

# Module Catalogue for the Subject

# **Biosciences**

as a Master's with 1 major with the degree "Master of Science" (120 ECTS credits)

> Examination regulations version: 2016 Responsible: Faculty of Biology



| The subject is divided into                                               | 9        |
|---------------------------------------------------------------------------|----------|
| Learning Outcomes                                                         | 11       |
| Abbreviations used, Conventions, Notes, In accordance with                | 13       |
| Compulsory Electives                                                      | 14       |
| Subtopic 1 (Primary Topic)                                                | 15       |
| Subtopic 2 (Secondary Topic)                                              | 16       |
| Subtopics 1 and 2                                                         | 17       |
| Module Group 1                                                            | 18       |
| Neuroscience                                                              | 19       |
| Neurobiology, Behavioural Physiology and Animal Ecology                   | 20       |
| Molecular and Clinical Neurobiology                                       | 22       |
| Endogenous Clocks                                                         | 24       |
| Neuromodulation and Neuronal Development Neurogenetics of Behaviour       | 26<br>28 |
| Developmental Neurobiology and Chronobiology                              | 30       |
| Neurobiology F1                                                           | 32       |
| Neurobiology F2                                                           | 34       |
| Animal Ecology and Tropical Biology                                       | 36       |
| Neurobiology, Behavioural Physiology and Animal Ecology                   | 37       |
| Animal Ecology and Tropical Biology Animal Ecology and Tropical Biology 2 | 39       |
| Animal Ecology and Propical Biology 2  Animal Ecology F1                  | 41<br>43 |
| Animal Ecology and Tropical Biology F2                                    | 45       |
| Behavioural Physiology and Sociobiology                                   | 47       |
| Neurobiology, Behavioural Physiology and Animal Ecology                   | 48       |
| Animal Communication                                                      | 50       |
| Experimental Sociobiology                                                 | 52       |
| Neurogenetics of Behaviour Behavioural Physiology and Sociobiology F1     | 54<br>56 |
| Behavioural Physiology and Sociobiology F2                                | 58       |
| Module Group 2                                                            | 60       |
| Molecular Cell- and Developmental Biology                                 | 61       |
| Molecular Biology                                                         | 62       |
| Cell and Developmental Biology Master 1                                   | 64       |
| Cell and Developmental Biology Master 2                                   | 66       |
| Cell and Developmental Biology F1 Cell and Developmental Biology F2       | 68<br>70 |
| Microbiology and Infection Biology                                        | 70<br>72 |
| Molecular Biology                                                         | 73       |
| Infection Biology                                                         | 75<br>75 |
| Pathogenicity of Microorganisms                                           | 77       |
| Microbiology F1                                                           | 79       |
| Microbiology F2                                                           | 81       |
| Cellular and Molecular Biotechnology                                      | 83       |
| Molecular Biology<br>Biophysics and Molecular Biotechnology               | 84<br>86 |
| Biophysics and Biochemistry                                               | 88       |
| Bioinformatics                                                            | 90       |
| Biophysics and Molecular Biotechnology F1                                 | 92       |
| Biophysics and Molecular Biotechnology F2                                 | 94       |



| Bioinformatics                                          | 96         |
|---------------------------------------------------------|------------|
| Bioinformatics                                          | 97         |
| Neurobiology, Behavioural Physiology and Animal Ecology | 99         |
| Molecular and Clinical Neurobiology                     | 101        |
| Animal Ecology and Tropical Biology                     | 103        |
| Animal Communication                                    | 105        |
| Molecular Biology                                       | 107        |
| Cell and Developmental Biology Master 1                 | 109        |
| Cell and Developmental Biology Master 2                 | 111        |
| Infection Biology                                       | 113        |
| Pathogenicity of Microorganisms                         | 115        |
| Immunology 1 Immunology 2                               | 117        |
| Virology 1                                              | 118<br>119 |
| Virology 2                                              | 119        |
| Human Genetics                                          | 121        |
| Current Methods in Biology                              | 122        |
| Plant Ecology                                           | 124        |
| Plant Immunobiology and Pharmaceutical Biology          | 126        |
| Biophysics and Biochemistry                             | 128        |
| Systems Biology                                         | 130        |
| Bioinformatics F1                                       | 132        |
| Bioinformatics F2                                       | 134        |
| Immunology                                              | 136        |
| Immunology 1                                            | 137        |
| Immunology 2                                            | 138        |
| Immunology F1                                           | 139        |
| Immunology F2                                           | 140        |
| Virology                                                | 141        |
| Virology 1                                              | 142        |
| Virology 2                                              | 143        |
| Virology F1                                             | 144        |
| Virology F2                                             | 145        |
| Human Genetics                                          | 146        |
| Human Genetics                                          | 147        |
| Molecular Biology                                       | 148        |
| Cell and Developmental Biology Master 1                 | 150        |
| Cell and Developmental Biology Master 2                 | 152        |
| Infection Biology                                       | 154        |
| Pathogenicity of Microorganisms                         | 156        |
| Immunology 1<br>Immunology 2                            | 158        |
| Virology 1                                              | 159<br>160 |
| Virology 2                                              | 161        |
| Human Genetics F1                                       | 162        |
| Human Genetics F2                                       | 163        |
| Physiological Chemistry                                 | 164        |
| Molecular Biology                                       | 165        |
| Cell and Developmental Biology Master 1                 | 167        |
| Cell and Developmental Biology Master 2                 | 169        |
| Cell and Developmental Biology F1                       | 171        |
| Laboratory Course 2                                     | 173        |
| Laboratory Research Training F1                         | 175        |
| Physiological Chemistry F2                              | 176        |
| Cellular Tumor Biology                                  | 177        |
| - ·                                                     |            |



| Molecular Tumor Biology                        | 178        |
|------------------------------------------------|------------|
| Clinical Tumor Biology                         | 179        |
| Molecular Biology                              | 180        |
| Cell and Developmental Biology Master 1        | 182        |
| Cell and Developmental Biology Master 2        | 184        |
| Infection Biology                              | 186        |
| Pathogenicity of Microorganisms                | 188        |
| Immunology 1                                   | 190        |
| Immunology 2                                   | 191        |
| Virology 1                                     | 192        |
| Virology 2                                     | 193        |
| Human Genetics                                 | 194        |
| Laboratory Research Training F1                | 195        |
| Laboratory Course 2                            | 196        |
| Cellular Tumor Biology F1                      | 198        |
| Cellular Tumor Biology F2                      | 199        |
| Module Group 3                                 | 201        |
| Molecular Plant Physiology                     | 202        |
| Current Methods in Biology                     | 203        |
| Plant Ecology                                  | 205        |
| Plant Immunobiology and Pharmaceutical Biology | 207        |
| Biophysics and Biochemistry                    | 209        |
| Molecular Plant Physiology F1                  | 211        |
| Molecular Plant Physiology F2                  | 213        |
| Biochemistry and Structural Biology            | 215        |
| Current Methods in Biology                     | 216        |
| Biophysics and Biochemistry                    | 218        |
| Biophysics and Molecular Biotechnology         | 220        |
| Plant Immunobiology and Pharmaceutical Biology | 222        |
| Plant Ecology                                  | 224        |
| Biochemistry and Structural Biology F1         | 226        |
| Biochemistry and Structural Biology F2         | 228        |
| Molecular Membran Biology                      | 230        |
| Current Methods in Biology                     |            |
| Biophysics and Biochemistry                    | 233        |
| Biophysics and Molecular Biotechnology         | 235        |
| Plant Immunobiology and Pharmaceutical Biology | 237        |
| Plant Ecology                                  | 239        |
| Biophysics of Plant Membrane Proteins F1       | 241        |
| Biophysics of Plant Membrane Proteins F2       | 243        |
| Plant Signalling                               | 245        |
| Current Methods in Biology                     | 246        |
| Biophysics and Biochemistry                    | 248        |
| Plant Immunobiology and Pharmaceutical Biology | 250        |
| Plant Ecology                                  | 252        |
| Plant Signalling F1                            | 254        |
| Plant Signalling F2                            | 256        |
| Pharmaceutical Biology & Metabolomics          | 258        |
| Current Methods in Biology                     |            |
| Plant Immunobiology and Pharmaceutical Biology | 259<br>261 |
| Biophysics and Biochemistry                    | 263        |
| Plant Ecology                                  | 265        |
| Molecular Biology                              | 267        |
| Bioinformatics                                 | 269        |
| Systems Biology                                | 271        |
| ,                                              | -, -       |



| Neurobiology, Behavioural Physiology and Animal Ecology                     | 273 |
|-----------------------------------------------------------------------------|-----|
| Pharmaceutical Biology and Metabolomics F1                                  | 275 |
| Pharmaceutical Biology and Metabolomics F2                                  | 277 |
| Physiological Plant Ecology                                                 | 279 |
| Current Methods in Biology                                                  | 280 |
| Biophysics and Biochemistry                                                 | 282 |
| Plant Immunobiology and Pharmaceutical Biology                              | 284 |
| Plant Ecology                                                               | 286 |
| Physiological Plant Ecology F1                                              | 288 |
| Physiological Plant Ecology F2                                              | 290 |
| Molecular and Chemical Plant Ecology                                        | 292 |
| Current Methods in Biology                                                  | 293 |
| Biophysics and Biochemistry                                                 | 295 |
| Plant Immunobiology and Pharmaceutical Biology                              | 297 |
| Plant Ecology                                                               | 299 |
| Molecular and Chemical Plant Ecology F1                                     | 301 |
| Molecular and Chemical Plant Ecology F2                                     | 303 |
| System Biology                                                              | 305 |
| Systems Biology                                                             | 306 |
| Bioinformatics                                                              | 308 |
| Neurobiology, Behavioural Physiology and Animal Ecology                     | 310 |
| Molecular and Clinical Neurobiology                                         | 312 |
| Animal Ecology and Tropical Biology                                         | 314 |
| Animal Communication                                                        | 316 |
| Molecular Biology                                                           | 318 |
| Cell and Developmental Biology Master 1                                     | 320 |
| Cell and Developmental Biology Master 2                                     | 322 |
| Infection Biology                                                           | 324 |
| Pathogenicity of Microorganisms                                             | 326 |
| Immunology 1                                                                | 328 |
| Immunology 2                                                                | 329 |
| Virology 1                                                                  | 330 |
| Virology 2                                                                  | 331 |
| Human Genetics                                                              | 332 |
| Current Methods in Biology                                                  | 333 |
| Biophysics and Biochemistry  Plant Immunohialogy and Pharmacoutical Biology | 335 |
| Plant Immunobiology and Pharmaceutical Biology Plant Ecology                | 337 |
| Systems Biology F1                                                          | 339 |
| Systems Biology F2                                                          | 341 |
| Module Group 4                                                              | 343 |
| • •                                                                         | 345 |
| Neuroethology - Neurogenetics                                               | 346 |
| Neurogenetics of Behaviour                                                  | 347 |
| Endogenous Clocks                                                           | 349 |
| Neurobiology F1                                                             | 351 |
| Neurobiology F2                                                             | 353 |
| Neuroethology - Behavioural Physiology and Sociobiology                     | 355 |
| Neurobiology, Behavioural Physiology and Animal Ecology                     | 356 |
| Experimental Sociobiology                                                   | 358 |
| Behavioural Physiology and Sociobiology F1                                  | 360 |
| Behavioural Physiology and Sociobiology F2                                  | 362 |
| Cell and Developmental Biology                                              | 364 |
| Molecular Biology                                                           | 365 |
| Cell and Developmental Biology Master 2                                     | 367 |
| Methods in Life Sciences                                                    | 369 |
|                                                                             |     |



| Cell and Developmental Biology F1                                                     | 371        |
|---------------------------------------------------------------------------------------|------------|
| Cell and Developmental Biology F2                                                     | 373        |
| Molecular Infection Biology                                                           | 375        |
| Molecular Biology                                                                     | 376        |
| Methods in Life Sciences                                                              | 378        |
| Pathogenicity of Microorganisms                                                       | 380        |
| Microbiology F1                                                                       | 382        |
| Microbiology F2                                                                       | 384        |
| Systems Biology and Metabolomics - Systems Biology                                    | 386        |
| Topics in Systems Biology                                                             | 387        |
| Neurobiology, Behavioural Physiology and Animal Ecology                               | 388        |
| Systems Biology F1                                                                    | 390        |
| Systems Biology F2                                                                    | 392        |
| Systems Biology and Metabolomics - Metabolomics                                       | 394        |
| Molecular Biology                                                                     | 395        |
| Topics in Bioinformatics                                                              | 397        |
| Cell and Developmental Biology Master 2                                               | 398        |
| Pharmaceutical Biology and Metabolomics F1 Pharmaceutical Biology and Metabolomics F2 | 400        |
|                                                                                       | 402        |
| Molecular and Computational Biology - Computational Biology                           | 404        |
| Topics in Systems Biology                                                             | 405        |
| Topics in Bioinformatics Computational Biology F1                                     | 406        |
| Computational Biology F2                                                              | 407<br>409 |
| · · · · · · · · · · · · · · · · · · ·                                                 |            |
| Molecular and Computational Biology - Molecular Biology                               | 411        |
| Molecular Biology<br>Methods in Life Sciences                                         | 412        |
| Topics and Concepts in Life Sciences                                                  | 414<br>416 |
| Pathogenicity of Microorganisms                                                       | 418        |
| Molecular Biology F1                                                                  | 420        |
| Molecular Biology F2                                                                  | 421        |
| Plant Ecology                                                                         | 422        |
| Plant Ecology                                                                         | 423        |
| Molecular Biology                                                                     | 425        |
| Physiological Plant Ecology F1                                                        | 427        |
| Physiological Plant Ecology F2                                                        | 429        |
| Molecular and Chemical Plant Ecology F1                                               | 431        |
| Molecular and Chemical Plant Ecology F2                                               | 433        |
| Animal Ecology                                                                        | 435        |
| Neurobiology, Behavioural Physiology and Animal Ecology                               | 436        |
| Animal Ecology and Tropical Biology 2                                                 | 438        |
| Animal Ecology F1                                                                     | 440        |
| Animal Ecology and Tropical Biology F2                                                | 442        |
| Molecular and Cellular Biophysics                                                     | 444        |
| Biophysics and Biochemistry                                                           | 445        |
| Biophysics and Molecular Biotechnology                                                | 447        |
| Biophysics of Plant Membrane Proteins F1                                              | 449        |
| Biophysics of Plant Membrane Proteins F2                                              | 451        |
| Biophysics and Molecular Biotechnology F1                                             | 453        |
| Biophysics and Molecular Biotechnology F2                                             | 455        |
| Protein Chemistry                                                                     | 457        |
| Biophysics and Biochemistry                                                           | 458        |
| Biophysics and Molecular Biotechnology                                                | 460        |
| Biochemistry and Structural Biology F1                                                | 462        |
|                                                                                       |            |



| Biochemistry and Structural Biology F2                          | 464        |
|-----------------------------------------------------------------|------------|
| Subtopic Additional Achievements                                | 466        |
| Laboratory Course 1                                             | 467        |
| Laboratory Course 2                                             | 469        |
| Laboratory Course 3                                             | 471        |
| External Internship 1                                           | <br>473    |
| External Internship 2                                           | 475        |
| External Internship 3                                           | 476        |
| Biochemistry, Physiology and Genetics of Mammalian Cell Culture | 478        |
| Molecular Techniques                                            | 479        |
| Linux and Perl                                                  | 480        |
| Methods in Life Sciences B                                      | 482        |
| Methods in Life Sciences                                        | 484        |
| Topics and Concepts in Life Sciences B                          | 486        |
| Topics and Concepts in Life Sciences                            | 488        |
| Molecular Tumor Biology                                         | 490        |
| Clinical Tumor Biology                                          | 491        |
| Current Methods in Biology B                                    | 492        |
| Plant Ecology B                                                 | 494        |
| Plant Immunobiology and Pharmaceutical Biology B                | 496        |
| Biophysics and Biochemistry B                                   | 498        |
| Biophysics and Molecular Biotechnology B                        | 500        |
| Neurobiology, Behavioural Physiology and Animal Ecology B       | 502        |
| Neurogenetics of Behaviour B                                    | 504        |
| Neuromodulation and Neuronal Development B                      | 504<br>506 |
| Endogenous Clocks B                                             | 508        |
| Animal Ecology and Tropical Biology B                           | 509        |
| Animal Ecology and Tropical Biology 2 B                         | 509<br>511 |
| Animal Communication B                                          | 513        |
| Experimental Sociobiology B                                     | 515        |
| Molecular Biology B                                             | 517        |
| Infection Biology B                                             | 519        |
| Pathogenicity of Microorganisms B                               | 521        |
| Cell and Developmental Biology Master 1 B                       | 523        |
| Cell and Developmental Biology Master 2 B                       | 524        |
| Bioinformatics B                                                | 526        |
| Systems Biology B                                               | 528        |
| Immunology 1 B                                                  | 530        |
| Immunology 2 B                                                  | 531        |
| Immunology 1 BS                                                 | 532        |
| Immunology 2 BS                                                 | 533        |
| Virology 1 B                                                    | 534        |
| Virology 2 B                                                    | 535        |
| Nucleus Workshop                                                | 536        |
| Gene Regulation and Signal Transduction                         | 538        |
| Microbial Ecology                                               | 539        |
| Ecology of Honey Bees and Wild Bees                             | 540        |
| Ecology and Taxonomy of Insects                                 | 541        |
| Modelling in Ecology                                            | 542        |
| Agroecology                                                     | 543        |
| Forest Ecology                                                  | 544        |
| Tropical Ecology                                                | 545        |
| Seminar Experimental Animal Ecology                             | 547        |
| Presentation of Scientific Data                                 | 548        |
| Quality Assurance, Good Practice, Biosafety and Biosecurity     | 550        |
| Brain and Mind                                                  | 552        |
| Theory and History of Science                                   | 553        |
|                                                                 |            |



| Entrepreneurial Management in the Biosciences           | 554 |
|---------------------------------------------------------|-----|
| Entrepreneurial Thinking in the Biosciences             | 556 |
| Special Subject Studies Biology and Natural Sciences 1  | 557 |
| Special Subject Studies Biology and Natural Sciences 2  | 558 |
| Special Subject Studies Biology and Natural Sciences 2B | 559 |
| Special Subject Studies Biology and Natural Sciences 3  | 560 |
| Special Subject Studies Biology and Natural Sciences 4  | 561 |
| Special Subject Studies Biology and Natural Sciences 4B | 563 |
| Special Subject Studies Biology and Natural Sciences 5  | 565 |
| Special Subject Studies outside Natural Sciences 1      | 566 |
| Special Subject Studies outside Natural Sciences 2      | 567 |
| Special Subject Studies outside Natural Sciences 2B     | 568 |
| Special Subject Studies outside Natural Sciences 3      | 569 |
| Special Subject Studies outside Natural Sciences 4      | 570 |
| Special Subject Studies outside Natural Sciences 4B     | 572 |
| Teaching 1                                              | 574 |
| Teaching 2                                              | 575 |
| Teaching 3                                              | 576 |
| Teaching 4                                              | 577 |
| Tutorial 1                                              | 578 |
| Tutorial 2                                              | 579 |
| Tutorial 3                                              | 580 |
| Additional Laboratory Courses and Internships           | 581 |
| Laboratory Course 2                                     | 582 |
| Laboratory Course 3                                     | 584 |
| External Internship 2                                   | 586 |
| External Internship 3                                   | 587 |
| Thesis                                                  | 589 |
| Master Thesis Biosciences                               | 590 |
| Oral Examination Biosciences                            | 591 |



### The subject is divided into

| section / sub-section                                      | ECTS credits | starting<br>page |  |
|------------------------------------------------------------|--------------|------------------|--|
| Compulsory Electives                                       | 90           | 14               |  |
| Subtopic 1 (Primary Topic)                                 | 45           | 15               |  |
| Subtopic 2 (Secondary Topic)                               | 30           | 16               |  |
| Subtopics 1 and 2                                          |              | 17               |  |
| Module Group 1                                             |              | 18               |  |
| Neuroscience                                               | 30           | 19               |  |
| Animal Ecology and Tropical Biology                        | 30           | 36               |  |
| Behavioural Physiology and Sociobiology                    | 30           | 47               |  |
| Module Group 2                                             |              | 60               |  |
| Molecular Cell- and Developmental Biology                  | 30           | 61               |  |
| Microbiology and Infection Biology                         | 30           | 72               |  |
| Cellular and Molecular Biotechnology                       | 30           | 83               |  |
| Bioinformatics                                             | 30           | 96               |  |
| Immunology                                                 | 30           | 136              |  |
| Virology                                                   | 30           | 141              |  |
| Human Genetics                                             | 30           | 146              |  |
| Physiological Chemistry                                    | 30           | 164              |  |
| Cellular Tumor Biology                                     | 30           | 177              |  |
| Module Group 3                                             |              | 201              |  |
| Molecular Plant Physiology                                 | 30           | 202              |  |
| Biochemistry and Structural Biology                        | 30           | 215              |  |
| Molecular Membran Biology                                  | 30           | 230              |  |
| Plant Signalling                                           | 30           | 245              |  |
| Pharmaceutical Biology & Metabolomics                      | 30           | 258              |  |
| Physiological Plant Ecology                                | 30           | 279              |  |
| Molecular and Chemical Plant Ecology                       | 30           | 292              |  |
| System Biology                                             | 30           | 305              |  |
| Module Group 4                                             |              | 345              |  |
| Neuroethology - Neurogenetics                              | 30           | 346              |  |
| Neuroethology - Behavioural Physiology and Sociobiology    | 30           | 355              |  |
| Cell and Developmental Biology                             | 30           | 364              |  |
| Molecular Infection Biology                                | 30           | 375              |  |
| Systems Biology and Metabolomics - Systems Biology         | 30           | 386              |  |
| Systems Biology and Metabolomics - Metabolomics            | 30           | 394              |  |
| Molecular and Computational Biology - Computational Biolo- | 30           |                  |  |
| gy                                                         | -            | 404              |  |
| Molecular and Computational Biology - Molecular Biology    | 30           | 411              |  |
| Plant Ecology                                              | 30           | 422              |  |
| Animal Ecology                                             | 30           | 435              |  |
| Molecular and Cellular Biophysics                          | 30           | 444              |  |
| Protein Chemistry                                          | 30           | 457              |  |
| Subtopic Additional Achievements                           | 15           | 466              |  |

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 9 / 591 |
|------------------------------------------|-------------------------------------------------------|--------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  | ĺ            |



| Additional Laboratory Courses and Internships |    | 581 |
|-----------------------------------------------|----|-----|
| Thesis                                        | 30 | 589 |



### **Learning Outcomes**

German contents and learning outcome available but not translated yet.

#### Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen verstehen die mathematischen, theoretischen und experimentellen Grundlagen der Biologie und können diese anwenden.
- Die Absolventinnen und Absolventen können unter Anleitung Experimente durchführen, analysieren und die erhaltenen Ergebnisse darstellen und bewerten.
- Die Absolventinnen und Absolventen sind in der Lage, naturwissenschaftliche Probleme durch Anwendung der wissenschaftlichen Arbeitsweise und unter Beachtung der Regeln guter wissenschaftlicher Praxis (Dokumentation, Fehleranalyse) zu bearbeiten.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen können ein gewisses Grundlagenwissen aus Teilgebieten der Biologie abrufen.
- Die Absolventinnen und Absolventen verstehen die wesentlichen Zusammenhänge und Konzepte der einzelnen Teilgebiete der Biologie.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten und zu bewerten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.

#### Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem heterogenen Team zusammenzuarbeiten, unterschiedliche und abweichende Ansichten produktiv zur Zielerreichung zu nutzen und auftretende Konflikte zu lösen (Teamfähigkeit).
- Die Absolventinnen und Absolventen k\u00f6nnen ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in international zusammengesetzten Teams anwenden.
- Die Absolventinnen und Absolventen sind in der Lage, Probleme und deren Lösungen zielgruppengerecht und auch in einer Fremdsprache aufzubereiten und darzustellen.
- Die Absolventinnen und Absolventen sind in der Lage natur- und biowissenschaftliche Methoden unter Anleitung auf konkrete experimentelle oder theoretische biologische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen kennen die wichtigsten Anforderungen und Arbeitsweisen im industriellen Umfeld sowie in Forschung und Entwicklung.
- Die Absolventinnen und Absolventen sind befähigt, komplexere Probleme zu analysieren und zu lösen und sich sehr schnell auch in weniger vertraute Themenkomplexe einzuarbeiten.

#### Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.

#### Befähigung zum gesellschaftlichen Engagement

 Die Absolventinnen und Absolventen können ansatzweise naturwissenschaftliche Entwicklungen kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt in Ansätzen erfassen (Technikfolgenabschätzung).



- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, naturwissenschaftlicher, kultureller etc. Fragestellungen erweitert und können in Ansätzen begründet Position beziehen.
- Die Absolventinnen und Absolventen entwickeln die Bereitschaft und Fähigkeit, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.



#### **Abbreviations used**

Course types:  $\mathbf{E} = \text{field trip}$ ,  $\mathbf{K} = \text{colloquium}$ ,  $\mathbf{O} = \text{conversatorium}$ ,  $\mathbf{P} = \text{placement/lab course}$ ,  $\mathbf{R} = \text{project}$ ,  $\mathbf{S} = \text{seminar}$ ,  $\mathbf{T} = \text{tutorial}$ ,  $\ddot{\mathbf{U}} = \text{exercise}$ ,  $\mathbf{V} = \text{lecture}$ 

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

#### **Conventions**

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

#### **Notes**

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

### In accordance with

the general regulations governing the degree subject described in this module catalogue:

#### ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

#### 26-Apr-2016 (2016-71)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.



### **Compulsory Electives**

(90 ECTS credits)



## Subtopic 1 (Primary Topic)

(45 ECTS credits)



# **Subtopic 2 (Secondary Topic)**

(30 ECTS credits)

### Subtopics 1 and 2

(ECTS credits)

30 ECTS credits in subsidiary subject area, 45 ECTS credits in main subject area



### Module Group 1

(ECTS credits)



### Neuroscience

(30 ECTS credits)



| Module title                                            |                                           |                      | Abbreviation         |                                      |  |
|---------------------------------------------------------|-------------------------------------------|----------------------|----------------------|--------------------------------------|--|
| Neurobiology, Behavioural Physiology and Animal Ecology |                                           |                      | 07-MS1-152-m01       |                                      |  |
| Module coordinator Module offered by                    |                                           |                      | Module offered by    |                                      |  |
| Dean c                                                  | of Studi                                  | es Biologie (Biology | )                    | Faculty of Biology                   |  |
| ECTS                                                    | Meth                                      | od of grading        | Only after succ. cor | Only after succ. compl. of module(s) |  |
| 10                                                      | nume                                      | rical grade          |                      |                                      |  |
| Duratio                                                 | Duration Module level Other prerequisites |                      |                      |                                      |  |
| 1 seme                                                  | ester                                     | graduate             |                      |                                      |  |
|                                                         |                                           |                      |                      |                                      |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

#### **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module                                                                         | e title                                                     | ,               |                   |  | Abbreviation |
|--------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|-------------------|--|--------------|
| Molecular and Clinical Neurobiology                                            |                                                             | 07-MS1N-152-m01 |                   |  |              |
| Module coordinator Module offered by                                           |                                                             |                 |                   |  |              |
| Managing Director of the Institute of Clinical Neurobiology Faculty of Biology |                                                             |                 |                   |  |              |
| ECTS                                                                           | ECTS Method of grading Only after succ. compl. of module(s) |                 | npl. of module(s) |  |              |
| 10                                                                             | nume                                                        | rical grade     |                   |  |              |
| Duration   Module level   Other prerequisites                                  |                                                             |                 |                   |  |              |
| 1 semester graduate                                                            |                                                             |                 |                   |  |              |
| Contents                                                                       |                                                             |                 |                   |  |              |

Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channelopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a. m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

#### **Intended learning outcomes**

Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal disea-

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

300 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)



| Module title                              |         |               |                      |                    | Abbreviation     |  |
|-------------------------------------------|---------|---------------|----------------------|--------------------|------------------|--|
| Endogenous Clocks                         |         |               |                      |                    | 07-MS1CB-152-m01 |  |
| Modul                                     | e coord | inator        |                      | Module offered by  |                  |  |
| holder of the Chair of Neurobiology and G |         |               | d Genetics           | Faculty of Biology |                  |  |
| ECTS                                      | Meth    | od of grading | Only after succ. con | npl. of module(s)  |                  |  |
| 10                                        | nume    | rical grade   |                      |                    |                  |  |
| Duration Module level                     |         |               | Other prerequisites  |                    |                  |  |
| 1 semester graduate                       |         |               |                      |                    |                  |  |
|                                           |         |               |                      |                    |                  |  |

Introduction into endogenous clocks of unicellular organisms, fungi, plants and animals, with a focus on the neuronal organisation of the clock in the brain of mammals and insects. The biological functions of endogenous clocks and the underlying mechanisms will be discussed on the molecular, cellular and organismic levels. It will be explained how clocks adjust to a 24h day with variable photoperiods. Applied aspects regarding e. g. shift work or jetlag will also be discussed.

#### Intended learning outcomes

The students learn fundamental principles underlying chronobiology/endogenous clocks and obtain an insight into current research in the field. In the seminar, they practise their presentation skills and the discussion of research findings in English.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                                    | e title               |                      | Abbreviation       |                     |                    |  |
|------------------------------------------|-----------------------|----------------------|--------------------|---------------------|--------------------|--|
| Neuromodulation and Neuronal Development |                       |                      |                    |                     | 07-MS1NMND-152-m01 |  |
| Modul                                    | e coord               | linator              |                    | Module offered by   |                    |  |
| holder                                   | of the                | Chair of Neurobiolog | gy and Genetics    | Faculty of Biology  | Faculty of Biology |  |
| ECTS                                     | Meth                  | od of grading        | Only after succ. c | ompl. of module(s)  |                    |  |
| 10                                       | nume                  | rical grade          |                    |                     |                    |  |
| Duratio                                  | Duration Module level |                      | Other prerequisit  | Other prerequisites |                    |  |
| 1 semester graduate                      |                       |                      |                    |                     |                    |  |
| Contents                                 |                       |                      |                    |                     |                    |  |

Neuromodulation: cellular and molecular biology of neuromodulators and their receptors, modulation of synaptic transmission and membrane potential, theoretical and functional aspects of neuromodulation, model systems used to study modulation of neuronal circuits. Fundamental principles of molecular developmental neurobiology. Focus is on the establishment of the neuroectoderm, pattern generation and regional specification, neuronal precursors, neuronal growth, differentiation of neurons, axonal pathfinding, neuronal connectivity.

#### **Intended learning outcomes**

The students learn fundamental principles underlying neuromodulation and neuronal development and obtain an insight into current research in the field. In the seminar, students practise presenting and discussing research findings in English.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |          |                          |                      |                    | Abbreviation     |
|-----------------------|----------|--------------------------|----------------------|--------------------|------------------|
| Neurog                | genetic  | s of Behaviour           |                      |                    | 07-MS1NB-152-m01 |
| Modul                 | e coord  | inator                   |                      | Module offered by  |                  |
| holder                | of the   | Chair of Neurobiology an | d Genetics           | Faculty of Biology |                  |
| ECTS                  | Meth     | od of grading            | Only after succ. con | npl. of module(s)  |                  |
| 10                    | nume     | rical grade              |                      |                    |                  |
| Duration Module level |          |                          | Other prerequisites  |                    |                  |
| 1 semester graduate   |          |                          |                      |                    |                  |
| Conter                | Contents |                          |                      |                    |                  |

To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the art view on current and important topics of behavioural neurobiology (incl. e. g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

#### Intended learning outcomes

In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour. In the seminar, students practise presenting and discussing research findings in English.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

#### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 28 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                     |                                              |                |                                               |    | Abbreviation       |                   |
|--------------------------------------------------|----------------------------------------------|----------------|-----------------------------------------------|----|--------------------|-------------------|
| Develo                                           | Developmental Neurobiology and Chronobiology |                |                                               |    |                    | 07-MS1NEC-152-m01 |
| Modul                                            | Module coordinator                           |                |                                               |    | Module offered by  |                   |
| holder of the Chair of Neurobiology and Genetics |                                              |                | gy and Genetics                               | Fa | Faculty of Biology |                   |
| ECTS                                             | Meth                                         | od of grading  | of grading Only after succ. compl. of module( |    |                    |                   |
| 10                                               | nume                                         | rical grade    |                                               |    |                    |                   |
| Duration Module level                            |                                              | Other prerequi | Other prerequisites                           |    |                    |                   |
| 1 semester graduate                              |                                              |                |                                               |    |                    |                   |
| <i>~</i> .                                       | Containt                                     |                |                                               |    |                    |                   |

Lecture and seminar *Endogenous Clocks*: Students acquire an overview of endogenous clocks in unicellular organisms, fungi, plants, and animals with a focus on the neuronal organisation of the endogenous clock in the brain of mammals and insects. Students learn about the biological purpose of endogenous clocks, their function on a molecular, cellular, and organismic level, as well as their adaptation to 24 hour days with varying hours of daylight. Related aspects of jetlag and shift-work are discussed. Lecture *Neuronal Development*: Fundamentals of neuronal development on the molecular level. Main focus is the establishment of the neuroectoderm, pattern formation, regional subdivision, neuronal progenitor cells, cell growth, differentiation of neurons, axonal navigation, and neuronal circuitry.

#### **Intended learning outcomes**

Students acquire a fundamental knowledge and understanding of endogenous clocks and neuronal development and gain an insight into current research. Students also learn to independently work on reading assignments and to research specific questions that arise in their reading. Results of the students' independent study are critically discussed in the seminar.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)



Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                  |         |               |                      |                    | Abbreviation      |  |
|-----------------------------------------------|---------|---------------|----------------------|--------------------|-------------------|--|
| Neurobiology F1                               |         |               |                      |                    | 07-MS1NF1-152-m01 |  |
| Modul                                         | e coord | inator        |                      | Module offered by  |                   |  |
| holder of the Chair of Neurobiology and Gener |         |               | d Genetics           | Faculty of Biology |                   |  |
| ECTS                                          | Meth    | od of grading | Only after succ. con | npl. of module(s)  |                   |  |
| 10                                            | nume    | rical grade   |                      |                    |                   |  |
| Duration Module level                         |         |               | Other prerequisites  |                    |                   |  |
| 1 semester graduate                           |         |               |                      |                    |                   |  |
|                                               |         |               |                      |                    |                   |  |

A current topic in the field of neurobiology will be investigated. The practical course will be offered in different specialisations: molecular, clinical, cellular, developmental or behavioural neurobiology or in neurogenetics. In addition to a literature search, a variety of neurobiological methods (for example: electrophysiology, immuno-histochemistry, molecular biological techniques, clinical and neurogenetic techniques) and different model systems are offered. The experimental results will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

#### Intended learning outcomes

The participants are able to conduct scientific research within the field of neurobiology. They have acquired the knowledge and skills (e. g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to carry out and document neurobiological experiments according to best practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                            |         |                        |                             |                   | Abbreviation      |
|-----------------------------------------|---------|------------------------|-----------------------------|-------------------|-------------------|
| Neurol                                  | oiology | F2                     |                             |                   | 07-MS1NF2-152-m01 |
| Modul                                   | e coord | inator                 |                             | Module offered by |                   |
| holder of the Chair of Neurobiology and |         |                        | Genetics Faculty of Biology |                   |                   |
| ECTS                                    | Meth    | od of grading          | Only after succ. con        | npl. of module(s) |                   |
| 15                                      | (not)   | successfully completed |                             |                   |                   |
| Duration Module level                   |         |                        | Other prerequisites         |                   |                   |
| 1 semester graduate                     |         |                        |                             |                   |                   |
| Contor                                  | -t-c    | -                      |                             |                   |                   |

The students will independently work on a smaller project within a current line of research at the Chair. Neurobiological, genetic or molecular techniques will be tested and adapted according to the research aim. The progress of the experiments and the current line of research will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

#### **Intended learning outcomes**

The participants are able to independently conduct scientific research within the field of neurobiology and to adapt a research plan according to the experimental progress. They have acquired the knowledge and skills (e. g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to independently carry out, document and interpret neurobiological experiments according to best practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 34 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



### **Animal Ecology and Tropical Biology**

(30 ECTS credits)



| Modul                       | e title                                 |                        | Abbreviation         |                    |  |
|-----------------------------|-----------------------------------------|------------------------|----------------------|--------------------|--|
| Neuro                       | biology                                 | , Behavioural Physiolo | 07-MS1-152-m01       |                    |  |
| Modul                       | Module coordinator                      |                        |                      | Module offered by  |  |
| Dean                        | of Studi                                | es Biologie (Biology)  |                      | Faculty of Biology |  |
| ECTS                        | Meth                                    | od of grading          | Only after succ. cor | npl. of module(s)  |  |
| 10                          | nume                                    | rical grade            |                      |                    |  |
| Duration Module level Other |                                         | Other prerequisites    | ;                    |                    |  |
| 1 semester graduate         |                                         |                        |                      |                    |  |
| Conto                       | , - , - , - , - , - , - , - , - , - , - |                        |                      |                    |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

## **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

## Additional information

--

## Workload

300 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                          |                                                            |                        |                      |                    | Abbreviation     |  |
|---------------------------------------|------------------------------------------------------------|------------------------|----------------------|--------------------|------------------|--|
| Anima                                 | l Ecolog                                                   | gy and Tropical Biolog | y                    |                    | 07-MS1TÖ-152-m01 |  |
| Modul                                 | Module coordinator                                         |                        |                      | Module offered by  |                  |  |
| holder                                | holder of the Chair of Animal Ecology and Tropical Biology |                        |                      | Faculty of Biology |                  |  |
| ECTS                                  | Meth                                                       | od of grading          | Only after succ. con | npl. of module(s)  |                  |  |
| 10                                    | nume                                                       | rical grade            |                      |                    |                  |  |
| Duration Module level Other prerequis |                                                            | Other prerequisites    | }                    |                    |                  |  |
| 1 semester graduate                   |                                                            |                        |                      |                    |                  |  |
| Conter                                | Contents                                                   |                        |                      |                    |                  |  |

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

## **Intended learning outcomes**

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 39 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  | 1             |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                 | e title                                                  |                       |                      |                    | Abbreviation      |
|---------------------------------------|----------------------------------------------------------|-----------------------|----------------------|--------------------|-------------------|
| Anima                                 | l Ecolog                                                 | gy and Tropical Biolo | ogy 2                |                    | 07-MS1TÖ2-152-m01 |
| Modul                                 | e coord                                                  | linator               |                      | Module offered by  |                   |
| holder                                | holder of the Chair of Animal Ecology and Tropical Biolo |                       |                      | Faculty of Biology |                   |
| ECTS                                  | Meth                                                     | od of grading         | Only after succ. cor | npl. of module(s)  |                   |
| 10                                    | nume                                                     | rical grade           |                      |                    |                   |
| Duration Module level Other prerequis |                                                          | Other prerequisites   | 3                    |                    |                   |
| 1 semester graduate                   |                                                          |                       |                      |                    |                   |
| Conte                                 | ntc                                                      | -                     |                      |                    |                   |

This module provides the fundamentals of the biology of tropical habitats and tropical communities. A special focus is on the global significance of tropical systems (ecosystem goods and ecosystem services), but the biological features of these highly diverse biomes are also highlighted.

#### Intended learning outcomes

The students will acquire deep knowledge of ecological theories and up-to-date research issues in the field of animal ecology of the tropics. They will be qualified to interpret scientific work and apply the knowledge they have acquired to the solution of current environmental risks.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module              | title                                                     |               |                      |                    | Abbreviation       |  |
|---------------------|-----------------------------------------------------------|---------------|----------------------|--------------------|--------------------|--|
| Animal              | Ecolog                                                    | gy F1         |                      |                    | 07-MS1TÖF1-152-m01 |  |
| Module              | Module coordinator                                        |               |                      | Module offered by  |                    |  |
| holder              | holder of the Chair of Animal Ecology and Tropical Biolog |               |                      | Faculty of Biology |                    |  |
| ECTS                | Metho                                                     | od of grading | Only after succ. con | npl. of module(s)  |                    |  |
| 10                  | nume                                                      | rical grade   |                      |                    |                    |  |
| Duratio             | Duration Module level (                                   |               | Other prerequisites  |                    |                    |  |
| 1 semester graduate |                                                           |               |                      |                    |                    |  |
| Conten              | Contents                                                  |               |                      |                    |                    |  |

This module consists of several exercises and a seminar series over the course of the entire semester. The exercises can be chosen from the following electives: 1. Wild and honeybee ecology (over the course of the semester): fundamentals and techniques of beekeeping, resource utilisation, behaviour experiments, pollinator diversity and plant-pollinator-interactions. 2. Ecology and taxonomy of insects (block, 2 weeks): observation and recording in the habitat, identification and characteristics of different arthropod groups, field experiments. 3. Ecological modelling (block, 2 weeks): current methods of ecological processes modelling, simulation models, the students' own modelling project on current issues in ecology. 4. Agroecology (block, 1 week): insect communities in agroecosystems, biological pest control in landscape context, evaluation of agri-environment schemes. 5. Forest ecology (block, 1 week): arthropod communities in forest ecosystems, methods of detection, influence of management on diversity patterns and functional groups. 6. Tropical ecology (block): small projects ecological or nature conservation-related issues to be implemented in a tropical ecosystem in East Africa. In the seminar, recent scientific publications on the topics covered in the modules listed above will be presented and discussed.

