Module Catalogue

for the Subject

Applied Earth Observation and Geoanalysis (EAGLE)

as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2018
Responsible: Faculty of Arts, Historical, Philological, Cultural and Geographical Studies
Responsible: Institute of Geography and Geology
Contents

The subject is divided into

Content and Objectives of the Programme 3

Abbreviations used, Conventions, Notes, In accordance with 4

Compulsory Courses 5

Theoretical Basics 6
 Introduction to Remote Sensing and Geoanalysis 7
 Applications of Earth Observation 8

Methodological Basics 10
 Digital Image Analysis and GIS 11
 Introduction to Programming and Statistics for Remote Sensing and GIS 12
 From Field Measurements to Geoinformation 13

Internship 14
 Internship 15

Step towards Master Thesis 16
 Innovation Laboratory 17
 Project Seminar 18

Compulsory Electives 19

Applications of Earth Observation 20
 Land Surface Dynamics 21
 Land and Water Management 22
 Exploration of Mineral Deposits 23
 Selected Applications 24

Advanced Methods and Modeling 25
 Spatial Modeling and Prediction 26
 Advanced Spatial Analysis for Geoscientists 27
 Special Methodological Issues 28

Resources and Environment 29
 Selected Topics in Geography I 30
 Selected Topics in Geography II 31
 Mineral Resources in Space and Time 32

Soft Skills 33
 Advanced applied Project management / Scientific presentation / Scientific Writing 34
 Advanced skills on the Master’s level 35
 Advanced Instructions on Scientific Working 36

Thesis 37
 Master-Thesis EAGLE 38
 Final Colloquium on Master Thesis 39
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>Theoretical Basics</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Methodological Basics</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Internship</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Step towards Master Thesis</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>Applications of Earth Observation</td>
<td>10-15</td>
<td>20</td>
</tr>
<tr>
<td>Advanced Methods and Modeling</td>
<td>10-15</td>
<td>25</td>
</tr>
<tr>
<td>Resources and Environment</td>
<td>5-10</td>
<td>29</td>
</tr>
<tr>
<td>Soft Skills</td>
<td>5-10</td>
<td>33</td>
</tr>
<tr>
<td>Thesis</td>
<td>30</td>
<td>37</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

Earth Observation and its application is a pillar of geography as well as any other discipline working in a spatial domain such as biology. All disciplines trying to understand our planet and the implication of human landcover modifications do need earth observation techniques to derive relevant spatio-temporal explicit information. Especially the temporal repetitive measurement of land surface properties is crucial to understand process on our planet and deduce implications and causal relationships with other measurements such as biodiversity, urban well being or agricultural.

Combined with geoinformation such as statistical modelling earth observation can be combined and analysed with in-situ data for a variety of applications in geography, environmental research, forestry or conservation. Such skills are provided within the courses and especially focusing on the interdisciplinary applications of earth observation.

The students will have gained the following skills at the end of their studies:

- content, linkages and developments of Earth Observation and geoanalysis
- in-depth understanding of interdisciplinary application of remote sensing
- applying remote sensing and geoinformatics in science
- creation of relevant information for management of natural resources and in environmental research
Abbreviations used

Course types: **E** = field trip, **K** = colloquium, **O** = conversatorium, **P** = placement/lab course, **R** = project, **S** = seminar, **T** = tutorial, **Ü** = exercise, **V** = lecture

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

7-Mar-2018 (2018-9)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses

(55 ECTS credits)
Theoretical Basics
(10 ECTS credits)
Module title

Introduction to Remote Sensing and Geoanalysis

Abbreviation

04-GEO-TB1-162-m01

Module coordinator

holder of the Professorship of Remote Sensing

Module offered by

Institute of Geography and Geology

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The lecture "Introduction to Remote Sensing" ensures that participants will gain a solid understanding of the following topics: the role of remote sensing in nowadays world / basics of electromagnetic radiation / history of remote sensing and image acquisition platforms / satellite orbits and orbit geometry / current spaceborne sensors / impacts of the atmosphere / geocorrection of digital imagery / radiometric correction of digital images / principles of image classifications / time series and big data / geodata concepts / geodata standards / geodata visualization / the job market for remote sensing and geo IT specialists

Intended learning outcomes

The lecture provides participants with a solid and comprehensive theoretical background of the background and physical principles of remote sensing, gives an introduction into digital image processing, as well as geodata concepts, standards and future developments

