apply these methods to practical problems, e.g., in cryptography.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (90 minutes; usually chosen) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Linear Dynamics</td>
<td>10-M-NLD-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Basic notions in stability theory, Lyapunov theory; stable manifolds, periodic solutions including Poincare-Bendixson, chaotic dynamics; applications in physics and biology (e.g. Hamiltonian systems, Volterra-Lotka).

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in non-linear dynamics and their proof methods. He/She is able to apply these methods to simple situations, e.g. in physics or biology.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module title	Abbreviation
Computational Mathematics, advanced | 10-M-COMg-082-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to modern mathematical software for symbolic computation (e.g., Mathematica or Maple) and numerical computation (e.g., Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA, 10-M-ANL and 10-M-LNA). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)

Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Assessment offered: once a year, summer semester
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title	Abbreviation
Introduction to Geometry | 10-M-GEO-082-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Introduction to topics in geometry: axiomatic introduction of projective spaces, coordinates, fundamental theorems, relations to linear algebra and algebra, curves and hypersurfaces in Euclidean spaces, curvature.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of geometry.

Courses (type, number of weekly contact hours, language — if other than German)

This module has 2 components; information on courses listed separately for each component.

- 10-M-GEO-1-082: V + Ü (no information on language and number of weekly contact hours available)
- 10-M-GEO-2-082: V + Ü (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following 2 assessment components. To pass the module as a whole students must pass one of the two assessment components.

Assessment component to module component 10-M-GEO-1-082: Einführung in die Projektive Geometrie

- 8 ECTS credits, method of grading: numerical grade
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: English, German if agreed upon with the examiner
- Other prerequisites: Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment component to module component 10-M-GEO-2-082: Einführung in die Differentialgeometrie

- 8 ECTS credits, method of grading: numerical grade
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: English, German if agreed upon with the examiner
- Other prerequisites: Admission prerequisite to assessment: successful completion of approx. 50% of exercises. Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.
Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 4. Mathematik Geometrie
Module title | Programming course for students of Mathematics and other subjects, simple
Abbreviation | 10-M-PRGk-082-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics
ECTS | 2
Method of grading | Only after succ. compl. of module(s)

Duration | 1 semester
Module level | undergraduate
Other prerequisites | Admission prerequisite to assessment: regular attendance (attendance monitored, a maximum of one incident of unexcused absence).

Contents
Basics of a modern programming language (e. g. C or Fortran) taking into account the particular needs in mathematics.

Intended learning outcomes
The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title

Number Theory and Algebra

Abbreviation

10-M-ZAL-082-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

13

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

2 semester

Module level

undergraduate

Other prerequisites

By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Introduction to number theory, algebra and their interrelations: basic algebraic structures (groups, rings, fields); discussion of properties of integers and rational numbers (as well as algebraic extensions) with regard to their algebraic structure (residue class rings and finite fields).

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of number theory and algebra. He/she is able to interrelate these concepts and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-ZAL-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ZAL-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ZAL-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ZAL-1-082: Introduction to Number Theory

- 4 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ZAL-2-082: Introduction to Algebra

- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for
the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ZAL-P-082: Examination in Number Theory and Algebra
- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-ZAL-1 or module component 10-M-ZAL-2 is a prerequisite for participation in module component 10-M-ZAL-P.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Numerical Mathematics 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module Catalogue for the Subject Mathematics

minor in a Bachelor’s degree programme, 60 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastics 1</td>
<td>10-M-ST-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses

(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 3. Mathematik Stochastik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 2</td>
<td>10-M-NM2-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>numerical grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems.

Intended learning outcomes

The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title
Stochastics 2

Abbreviation
10-M-ST2-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in statistics, applies these methods to practical problems and knows about the typical fields of application.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
§ 73 (1) 3. Mathematik Stochastik

Minor in a Bachelor's degree programme Mathematics (2008)
Programming course for students of Mathematics and other subjects

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>10-M-PRG-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: regular attendance (attendance monitored, a maximum of one incident of unexcused absence).

Contents

Basics of a modern programming language (e.g. C or Fortran) taking into account the particular needs in mathematics.

Intended learning outcomes

The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Project in the form of programming exercises (as specified at the beginning of the course)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer-oriented Mathematics</td>
<td>10-M-COM-o82-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to modern mathematical software for symbolic computation (e.g. Mathematica or Maple) and numerical computation (e.g. Matlab) to supplement the basic modules in analysis and linear algebra ((10-M-ANA or 10-M-ANL) and 10-M-LNA). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Project in the form of programming exercises (as specified at the beginning of the course)

Assessment offered: once a year, summer semester
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Module title	Abbreviation
Ordinary Differential Equations and Complex Analysis | 10-M-DFT-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
13

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
2 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Existence and uniqueness theorems on solutions of ordinary differential equations, solution theorems on systems of linear differential equations, introduction to the problem of systems of nonlinear differential equations, basic notions in the qualitative theory of ordinary differential equations, basic properties of holomorphic functions, meromorphic functions and conformal maps, basic proof methods in differential equations and complex analysis, applications in computer science, physics, engineering science and other fields of mathematics.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations and holomorphic functions. He/she is able to interconnect these concepts and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-DFT-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-DFT-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-DFT-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-DFT-1-082: Ordinary Differential Equations

- 4 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-DFT-2-082: Introduction to Complex Analysis

- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
• Language of assessment: German, English if agreed upon with the examiner
• Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-DFT-P-082: Examination in Ordinary Differential Equations and Complex Analysis
• 2 ECTS, Method of grading: numerical grade
• oral examination of one candidate each (approx. 30 minutes)
• Language of assessment: German, English if agreed upon with the examiner
• Only after successful completion of module components: Successful completion of module component 10-M-DFT-1 or module component 10-M-DFT-2 is a prerequisite for participation in module component 10-M-DFT-P.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 73 (1) 1. Mathematik Analysis
Module Catalogue for the Subject Mathematics

minor in a Bachelor’s degree programme, 60 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Analysis</td>
<td>10-M-VAN-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Lebesgue integral in several variables, including theorems on convergence and Fubini’s theorem, L^p-spaces and elementary Fourier theory in L^2, Gauss’s theorem.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses

(abbreviations: type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü + V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

(abbreviations: type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module Catalogue for the Subject Mathematics

Minor in a Bachelor’s degree programme, 60 ECTS credits

Module title
Small Reading Course Mathematics

Abbreviation
10-M-RCK-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Independent study of a defined topic in mathematics.

Intended learning outcomes

The student is able to work independently on a given scientific topic. He or she can tackle a simple mathematical text and can use standard literature.

Courses

(type, number of weekly contact hours, language — if other than German)

A (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) talk (approx. 30 minutes) or b) written elaboration (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--