## Intended learning outcomes

Students will have expanded their knowledge on ecological theories and current research issues in animal ecology. They will be able to design, perform, statistically analyse and interpret scientific research. They will be familiar with animal ecological methods and possible sources of error in data interpretation. They will have deepened their knowledge of the biology and ecology of important functional taxa of arthropods. Students will have acquired the knowledge and skills necessary to perform scientific activities in the context of an F2 practical course or a Master's thesis.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

300 h

## Teaching cycle

--



## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | Module title                                    |                           |                      |                    | Abbreviation       |  |
|-----------------------|-------------------------------------------------|---------------------------|----------------------|--------------------|--------------------|--|
| Anima                 | l Ecolog                                        | gy and Tropical Biology F | 2                    |                    | 07-MS1TÖF2-152-m01 |  |
| Module coordinator    |                                                 |                           |                      | Module offered by  |                    |  |
| holder                | holder of the Chair of Animal Ecology and Tropi |                           |                      | Faculty of Biology |                    |  |
| ECTS                  | Meth                                            | od of grading             | Only after succ. con | npl. of module(s)  |                    |  |
| 15                    | (not)                                           | successfully completed    |                      |                    |                    |  |
| Duration Module level |                                                 | Other prerequisites       | i                    |                    |                    |  |
| 1 semester graduate   |                                                 |                           |                      |                    |                    |  |
| Conten                | Contents                                        |                           |                      |                    |                    |  |

In the F2 practical course, students will explore a scientific question as independently as possible. They will develop hypotheses, prepare a work schedule, collect data, perform experiments in the field, greenhouse or laboratory and will statistically analyse data. Students will document the results of their work in a log similar to a short scientific paper, including an introduction, material and methods, findings and a discussion of these. Students will also be required to present their findings during a wrap-up seminar. The various research groups at the Chair of Animal Ecology and Tropical Biology offer a wide variety of opportunities for students to complete an F2 practical course in Germany, another country in Europe or in the tropics. F2 practical courses may be completed in the context of an ongoing research project of the Institute or in cooperation with other institutions. For more detailed information on the F2 practical course as well as current topics or appointments for consultations, please refer to WueCampus, check out the notice board of the Chair or contact the research groups directly.

## Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the fields of animal ecology and tropical ecology. They are qualified to design scientific research and are able to collect data and interpret them statistically. They have developed knowledge and skills that allow them to set up a scientific project for their Master's thesis.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

## Workload

450 h

## **Teaching cycle**

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 45 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Behavioural Physiology and Sociobiology**

(30 ECTS credits)



| Modul                     | e title                                                 |                       |                      |                    | Abbreviation   |
|---------------------------|---------------------------------------------------------|-----------------------|----------------------|--------------------|----------------|
| Neurok                    | Neurobiology, Behavioural Physiology and Animal Ecology |                       |                      |                    | 07-MS1-152-m01 |
| Modul                     | Module coordinator                                      |                       |                      | Module offered by  |                |
| Dean o                    | of Studi                                                | es Biologie (Biology) |                      | Faculty of Biology |                |
| ECTS                      | Metho                                                   | od of grading         | Only after succ. con | npl. of module(s)  |                |
| 10                        | nume                                                    | rical grade           |                      |                    |                |
| Duration Module level Otl |                                                         | Other prerequisites   |                      |                    |                |
| 1 semester graduate       |                                                         |                       |                      |                    |                |
| C 1                       | Toutouto                                                |                       |                      |                    |                |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

## **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

## Additional information

--

## Workload

300 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module                                                        | e title |                     |                      |                    | Abbreviation    |
|---------------------------------------------------------------|---------|---------------------|----------------------|--------------------|-----------------|
| Animal                                                        | l Comm  | unication           |                      |                    | 07-MS1K-152-m01 |
| Module coordinator                                            |         |                     |                      | Module offered by  |                 |
| holder of the Chair of Behavioral Physiology and Sociobiology |         |                     | ology and Sociobio-  | Faculty of Biology |                 |
| ECTS                                                          | Meth    | od of grading       | Only after succ. con | npl. of module(s)  |                 |
| 10                                                            | nume    | rical grade         |                      |                    |                 |
| Duration Module level O                                       |         | Other prerequisites |                      |                    |                 |
| 1 semester graduate                                           |         |                     |                      |                    |                 |
|                                                               |         |                     |                      |                    |                 |

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

## **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

## Workload

300 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 50 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                  |      |                     |                      |                    | Abbreviation     |
|---------------------------------------------------------------|------|---------------------|----------------------|--------------------|------------------|
| Experimental Sociobiology                                     |      |                     |                      |                    | 07-MS1ES-152-m01 |
| Module coordinator Module offered by                          |      |                     |                      |                    |                  |
| holder of the Chair of Behavioral Physiology and Sociobiology |      |                     | iology and Sociobio- | Faculty of Biology |                  |
| ECTS                                                          | Meth | od of grading       | Only after succ. con | npl. of module(s)  |                  |
| 10                                                            | nume | rical grade         |                      |                    |                  |
| Duration Module level Other prerequ                           |      | Other prerequisites | i                    |                    |                  |
| 1 semester graduate                                           |      |                     |                      |                    |                  |
|                                                               |      |                     | •                    |                    |                  |

The lecture covers the diversity and the development of social behaviour as well as the behavioural physiology and mechanisms of neurobiology that are the basis of the organisation of social groups. A special focus is on current research in the Faculty. With the help of selected publications, the seminar will discuss and explore in more detail the topics covered in the lecture.

## **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex correlations in behavioural biology. Students are able to recognise and interpret relationships between various aspects of sociobiology. They are able to formulate scientific questions in the context of sociobiology and are able to discuss cutting edge literature in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

## **Additional information**

--

## Workload

300 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 52 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                                  | e title                    |                           | Abbreviation        |                    |                  |
|-----------------------------------------|----------------------------|---------------------------|---------------------|--------------------|------------------|
| Neurog                                  | Neurogenetics of Behaviour |                           |                     |                    | 07-MS1NB-152-m01 |
| Module coordinator                      |                            |                           |                     | Module offered by  |                  |
| holder                                  | of the (                   | Chair of Neurobiology and | d Genetics          | Faculty of Biology |                  |
| ECTS Method of grading Only after succ. |                            | Only after succ. con      | npl. of module(s)   |                    |                  |
| 10 numerical grade                      |                            |                           |                     |                    |                  |
| Duration Module level                   |                            |                           | Other prerequisites |                    |                  |
| 1 semester graduate                     |                            |                           |                     |                    |                  |
| Conton                                  | Contonts                   |                           |                     |                    |                  |

To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the art view on current and important topics of behavioural neurobiology (incl. e. g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

## Intended learning outcomes

In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour. In the seminar, students practise presenting and discussing research findings in English.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

## Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 54 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                                  |          |                          |                      |                    | Abbreviation      |
|---------------------------------------------------------------|----------|--------------------------|----------------------|--------------------|-------------------|
| Behavi                                                        | oural P  | Physiology and Sociobiol | ogy F1               |                    | 07-MS1VF1-152-m01 |
| Module                                                        | e coord  | inator                   |                      | Module offered by  |                   |
| holder of the Chair of Behavioral Physiology and Sociobiology |          |                          | ology and Sociobio-  | Faculty of Biology |                   |
| ECTS                                                          | Metho    | od of grading            | Only after succ. con | npl. of module(s)  |                   |
| 10                                                            | nume     | rical grade              |                      |                    |                   |
| Duration   Module level   Other pre                           |          | Other prerequisites      |                      |                    |                   |
| 1 semester graduate                                           |          |                          |                      |                    |                   |
| Cantan                                                        | Contonto |                          |                      |                    |                   |

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will gain an insight into the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

## Intended learning outcomes

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they are able to process and document the results obtained and to present them to a scientific audience.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

## Workload

300 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 56 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                 |          |                          |                      |                    | Abbreviation      |
|----------------------------------------------|----------|--------------------------|----------------------|--------------------|-------------------|
| Behavi                                       | oural P  | Physiology and Sociobiol | ogy F2               |                    | 07-MS1VF2-152-m01 |
| Module                                       | e coord  | inator                   |                      | Module offered by  |                   |
| holder of the Chair of Behavioral Physiology |          |                          | ology and Sociobio-  | Faculty of Biology |                   |
| ECTS                                         | Meth     | od of grading            | Only after succ. con | npl. of module(s)  |                   |
| 15                                           | (not)    | successfully completed   |                      |                    |                   |
| Duration Module level                        |          | Other prerequisites      |                      |                    |                   |
| 1 semester graduate                          |          |                          |                      |                    |                   |
| Conten                                       | Contents |                          |                      |                    |                   |

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will learn to plan experimental series and to apply the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

## Intended learning outcomes

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they have learned to interpret the results obtained, taking into account current literature, and to place them in the context of other research in the field.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

450 h

## **Teaching cycle**

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 58 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# Module Group 2

(ECTS credits)



# **Molecular Cell- and Developmental Biology**

(30 ECTS credits)



| Module title                       |      |                     |                     | Abbreviation       |                |
|------------------------------------|------|---------------------|---------------------|--------------------|----------------|
| Molecular Biology                  |      |                     |                     |                    | 07-MS2-152-m01 |
| Module coordinator                 |      |                     |                     | Module offered by  | .l             |
| Dean of Studies Biologie (Biology) |      |                     |                     | Faculty of Biology |                |
| ECTS                               | Meth | od of grading       | Only after succ. co | mpl. of module(s)  |                |
| 10                                 | nume | rical grade         |                     |                    |                |
| Duration Module level              |      | Other prerequisites | 5                   |                    |                |
| 1 semester graduate                |      |                     |                     |                    |                |
| Contents                           |      |                     |                     |                    |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

## Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

## **Additional information**

### Workload

300 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 62 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module                                                        | e title                                 | ·             | Abbreviation         |                    |                   |
|---------------------------------------------------------------|-----------------------------------------|---------------|----------------------|--------------------|-------------------|
| Cell an                                                       | Cell and Developmental Biology Master 1 |               |                      |                    | 07-MS2ZE1-152-m01 |
| Module                                                        | e coord                                 | inator        |                      | Module offered by  |                   |
| holder of the Chair of Cell Biology and Developmental Biology |                                         |               | Developmental Bio-   | Faculty of Biology |                   |
| ECTS                                                          | Meth                                    | od of grading | Only after succ. con | npl. of module(s)  |                   |
| 10 numerical grade                                            |                                         |               |                      |                    |                   |
| Duration Module level Other prerequisite                      |                                         |               | Other prerequisites  |                    |                   |
| 1 semester graduate                                           |                                         |               |                      |                    |                   |
| C                                                             | Contonto                                |               |                      |                    |                   |

The module consists of the lecture *Zellpathologie* (*Cytopathology*) and the seminar *Zellbiologie-Meilensteine und Perspektiven* (*Milestones and Perspectives of Cell Biology*). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar *Milestones and Perspectives of Cell Biology*, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

#### Intended learning outcomes

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 64 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                             |                                                               |                         |                      |                    | Abbreviation      |
|------------------------------------------|---------------------------------------------------------------|-------------------------|----------------------|--------------------|-------------------|
| Cell an                                  | d Deve                                                        | lopmental Biology Maste | er 2                 |                    | 07-MS2ZE2-152-m01 |
| Module                                   | e coord                                                       | inator                  |                      | Module offered by  |                   |
| holder<br>logy                           | holder of the Chair of Cell Biology and Developmental Biology |                         |                      | Faculty of Biology |                   |
| ECTS                                     | Meth                                                          | od of grading           | Only after succ. con | npl. of module(s)  |                   |
| 10                                       | nume                                                          | rical grade             |                      |                    |                   |
| Duration Module level Other prerequisite |                                                               | Other prerequisites     |                      |                    |                   |
| 1 semester graduate                      |                                                               |                         |                      |                    |                   |
| Conten                                   | Contents                                                      |                         |                      |                    |                   |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

## **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

## **Additional information**

## Workload

300 h

## **Teaching cycle**

## Referred to in LPO I (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                             | Module title                                                  |                     |                      |                    | Abbreviation       |
|-----------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|
| Cell and Developmental Biology F1 |                                                               |                     |                      |                    | 07-MS2ZEF1-152-m01 |
| Modul                             | e coord                                                       | inator              |                      | Module offered by  |                    |
| holder<br>logy                    | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                    |
| ECTS                              | Meth                                                          | od of grading       | Only after succ. con | npl. of module(s)  |                    |
| 10 numerical grade                |                                                               |                     |                      |                    |                    |
| Duration Module level C           |                                                               | Other prerequisites | 1                    |                    |                    |
| 1 semester graduate               |                                                               |                     |                      |                    |                    |
| Camban                            | Contonto                                                      |                     |                      |                    |                    |

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. Large parts of this practical course are devoted to small projects, which should provide sustained insights into current research activities of the Chair. Interactions with Master's students, doctoral researchers and post-docs prepare participants for a working in a team-based environment.

## **Intended learning outcomes**

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

\_\_

## Workload

300 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 68 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                  |       |                        |                                      | Abbreviation       |                    |
|---------------------------------------------------------------|-------|------------------------|--------------------------------------|--------------------|--------------------|
| Cell and Developmental Biology F2                             |       |                        |                                      |                    | 07-MS2ZEF2-152-m01 |
| Module coordinator                                            |       |                        |                                      | Module offered by  |                    |
| holder of the Chair of Cell Biology and Developmental Biology |       |                        | Developmental Bio-                   | Faculty of Biology |                    |
| ECTS                                                          | Metho | od of grading          | Only after succ. compl. of module(s) |                    |                    |
| 15                                                            | (not) | successfully completed |                                      |                    |                    |
| Duration Module level                                         |       | Module level           | Other prerequisites                  |                    |                    |
| 1 semester graduate                                           |       |                        |                                      |                    |                    |

Well-defined aspects of scientific projects are addressed with independently designed experiments in the context of current research projects in the field of cell and developmental biology. The techniques applied are evaluated on the basis of the results obtained and modified where necessary. The results of all experiments as well as the impact on the research project are presented and discussed in a progress report seminar within the research group.

## Intended learning outcomes

The participants are able to independently carry out scientific experiments in the fields of cell and developmental biology and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

## Workload

450 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) |  | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 70 / 591 |
|------------------------------------------|--|-------------------------------------------------------|---------------|
|                                          |  | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Microbiology and Infection Biology**

(30 ECTS credits)



| Module title          |                                    |               |                      | Abbreviation        |                |
|-----------------------|------------------------------------|---------------|----------------------|---------------------|----------------|
| Molecular Biology     |                                    |               |                      |                     | 07-MS2-152-m01 |
| Module coordinator    |                                    |               |                      | Module offered by   |                |
| Dean c                | Dean of Studies Biologie (Biology) |               |                      | Faculty of Biology  |                |
| ECTS                  | Meth                               | od of grading | Only after succ. cor | mpl. of module(s)   |                |
| 10                    | nume                               | rical grade   |                      |                     |                |
| Duratio               | Duration Module level Ot           |               | Other prerequisites  | Other prerequisites |                |
| 1 semester graduate - |                                    |               |                      |                     |                |
| Contents              |                                    |               |                      |                     |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 73 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| e title                        |                                   | Abbreviation                                                                           |                                                                                                                              |                                                                                                                                                                                                   |
|--------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infection Biology              |                                   |                                                                                        |                                                                                                                              | 07-MS2INF-152-m01                                                                                                                                                                                 |
| Module coordinator             |                                   |                                                                                        | Module offered by                                                                                                            |                                                                                                                                                                                                   |
| of the (                       | Chair of Microbiolog              | у                                                                                      | Faculty of Biology                                                                                                           |                                                                                                                                                                                                   |
| Metho                          | od of grading                     | Only after succ. c                                                                     | ompl. of module(s)                                                                                                           |                                                                                                                                                                                                   |
| nume                           | rical grade                       |                                                                                        |                                                                                                                              |                                                                                                                                                                                                   |
| Duration Module level Other pr |                                   | Other prerequisit                                                                      | es                                                                                                                           |                                                                                                                                                                                                   |
| 1 semester graduate            |                                   |                                                                                        |                                                                                                                              |                                                                                                                                                                                                   |
|                                | on Biologe coord of the Good nume | coordinator of the Chair of Microbiolog Method of grading numerical grade Module level | on Biology e coordinator of the Chair of Microbiology  Method of grading  numerical grade on Module level  Other prerequisit | coordinator  for the Chair of Microbiology  Method of grading  numerical grade  Module offered by  Faculty of Biology  Only after succ. compl. of module(s)  numerical grade  Other prerequisites |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

#### **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                    |         |                       |                      |                    | Abbreviation     |
|---------------------------------|---------|-----------------------|----------------------|--------------------|------------------|
| Pathogenicity of Microorganisms |         |                       |                      |                    | 07-MS2PA-152-m01 |
| Modul                           | e coord | inator                |                      | Module offered by  |                  |
| holder                          | of the  | Chair of Microbiology |                      | Faculty of Biology |                  |
| ECTS                            | Meth    | od of grading         | Only after succ. con | npl. of module(s)  |                  |
| 10                              | nume    | rical grade           |                      |                    |                  |
| Duration Module level Oth       |         | Other prerequisites   |                      |                    |                  |
| 1 semester graduate             |         |                       |                      |                    |                  |
| _                               |         |                       |                      |                    |                  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title            |                       | Abbreviation         |                    |  |
|-----------------------|--------------------|-----------------------|----------------------|--------------------|--|
| Microbiology F1       |                    |                       |                      | 07-MS2MF1-152-m01  |  |
| Modul                 | Module coordinator |                       |                      | Module offered by  |  |
| holder                | of the             | Chair of Microbiology |                      | Faculty of Biology |  |
| ECTS                  | Meth               | od of grading         | Only after succ. con | npl. of module(s)  |  |
| 10                    | nume               | rical grade           |                      |                    |  |
| Duration Module level |                    | Other prerequisites   |                      |                    |  |
| 1 semester graduate   |                    |                       |                      |                    |  |
| Canta                 | Contonte           |                       |                      |                    |  |

Participants will work independently on a current research project dealing with microbial pathogens and their interactions with the host. Participants will employ a variety of state-of-the-art methods within the fields of molecular biology, microbiology, cellular biology, and immunology as well as data analysis and literature research techniques. Results will be documented and discussed in a seminar paper or an oral presentation.

# **Intended learning outcomes**

Participants will acquire the skills to experimentally address scientific questions in molecular biology and infection biology, properly document experimental results and adhere to the standards of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

The internship must be completed full-time within a period of 5 to 6 weeks.

#### Workload

300 h

#### **Teaching cycle**

Teaching cycle: Ongoing, after consultation with the supervisor and registration for both winter and summer semesters.

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |        |                        |                      | Abbreviation       |                   |
|-----------------------|--------|------------------------|----------------------|--------------------|-------------------|
| Microbiology F2       |        |                        |                      |                    | 07-MS2MF2-152-m01 |
| Module coordinator    |        |                        |                      | Module offered by  |                   |
| holder                | of the | Chair of Microbiology  |                      | Faculty of Biology |                   |
| ECTS                  | Metho  | od of grading          | Only after succ. con | pl. of module(s)   |                   |
| 15                    | (not)  | successfully completed |                      |                    |                   |
| Duration Module level |        | Other prerequisites    |                      |                    |                   |
| 1 semester graduate   |        |                        |                      |                    |                   |
|                       |        |                        |                      |                    |                   |

Participants will work independently on a current research project dealing with microbiology and infection biology. They will apply advanced experimental techniques in microbiology, cell biology and molecular biology according to the project requirements. Progress of the research project will be reported in a seminar paper, a research paper or an oral presentation.

# **Intended learning outcomes**

The participants will acquire the skills to independently perform basic research on microbiology and infection biology according to the standards of good scientific practice and to properly document, interpret and present experimental results.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

The internship must be completed full-time within a period of 10 to 12 weeks.

# Workload

450 h

# **Teaching cycle**

Teaching cycle: Ongoing, after consultation with the supervisor and registration for both winter and summer semesters.