Courses

(type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of Earth Observation</td>
<td>04-GEO-TB2-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lecture addresses applications of remote sensing of the atmosphere, the oceans, and particularly the land surface. The presented materials include among others applications in geography, environmental planning, ecology, biology, oceanology, soil science, geology, atmospheric science, but also e.g. pollution control (monitoring) and natural resource management. Which research questions can be answered by the means of Earth Observation and geoanalysis? The lecture comprises commonly used methodological approaches for the derivation of the different parameters. The covers the issue of implementation of the remote sensing technology into practice, e.g. the implementation of information systems. It outlines at selected examples, how remote sensing based results can be transferred to the workplace of professionals also beyond science.

Intended learning outcomes

The lecture gives a broad overview about the applications of remote sensing. The participants will learn how the different disciplines of environmental sciences and studies utilize the potentials of active and passive sensors for quantification and assessment.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)
Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)
Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Metholodological Basics
(15 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Image Analysis and GIS</td>
<td>04-GEO-MB1-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module comprises the following practical topics: Managing and geoprocessing of raster and vector data including digitization and analysis/visualization of geodata / preprocessing of optical remote sensing data (geometric and atmospheric corrections, dimension reduction) / different approaches, algorithms, sampling and validation strategies for validation / change detection, vegetation indices / basics in the derivation of geophysical and biophysical parameters (e.g. LAI, FAPAR, Chlorophyll content of leaves, Land Surface Temperature, Surface Albedo)

Intended learning outcomes

The seminar aims at improving the methodological skills of the participants in digital image processing and the use of Geographical Information Systems.

Courses

(type, number of weekly contact hours, language — if other than German)

Ü (2)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject

Applied Earth Observation and Geoanalysis (EAGLE)

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Programming and Statistics for Remote Sensing and GIS</td>
<td>04-GEO-MB2-182-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Theoretical basics and practical examples of programming and geostatistics focused on application within Remote Sensing and GIS are provided. Basic functionality such as script structure, implementation, functions, loops as well as programming syntax using the R language are introduced. Moreover, statistical basics related to environmental analysis are covered such as Random Forest or spatial queries.

Intended learning outcomes

Introduction to programming and geostatistics for environmental data analysis.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Ü (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
From Field Measurements to Geoinformation

<table>
<thead>
<tr>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-GEO-MB3-162-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module sets a strong focus on field methods and data integration for selected types of land mapping. The contents of the course comprises the preparation of field campaigns, i.e. the selection of sampling schemes and methods appropriate for the subsequent analysis. A broad sequence of field devices will be introduced to the students. The field data collection can focus on different fields of environmental mapping, e.g. land use or vegetation, climate soil, geology, and others. Depending of the special focus of course, spatial integration and interpolation methods are presented.

Intended learning outcomes
The students will gain knowledge in how to collect field data for the purposes of training and validation land cover maps and geo-/biophysical parameters.

Courses
(7, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Ü (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: English</td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Internship
(15 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship</td>
<td>04-GEO-INT-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The background of the research idea, the methodological background hosting institution as well as the aim of the internship will be presented. The work during the internship as well as the outcome should be covered by this presentation. Moreover the students are encouraged to provide valuable insights into the respective research in order to help fellow students to gain a better understanding of the value of each approach.

Intended learning outcomes

The presentation of the internship for the whole EAGLE students and lecturer

Courses

(type, number of weekly contact hours, language — if other than German)

P (0)

Module taught in: English or German

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Report in the form of a presentation (approx. 15 minutes)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Step towards Master Thesis
(15 ECTS credits)
Module title
Innovation Laboratory

Abbreviation
04-GEO-TMT1-162-m01

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
10

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The content of the innovation laboratory can be decided by each student individually and either a research topic is offered by a lecturer or the student is proposing an own topic. Research topics need to be discussed and proposed to one EAGLE lecturer who will also be in charge of supervising and grading the students work. Topics of the innovation laboratory can cover all aspects of the EAGLE study program with a strong focus on Earth Observation such as linking spectrometer field studies to remotely sensed data or the exploration of UAV based imagery and its usefulness for remote sensing sciences.