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Cellular and Molecular Biotechnology**

(30 ECTS credits)



| Module title                                          |      |                   |                    |                     | Abbreviation   |  |
|-------------------------------------------------------|------|-------------------|--------------------|---------------------|----------------|--|
| Molecular Biology                                     |      |                   |                    |                     | 07-MS2-152-m01 |  |
| Module coordinator                                    |      |                   |                    | Module offered by   |                |  |
| Dean of Studies Biologie (Biology) Faculty of Biology |      |                   |                    |                     |                |  |
| ECTS                                                  | Meth | od of grading     | Only after succ. o | compl. of module(s) |                |  |
| 10                                                    | nume | rical grade       |                    |                     |                |  |
| Duration Module level                                 |      | Other prerequisit | tes                |                     |                |  |
| 1 semester graduate                                   |      |                   |                    |                     |                |  |
| Contents                                              |      |                   |                    |                     |                |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 84 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title                           |          |                        |                    |                     | Abbreviation       |  |
|----------------------------------------|----------|------------------------|--------------------|---------------------|--------------------|--|
| Biophysics and Molecular Biotechnology |          |                        |                    |                     | 07-MS2BT-152-m01   |  |
| Module coordinator Me                  |          |                        |                    | Module offered by   |                    |  |
| holder                                 | of the   | Chair of Biotechnology | and Biophysics     | Faculty of Biology  | Faculty of Biology |  |
| ECTS                                   | Meth     | od of grading          | Only after succ. o | compl. of module(s) |                    |  |
| 10                                     | nume     | rical grade            |                    |                     |                    |  |
| Duration Module level Other prere      |          | Other prerequisit      | tes                |                     |                    |  |
| 1 semester graduate                    |          |                        |                    |                     |                    |  |
| Contor                                 | Contents |                        |                    |                     |                    |  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

#### Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# Allocation of places

# **Additional information**

#### Workload

300 h

#### **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 86 / 591 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                |                 |                           |                      |                    | Abbreviation     |
|-----------------------------|-----------------|---------------------------|----------------------|--------------------|------------------|
| Biophysics and Biochemistry |                 |                           |                      |                    | 07-MS3BB-152-m01 |
| Modul                       | e coord         | inator                    |                      | Module offered by  |                  |
| holder                      | of the          | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                  |
| ECTS                        | Meth            | od of grading             | Only after succ. con | npl. of module(s)  |                  |
| 10                          | numerical grade |                           |                      |                    |                  |
| Duration Module level       |                 | Other prerequisites       |                      |                    |                  |
| 1 semester graduate         |                 |                           |                      |                    |                  |
| Contor                      | Contonte        |                           |                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title            |                 |                         |                      |                    | Abbreviation     |
|-------------------------|-----------------|-------------------------|----------------------|--------------------|------------------|
| Bioinformatics          |                 |                         |                      |                    | 07-MS2BI-152-m01 |
| Modul                   | e coord         | inator                  |                      | Module offered by  |                  |
| holder                  | of the          | Chair of Bioinformatics |                      | Faculty of Biology |                  |
| ECTS                    | Meth            | od of grading           | Only after succ. con | npl. of module(s)  |                  |
| 10                      | numerical grade |                         |                      |                    |                  |
| Duration Module level O |                 | Other prerequisites     |                      |                    |                  |
| 1 semester graduate     |                 |                         |                      |                    |                  |
|                         |                 |                         |                      |                    | ·                |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

#### **Intended learning outcomes**

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)



| Module title                         |                                                     |                     |                      | Abbreviation       |                    |
|--------------------------------------|-----------------------------------------------------|---------------------|----------------------|--------------------|--------------------|
| Biophy                               | Biophysics and Molecular Biotechnology F1           |                     |                      |                    | 07-MS2BTF1-152-m01 |
| Module coordinator Module offered by |                                                     |                     |                      | I                  |                    |
| holder                               | holder of the Chair of Biotechnology and Biophysics |                     |                      | Faculty of Biology |                    |
| ECTS                                 | Meth                                                | od of grading       | Only after succ. cor | npl. of module(s)  |                    |
| 10                                   | nume                                                | rical grade         |                      |                    |                    |
| Duration Module level Ot             |                                                     | Other prerequisites | 3                    |                    |                    |
| 1 semester graduate -                |                                                     |                     |                      |                    |                    |
| Contor                               | Contonts                                            |                     |                      |                    |                    |

This practical course provides students with an insight into different biotechnological and biophysical topics and methods. Under expert guidance, students will perform selected experiments on the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells.

# Intended learning outcomes

Students will have acquired a knowledge of fundamental biotechnological and biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms. Students will have acquired practical experience performing experiments, using a variety of scientific tools. In the seminar, students will have acquired detailed theoretical knowledge on these experiments and will have delivered a short presentation (15 minutes) on one of the experiments they performed.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                     | e title |                        |                    | ,                  | Abbreviation       |
|-------------------------------------------|---------|------------------------|--------------------|--------------------|--------------------|
| Biophysics and Molecular Biotechnology F2 |         |                        | gy F2              |                    | 07-MS2BTF2-152-m01 |
| Modul                                     | e coord | inator                 |                    | Module offered by  |                    |
| holder of the Chair of Biotechnology an   |         |                        | nd Biophysics      | Faculty of Biology |                    |
| ECTS                                      | Meth    | od of grading          | Only after succ. c | ompl. of module(s) |                    |
| 15                                        | (not)   | successfully completed |                    |                    |                    |
| Duration Module level                     |         | Other prerequisit      | es                 |                    |                    |
| 1 semester graduate                       |         |                        |                    |                    |                    |
| Contor                                    | nt c    | •                      |                    |                    |                    |

This practical course provides students with an insight into different biotechnological and biophysical topics and is close to laboratory research. Under expert guidance, students will perform selected experiments on one of the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells. Performing experiments under expert guidance, students will become acquainted with techniques and instruments. Over the duration of the course, students will then be required to work increasingly independently on current research topics. Work on current research topics will spark the students' interest in topics and will help them select a topic for their Master's thesis.

# **Intended learning outcomes**

Students will become acquainted with modern biophysical methods and their applications in biotechnology. They will be able to independently work on scientific problems, to independently study relevant literature and to develop a quantitative understanding of biophysical mechanisms. In the seminar, students will acquire further theoretical knowledge on experiments and will give short presentations on experiments performed.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

450 h

# Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Bioinformatics**

(30 ECTS credits)

Students who selected this subject area must take module o7-MS2BI. The second theoretical module in this subject area may be selected from the list below.



| Modul                 | e title                               |                     |                      |                    | Abbreviation     |
|-----------------------|---------------------------------------|---------------------|----------------------|--------------------|------------------|
| Bioinfo               | Bioinformatics                        |                     |                      |                    | 07-MS2BI-152-m01 |
| Modul                 | Module coordinator                    |                     |                      | Module offered by  |                  |
| holder                | holder of the Chair of Bioinformatics |                     |                      | Faculty of Biology |                  |
| ECTS                  | Meth                                  | od of grading       | Only after succ. con | npl. of module(s)  |                  |
| 10                    | nume                                  | rical grade         |                      |                    |                  |
| Duration Module level |                                       | Other prerequisites |                      |                    |                  |
| 1 semester graduate   |                                       |                     |                      |                    |                  |
|                       |                                       |                     |                      |                    |                  |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

#### **Intended learning outcomes**

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)



| Modul   | e title                                   |                      |                          |                    | Abbreviation   |
|---------|-------------------------------------------|----------------------|--------------------------|--------------------|----------------|
| Neurol  | biology                                   | , Behavioural Physic | ology and Animal Ecology | <i>'</i>           | 07-MS1-152-m01 |
| Modul   | e coord                                   | linator              |                          | Module offered by  |                |
| Dean c  | Dean of Studies Biologie (Biology)        |                      |                          | Faculty of Biology |                |
| ECTS    | Meth                                      | od of grading        | Only after succ. co      | mpl. of module(s)  |                |
| 10      | nume                                      | rical grade          |                          |                    |                |
| Duratio | Duration Module level Other prerequisites |                      |                          | 5                  |                |
| 1 seme  | 1 semester graduate                       |                      |                          |                    |                |
|         |                                           |                      |                          |                    |                |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

# **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

### Workload

300 h

# **Teaching cycle**

--

# Referred to in LPO I (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                                  | e title                                                     | ,                   |                      |                    | Abbreviation    |
|----------------------------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|-----------------|
| Molecular and Clinical Neurobiology    |                                                             |                     | gy                   |                    | 07-MS1N-152-m01 |
| Modul                                  | e coord                                                     | linator             |                      | Module offered by  |                 |
| Manag                                  | Managing Director of the Institute of Clinical Neurobiology |                     |                      | Faculty of Biology |                 |
| ECTS                                   | Meth                                                        | od of grading       | Only after succ. con | npl. of module(s)  |                 |
| 10                                     | nume                                                        | rical grade         |                      |                    |                 |
| Duration Module level Other prerequisi |                                                             | Other prerequisites | ,                    |                    |                 |
| 1 semester graduate                    |                                                             |                     |                      |                    |                 |
| Conte                                  | nte                                                         | •                   |                      |                    |                 |

Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channelopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a. m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

#### **Intended learning outcomes**

Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal disea-

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

300 h

#### Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's degree (1 major) Biosciences (2021) Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Modul                                | e title                                                    |                     |                      |                    | Abbreviation     |
|--------------------------------------|------------------------------------------------------------|---------------------|----------------------|--------------------|------------------|
| Anima                                | Animal Ecology and Tropical Biology                        |                     |                      |                    | 07-MS1TÖ-152-m01 |
| Modul                                | e coord                                                    | inator              |                      | Module offered by  | I                |
| holder                               | holder of the Chair of Animal Ecology and Tropical Biology |                     |                      | Faculty of Biology |                  |
| ECTS                                 | Meth                                                       | od of grading       | Only after succ. con | npl. of module(s)  |                  |
| 10                                   | nume                                                       | rical grade         |                      |                    |                  |
| Duration Module level Other prerequi |                                                            | Other prerequisites | 1                    |                    |                  |
| 1 semester graduate                  |                                                            |                     |                      |                    |                  |
| Contor                               | ot c                                                       |                     |                      |                    |                  |

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

#### **Intended learning outcomes**

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 103 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  | ĺ              |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                              | e title                                                       |                     |                      |                    | Abbreviation    |
|-------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-----------------|
| Animal Communication                |                                                               |                     |                      |                    | 07-MS1K-152-m01 |
| Module                              | Module coordinator                                            |                     |                      | Module offered by  |                 |
| holder<br>logy                      | holder of the Chair of Behavioral Physiology and Sociobiology |                     |                      | Faculty of Biology |                 |
| ECTS                                | Meth                                                          | od of grading       | Only after succ. con | npl. of module(s)  |                 |
| 10                                  | nume                                                          | rical grade         |                      |                    |                 |
| Duration Module level Other prerequ |                                                               | Other prerequisites |                      |                    |                 |
| 1 semester graduate                 |                                                               |                     |                      |                    |                 |
| Conton                              |                                                               |                     | <u> </u>             | <u> </u>           |                 |

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

#### **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- |
|------------------------------------------|-------------------------------------------------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title           |                       |                      |                    | Abbreviation   |
|-----------------------|-------------------|-----------------------|----------------------|--------------------|----------------|
| Molecu                | Molecular Biology |                       |                      |                    | 07-MS2-152-m01 |
| Modul                 | e coord           | inator                |                      | Module offered by  |                |
| Dean o                | f Studi           | es Biologie (Biology) |                      | Faculty of Biology |                |
| ECTS                  | Meth              | od of grading         | Only after succ. con | npl. of module(s)  |                |
| 10                    | nume              | rical grade           |                      |                    |                |
| Duration Module level |                   | Other prerequisites   |                      |                    |                |
| 1 semester graduate   |                   |                       |                      |                    |                |
| Conter                | ıts               |                       |                      |                    |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 107 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title          |                                                               |                                      |      |                    | Abbreviation      |
|-----------------------|---------------------------------------------------------------|--------------------------------------|------|--------------------|-------------------|
| Cell an               | d Deve                                                        | lopmental Biology Mast               | er 1 |                    | 07-MS2ZE1-152-m01 |
| Module                | Module coordinator Module offered by                          |                                      |      |                    |                   |
| holder<br>logy        | holder of the Chair of Cell Biology and Developmental Biology |                                      |      | Faculty of Biology |                   |
| ECTS                  | Meth                                                          | ethod of grading Only after succ. co |      | npl. of module(s)  |                   |
| 10                    | nume                                                          | numerical grade                      |      |                    |                   |
| Duration Module level |                                                               | Other prerequisites                  | 5    |                    |                   |
| 1 semester            |                                                               | graduate                             |      |                    |                   |
| Camban                | Contonto                                                      |                                      |      |                    |                   |

The module consists of the lecture *Zellpathologie* (*Cytopathology*) and the seminar *Zellbiologie-Meilensteine und Perspektiven* (*Milestones and Perspectives of Cell Biology*). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar *Milestones and Perspectives of Cell Biology*, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

### **Intended learning outcomes**

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 109 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                                                               |                            |                      |                    | Abbreviation      |
|-----------------------|---------------------------------------------------------------|----------------------------|----------------------|--------------------|-------------------|
| Cell an               | d Deve                                                        | lopmental Biology <i>I</i> | Master 2             |                    | 07-MS2ZE2-152-m01 |
| Modul                 | e coord                                                       | linator                    |                      | Module offered by  |                   |
| holder<br>logy        | holder of the Chair of Cell Biology and Developmental Biology |                            |                      | Faculty of Biology |                   |
| ECTS                  | Meth                                                          | od of grading              | Only after succ. cor | npl. of module(s)  |                   |
| 10                    | nume                                                          | rical grade                |                      |                    |                   |
| Duration Module level |                                                               | Other prerequisites        |                      |                    |                   |
| 1 semester graduate   |                                                               |                            |                      |                    |                   |
| Conter                | Contents                                                      |                            |                      |                    |                   |

The module consists of the lecture *Signale und Differenzierung* (Signals and Differentiation) and the seminar *Entwicklungsbiologie - Meilensteine und Perspektiven* (*Milestones and Perspectives of Developmental Biology*). The lecture *Signals and Differentiation* does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar *Milestones and Perspectives of Developmental Biology*, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

### **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

### Additional information

--

### Workload

300 h

### **Teaching cycle**

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                 | e title |                                   |     | Abbreviation       |                   |
|-----------------------|---------|-----------------------------------|-----|--------------------|-------------------|
| Infecti               | on Biol | ogy                               |     |                    | 07-MS2INF-152-m01 |
| Modul                 | e coord | inator                            |     | Module offered by  |                   |
| holder                | of the  | Chair of Microbiology             |     | Faculty of Biology |                   |
| ECTS                  | Meth    | Method of grading Only after succ |     | npl. of module(s)  |                   |
| 10                    | nume    | umerical grade                    |     |                    |                   |
| Duration Module level |         | Other prerequisites               | tes |                    |                   |
| 1 semester graduate   |         |                                   |     |                    |                   |
|                       |         |                                   |     |                    |                   |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

### **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                                     |                                   |                     |                    | Abbreviation     |
|-----------------------|-------------------------------------|-----------------------------------|---------------------|--------------------|------------------|
| Pathog                | genicity                            | of Microorganisms                 |                     |                    | 07-MS2PA-152-m01 |
| Modul                 | e coord                             | inator                            |                     | Module offered by  |                  |
| holder                | holder of the Chair of Microbiology |                                   |                     | Faculty of Biology |                  |
| ECTS                  | Meth                                | Method of grading Only after succ |                     | npl. of module(s)  |                  |
| 10                    | nume                                | numerical grade                   |                     |                    |                  |
| Duration Module level |                                     | Module level                      | Other prerequisites | ther prerequisites |                  |
| 1 seme                | ester                               | graduate                          |                     |                    |                  |
|                       |                                     |                                   |                     |                    |                  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 1 | 07-MS2lM1-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| hiology                                                    |                    |

| טוטוט)  |                   |              |                                      |
|---------|-------------------|--------------|--------------------------------------|
| ECTS    | Method of grading |              | Only after succ. compl. of module(s) |
| 10      | numerical grade   |              |                                      |
| Duratio | n                 | Module level | Other prerequisites                  |
| 1 seme  | ster              | graduate     |                                      |

Fundamental concepts of modern cellular and molecular immunology. More information is available at http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologen\_master/.

### **Intended learning outcomes**

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Winter semester only

### Allocation of places

--

#### **Additional information**

--

### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 2 | 07-MS2lM2-152-m01 |

| ,          | 8)                   |              |                                      |
|------------|----------------------|--------------|--------------------------------------|
| ECTS       | rs Method of grading |              | Only after succ. compl. of module(s) |
| 10         | numerical grade      |              |                                      |
| Duratio    | n                    | Module level | Other prerequisites                  |
| 1 semester |                      | graduate     |                                      |

#### **Contents**

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

### **Intended learning outcomes**

Students are able to understand current topics in immunology and to discuss these in detail.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Summer semester only

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title | Abbreviation     |
|--------------|------------------|
| Virology 1   | 07-MS2V1-152-m01 |

biology

| ECTS    | TS Method of grading |              | Only after succ. compl. of module(s) |
|---------|----------------------|--------------|--------------------------------------|
| 10      | numerical grade      |              |                                      |
| Duratio | on                   | Module level | Other prerequisites                  |
| 1 seme  | ester                | graduate     |                                      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

### **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Winter semester only

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

### **Teaching cycle**

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)



| Module title | Abbreviation     |
|--------------|------------------|
| Virology 2   | 07-MS2V2-152-m01 |

| ECTS    | Method of grading                   | Only after succ. con | ıpl. of module(s)  |
|---------|-------------------------------------|----------------------|--------------------|
| biology | <u>'</u>                            |                      |                    |
| Managi  | ing Director of the Institute of Vi | rology and Immuno-   | Faculty of Biology |

| ECTS    | ECTS Method of grading |          | Only after succ. compl. of module(s) |
|---------|------------------------|----------|--------------------------------------|
| 10      | 10 numerical grade     |          | -                                    |
| Duratio | Duration Module level  |          | Other prerequisites                  |
| 1 seme  | ster                   | graduate | -                                    |
|         |                        |          |                                      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

### **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Summer semester only

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)



| Modul                 | e title            |                             | Abbreviation        |                    |                  |
|-----------------------|--------------------|-----------------------------|---------------------|--------------------|------------------|
| Human Genetics        |                    |                             |                     |                    | 07-MS2HG-152-m01 |
| Modul                 | Module coordinator |                             |                     | Module offered by  |                  |
| Manag                 | ging Dire          | ector of the Institute of F | luman Genetics      | Faculty of Biology |                  |
| ECTS                  | Metho              | od of grading               | Only after succ. co | mpl. of module(s)  |                  |
| 10 numerical grade    |                    |                             |                     |                    |                  |
| Duration Module level |                    | Other prerequisites         |                     |                    |                  |
| 2 semester graduate   |                    |                             |                     |                    |                  |
| Contor                | Contoute           |                             |                     |                    |                  |

This module will discuss current topics in human genetics.

### **Intended learning outcomes**

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

### Workload

300 h

### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



| Module title                              |          |                     | Abbreviation        |                    |                 |  |
|-------------------------------------------|----------|---------------------|---------------------|--------------------|-----------------|--|
| Current Methods in Biology                |          |                     |                     |                    | 07-MS31-152-m01 |  |
| Module coordinator                        |          |                     |                     | Module offered by  |                 |  |
| holder of the Chair of Plant Physiology a |          |                     | gy and Biophysics   | Faculty of Biology |                 |  |
| ECTS                                      | Meth     | od of grading       | Only after succ. co | mpl. of module(s)  |                 |  |
| 10                                        | nume     | rical grade         |                     |                    |                 |  |
| Duration Module level                     |          | Other prerequisites |                     |                    |                 |  |
| 1 semester graduate                       |          |                     |                     |                    |                 |  |
| <u> </u>                                  | Combonie |                     |                     |                    |                 |  |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

### **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 122 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |         |                           |                      |                    | Abbreviation        |
|-----------------------|---------|---------------------------|----------------------|--------------------|---------------------|
| Plant Ecology         |         |                           |                      |                    | 07-MS31POEK-152-m01 |
| Module                | e coord | inator                    |                      | Module offered by  |                     |
| holder                | of the  | Chair of Ecophysiology ar | nd Vegetation Ecolo- | Faculty of Biology |                     |
| gy                    |         |                           |                      |                    |                     |
| ECTS                  | Metho   | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 10 numerical grade    |         |                           |                      |                    |                     |
| Duration Module level |         | Other prerequisites       |                      |                    |                     |
| 1 semester graduate   |         |                           |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

### Workload

300 h

#### Teaching cycle

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | p |
|------------------------------------------|-------------------------------------------------------|---|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |   |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title                                             |         |                     |                      |                    | Abbreviation       |
|----------------------------------------------------------|---------|---------------------|----------------------|--------------------|--------------------|
| Plant Immunobiology and Pharmaceutical Biology           |         |                     |                      |                    | 07-MS31PIP-152-m01 |
| Module                                                   | e coord | inator              |                      | Module offered by  |                    |
| holder of the Chair of Ecophysiology and Vegetation Ecol |         |                     | nd Vegetation Ecolo- | Faculty of Biology |                    |
| ECTS                                                     | Meth    | od of grading       | Only after succ. con | npl. of module(s)  |                    |
| 10                                                       | nume    | rical grade         |                      |                    |                    |
| Duration Module level Of                                 |         | Other prerequisites |                      |                    |                    |
| 1 semester graduate                                      |         |                     |                      |                    |                    |
| Conten                                                   | its     |                     |                      |                    |                    |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### Additional information

--

### Workload

300 h

### Teaching cycle

--



### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                              |      |                     | Abbreviation        |                    |  |
|-------------------------------------------|------|---------------------|---------------------|--------------------|--|
| Biophysics and Biochemistry               |      |                     |                     | 07-MS3BB-152-m01   |  |
| Module coordinator                        |      |                     |                     | Module offered by  |  |
| holder of the Chair of Plant Physiology a |      |                     | gy and Biophysics   | Faculty of Biology |  |
| ECTS                                      | Meth | od of grading       | Only after succ. co | mpl. of module(s)  |  |
| 10                                        | nume | rical grade         |                     |                    |  |
| Duration Module level                     |      | Other prerequisites |                     |                    |  |
| 1 semester graduate                       |      |                     |                     |                    |  |
| Ctt-                                      |      |                     |                     |                    |  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

### **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

### **Allocation of places**

--

### **Additional information**

--

### Workload

300 h

### **Teaching cycle**

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                 | e title  |                         | Abbreviation         |                    |  |  |
|-----------------------|----------|-------------------------|----------------------|--------------------|--|--|
| Systems Biology       |          |                         |                      | 07-MS3S-152-m01    |  |  |
| Module coordinator    |          |                         |                      | Module offered by  |  |  |
| holder                | of the   | Chair of Bioinformatics |                      | Faculty of Biology |  |  |
| ECTS                  | Meth     | od of grading           | Only after succ. con | npl. of module(s)  |  |  |
| 10                    | nume     | rical grade             |                      |                    |  |  |
| Duration Module level |          | Other prerequisites     |                      |                    |  |  |
| 1 semester graduate   |          |                         |                      |                    |  |  |
| Conter                | Contents |                         |                      |                    |  |  |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

### Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

### **Additional information**

#### Workload

300 h

### **Teaching cycle**

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                       | e title |                         | Abbreviation         |                    |                    |
|-----------------------------|---------|-------------------------|----------------------|--------------------|--------------------|
| Bioinformatics F1           |         |                         |                      |                    | 07-MS2BIF1-152-m01 |
| Module coordinator          |         |                         |                      | Module offered by  |                    |
| holder                      | of the  | Chair of Bioinformatics | S                    | Faculty of Biology |                    |
| ECTS                        | Meth    | od of grading           | Only after succ. cor | npl. of module(s)  |                    |
| 10                          | nume    | rical grade             |                      |                    |                    |
| Duration Module level Other |         | Other prerequisites     | 3                    |                    |                    |
| 1 semester graduate         |         |                         |                      |                    |                    |
|                             |         |                         |                      |                    |                    |

Detailed insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. Results are documented in the form of a presentation, a publication or a term paper.

### **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of bioinformatics. They are able to design experiments, collect data and interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 132 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                          |                              |                                      |  |                    | Abbreviation       |
|---------------------------------------|------------------------------|--------------------------------------|--|--------------------|--------------------|
| Bioinformatics F2                     |                              |                                      |  |                    | 07-MS2BIF2-152-m01 |
| Module coordinator                    |                              |                                      |  | Module offered by  |                    |
| holder of the Chair of Bioinformatics |                              |                                      |  | Faculty of Biology |                    |
| ECTS Method of grading                |                              | Only after succ. compl. of module(s) |  |                    |                    |
| 15                                    | (not) successfully completed |                                      |  |                    |                    |
| Duration Module level                 |                              | Other prerequisites                  |  |                    |                    |
| 1 semester graduate                   |                              |                                      |  |                    |                    |
|                                       |                              |                                      |  |                    |                    |

Advanced insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

### Intended learning outcomes

Proficiency in one or more methods in bioinformatics that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

### Workload

450 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



## Immunology

(30 ECTS credits)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 1 | 07-MS2IM1-152-m01 |

| ECTS Method of grading |      | od of grading | Only after succ. compl. of module(s) |
|------------------------|------|---------------|--------------------------------------|
| 10                     | nume | rical grade   |                                      |
| Duration               |      | Module level  | Other prerequisites                  |
| 1 semester             |      | graduate      |                                      |

#### **Contents**

Fundamental concepts of modern cellular and molecular immunology. More information is available at http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologen\_master/.

### **Intended learning outcomes**

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Winter semester only

### Allocation of places

--

#### **Additional information**

--

### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title | Abbreviation      |  |
|--------------|-------------------|--|
| Immunology 2 | 07-MS2lM2-152-m01 |  |

| 2.0.03) |       |               |                                      |
|---------|-------|---------------|--------------------------------------|
| ECTS    | Metho | od of grading | Only after succ. compl. of module(s) |
| 10      | nume  | rical grade   |                                      |
| Duratio | on    | Module level  | Other prerequisites                  |
| 1 seme  | ster  | graduate      |                                      |

#### **Contents**

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

### **Intended learning outcomes**

Students are able to understand current topics in immunology and to discuss these in detail.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Summer semester only

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title  | Abbreviation       |  |
|---------------|--------------------|--|
| Immunology F1 | 07-MS2IMF1-152-m01 |  |

| 0,           |                   |              |                                      |
|--------------|-------------------|--------------|--------------------------------------|
| ECTS         | Method of grading |              | Only after succ. compl. of module(s) |
| 10           | nume              | rical grade  |                                      |
| Duration Mod |                   | Module level | Other prerequisites                  |
| 1 seme       | ster              | graduate     |                                      |

### **Contents**

Students will complete a 2-week lab course at the Institute of Virology and Immunobiology during which they will become familiar with fundamental methods in cellular and molecular immunology. Afterwards, students will select a laboratory at the Institute or one of the participating institutions (e. g. clinics, Virchow Center, molecular infection immunology and others) and will spend three weeks working on a defined project. Results of the lab course and lab project will be documented in a log and will be presented at the end of the course.

### Intended learning outcomes

The students learn to apply experimental procedures and methods in immunology, to independently address scientific questions and to appropriately document their experimental work.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title  | Abbreviation       |  |
|---------------|--------------------|--|
| Immunology F2 | 07-MS2IMF2-152-m01 |  |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| Diology | <u> </u> |                        |                                      |
|---------|----------|------------------------|--------------------------------------|
| ECTS    | Metho    | od of grading          | Only after succ. compl. of module(s) |
| 15      | (not)    | successfully completed |                                      |
| Duratio | on       | Module level           | Other prerequisites                  |
| 1 seme  | ster     | graduate               |                                      |

Critically reading and presenting original research papers (in English language), participants will independently investigate current problems in immunology. They will be involved in the development of a research plan and will independently apply advanced techniques in cellular and/or molecular immunology.

### **Intended learning outcomes**

The participants acquire skills allowing them to work independently in the field of cellular and molecular immunology. This includes competence to address immunological problems on their own and to conduct, document and interpret their research according to good research practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

### Workload

450 h

### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



# Virology

(30 ECTS credits)



| Module title       | le title          |                  |  |
|--------------------|-------------------|------------------|--|
| /irology 1         |                   | 07-MS2V1-152-m01 |  |
| Module coordinator | Module offered by |                  |  |

| biology    | /                 |              |                                      |  |
|------------|-------------------|--------------|--------------------------------------|--|
| ECTS       | Method of grading |              | Only after succ. compl. of module(s) |  |
| 10         | numerical grade   |              |                                      |  |
| Duration   |                   | Module level | Other prerequisites                  |  |
| 1 semester |                   | graduate     |                                      |  |

This course offers an introduction to virology and current research in the field of virology.

Managing Director of the Institute of Virology and Immuno- | Faculty of Biology

### **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Winter semester only

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

### **Teaching cycle**

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)



| Module title                                                      |                                                                                               |                                  |                      |                   | Abbreviation     |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|----------------------|-------------------|------------------|
| Virology 2                                                        |                                                                                               |                                  |                      |                   | 07-MS2V2-152-m01 |
| Module coordinator                                                |                                                                                               |                                  |                      | Module offered by |                  |
| Managing Director of the Institute of Virology and Immuno biology |                                                                                               |                                  | Faculty of Biology   |                   |                  |
| ECTS                                                              | Metho                                                                                         | od of grading                    | Only after succ. cor | npl. of module(s) |                  |
| 10                                                                | nume                                                                                          | rical grade                      |                      |                   |                  |
| Duration                                                          |                                                                                               | Module level Other prerequisites |                      | 3                 |                  |
| 1 semester                                                        |                                                                                               | graduate                         |                      |                   |                  |
| Conter                                                            | nts                                                                                           |                                  |                      |                   |                  |
| This co                                                           | This course offers an introduction to virology and current research in the field of virology. |                                  |                      |                   |                  |

### **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Summer semester only

### **Allocation of places**

--

### **Additional information**

--

#### Workload

300 h

### **Teaching cycle**

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)



| Module title | Abbreviation      |
|--------------|-------------------|
| Virology F1  | 07-MS2VF1-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| 2.0.03)    |                        |              |                                      |
|------------|------------------------|--------------|--------------------------------------|
| ECTS       | ECTS Method of grading |              | Only after succ. compl. of module(s) |
| 10         | o numerical grade      |              |                                      |
| Duration   |                        | Module level | Other prerequisites                  |
| 1 semester |                        | graduate     |                                      |

Current research topics in virology - one topic will be discussed in depth.

### **Intended learning outcomes**

Students are able to perform small research projects in a virology lab. They are familiar with the rules of good scientific practice, work independently on a current case study and document their results.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

### Workload

300 h

### **Teaching cycle**

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

\_\_

#### Module appears in

Master's degree (1 major) Biology (2015)



| Module title | Abbreviation      |
|--------------|-------------------|
| Virology F2  | 07-MS2VF2-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| 2.0.03) | <u> </u>                     |              |                                      |
|---------|------------------------------|--------------|--------------------------------------|
| ECTS    | CCTS Method of grading       |              | Only after succ. compl. of module(s) |
| 15      | (not) successfully completed |              |                                      |
| Duratio | on                           | Module level | Other prerequisites                  |
| 1 seme  | ster                         | graduate     |                                      |

Current research topics in virology - one topic will be discussed in depth.

## **Intended learning outcomes**

Students are able to perform small research projects in a virology lab. They are familiar with the rules of good scientific practice, work independently on a current case study and document their results.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

# Workload

450 h

# Teaching cycle

---

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



# **Human Genetics**

(30 ECTS credits)

Students who selected this subject area must take module o7-MS2HG. The second theoretical module in this subject area may be selected from the list below.



| Modul                 | Module title                                         |                    |                     |                    | Abbreviation |
|-----------------------|------------------------------------------------------|--------------------|---------------------|--------------------|--------------|
| Human Genetics        |                                                      |                    |                     | 07-MS2HG-152-m01   |              |
| Module coordinator Me |                                                      |                    |                     | Module offered by  |              |
| Manag                 | Managing Director of the Institute of Human Genetics |                    |                     | Faculty of Biology |              |
| ECTS                  | Metho                                                | od of grading      | Only after succ. co | mpl. of module(s)  |              |
| 10                    | nume                                                 | rical grade        |                     |                    |              |
| Duration Module level |                                                      | Other prerequisite | es                  |                    |              |
| 2 semester graduate   |                                                      |                    |                     |                    |              |
| Contor                | Contonts                                             |                    |                     |                    |              |

This module will discuss current topics in human genetics.

# Intended learning outcomes

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title                                         |          |               |                      | Abbreviation      |                |
|------------------------------------------------------|----------|---------------|----------------------|-------------------|----------------|
| Molecular Biology                                    |          |               |                      |                   | 07-MS2-152-m01 |
| Module coordinator Modu                              |          |               |                      | Module offered by |                |
| Dean of Studies Biologie (Biology) Faculty of Biolog |          |               | Faculty of Biology   |                   |                |
| ECTS                                                 | Meth     | od of grading | Only after succ. cor | mpl. of module(s) |                |
| 10                                                   | nume     | rical grade   |                      |                   |                |
| Duration Module level Other prerequisites            |          | 5             |                      |                   |                |
| 1 semester graduate                                  |          |               |                      |                   |                |
| Conter                                               | Contents |               |                      |                   |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 148 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module                                                        | e title                              | ·                   | Abbreviation         |                    |                   |
|---------------------------------------------------------------|--------------------------------------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 1                       |                                      |                     | er 1                 |                    | 07-MS2ZE1-152-m01 |
| Module                                                        | Module coordinator Module offered by |                     |                      |                    |                   |
| holder of the Chair of Cell Biology and Developmental Biology |                                      |                     | Developmental Bio-   | Faculty of Biology |                   |
| ECTS                                                          | Meth                                 | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                                            | nume                                 | rical grade         |                      |                    |                   |
| Duration Module level O                                       |                                      | Other prerequisites |                      |                    |                   |
| 1 semester graduate                                           |                                      |                     |                      |                    |                   |
| Camban                                                        | Contonto                             |                     |                      |                    |                   |

The module consists of the lecture *Zellpathologie* (*Cytopathology*) and the seminar *Zellbiologie-Meilensteine und Perspektiven* (*Milestones and Perspectives of Cell Biology*). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar *Milestones and Perspectives of Cell Biology*, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

#### Intended learning outcomes

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 150 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                  |          |                     |                      | Abbreviation       |                   |
|---------------------------------------------------------------|----------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 2                       |          |                     |                      |                    | 07-MS2ZE2-152-m01 |
| Module coordinator M                                          |          |                     |                      | Module offered by  |                   |
| holder of the Chair of Cell Biology and Developmental Biology |          |                     | Developmental Bio-   | Faculty of Biology |                   |
| ECTS                                                          | Meth     | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                                            | nume     | rical grade         |                      |                    |                   |
| Duration Module level Other prere                             |          | Other prerequisites |                      |                    |                   |
| 1 semester graduate                                           |          |                     |                      |                    |                   |
| Conten                                                        | Contents |                     |                      |                    |                   |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

# **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

# Workload

300 h

# **Teaching cycle**

# Referred to in LPO I (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                        |      |                     |                      | Abbreviation       |                   |
|-------------------------------------|------|---------------------|----------------------|--------------------|-------------------|
| Infection Biology                   |      |                     |                      |                    | 07-MS2INF-152-m01 |
| Module coordinator                  |      |                     |                      | Module offered by  |                   |
| holder of the Chair of Microbiology |      |                     |                      | Faculty of Biology |                   |
| ECTS                                | Meth | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                  | nume | rical grade         |                      |                    |                   |
| Duration Module level               |      | Other prerequisites |                      |                    |                   |
| 1 semester graduate                 |      |                     |                      |                    |                   |
|                                     |      |                     |                      |                    |                   |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

## **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                        |          |                     | Abbreviation        |                    |  |
|-------------------------------------|----------|---------------------|---------------------|--------------------|--|
| Pathogenicity of Microorganisms     |          |                     |                     | 07-MS2PA-152-m01   |  |
| Module coordinator                  |          |                     |                     | Module offered by  |  |
| holder of the Chair of Microbiology |          |                     |                     | Faculty of Biology |  |
| ECTS                                | Meth     | od of grading       | Only after succ. co | mpl. of module(s)  |  |
| 10                                  | nume     | rical grade         |                     |                    |  |
| Duration Module level               |          | Other prerequisites | 5                   |                    |  |
| 1 semester graduate                 |          |                     |                     |                    |  |
| <i>-</i> .                          | Containt |                     |                     |                    |  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 1 | 07-MS2IM1-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| 2.0.03)                | ) 7  |               |                                      |
|------------------------|------|---------------|--------------------------------------|
| ECTS Method of grading |      | od of grading | Only after succ. compl. of module(s) |
| 10                     | nume | rical grade   |                                      |
| Duratio                | n    | Module level  | Other prerequisites                  |
| 1 semester             |      | graduate      |                                      |

Fundamental concepts of modern cellular and molecular immunology. More information is available at http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologen\_master/.

# **Intended learning outcomes**

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Winter semester only

# Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 2 | 07-MS2lM2-152-m01 |

 Module coordinator
 Module offered by

 Managing Director of the Institute of Virology and Immuno-biology
 Faculty of Biology

| 2.0.00                 | 2.0.09)         |               |                                      |
|------------------------|-----------------|---------------|--------------------------------------|
| ECTS Method of grading |                 | od of grading | Only after succ. compl. of module(s) |
| 10                     | numerical grade |               |                                      |
| Duratio                | n               | Module level  | Other prerequisites                  |
| 1 semester             |                 | graduate      |                                      |

#### **Contents**

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

#### **Intended learning outcomes**

Students are able to understand current topics in immunology and to discuss these in detail.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Summer semester only

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

## Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title |              | Abbreviation     |
|--------------|--------------|------------------|
| Virology 1   |              | 07-MS2V1-152-m01 |
| 10 1 1 1     | AA 1 1 66 11 |                  |

Module coordinatorModule offered byManaging Director of the Institute of Virology and Immuno-<br/>biologyFaculty of Biology

| 0       | ,                                             |              |                                      |
|---------|-----------------------------------------------|--------------|--------------------------------------|
| ECTS    | CTS Method of grading Only after succ. compl. |              | Only after succ. compl. of module(s) |
| 10      | numerical grade                               |              |                                      |
| Duratio | on                                            | Module level | Other prerequisites                  |
| 1 seme  | ester                                         | graduate     |                                      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

## **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Winter semester only

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Module title | Abbreviation     |
|--------------|------------------|
| Virology 2   | 07-MS2V2-152-m01 |

Module coordinatorModule offered byManaging Director of the Institute of Virology and Immuno-<br/>biologyFaculty of Biology

| ECTS Method of grading |                 | od of grading | Only after succ. compl. of module(s) |
|------------------------|-----------------|---------------|--------------------------------------|
| 10                     | numerical grade |               |                                      |
| Duration               |                 | Module level  | Other prerequisites                  |
| 1 semester             |                 | graduate      |                                      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

## **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Summer semester only

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Modul                                    | e title |               |                    |                    | Abbreviation       |
|------------------------------------------|---------|---------------|--------------------|--------------------|--------------------|
| Human Genetics F1                        |         |               |                    |                    | 07-MS2HGF1-152-m01 |
| Module coordinator                       |         |               |                    | Module offered by  |                    |
| Managing Director of the Institute of Hu |         |               | f Human Genetics   | Faculty of Biology |                    |
| ECTS                                     | Meth    | od of grading | Only after succ. c | ompl. of module(s) |                    |
| 10                                       | nume    | rical grade   |                    |                    |                    |
| Duration                                 |         | Module level  | Other prerequisit  | es                 |                    |
| 1 semester                               |         | graduate      |                    |                    |                    |
| Combanda                                 |         |               |                    |                    |                    |

Practical course on a topic in human genetics. Students spend five weeks working on a small, well-defined scientific lab project and learn how to present their data. They learn to discuss their data in a seminar. The students learn to apply experimental procedures and methods of human genetics, to independently address scientific questions and to document their experimental work in an appropriate way.

# **Intended learning outcomes**

Students are able to independently investigate a topic in human genetics as well as to document, interpret and discuss their results, adhering to the principles of good scientific practice.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title Human Genetics F2           |          |                        |                      | _                  | Abbreviation       |
|------------------------------------------|----------|------------------------|----------------------|--------------------|--------------------|
|                                          |          |                        |                      |                    | 07-MS2HGF2-152-m01 |
| Module coordinator                       |          |                        |                      | Module offered by  |                    |
| Managing Director of the Institute of Hu |          |                        | uman Genetics        | Faculty of Biology |                    |
| ECTS                                     | Meth     | od of grading          | Only after succ. con | npl. of module(s)  |                    |
| 15                                       | (not)    | successfully completed |                      |                    |                    |
| Duration Module level                    |          | Other prerequisites    |                      |                    |                    |
| 1 semester graduate                      |          | graduate               |                      |                    |                    |
| Cantan                                   | Contents |                        |                      |                    |                    |

Current problems in the field of human genetics will be addressed by critically reading and presenting original research papers. The participants will be involved in the development of a research plan and will learn to apply advanced techniques to answer a scientific question in human genetics. This practical course will have a duration of 12 weeks (three months).

# **Intended learning outcomes**

Students are able to independently investigate a topic in human genetics as well as to document, interpret and discuss their results, adhering to the principles of good scientific practice.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

450 h

## Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



# **Physiological Chemistry**

(30 ECTS credits)

Students who selected this subject area must take module o7-MS2 and must select either module o7-MS2ZE1 or module o7-MS2ZE2 as their second theoretical module.



| Modul                              | e title |               |                     |                    | Abbreviation   |
|------------------------------------|---------|---------------|---------------------|--------------------|----------------|
| Molecular Biology                  |         |               |                     |                    | 07-MS2-152-m01 |
| Module coordinator                 |         |               |                     | Module offered by  |                |
| Dean of Studies Biologie (Biology) |         |               |                     | Faculty of Biology |                |
| ECTS                               | Meth    | od of grading | Only after succ. co | mpl. of module(s)  |                |
| 10                                 | nume    | rical grade   |                     |                    |                |
| Duration Module level              |         | Module level  | Other prerequisites | 5                  |                |
| 1 semester                         |         | graduate      |                     |                    |                |
| Contents                           |         |               |                     |                    |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 165 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title                            |                                                               |                     |                      |                    | Abbreviation      |
|-----------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 1 |                                                               |                     |                      |                    | 07-MS2ZE1-152-m01 |
| Module                                  | e coord                                                       | inator              |                      | Module offered by  |                   |
| holder<br>logy                          | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                   |
| ECTS                                    | Meth                                                          | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                      | nume                                                          | rical grade         |                      |                    |                   |
| Duration Module level Ot                |                                                               | Other prerequisites |                      |                    |                   |
| 1 semester graduate                     |                                                               |                     |                      |                    |                   |
| Contents                                |                                                               |                     |                      |                    |                   |

The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Meilensteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

#### Intended learning outcomes

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 167 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                            |                                                               |               |                      |                    | Abbreviation |
|-----------------------------------------|---------------------------------------------------------------|---------------|----------------------|--------------------|--------------|
| Cell and Developmental Biology Master 2 |                                                               |               |                      | 07-MS2ZE2-152-m01  |              |
| Module                                  | e coord                                                       | inator        |                      | Module offered by  |              |
| holder<br>logy                          | holder of the Chair of Cell Biology and Developmental Biology |               |                      | Faculty of Biology |              |
| ECTS                                    | Meth                                                          | od of grading | Only after succ. con | npl. of module(s)  |              |
| 10                                      | nume                                                          | rical grade   |                      |                    |              |
| Duration Module level Other p           |                                                               |               | Other prerequisites  |                    |              |
| 1 semester graduate                     |                                                               |               |                      |                    |              |
| Contents                                |                                                               |               |                      |                    |              |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

# **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

# Workload

300 h

# **Teaching cycle**

# Referred to in LPO I (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                      |                                                               |                     |                      |                    | Abbreviation       |  |
|-----------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|--|
| Cell and Developmental Biology F1 |                                                               |                     |                      |                    | 07-MS2ZEF1-152-m01 |  |
| Module                            | e coord                                                       | inator              |                      | Module offered by  |                    |  |
| holder<br>logy                    | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                    |  |
| ECTS                              | Meth                                                          | od of grading       | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                | nume                                                          | rical grade         |                      |                    |                    |  |
| Duration Module level Oth         |                                                               | Other prerequisites |                      |                    |                    |  |
| 1 semester graduate               |                                                               |                     |                      |                    |                    |  |
| Camban                            | Contonto                                                      |                     |                      |                    |                    |  |

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. Large parts of this practical course are devoted to small projects, which should provide sustained insights into current research activities of the Chair. Interactions with Master's students, doctoral researchers and post-docs prepare participants for a working in a team-based environment.