Intended learning outcomes
The innovation laboratory will allow the participant to focus on one particular topic in his/her field of interest. The aim is to get an in depth practical knowledge in how to address an own research in the field of the study program. The innovation laboratory aims to provide first insights into independent research projects such as a MSc study.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>3</td>
<td>English</td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Seminar</td>
<td>04-GEO-TMT2-162-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Professorship of Remote Sensing

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The innovation laboratory shall provide the students with the opportunity to work independently on a defined research topic and explore the potential, challenges and limits of Earth Observation in a practical approach.

Intended learning outcomes

The presentation of the planned Msc. thesis for the whole EAGLE students and lecturer

Courses (type, number of weekly contact hours, language — if other than German)

S (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation (approx. 30 minutes)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives
(35 ECTS credits)
Applications of Earth Observation
(10-15 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Surface Dynamics</td>
<td>04-GEO-APP1-182-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Topics cover most aspects of remote sensing based assessment of Land Surface Dynamics. Topics such as snow cover dynamics, water body dynamics, forest cover and further vegetation dynamics, urbanization dynamics, coastal dynamics, or dynamics of geophysical parameters such as land surface temperature or selected indices will be addressed. In these contexts we look at opportunities arising from optical-, multi-spectral- and radar sensors, as well as thermal imagery. Data availability and access, as well as typical software tools for handling of multispectral data or time series analyses will be addressed as well.

Intended learning outcomes

Participants will gain a thorough and comprehensive overview and understanding of dynamic processes on the land surface that can be monitored using remote sensing imagery. Seminar papers or oral presentations will provide first experiences in scientific writing and presentation.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (2) Module taught in: English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

- a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (15 pages) Assessment offered: Once a year, summer semester Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title	Abbreviation
Land and Water Management | 04-GEO-APP2-162-m01

Module coordinator | Module offered by
holder of the Professorship of Remote Sensing | Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A general introduction on the land and water management and its demand for integrative knowledge in numerous fields of environmental and social sciences is given. The students select topics in which remote sensing and geoanalysis can significantly contribute parameters for answering relevant management questions. The topics include the derivation and use of parameters for monitoring land and/or water resources and examples how to use them in analytical or predictive models, or in indicator systems.

Intended learning outcomes

Participants will increase their knowledge about remote sensing approaches and geoanalytical methods which support different fields of land and water management. The students will gain practical experiences in selected examples.

Courses (type, number of weekly contact hours, language — if other than German)

S (1) + Ü (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Assessment offered: Once a year, summer semester

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Exploration of Mineral Deposits

Abbreviation
04-GEO-APP3-162-m01

Module coordinator
holder of the Professorship of Geodynamics and Geomaterials Research

Module offered by
Institute of Geography and Geology

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Contents
The examples may include the management of the resources in rangelands, croplands, irrigation and drainage systems, river catchments, urban areas, or others. Focus may be set on special geographical settings. Depending on the selected topics and scale relevant Earth Observation parameters can include land cover and land use mapping, biophysical variables (LAI/FPAR/Chlorophyll, evapotranspiration, etc.), biomass or crop yields, soil moisture, phenological metrics and other dynamic parameters.

Intended learning outcomes
Application of Remote Sensing in Mineral Deposit research

Courses
<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (1) + Ü (1)</td>
<td>Module taught in: English</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
- a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Assessment offered
Once a year, summer semester

Language of assessment
English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject

Applied Earth Observation and Geoanalysis (EAGLE)

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Applications</td>
<td>04-GEO-APP4-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module focuses on remote sensing applications relevant for spatial and environmental planning, resource management, ecology and conservation, or disaster management. Among others, e.g. (urban) land use / land cover mapping and spatial modeling, or environmental modeling e.g. in geography, geology, ecology and biodiversity research, climatology, hydrology, soil sciences, geomorphology or forestry can be subject of the module. All topics covered ought to be in direct relation to remote sensing and geoanalysis.

Intended learning outcomes

The participants gain theoretical and methodological knowledge on the use of remote sensing in selected fields of environmental sciences and studies.

Courses (type, number of weekly contact hours, language — if other than German)

S (1) + Ü (1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Assessment offered: Once a year, summer semester

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Advanced Methods and Modeling

(10-15 ECTS credits)
Module title
Spatial Modeling and Prediction

Abbreviation
04-GEO-MET1-162-m01

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
5

Method of grading
umerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Different statistical methods will be applied for analysing spatial point patterns, such as vegetation samples or biodiversity related information. These results will be statistically predicted using methods such as GLM, GAM, Random Forest or MaxEnt. Implications of spatial point patterns as well as chosen environmental parameters will be discussed. All methods will be practically applied during the course using the programming language R.