# **Intended learning outcomes**

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

\_\_

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 171 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title             |                                                         |                      |                    | Abbreviation    |
|-----------------------|---------------------|---------------------------------------------------------|----------------------|--------------------|-----------------|
| Labora                | Laboratory Course 2 |                                                         |                      |                    | 07-MSL2-152-m01 |
| Modul                 | Module coordinator  |                                                         |                      | Module offered by  |                 |
| Coordi                | nator B             | ioCareers                                               |                      | Faculty of Biology |                 |
| ECTS                  | Meth                | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |
| 10                    | (not)               | successfully completed                                  |                      |                    |                 |
| Duration Module level |                     | Other prerequisites                                     |                      |                    |                 |
| 1 semester graduate   |                     | Please consult with course advisory service in advance. |                      |                    |                 |
|                       |                     |                                                         |                      |                    |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

# **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title        |                                                 |                                                         |                      |                       | Abbreviation |
|---------------------|-------------------------------------------------|---------------------------------------------------------|----------------------|-----------------------|--------------|
| Labora              | tory Re                                         | esearch Training F1                                     | 07-MSLRTF1-152-m01   |                       |              |
| Module              | e coord                                         | inator                                                  |                      | Module offered by     |              |
| degree              | degree programme coordinator Biologie (Biology) |                                                         |                      | Faculty of Biology    |              |
| ECTS                | Metho                                           | od of grading                                           | Only after succ. con | . compl. of module(s) |              |
| 10                  | nume                                            | rical grade                                             |                      |                       |              |
| Duratio             | on                                              | Module level                                            | Other prerequisites  |                       |              |
| 1 semester graduate |                                                 | Please consult with course advisory service in advance. |                      |                       |              |
| Contents            |                                                 |                                                         |                      |                       |              |

Practical course on a biological topic. Students spend five weeks working on a small, well-defined scientific lab project and learn how to present their data. They learn to discuss their data in a seminar. The students learn to apply defined experimental procedures and methods, to independently address scientific questions and to document their experimental work in an appropriate way.

# **Intended learning outcomes**

Students have reinforced previously acquired lab skills, acquired new lab techniques and learned how to transfer theoretical knowledge into experiments. Students have gained expertise in the analysis of raw data, their interpretation and their presentation.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title        |                       |                           |                      |                    | Abbreviation       |
|---------------------|-----------------------|---------------------------|----------------------|--------------------|--------------------|
| Physic              | ological              | Chemistry F2              |                      |                    | 07-MS2PHF2-152-m01 |
| Modul               | e coord               | inator                    |                      | Module offered by  |                    |
| holder              | of the (              | Chair of Biochemistry and | d Molecular Biology  | Faculty of Biology |                    |
| ECTS                | Meth                  | od of grading             | Only after succ. con | npl. of module(s)  |                    |
| 15                  | (not)                 | successfully completed    |                      |                    |                    |
| Duratio             | Duration Module level |                           | Other prerequisites  |                    |                    |
| 1 semester graduate |                       |                           |                      |                    |                    |
|                     |                       |                           |                      |                    |                    |

Critically reading and presenting original research papers (in English language), participants will independently investigate current problems in physiological chemistry. They will be involved in the development of a research plan and will independently apply advanced techniques in molecular cell biology and/or developmental biochemistry.

# **Intended learning outcomes**

Students are able to plan and design research in the fields of molecular cell biology and developmental biochemistry. They are able to work according to good scientific practice and to document, interpret and discuss their results.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

# Workload

450 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

# **Cellular Tumor Biology**

(30 ECTS credits)



| Module title          |                         |                     |                     |      | Abbreviation       |                    |
|-----------------------|-------------------------|---------------------|---------------------|------|--------------------|--------------------|
| Moleci                | Molecular Tumor Biology |                     |                     |      |                    | 07-TUM-MOL-152-m01 |
| Modul                 | Module coordinator      |                     |                     |      | Nodule offered by  |                    |
| degree                | progra                  | mme coordinator Bio | ologie (Biology)    | F    | Faculty of Biology |                    |
| ECTS                  | Meth                    | od of grading       | Only after succ.    | comp | l. of module(s)    |                    |
| 5                     | nume                    | rical grade         |                     |      |                    |                    |
| Duration Module level |                         | Other prerequis     | Other prerequisites |      |                    |                    |
| 1 semester graduate   |                         |                     |                     |      |                    |                    |
| Contants              |                         |                     |                     |      |                    |                    |

The lecture *Molekulare Tumorbiologie* (*Molecular Tumour Biology*) discusses molecular characteristics of tumours and relevant biological processes (such as signal transduction, cell growth, cell proliferation, metabolism), tumour-specific modifications and current molecular biological methods in tumour research.

## **Intended learning outcomes**

Understanding of current topics and challenges in tumour research, understanding of the methods which could be used address these challenges.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

# Workload

150 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |                                              |                     |                      |                    | Abbreviation        |
|-----------------------|----------------------------------------------|---------------------|----------------------|--------------------|---------------------|
| Clinica               | l Tumo                                       | r Biology           |                      |                    | 07-TUM-CLIN-152-m01 |
| Modul                 | e coord                                      | inator              |                      | Module offered by  |                     |
| degree                | degree programme coordinator Biologie (Biolo |                     |                      | Faculty of Biology |                     |
| ECTS                  | Metho                                        | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 5                     | nume                                         | rical grade         |                      |                    |                     |
| Duration Module level |                                              | Other prerequisites |                      |                    |                     |
| 1 semester graduate   |                                              |                     |                      |                    |                     |
|                       |                                              |                     |                      |                    |                     |

In the lecture series *Klinische Tumorbiologie* (*Clinical Tumour Biology*), current clinical aspects will be addressed. Several tumour types will be discussed (such as tumours of the skin, lung, intestine, breast, blood). Additional topics: diagnostics and pathology, different treatments and therapies and clinical trials.

#### **Intended learning outcomes**

Knowledge of the similarities and differences of various tumour types. Understanding of requirements, possibilities and limitations of clinical medicine.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

# Workload

150 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |          |                       |                     |                    | Abbreviation   |  |
|-----------------------|----------|-----------------------|---------------------|--------------------|----------------|--|
| Molec                 | ular Bio | ology                 |                     |                    | 07-MS2-152-m01 |  |
| Module coordinator    |          |                       |                     | Module offered by  |                |  |
| Dean                  | of Studi | es Biologie (Biology) |                     | Faculty of Biology |                |  |
| ECTS                  | Meth     | od of grading         | Only after succ. co | ompl. of module(s) |                |  |
| 10                    | nume     | rical grade           |                     |                    |                |  |
| Duration Module level |          | Other prerequisit     | Other prerequisites |                    |                |  |
| 1 semester graduate   |          |                       |                     |                    |                |  |
| Conto                 | ntc      | •                     |                     |                    |                |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 180 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module                                  | Module title Abbreviation                                     |                     |                      |                    |                   |
|-----------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 1 |                                                               |                     |                      |                    | 07-MS2ZE1-152-m01 |
| Module                                  | Module coordinator Module offered by                          |                     |                      |                    |                   |
| holder<br>logy                          | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                   |
| ECTS                                    | ECTS Method of grading Only a                                 |                     | Only after succ. con | npl. of module(s)  |                   |
| 10                                      | 10 numerical grade                                            |                     |                      |                    |                   |
| Duration Module level                   |                                                               | Other prerequisites | s                    |                    |                   |
| 1 seme                                  | ster                                                          | graduate            |                      |                    |                   |
| C                                       | Combonto                                                      |                     |                      |                    |                   |

The module consists of the lecture *Zellpathologie* (*Cytopathology*) and the seminar *Zellbiologie-Meilensteine und Perspektiven* (*Milestones and Perspectives of Cell Biology*). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar *Milestones and Perspectives of Cell Biology*, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

#### **Intended learning outcomes**

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 182 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                            |                                                               |                     |                      |                    | Abbreviation      |
|-----------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 2 |                                                               |                     |                      |                    | 07-MS2ZE2-152-m01 |
| Module coordinator Module offered by    |                                                               |                     |                      |                    |                   |
| holder<br>logy                          | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                   |
| ECTS                                    | Method of grading Only after succ. o                          |                     | Only after succ. con | npl. of module(s)  |                   |
| 10                                      | 10 numerical grade                                            |                     |                      |                    |                   |
| Duration Module level                   |                                                               | Other prerequisites | •                    |                    |                   |
| 1 semester graduate                     |                                                               | graduate            |                      |                    |                   |
| Conten                                  | Contents                                                      |                     |                      |                    |                   |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

### **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

### **Teaching cycle**

# Referred to in LPO I (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                  | e title                             |              |                      |                    | Abbreviation      |
|------------------------|-------------------------------------|--------------|----------------------|--------------------|-------------------|
| Infecti                | Infection Biology                   |              |                      |                    | 07-MS2INF-152-m01 |
| Module coordinator Mod |                                     |              |                      | Module offered by  |                   |
| holder                 | holder of the Chair of Microbiology |              |                      | Faculty of Biology |                   |
| ECTS                   | Method of grading                   |              | Only after succ. con | ompl. of module(s) |                   |
| 10                     | numerical grade                     |              |                      |                    |                   |
| Duration Module level  |                                     | Module level | Other prerequisites  |                    |                   |
| 1 semester             |                                     | graduate     |                      |                    |                   |
|                        |                                     |              |                      |                    |                   |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

#### **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                           | e title             |                       | Abbreviation        |                    |                  |  |
|---------------------------------|---------------------|-----------------------|---------------------|--------------------|------------------|--|
| Pathogenicity of Microorganisms |                     |                       |                     |                    | 07-MS2PA-152-m01 |  |
| Module coordinator              |                     |                       |                     | Module offered by  |                  |  |
| holder                          | of the              | Chair of Microbiology |                     | Faculty of Biology |                  |  |
| ECTS                            | Method of grading   |                       | Only after succ. co | mpl. of module(s)  |                  |  |
| 10                              | numerical grade     |                       |                     |                    |                  |  |
| Duration Module level           |                     | Module level          | Other prerequisites | 5                  |                  |  |
| 1 seme                          | 1 semester graduate |                       |                     |                    |                  |  |
| <i>-</i> .                      | Combando            |                       |                     |                    |                  |  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 1 | 07-MS2IM1-152-m01 |

| l | Module coordinator                                         | Module offered by  |
|---|------------------------------------------------------------|--------------------|
|   | Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| ı | hiology                                                    |                    |

| ,          |                        |              |                                      |
|------------|------------------------|--------------|--------------------------------------|
| ECTS       | ECTS Method of grading |              | Only after succ. compl. of module(s) |
| 10         | numerical grade        |              |                                      |
| Duratio    | n                      | Module level | Other prerequisites                  |
| 1 semester |                        | graduate     |                                      |

Fundamental concepts of modern cellular and molecular immunology. More information is available at http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologen\_master/.

# **Intended learning outcomes**

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Winter semester only

# Allocation of places

--

# **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 2 | 07-MS2IM2-152-m01 |

Module coordinatorModule offered byManaging Director of the Institute of Virology and Immuno-<br/>biologyFaculty of Biology

| ECTS    | ECTS Method of grading |              | Only after succ. compl. of module(s) |
|---------|------------------------|--------------|--------------------------------------|
| 10      | 10 numerical grade     |              |                                      |
| Duratio | n                      | Module level | Other prerequisites                  |
| 1 seme  | ster                   | graduate     |                                      |

#### **Contents**

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

#### **Intended learning outcomes**

Students are able to understand current topics in immunology and to discuss these in detail.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Summer semester only

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title       |                  | Abbreviation     |
|--------------------|------------------|------------------|
| Virology 1         |                  | 07-MS2V1-152-m01 |
| Madula assultantan | A4 - J. J 65 J h |                  |

Module coordinatorModule offered byManaging Director of the Institute of Virology and Immuno-Faculty of Biology

biology

| ECTS Method of grading |                  | Only after succ. compl. of module(s) |
|------------------------|------------------|--------------------------------------|
| numerical grade        |                  |                                      |
| n                      | Module level     | Other prerequisites                  |
| ster                   | graduate         |                                      |
|                        | nume<br><b>n</b> | numerical grade  n Module level      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

#### **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Winter semester only

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Module title                                                                                                                                                                                                                                                                                                                                                               |           |                              |                                  |                        | Abbreviation                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------------------------|------------------------|------------------------------|--|
| Virology 2                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                                  |                        | 07-MS2V2-152-m01             |  |
| Modul                                                                                                                                                                                                                                                                                                                                                                      | e coord   | linator                      |                                  | Module offered by      | I.                           |  |
| Manag<br>biology                                                                                                                                                                                                                                                                                                                                                           | _         | ector of the Institute o     | f Virology and Immuno-           | Faculty of Biology     |                              |  |
| ECTS                                                                                                                                                                                                                                                                                                                                                                       | Meth      | od of grading                | Only after succ. con             | npl. of module(s)      |                              |  |
| 10                                                                                                                                                                                                                                                                                                                                                                         | nume      | erical grade                 |                                  |                        |                              |  |
| Duratio                                                                                                                                                                                                                                                                                                                                                                    | on        | Module level                 | Other prerequisites              | ,                      |                              |  |
| 1 seme                                                                                                                                                                                                                                                                                                                                                                     | ester     | graduate                     |                                  |                        |                              |  |
| Conter                                                                                                                                                                                                                                                                                                                                                                     | nts       |                              |                                  |                        |                              |  |
| This co                                                                                                                                                                                                                                                                                                                                                                    | urse o    | ffers an introduction to     | virology and current re          | search in the field of | virology.                    |  |
| Intend                                                                                                                                                                                                                                                                                                                                                                     | ed lear   | ning outcomes                |                                  |                        |                              |  |
| Studer                                                                                                                                                                                                                                                                                                                                                                     | nts will  | have gained the abilit       | y to understand current          | issues in virology an  | d to discuss these in depth. |  |
| Course                                                                                                                                                                                                                                                                                                                                                                     | es (type, | number of weekly contact hou | ırs, language — if other than Ge | rman)                  |                              |  |
| V (1) +<br>Modul                                                                                                                                                                                                                                                                                                                                                           |           | nt in: English               |                                  |                        |                              |  |
| <b>Method of assessment</b> (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)                                                                                                                                                                                             |           |                              |                                  |                        |                              |  |
| a) written examination (30 to 60 minutes, including multiple choice questions) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (30 to 60 minutes) Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English |           |                              |                                  |                        |                              |  |

# **Allocation of places**

--

# **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Assessment offered: Summer semester only



| Module title |                       |                        |                    |                     | Abbreviation       |  |
|--------------|-----------------------|------------------------|--------------------|---------------------|--------------------|--|
| Humar        | n Genet               | ics                    |                    |                     | 07-MS2HG-152-m01   |  |
| Modul        | le coord              | linator                |                    | Module offered by   | I.                 |  |
| Manag        | ging Dir              | ector of the Institute | of Human Genetics  | Faculty of Biology  | Faculty of Biology |  |
| ECTS         | Meth                  | od of grading          | Only after succ. c | ompl. of module(s)  |                    |  |
| 10           | nume                  | erical grade           |                    |                     |                    |  |
| Durati       | Duration Module level |                        | Other prerequisit  | Other prerequisites |                    |  |
| 2 seme       | 2 semester graduate   |                        |                    |                     |                    |  |
|              |                       |                        |                    |                     |                    |  |

This module will discuss current topics in human genetics.

# **Intended learning outcomes**

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module                          | e title               |                                                         | Abbreviation         |                    |                    |
|---------------------------------|-----------------------|---------------------------------------------------------|----------------------|--------------------|--------------------|
| Laboratory Research Training F1 |                       |                                                         |                      |                    | 07-MSLRTF1-152-m01 |
| Module coordinator              |                       |                                                         |                      | Module offered by  |                    |
| degree                          | progra                | mme coordinator Biolog                                  | ie (Biology)         | Faculty of Biology |                    |
| ECTS                            | Meth                  | od of grading                                           | Only after succ. con | npl. of module(s)  |                    |
| 10                              | nume                  | rical grade                                             |                      |                    |                    |
| Duratio                         | Duration Module level |                                                         | Other prerequisites  |                    |                    |
| 1 semester graduate             |                       | Please consult with course advisory service in advance. |                      |                    |                    |
| Conten                          | Contents              |                                                         |                      |                    |                    |

Practical course on a biological topic. Students spend five weeks working on a small, well-defined scientific lab project and learn how to present their data. They learn to discuss their data in a seminar. The students learn to apply defined experimental procedures and methods, to independently address scientific questions and to document their experimental work in an appropriate way.

# **Intended learning outcomes**

Students have reinforced previously acquired lab skills, acquired new lab techniques and learned how to transfer theoretical knowledge into experiments. Students have gained expertise in the analysis of raw data, their interpretation and their presentation.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

300 h

# **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title          |         |                                                         |                      |                    | Abbreviation    |
|-----------------------|---------|---------------------------------------------------------|----------------------|--------------------|-----------------|
| Laboratory Course 2   |         |                                                         |                      |                    | 07-MSL2-152-m01 |
| Module coordinator    |         |                                                         |                      | Module offered by  |                 |
| Coordi                | nator B | ioCareers                                               |                      | Faculty of Biology |                 |
| ECTS                  | Meth    | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |
| 10                    | (not)   | successfully completed                                  |                      |                    |                 |
| Duration Module level |         | Other prerequisites                                     |                      |                    |                 |
| 1 semester graduate   |         | Please consult with course advisory service in advance. |                      |                    |                 |
|                       |         |                                                         |                      |                    |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

# **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title        |                       |                      |                     |                     | Abbreviation |  |
|---------------------|-----------------------|----------------------|---------------------|---------------------|--------------|--|
| Cellula             | r Tumo                | r Biology F1         | 07-MS2ZTF1-152-m01  |                     |              |  |
| Module coordinator  |                       |                      |                     | Module offered by   |              |  |
| degree              | progra                | mme coordinator Biol | ogie (Biology)      | Faculty of Biology  |              |  |
| ECTS                | Meth                  | od of grading        | Only after succ. co | mpl. of module(s)   |              |  |
| 10                  | nume                  | rical grade          |                     |                     |              |  |
| Duratio             | Duration Module level |                      | Other prerequisites | Other prerequisites |              |  |
| 1 semester graduate |                       |                      |                     |                     |              |  |
| Conten              | Contents              |                      |                     |                     |              |  |

Under guidance, participants will work on a current topic in tumour biology. Topics will focus in particular on current problems in oncolytic virotherapy. Participants will become familiar with a variety of methods within the fields of molecular biology, infection biology and cell biology as well as literature search techniques. They will employ a broad range of methods in cell biology, infection biology and immunology. Results will be documented in the form of a presentation, a publication or a term paper.

#### **Intended learning outcomes**

Students are able to investigate scientific questions in molecular biology and cell biology and to document their work, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title |                       |                         |                      |                    | Abbreviation       |
|--------------|-----------------------|-------------------------|----------------------|--------------------|--------------------|
| Cellula      | r Tumo                | r Biology F2            |                      |                    | 07-MS2ZTF2-152-m01 |
| Module       | e coord               | inator                  |                      | Module offered by  |                    |
| degree       | progra                | mme coordinator Biologi | e (Biology)          | Faculty of Biology |                    |
| ECTS         | Metho                 | od of grading           | Only after succ. con | npl. of module(s)  |                    |
| 15           | (not)                 | successfully completed  |                      |                    |                    |
| Duratio      | Duration Module level |                         | Other prerequisites  |                    |                    |
| 1 seme       | 1 semester graduate   |                         |                      |                    |                    |
| Conton       | Contonto              |                         |                      |                    |                    |

Students will be involved in current research projects in tumour biology. Aspects of the scientific question will be independently addressed by the students. They will apply experimental techniques in cell biology, immunology and/or molecular biology. The techniques applied will be evaluated on the basis of the results obtained and modified where necessary. Experimental results and progress in the research project will be documented in the form of a presentation, a publication or a term paper.