Intended learning outcomes
Within this course different methods to analyse point pattern statistically and conduct a spatial prediction are covered. Students will learn how to design such analysis, how to avoid caveats, troubleshoot errors and interpret the results.

Courses
(type, number of weekly contact hours, language — if other than German)
S (1) + Ü (1)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Assessment offered: Once a year, summer semester
Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Spatial Analysis for Geoscientists</td>
<td>04-GEO-MET2-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Soil Science</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

No information on contents available.

Intended learning outcomes

No information on intended learning outcomes available.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (1) + Ü (1)</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)

Assessment offered: Once a year, summer semester

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Special Methodological Issues

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Methodological Issues</td>
<td>04-GEO-MET3-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

One special remote sensing or geoinformatics method is covered in more detail. Special courses could cover contents such as utilizing data of passive (e.g. multi-spectral, hyper-spectral, thermal) or active (e.g. SAR, LIDAR) sensors in order to provide further details for application in geography, geology, ecology or other disciplines. Moreover, detailed courses on statistics and geostatistics as well as environmental modeling could be offered. Additionally, courses on specific research questions in geographic, geological, ecological or other disciplines related to Earth Observation can be offered.

Intended learning outcomes

The module enables the students to improve their technical skills in remote sensing and applied geoinformatics using one out of numerous different special methods.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S (1) + Ü (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: English</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages)
 Assessment offered: Once a year, summer semester
 Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German) creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Resources and Environment
(5-10 ECTS credits)
Module title

Selected Topics in Geography I

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>04-GEO-RE1-162-m01</th>
</tr>
</thead>
</table>

Module coordinator

holder of the Professorship of Physical Geography

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Contents

The module focuses the geofactors bedrock, topography, climate, soils, water, and plants and their relevance for landscape forming processes as well as for land-use. Basic geofactors of natural landscapes related to anthropogenic impact (land-use, settlements, infrastructure, etc.) are communicated.

Intended learning outcomes

The students learn synthesis and integration of their knowledge on geofactors. They are able to consider natural and cultural aspects for site-specific and planning assessment.

Courses

(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2</td>
</tr>
</tbody>
</table>

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- written examination (approx. 45 minutes)
- Assessment offered: Once a year, winter semester
- Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Master's with 1 major Applied Earth Observation and Geoanalysis (EAGLE) (2018)

JMU Würzburg • generated 03-Apr-2021 • exam. reg. data record Master (120 ECTS) Applied Earth Observation and Geoanalysis (EAGLE) - 2018
Module Catalogue for the Subject

Applied Earth Observation and Geoanalysis (EAGLE)

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in Geography II</td>
<td>04-GEO-RE2-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Physical Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The emphasis of this course is on linking classic biogeographical theory with current research outcomes. The aim is to learn what the historical and ecological reasons are behind the geographical distributions of living organisms and their communities, and the dynamic nature of these distributions. In this course we will answer the following questions: What are the patterns of plant distribution and diversity? What mechanisms explain these patterns? What are the theoretical and technical basic principles for the modelling of species distributions? What is the aim of the study of species distributions in the context of the "biodiversity crisis" and a dramatically changing environment? How can remote sensing techniques be useful for this kind of studies? After completing the course, each student should have: Gained or developed a familiarity and functional understanding in each of the main themes outlined on the course timetable and demonstrated competence in discussing and integrating across these themes.

Intended learning outcomes

The module deepens student's knowledge on selected environmental theories and approaches and their relevance for applied remote sensing.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Assessment offered: Once a year, winter semester

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Mineral Resources in Space and Time
Abbreviation: 04-GEO-RE3-162-m01

Module coordinator: holder of the Professorship of Geodynamics and Geomaterials Research
Module offered by: Institute of Geography and Geology

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
The course provides an overview of the multitude of mineral deposits -- essential georesources for the sustainable utilization of planet Earth. In particular, processes that can lead to the economic concentration of mineral resources will be discussed using examples of major deposit types. This includes magmatic, hydrothermal and sedimentary processes that resulted in the formation of economically viable deposits of ore minerals, solid fuels and industrial minerals.

Intended learning outcomes
The students obtain basic, up-to-date insights into the geology of mineral deposits on the basis of concrete examples. Furthermore they obtain the ability to classify known and new mineral deposits/occurrences in a genetic way, thus laying the foundation for optimising future exploitation and exploration strategies.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 45 minutes)
Assessment offered: Once a year, winter semester
Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Soft Skills

(5-10 ECTS credits)
Module title
Advanced applied Project management / Scientific presentation / Scientific Writing

Abbreviation
04-GEO-SOS1-182-m01

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Existing presentations will be discussed and evaluated with regard to visual appearance. Moreover design and appearance of presentations and poster will be discussed and guidelines provided. Individual training of presentations will be part of it as well. Alternative presentation methods will be introduced (e.g. knitr, beamer).

Intended learning outcomes
Presentations and articles will be discussed with regard to its scientific content and goal to ensure high quality presentations as well as articles.

Courses
(type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages) or d) log (2 to 3 pages)

Assessment offered: Once a year, winter semester
Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced skills on the Master’s level</td>
<td>04-GEO-SOS2-162-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Moreover scientific articles will be discussed and own articles be written. The structure as well as wording will be covered. Moreover, general writing guidelines, journal guidelines etc. will be introduced.

Intended learning outcomes

Presentations and articles will be discussed with regard to its scientific content and goal to ensure high quality presentations as well as articles.

Courses

- S (2)
 - Module taught in: English

Method of assessment

- a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages) or d) log (2 to 3 pages)
- Assessment offered: Once a year, winter semester
- Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module: Advanced Instructions on Scientific Working

Abbreviation: 04-GEO-SOS3-162-m01

<table>
<thead>
<tr>
<th>Module title</th>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Instructions on Scientific Working</td>
<td>holder of the Professorship of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester

Module level: graduate

Contents
Moreover scientific articles will be discussed and own articles be written. The structure as well as wording will be covered. Moreover, general writing guidelines, journal guidelines etc. will be introduced.

Intended learning outcomes
Presentations and articles will be discussed with regard to its scientific content and goal to ensure high quality presentations as well as articles.

Courses

| Type, number of weekly contact hours, language — if other than German |
|---|---|
| S (2) | Module taught in: English or German |

Method of assessment

| Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus |
|---|---|
| a) presentation (approx. 30 minutes) or b) preparing a poster (approx. 10 hours total) or c) term paper (approx. 15 pages) or d) log (2 to 3 pages) | Assessment offered: Once a year, winter semester |

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Thesis
(30 ECTS credits)
Module title
Master-Thesis EAGLE

Abbreviation
04-GEO-MA1-162-m01

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
28

Method of grading
numerical grade

Duration
graduate

Module level
Other prerequisites

Contents
The student should show within the Msc thesis that he/she is capable of working scientifically without major supervision. Defining the aim, the hypothesis and structuring a research topic is the main first content followed by the actual analysis of spatial data (Earth Observation mainly satellite remote sensing but also airborne data or auxiliary data). Defining the methods and describing these including the results and discuss the outcome critically. Moreover an appropriate visual presentation (typesetting and graphics, as well as maps) and writing is expected. The Msc thesis is graded on the difficulty of the topic, on the amount of needed supervision (independent work is expected as well as regular meetings with the supervisors), the writing and especially the discussion of the Msc thesis. The thesis structure can comply to a standard scientific article but should exceed 50 pages.

Intended learning outcomes
Conducting an independent research topic within 6 months

Courses
No courses assigned to module

Method of assessment
Master's thesis (approx. 60 pages)
Language of assessment: English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Final Colloquium on Master Thesis

Abbreviation
04-GEO-MA2-162-m01

Module coordinator
holder of the Professorship of Remote Sensing

Module offered by
Institute of Geography and Geology

ECTS
2

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
graduate

Module level
--

Other prerequisites
--

Contents
The final colloquium aims to present the aim and results of the Msc thesis to a scientific audience (EAGLE lecturer and students) who are all allowed to ask questions and discuss the outcome critically. The presentation ought to follow scientific standards and should take 20 mins. The presentation is not graded but is needed to finish the Msc.

Intended learning outcomes
Presentation of the final Msc thesis

Courses
(type, number of weekly contact hours, language — if other than German)
K (0)
Module taught in: English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk (approx. 30 minutes) with subsequent discussion (approx. 15 minutes)
Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--