#### **Intended learning outcomes**

Students are able to independently carry out scientific experiments on a topic in tumour biology/oncology. They are able to answer and discuss questions in the field of tumour biology/oncology. Students are able to adhere to the principles of good scientific practice and to document, interpret and discuss their results. They are able to apply specific techniques required to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

450 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)

# Module Group 3

(ECTS credits)



# **Molecular Plant Physiology**

(30 ECTS credits)



| Module title                                           |      |                     |                      |                    | Abbreviation    |
|--------------------------------------------------------|------|---------------------|----------------------|--------------------|-----------------|
| Current Methods in Biology                             |      |                     |                      |                    | 07-MS31-152-m01 |
| Module coordinator Mo                                  |      |                     |                      | Module offered by  |                 |
| holder of the Chair of Plant Physiology and Biophysics |      |                     | and Biophysics       | Faculty of Biology |                 |
| ECTS                                                   | Meth | od of grading       | Only after succ. cor | npl. of module(s)  |                 |
| 10                                                     | nume | rical grade         |                      |                    |                 |
| Duration Module level                                  |      | Other prerequisites |                      |                    |                 |
| 1 semester graduate                                    |      |                     |                      |                    |                 |
|                                                        |      |                     |                      |                    |                 |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

#### **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 203 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                |        |                     |                      |                    | Abbreviation        |
|-------------------------------------------------------------|--------|---------------------|----------------------|--------------------|---------------------|
| Plant E                                                     | cology |                     |                      |                    | 07-MS31POEK-152-m01 |
| Module                                                      | coord  | inator              |                      | Module offered by  |                     |
| holder of the Chair of Ecophysiology and Vegetation Ecology |        |                     |                      | Faculty of Biology |                     |
| ECTS                                                        | Meth   | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 10                                                          | nume   | rical grade         |                      |                    |                     |
| Duration Module level Ot                                    |        | Other prerequisites |                      |                    |                     |
| 1 semester graduate                                         |        |                     |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

#### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title        |                                                             |               |                      |                     | Abbreviation       |  |
|---------------------|-------------------------------------------------------------|---------------|----------------------|---------------------|--------------------|--|
| Plant I             | Plant Immunobiology and Pharmaceutical Biology              |               |                      |                     | 07-MS31PIP-152-m01 |  |
| Modul               | e coord                                                     | linator       |                      | Module offered by   |                    |  |
| holder<br>gy        | holder of the Chair of Ecophysiology and Vegetation Ecology |               |                      | Faculty of Biology  |                    |  |
| ECTS                | Meth                                                        | od of grading | Only after succ. cor | npl. of module(s)   |                    |  |
| 10                  | nume                                                        | erical grade  |                      |                     |                    |  |
| Duratio             | Duration Module level Ot                                    |               | Other prerequisites  | Other prerequisites |                    |  |
| 1 semester graduate |                                                             |               |                      |                     |                    |  |
| Conter              | Contents                                                    |               |                      |                     |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

#### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

# Workload

300 h

# Teaching cycle

--



#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul      | Module title          |                         |                     |                    | Abbreviation     |
|------------|-----------------------|-------------------------|---------------------|--------------------|------------------|
| Biophy     | ysics ar              | nd Biochemistry         |                     |                    | 07-MS3BB-152-m01 |
| Modul      | e coord               | inator                  |                     | Module offered by  |                  |
| holder     | of the                | Chair of Plant Physiolo | gy and Biophysics   | Faculty of Biology |                  |
| ECTS       | Meth                  | od of grading           | Only after succ. co | ompl. of module(s) |                  |
| 10         | nume                  | rical grade             |                     |                    |                  |
| Durati     | Duration Module level |                         | Other prerequisites |                    |                  |
| 1 seme     | 1 semester graduate   |                         |                     |                    |                  |
| <i>~</i> . | Combando              |                         |                     |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title |                       |                           |                      |                    | Abbreviation         |
|--------------|-----------------------|---------------------------|----------------------|--------------------|----------------------|
| Molecu       | ular Pla              | nt Physiology F1          |                      |                    | 07-MS31MPPF1-152-m01 |
| Modul        | e coord               | inator                    |                      | Module offered by  |                      |
| holder       | of the                | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                      |
| ECTS         | Meth                  | od of grading             | Only after succ. con | npl. of module(s)  |                      |
| 10           | nume                  | rical grade               |                      |                    |                      |
| Duratio      | Duration Module level |                           | Other prerequisites  |                    |                      |
| 1 seme       | 1 semester graduate   |                           |                      |                    |                      |
| Contonto     |                       |                           |                      |                    |                      |

The module provides an in-depth insight into molecular biological strategies and methods applied in plant physiology. The students will be integrated into research projects on current topics in molecular plant physiology.

#### Intended learning outcomes

The students have knowledge about basic molecular biological strategies and methods focusing on plant physiology. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                              |         |                                          |                     |                    | Abbreviation         |
|-------------------------------------------|---------|------------------------------------------|---------------------|--------------------|----------------------|
| Molecular Plant Physiology F2             |         |                                          |                     |                    | 07-MS31MPPF2-152-m01 |
| Modul                                     | e coord | inator                                   |                     | Module offered by  | l .                  |
| holder of the Chair of Plant Physiology a |         |                                          | and Biophysics      | Faculty of Biology |                      |
| ECTS                                      | Metho   | od of grading Only after succ. compl. of |                     | npl. of module(s)  |                      |
| 15                                        | (not)   | successfully completed                   |                     |                    |                      |
| Duration                                  |         | Module level                             | Other prerequisites |                    |                      |
| 1 semester                                |         | graduate                                 |                     |                    |                      |
|                                           | _       |                                          |                     |                    |                      |

The students perform their research work within the context of a current research project in molecular plant physiology in a largely independent manner under supervision of a principal investigator.

#### Intended learning outcomes

Students are able to work on a scientific question, to design an experimental setup as well as to interpret, document and present their results.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

# Workload

450 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Biochemistry and Structural Biology**

(30 ECTS credits)



| e title                                     | ·                                             | Abbreviation                                                                                                   |                                                                                                                                                        |                                                                                                                                                                |  |
|---------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| t Metho                                     | ods in Biology                                |                                                                                                                |                                                                                                                                                        | 07-MS31-152-m01                                                                                                                                                |  |
| e coord                                     | inator                                        |                                                                                                                | Module offered by                                                                                                                                      |                                                                                                                                                                |  |
| holder of the Chair of Plant Physiology and |                                               |                                                                                                                | Faculty of Biology                                                                                                                                     | Faculty of Biology                                                                                                                                             |  |
| Metho                                       | od of grading                                 | Only after succ. c                                                                                             | Only after succ. compl. of module(s)                                                                                                                   |                                                                                                                                                                |  |
| nume                                        | rical grade                                   |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |  |
| on                                          | Module level                                  | Other prerequisit                                                                                              | Other prerequisites                                                                                                                                    |                                                                                                                                                                |  |
| ster                                        | graduate                                      |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |  |
|                                             | of the one one one one one one one one one on | t Methods in Biology coordinator of the Chair of Plant Physic Method of grading numerical grade m Module level | t Methods in Biology c coordinator of the Chair of Plant Physiology and Biophysics Method of grading numerical grade on Module level Other prerequisit | t Methods in Biology  e coordinator  of the Chair of Plant Physiology and Biophysics  Method of grading  numerical grade  on Module level  Other prerequisites |  |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

#### **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 216 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  | ĺ              |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title             |                           | Abbreviation         |                    |                  |
|-----------------------|---------------------|---------------------------|----------------------|--------------------|------------------|
| Biophy                | sics ar             | nd Biochemistry           |                      |                    | 07-MS3BB-152-m01 |
| Modul                 | e coord             | inator                    |                      | Module offered by  |                  |
| holder                | of the              | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                  |
| ECTS                  | Meth                | od of grading             | Only after succ. con | npl. of module(s)  |                  |
| 10                    | nume                | rical grade               |                      |                    |                  |
| Duration Module level |                     | Other prerequisites       | 1                    |                    |                  |
| 1 seme                | 1 semester graduate |                           |                      |                    |                  |
| Contor                | Contonte            |                           |                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

### **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul  | e title                                | ,                      | Abbreviation        |                     |                    |  |
|--------|----------------------------------------|------------------------|---------------------|---------------------|--------------------|--|
| Biophy | Biophysics and Molecular Biotechnology |                        |                     |                     | 07-MS2BT-152-m01   |  |
| Modul  | e coord                                | linator                |                     | Module offered by   |                    |  |
| holder | of the                                 | Chair of Biotechnology | and Biophysics      | Faculty of Biology  | Faculty of Biology |  |
| ECTS   | Meth                                   | od of grading          | Only after succ.    | compl. of module(s) |                    |  |
| 10     | nume                                   | rical grade            |                     |                     |                    |  |
| Durati | Duration Module level                  |                        | Other prerequisites |                     |                    |  |
| 1 seme | 1 semester graduate                    |                        |                     |                     |                    |  |
| Conto  | Contents                               |                        |                     |                     |                    |  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

#### Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

Allocation of places

### **Additional information**

## Workload

300 h

#### **Teaching cycle**

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 220 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |                                                         |                       |                      |                    | Abbreviation       |  |
|-----------------------|---------------------------------------------------------|-----------------------|----------------------|--------------------|--------------------|--|
| Plant I               | mmuno                                                   | biology and Pharmaceu | tical Biology        |                    | 07-MS31PIP-152-m01 |  |
| Module                | e coord                                                 | inator                |                      | Module offered by  |                    |  |
| holder<br>gy          | holder of the Chair of Ecophysiology and Vegetation Eco |                       |                      | Faculty of Biology |                    |  |
| ECTS                  | Meth                                                    | od of grading         | Only after succ. con | npl. of module(s)  |                    |  |
| 10                    | nume                                                    | rical grade           |                      |                    |                    |  |
| Duratio               | Duration Module level                                   |                       | Other prerequisites  |                    |                    |  |
| 1 semester graduate - |                                                         |                       |                      |                    |                    |  |
| Conten                | Contents                                                |                       |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

#### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

### Workload

300 h

### Teaching cycle

--



#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                | title    |                           |                      |                    | Abbreviation        |
|-----------------------|----------|---------------------------|----------------------|--------------------|---------------------|
| Plant E               | cology   |                           |                      |                    | 07-MS31POEK-152-m01 |
| Module                | coord    | inator                    |                      | Module offered by  |                     |
| holder                | of the ( | Chair of Ecophysiology ar | nd Vegetation Ecolo- | Faculty of Biology |                     |
| gy                    |          |                           |                      |                    |                     |
| ECTS                  | Metho    | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 10                    | nume     | rical grade               |                      |                    |                     |
| Duration Module level |          | Other prerequisites       |                      |                    |                     |
| 1 semester graduate   |          |                           |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

#### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Modul    | e title                                |                       | Abbreviation         |                    |                     |
|----------|----------------------------------------|-----------------------|----------------------|--------------------|---------------------|
| Bioche   | Biochemistry and Structural Biology F1 |                       |                      |                    | 07-MS3BSBF1-152-m01 |
| Modul    | e coord                                | linator               |                      | Module offered by  |                     |
| holder   | of the                                 | Chair of Plant Physic | ology and Biophysics | Faculty of Biology |                     |
| ECTS     | Meth                                   | od of grading         | Only after succ. co  | ompl. of module(s) |                     |
| 10       | nume                                   | erical grade          |                      |                    |                     |
| Durati   | Duration Module level                  |                       | Other prerequisit    | es                 |                     |
| 1 seme   | 1 semester graduate                    |                       |                      |                    |                     |
| <u> </u> |                                        |                       |                      |                    |                     |

The module provides an in-depth insight into strategies and methods in protein biochemistry and structural biology. The students will be integrated into research projects on current topics in biochemistry and structural biology.

#### Intended learning outcomes

The students have knowledge about general strategies and methods of protein biochemistry and structural biology with a focus on membrane proteins. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul               | Module title          |                           |                     |                    | Abbreviation        |
|---------------------|-----------------------|---------------------------|---------------------|--------------------|---------------------|
| Bioche              | emistry               | and Structural Biology F  | 2                   |                    | 07-MS3BSBF2-152-m01 |
| Modul               | e coord               | inator                    |                     | Module offered by  |                     |
| holder              | of the                | Chair of Plant Physiology | and Biophysics      | Faculty of Biology |                     |
| ECTS                | Meth                  | od of grading             | Only after succ. co | mpl. of module(s)  |                     |
| 15                  | (not)                 | successfully completed    |                     |                    |                     |
| Duratio             | Duration Module level |                           | Other prerequisites |                    |                     |
| 1 semester graduate |                       |                           |                     |                    |                     |
|                     |                       |                           |                     |                    |                     |

The students perform their research work within the context of a current research project on biochemistry and structural biology in a largely independent manner under supervision of a principal investigator.

### Intended learning outcomes

The students are able to independently perform and organise their scientific laboratory work in the fields of biochemistry and structural biology and to document the results obtained. They are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

### **Additional information**

--

#### Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# Molecular Membran Biology

(30 ECTS credits)



| e title               |                                               | Abbreviation                                                                                                   |                                                                                                                                                        |                                                                                                                                                                |
|-----------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t Metho               | ods in Biology                                |                                                                                                                |                                                                                                                                                        | 07-MS31-152-m01                                                                                                                                                |
| e coord               | inator                                        |                                                                                                                | Module offered by                                                                                                                                      |                                                                                                                                                                |
| of the (              | Chair of Plant Physic                         | ology and Biophysics                                                                                           | Faculty of Biology                                                                                                                                     |                                                                                                                                                                |
| Metho                 | od of grading                                 | Only after succ. co                                                                                            | ompl. of module(s)                                                                                                                                     |                                                                                                                                                                |
| nume                  | rical grade                                   |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |
| Duration Module level |                                               | Other prerequisit                                                                                              | es                                                                                                                                                     |                                                                                                                                                                |
| 1 semester graduate   |                                               |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |
|                       | of the one one one one one one one one one on | t Methods in Biology coordinator of the Chair of Plant Physic Method of grading numerical grade m Module level | t Methods in Biology c coordinator of the Chair of Plant Physiology and Biophysics Method of grading numerical grade on Module level Other prerequisit | t Methods in Biology  c coordinator  of the Chair of Plant Physiology and Biophysics  Method of grading  numerical grade  on Module level  Other prerequisites |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

#### **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 231 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                     |                           |                      |                    | Abbreviation     |
|-----------------------|---------------------|---------------------------|----------------------|--------------------|------------------|
| Biophy                | sics ar             | d Biochemistry            |                      |                    | 07-MS3BB-152-m01 |
| Modul                 | e coord             | inator                    |                      | Module offered by  |                  |
| holder                | of the              | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                  |
| ECTS                  | Meth                | od of grading             | Only after succ. con | npl. of module(s)  |                  |
| 10                    | nume                | rical grade               |                      |                    |                  |
| Duration Module level |                     | Other prerequisites       |                      |                    |                  |
| 1 seme                | 1 semester graduate |                           |                      |                    |                  |
|                       |                     |                           |                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

### **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

-

#### Workload

300 h

### **Teaching cycle**

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul               | e title               |                        | Abbreviation     |                     |                  |
|---------------------|-----------------------|------------------------|------------------|---------------------|------------------|
| Biophy              | ysics ar              | nd Molecular Biotechno | ology            |                     | 07-MS2BT-152-m01 |
| Modul               | e coord               | inator                 |                  | Module offered by   |                  |
| holder              | of the                | Chair of Biotechnology | and Biophysics   | Faculty of Biology  |                  |
| ECTS                | Meth                  | od of grading          | Only after succ. | compl. of module(s) |                  |
| 10                  | nume                  | rical grade            |                  |                     |                  |
| Durati              | Duration Module level |                        | Other prerequisi | Other prerequisites |                  |
| 1 semester graduate |                       |                        |                  |                     |                  |
| Conte               | Contents              |                        |                  |                     |                  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

#### Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

### Allocation of places

### **Additional information**

#### Workload

300 h

#### Teaching cycle

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 235 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                   |                                                             |                     |                      |                    | Abbreviation       |  |
|------------------------------------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|--|
| Plant Immunobiology and Pharmaceutical Biology |                                                             |                     |                      |                    | 07-MS31PIP-152-m01 |  |
| Module coordinator                             |                                                             |                     |                      | Module offered by  |                    |  |
| holder<br>gy                                   | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                    |  |
| ECTS                                           | Meth                                                        | od of grading       | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                             | nume                                                        | rical grade         |                      |                    |                    |  |
| Duration Module level Other prerequi           |                                                             | Other prerequisites | 3                    |                    |                    |  |
| 1 semester graduate                            |                                                             |                     |                      |                    |                    |  |
| Conten                                         | Contents                                                    |                     |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

#### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

### Workload

300 h

### Teaching cycle

--



#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

-

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                       |                                                            |                     |                      |                    | Abbreviation        |
|------------------------------------|------------------------------------------------------------|---------------------|----------------------|--------------------|---------------------|
| Plant Ecology                      |                                                            |                     |                      |                    | 07-MS31POEK-152-m01 |
| Module                             | e coord                                                    | inator              |                      | Module offered by  |                     |
| holder<br>gy                       | holder of the Chair of Ecophysiology and Vegetation Ecolo- |                     |                      | Faculty of Biology |                     |
| ECTS                               | Meth                                                       | od of grading       | Only after succ. con | ıpl. of module(s)  |                     |
| 10                                 | numerical grade                                            |                     |                      |                    |                     |
| Duration   Module level   Other pr |                                                            | Other prerequisites |                      |                    |                     |
| 1 semester graduate                |                                                            |                     |                      |                    |                     |
| <i>~</i> .                         |                                                            |                     |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 239 / 59 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title                             |                                                        |                     |                     |                    | Abbreviation       |
|------------------------------------------|--------------------------------------------------------|---------------------|---------------------|--------------------|--------------------|
| Biophysics of Plant Membrane Proteins F1 |                                                        |                     |                     |                    | 07-MS3BPF1-152-m01 |
| Module coordinator                       |                                                        |                     |                     | Module offered by  |                    |
| holder                                   | holder of the Chair of Plant Physiology and Biophysics |                     |                     | Faculty of Biology |                    |
| ECTS                                     | Meth                                                   | od of grading       | Only after succ. co | ompl. of module(s) |                    |
| 10                                       | nume                                                   | rical grade         |                     |                    |                    |
| Duration Module level                    |                                                        | Other prerequisites |                     |                    |                    |
| 1 semester graduate                      |                                                        |                     |                     |                    |                    |
| Contants                                 |                                                        |                     |                     |                    |                    |

The module provides an in-depth insight into biophysical strategies and methods which are used for the functional characterisation of plant membrane proteins. The students will be integrated into research projects on current topics in molecular plant membrane biology.

#### **Intended learning outcomes**

The students have knowledge of general biophysical strategies and methods with a focus on plant membrane proteins, they are able to independently work on related scientific issues and to document the results obtained.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                             |        |                           |                                      |                    | Abbreviation       |
|------------------------------------------|--------|---------------------------|--------------------------------------|--------------------|--------------------|
| Biophysics of Plant Membrane Proteins F2 |        |                           |                                      |                    | 07-MS3BPF2-152-m01 |
| Module coordinator                       |        |                           |                                      | Module offered by  |                    |
| holder                                   | of the | Chair of Plant Physiology | and Biophysics                       | Faculty of Biology |                    |
| ECTS                                     | Meth   | od of grading             | Only after succ. compl. of module(s) |                    |                    |
| 15                                       | (not)  | successfully completed    |                                      |                    |                    |
| Duration Module level                    |        | Other prerequisites       |                                      |                    |                    |
| 1 semester graduate                      |        |                           |                                      |                    |                    |
|                                          |        |                           |                                      |                    |                    |

The students perform their research work within the context of a current research project on the biophysics of plant membrane proteins in a largely independent manner under supervision of a principal investigator.

#### **Intended learning outcomes**

The students are able to address scientific issues in biophysics, using appropriate biophysical methods. They are able to independently design the appropriate experiments as well as to analyse, document, present and discuss the results.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

### **Additional information**

--

#### Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

# **Plant Signalling**

(30 ECTS credits)



| Module title                                     |      |                     |                      |                    | Abbreviation |
|--------------------------------------------------|------|---------------------|----------------------|--------------------|--------------|
| Current Methods in Biology                       |      |                     |                      | 07-MS31-152-m01    |              |
| Module coordinator Module offere                 |      |                     |                      | Module offered by  |              |
| holder of the Chair of Plant Physiology and Biop |      |                     | and Biophysics       | Faculty of Biology |              |
| ECTS                                             | Meth | od of grading       | Only after succ. cor | npl. of module(s)  |              |
| 10                                               | nume | numerical grade     |                      |                    |              |
| Duration Module level                            |      | Other prerequisites |                      |                    |              |
| 1 semester graduate                              |      |                     |                      |                    |              |
|                                                  |      |                     |                      |                    |              |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

#### **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 246 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                |                 |                           |                                      |                    | Abbreviation     |
|-----------------------------|-----------------|---------------------------|--------------------------------------|--------------------|------------------|
| Biophysics and Biochemistry |                 |                           |                                      |                    | 07-MS3BB-152-m01 |
| Module coordinator M        |                 |                           |                                      | Module offered by  |                  |
| holder                      | of the          | Chair of Plant Physiology | and Biophysics                       | Faculty of Biology |                  |
| ECTS                        | Meth            | od of grading             | Only after succ. compl. of module(s) |                    |                  |
| 10                          | numerical grade |                           |                                      |                    |                  |
| Duration Module level       |                 | Other prerequisites       |                                      |                    |                  |
| 1 semester graduate         |                 |                           |                                      |                    |                  |
|                             |                 |                           |                                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

### **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

### **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

### **Teaching cycle**

--

### $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                   |                                                             |               |                      |                    | Abbreviation       |  |
|------------------------------------------------|-------------------------------------------------------------|---------------|----------------------|--------------------|--------------------|--|
| Plant Immunobiology and Pharmaceutical Biology |                                                             |               |                      |                    | 07-MS31PIP-152-m01 |  |
| Module                                         | e coord                                                     | linator       |                      | Module offered by  |                    |  |
| holder<br>gy                                   | holder of the Chair of Ecophysiology and Vegetation Ecology |               |                      | Faculty of Biology |                    |  |
| ECTS                                           | Meth                                                        | od of grading | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                             | nume                                                        | rical grade   |                      |                    |                    |  |
| Duration Module level Other prerequisites      |                                                             | i             |                      |                    |                    |  |
| 1 semester graduate                            |                                                             |               |                      |                    |                    |  |
| Conten                                         | Contents                                                    |               |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

#### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

### Workload

300 h

### Teaching cycle

--



#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                |                   |                     |                      |                    | Abbreviation        |
|-------------------------------------------------------------|-------------------|---------------------|----------------------|--------------------|---------------------|
| Plant Ecology                                               |                   |                     |                      |                    | 07-MS31POEK-152-m01 |
| Module coordinator                                          |                   |                     |                      | Module offered by  |                     |
| holder of the Chair of Ecophysiology and Vegetation Ecology |                   |                     | nd Vegetation Ecolo- | Faculty of Biology |                     |
| ECTS                                                        | Meth              | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 10                                                          | o numerical grade |                     |                      |                    |                     |
| Duration Module level Other p                               |                   | Other prerequisites |                      |                    |                     |
| 1 semester graduate                                         |                   |                     |                      |                    |                     |
|                                                             |                   |                     |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

#### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title          |          |                           |                      |                    | Abbreviation       |
|-----------------------|----------|---------------------------|----------------------|--------------------|--------------------|
| Plant Signalling F1   |          |                           |                      |                    | 07-MS3SPF1-152-m01 |
| Modul                 | e coord  | inator                    |                      | Module offered by  |                    |
| holder                | of the   | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                    |
| ECTS                  | Meth     | od of grading             | Only after succ. cor | npl. of module(s)  |                    |
| 10                    | nume     | rical grade               |                      |                    |                    |
| Duration Module level |          | Other prerequisites       |                      |                    |                    |
| 1 semester graduate   |          |                           |                      |                    |                    |
| Contor                | Contonts |                           |                      |                    |                    |

Molecular mechanisms of plant signal transduction and regulation of gene expression will be investigated in the context of plant-pathogen interaction, plant responses to abiotic stress, lipid signalling and plant hormone signalling. Specific molecular biology methods which are suitable to address these topics will be applied. In addition, students will gain experience in designing appropriate experimental approaches as well as in the documentation and presentation of results. Students will work on a current research project and learn to independently plan and perform the experiments. More information is available on request or can be found at http://www.p-bio.biozentrum.uni-wuerzburg.de/.

# **Intended learning outcomes**

Students will be trained to apply specific methods in the field of molecular biology, to address scientific questions, to document experimental procedures and results and to interpret experimental data.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title |                           |                     |                    | Abbreviation       |
|-----------------------|---------|---------------------------|---------------------|--------------------|--------------------|
| Plant Signalling F2   |         |                           |                     |                    | 07-MS3SPF2-152-m01 |
| Module coordinator    |         |                           |                     | Module offered by  |                    |
| holder                | of the  | Chair of Plant Physiology | and Biophysics      | Faculty of Biology |                    |
| ECTS                  | Meth    | od of grading             | Only after succ. co | ompl. of module(s) |                    |
| 15                    | (not)   | successfully completed    |                     |                    |                    |
| Duration Module level |         | Other prerequisites       |                     |                    |                    |
| 1 semester graduate   |         |                           |                     |                    |                    |
| Contents              |         |                           |                     |                    |                    |

Students will independently work on aspects of current research projects in the area of plant signal transduction and stress responses. Results will be discussed in the context of recent publications. The molecular biology and bioanalytical methods which are used will be evaluated and optimised. The aim and progress of the project will be presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wuerzburg.de/.

## Intended learning outcomes

Students are able to independently perform scientific experiments and to use specific techniques in the field of molecular biology and bioanalytics to address scientific questions in the field of plant signal transduction. Students are able to independently work according to the rules of best practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

## Workload

450 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Pharmaceutical Biology & Metabolomics**

(30 ECTS credits)



| Module title               |                                                        |                     |                      |                    | Abbreviation    |
|----------------------------|--------------------------------------------------------|---------------------|----------------------|--------------------|-----------------|
| Current Methods in Biology |                                                        |                     |                      |                    | 07-MS31-152-m01 |
| Modul                      | e coord                                                | inator              |                      | Module offered by  |                 |
| holder                     | holder of the Chair of Plant Physiology and Biophysics |                     |                      | Faculty of Biology |                 |
| ECTS                       | Meth                                                   | od of grading       | Only after succ. con | npl. of module(s)  |                 |
| 10                         | nume                                                   | rical grade         |                      |                    |                 |
| Duration Module level      |                                                        | Other prerequisites |                      |                    |                 |
| 1 semester graduate        |                                                        |                     |                      |                    |                 |
|                            |                                                        |                     |                      |                    |                 |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

## **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 259 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                |                                                |               |                           |                    | Abbreviation       |  |
|-------------------------------------------------------------|------------------------------------------------|---------------|---------------------------|--------------------|--------------------|--|
| Plant Ir                                                    | Plant Immunobiology and Pharmaceutical Biology |               |                           |                    | 07-MS31PIP-152-m01 |  |
| Module                                                      | coord                                          | inator        |                           | Module offered by  |                    |  |
| holder of the Chair of Ecophysiology and Vegetation Ecology |                                                |               | ogy and Vegetation Ecolo- | Faculty of Biology |                    |  |
| ECTS                                                        | Metho                                          | od of grading | Only after succ. con      | npl. of module(s)  |                    |  |
| 10                                                          | nume                                           | rical grade   |                           |                    |                    |  |
| Duratio                                                     | Duration Module level Other prerequisites      |               |                           | 1                  |                    |  |
| 1 semester graduate                                         |                                                |               |                           |                    |                    |  |
| Conten                                                      | Contents                                       |               |                           |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

## **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

# Workload

300 h

# Teaching cycle

--



## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                     |      |                     |                     |                    | Abbreviation     |
|--------------------------------------------------|------|---------------------|---------------------|--------------------|------------------|
| Biophysics and Biochemistry                      |      |                     |                     |                    | 07-MS3BB-152-m01 |
| Module coordinator                               |      |                     |                     | Module offered by  |                  |
| holder of the Chair of Plant Physiology and Biop |      |                     | gy and Biophysics   | Faculty of Biology |                  |
| ECTS                                             | Meth | od of grading       | Only after succ. co | mpl. of module(s)  |                  |
| 10                                               | nume | rical grade         |                     |                    |                  |
| Duration Module level                            |      | Other prerequisites |                     |                    |                  |
| 1 semester graduate                              |      |                     |                     |                    |                  |
| Combando                                         |      |                     |                     |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

## **Additional information**

--

## Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title            |                                                             |                     |                      |                    | Abbreviation        |  |
|-------------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|---------------------|--|
| Plant Ecology           |                                                             |                     |                      |                    | 07-MS31POEK-152-m01 |  |
| Module                  | coord                                                       | inator              |                      | Module offered by  |                     |  |
| holder<br>gy            | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                     |  |
| ECTS                    | Meth                                                        | od of grading       | Only after succ. con | npl. of module(s)  |                     |  |
| 10                      | numerical grade                                             |                     |                      |                    |                     |  |
| Duration Module level O |                                                             | Other prerequisites |                      |                    |                     |  |
| 1 semester graduate     |                                                             |                     |                      |                    |                     |  |
| C 4                     | Controlle                                                   |                     |                      |                    |                     |  |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

# **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

## Workload

300 h

#### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- |
|------------------------------------------|-------------------------------------------------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title        |                                    |               |                      |                     | Abbreviation   |  |
|---------------------|------------------------------------|---------------|----------------------|---------------------|----------------|--|
| Molecular Biology   |                                    |               |                      |                     | 07-MS2-152-m01 |  |
| Modul               | e coord                            | linator       |                      | Module offered by   |                |  |
| Dean c              | Dean of Studies Biologie (Biology) |               |                      | Faculty of Biology  |                |  |
| ECTS                | Meth                               | od of grading | Only after succ. cor | npl. of module(s)   |                |  |
| 10                  | nume                               | rical grade   |                      |                     |                |  |
| Duratio             | Duration Module level              |               | Other prerequisites  | Other prerequisites |                |  |
| 1 semester graduate |                                    |               |                      |                     |                |  |
| Conter              | Contents                           |               |                      |                     |                |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

## Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 267 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title            |        |                         |                      |                    | Abbreviation     |  |
|-------------------------|--------|-------------------------|----------------------|--------------------|------------------|--|
| Bioinformatics          |        |                         |                      |                    | 07-MS2BI-152-m01 |  |
| Module coordinator      |        |                         |                      | Module offered by  |                  |  |
| holder                  | of the | Chair of Bioinformatics |                      | Faculty of Biology |                  |  |
| ECTS                    | Meth   | od of grading           | Only after succ. con | npl. of module(s)  |                  |  |
| 10                      | nume   | rical grade             |                      |                    |                  |  |
| Duration Module level 0 |        |                         | Other prerequisites  |                    |                  |  |
| 1 semester graduate     |        |                         |                      |                    |                  |  |
|                         |        |                         |                      |                    |                  |  |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

## **Intended learning outcomes**

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

## **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)



| Module title              |                                       |                |                      |                    | Abbreviation    |
|---------------------------|---------------------------------------|----------------|----------------------|--------------------|-----------------|
| Systems Biology           |                                       |                |                      |                    | 07-MS3S-152-m01 |
| Module coordinator        |                                       |                |                      | Module offered by  |                 |
| holder                    | holder of the Chair of Bioinformatics |                |                      | Faculty of Biology |                 |
| ECTS                      | Meth                                  | od of grading  | Only after succ. con | npl. of module(s)  |                 |
| 10                        | nume                                  | ımerical grade |                      |                    |                 |
| Duration Module level Oth |                                       |                | Other prerequisites  |                    |                 |
| 1 semester graduate       |                                       |                |                      |                    |                 |
|                           |                                       |                |                      |                    |                 |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

## **Intended learning outcomes**

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

## **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                                   | Module title                       |                     |                     |                    | Abbreviation   |  |
|---------------------------------------------------------|------------------------------------|---------------------|---------------------|--------------------|----------------|--|
| Neurobiology, Behavioural Physiology and Animal Ecology |                                    |                     |                     | 1                  | 07-MS1-152-m01 |  |
| Modul                                                   | e coord                            | linator             |                     | Module offered by  |                |  |
| Dean o                                                  | Dean of Studies Biologie (Biology) |                     |                     | Faculty of Biology |                |  |
| ECTS                                                    | Meth                               | od of grading       | Only after succ. co | mpl. of module(s)  |                |  |
| 10                                                      | nume                               | rical grade         |                     |                    |                |  |
| Duration Module level Other                             |                                    | Other prerequisites | S                   |                    |                |  |
| 1 semester graduate                                     |                                    |                     |                     |                    |                |  |
| C 4                                                     |                                    |                     |                     |                    |                |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

# **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

## Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul              | Module title                               |                      |                     |                    | Abbreviation        |  |
|--------------------|--------------------------------------------|----------------------|---------------------|--------------------|---------------------|--|
| Pharm              | Pharmaceutical Biology and Metabolomics F1 |                      |                     |                    | 07-MS3PBMF1-152-m01 |  |
| Module coordinator |                                            |                      |                     | Module offered by  |                     |  |
| holder             | of the                                     | Chair of Pharmaceuti | ical Biology        | Faculty of Biology |                     |  |
| ECTS               | Meth                                       | od of grading        | Only after succ. co | mpl. of module(s)  |                     |  |
| 10                 | nume                                       | rical grade          |                     |                    |                     |  |
| Duratio            | Duration Module level                      |                      | Other prerequisites | S                  |                     |  |
| 1 seme             | 1 semester graduate                        |                      |                     |                    |                     |  |
| Conter             | Contents                                   |                      |                     |                    |                     |  |

All organisms are able to reprogram their metabolism in response to various endogenous or exogenous perturbations. Reprogramming of metabolism is often correlated to phenotypic changes e. g. in disease development, physiology or behaviour. At the Chair of Pharmaceutical Biology, we apply metabolomics for gene function- or stress response analysis. Students can choose a topic from the variety of ongoing projects. Depending on the scientific question addressed by the research team at the Chair, the methodological approach involves techniques in the field of metabolomics/bioanalytics and/or molecular biology. In this module, students will be trained to use quantitative metabolite analysis methods (chromatography, mass spectrometry) and apply advanced molecular biology techniques. Depending on the project, different model organisms are studied. Prior knowledge in metabolite analysis or mass spectrometry is not required. Current scientific questions in the life sciences form the basis to impart scientific concepts and to train students in the laboratory. The module involves the experimental design, realisation and critical evaluation of scientific experiments as well as the documentation and presentation of the progress. More information is available on request or can be found at http://www.pbio.bio-zentrum.uni-wuerzburg.de/.

#### Intended learning outcomes

Students will be trained in using specific molecular biology methods and/or metabolomics approaches to address scientific questions, in the documentation of experimental procedures and results, and in the interpretation of data.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

## Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 275 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                                            |                           |                      | Abbreviation       |                     |
|-----------------------|--------------------------------------------|---------------------------|----------------------|--------------------|---------------------|
| Pharm                 | Pharmaceutical Biology and Metabolomics F2 |                           |                      |                    | 07-MS3PBMF2-152-m01 |
| Module coordinator    |                                            |                           |                      | Module offered by  |                     |
| holder                | of the                                     | Chair of Pharmaceutical E | Biology              | Faculty of Biology |                     |
| ECTS                  | Meth                                       | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 15                    | (not)                                      | successfully completed    |                      |                    |                     |
| Duration Module level |                                            | Other prerequisites       |                      |                    |                     |
| 1 semester graduate   |                                            |                           |                      |                    |                     |
| Contor                | Contents                                   |                           |                      |                    |                     |

Students will be involved in current research projects in pharmaceutical biology or in collaborative research projects that focus on the regulation of metabolism and analysis of metabolic pathways (e. g. in the context of reactions towards biotic or abiotic stress, functional and phenotypic analysis of mutants, or drug metabolism). Aspects of the scientific question will be independently addressed by the students. Molecular biology methods and/or metabolomic approaches will be optimised for and adapted to the specific problem. Experimental results and progress in the understanding of biological problems will be documented in the form of a log and presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wu-erzburg.de/.

# **Intended learning outcomes**

The participants are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach scientific topics in pharmaceutical biology and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. They are able to apply specific techniques required to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

\_\_

# Workload

450 h

## **Teaching cycle**

--

# Referred to in LPO I (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Physiological Plant Ecology**

(30 ECTS credits)



| Module title                               |        |                    | Abbreviation        |                    |                 |
|--------------------------------------------|--------|--------------------|---------------------|--------------------|-----------------|
| Curren                                     | t Meth | ods in Biology     |                     |                    | 07-MS31-152-m01 |
| Module coordinator                         |        |                    |                     | Module offered by  |                 |
| holder of the Chair of Plant Physiology ar |        |                    | gy and Biophysics   | Faculty of Biology |                 |
| ECTS                                       | Meth   | od of grading      | Only after succ. co | mpl. of module(s)  |                 |
| 10                                         | nume   | rical grade        |                     |                    |                 |
| Duration Module level                      |        | Other prerequisite | es                  |                    |                 |
| 1 semester graduate                        |        |                    |                     |                    |                 |
| C 4                                        |        |                    |                     |                    |                 |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

## **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 280 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                |          |                    |                     | Abbreviation       |                  |
|---------------------------------------------|----------|--------------------|---------------------|--------------------|------------------|
| Biophy                                      | ysics ar | nd Biochemistry    |                     |                    | 07-MS3BB-152-m01 |
| Module coordinator                          |          |                    |                     | Module offered by  |                  |
| holder of the Chair of Plant Physiology and |          |                    | gy and Biophysics   | Faculty of Biology |                  |
| ECTS                                        | Meth     | od of grading      | Only after succ. co | mpl. of module(s)  |                  |
| 10                                          | nume     | rical grade        |                     |                    |                  |
| Duration Module level                       |          | Other prerequisite | es .                |                    |                  |
| 1 semester graduate                         |          |                    |                     |                    |                  |
| C 4                                         | _4_      |                    | ·                   |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

## **Additional information**

--

## Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module                                         | Module title                                                |                     |                      |                    | Abbreviation       |  |
|------------------------------------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|--|
| Plant Immunobiology and Pharmaceutical Biology |                                                             |                     |                      |                    | 07-MS31PIP-152-m01 |  |
| Module                                         | coord                                                       | inator              |                      | Module offered by  |                    |  |
| holder<br>gy                                   | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                    |  |
| ECTS                                           | Metho                                                       | od of grading       | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                             | nume                                                        | rical grade         |                      |                    |                    |  |
| Duration Module level Other prerequisit        |                                                             | Other prerequisites | 1                    |                    |                    |  |
| 1 semester graduate                            |                                                             |                     |                      |                    |                    |  |
| Conten                                         | Contents                                                    |                     |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

## **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### Additional information

--

# Workload

300 h

# Teaching cycle

--



## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                |      |                     |                      |                    | Abbreviation        |  |
|-------------------------------------------------------------|------|---------------------|----------------------|--------------------|---------------------|--|
| Plant Ecology                                               |      |                     |                      |                    | 07-MS31POEK-152-m01 |  |
| Module coordinator                                          |      |                     |                      | Module offered by  |                     |  |
| holder of the Chair of Ecophysiology and Vegetation Ecology |      |                     | nd Vegetation Ecolo- | Faculty of Biology |                     |  |
| ECTS                                                        | Meth | od of grading       | Only after succ. con | npl. of module(s)  |                     |  |
| 10                                                          | nume | rical grade         |                      |                    |                     |  |
| Duration Module level                                       |      | Other prerequisites |                      |                    |                     |  |
| 1 semester graduate                                         |      |                     |                      |                    |                     |  |
| _                                                           |      |                     |                      |                    |                     |  |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

# **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

## Workload

300 h

#### **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 286 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Modul  | e title                        |                          |                     |                    | Abbreviation        |
|--------|--------------------------------|--------------------------|---------------------|--------------------|---------------------|
| Physic | Physiological Plant Ecology F1 |                          |                     |                    | 07-MS3PPEF1-152-m01 |
| Modul  | Module coordinator             |                          |                     | Module offered by  |                     |
| holder | of the                         | Chair of Plant Physiolog | y and Biophysics    | Faculty of Biology |                     |
| ECTS   | Metho                          | od of grading            | Only after succ. co | ompl. of module(s) |                     |
| 10     | nume                           | rical grade              |                     |                    |                     |
| Durati | Duration Module level          |                          | Other prerequisite  | es                 |                     |
| 1 seme | 1 semester graduate            |                          |                     |                    |                     |
| Conto  | ntc                            | •                        |                     |                    |                     |

Under the guidance of an experienced scientist, students will work on a current research topic from the field of ecology/ecophysiology. Particular emphasis will be placed on the physiological bases of the interactions between plants and abiotic and biotic environmental factors (e.g. water relations, stress, biogeography). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of a presentation, a publication or a log. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in ecophysiology in particular but also in chemical analysis.

## **Intended learning outcomes**

The participants are able to perform scientific experiments in the field of physiological plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of ecology/ecophysiology, adhering to the rules of good scientific practice.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

300 h

# **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 288 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                   |                    |                           |                      | Abbreviation       |                     |
|--------------------------------|--------------------|---------------------------|----------------------|--------------------|---------------------|
| Physiological Plant Ecology F2 |                    |                           |                      |                    | 07-MS3PPEF2-152-m01 |
| Modul                          | Module coordinator |                           |                      | Module offered by  | l .                 |
| holder                         | of the             | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                     |
| ECTS                           | Meth               | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 15                             | (not)              | successfully completed    |                      |                    |                     |
| Duration Module level          |                    | Other prerequisites       |                      |                    |                     |
| 1 semester graduate            |                    |                           |                      |                    |                     |
| <u> </u>                       |                    |                           |                      |                    |                     |

Students will work on projects taken from ongoing research in the supervisors' labs in the field of plant ecology and ecophysiology (e. g. plant-insect-, plant-fungus interactions; biogeography; water relations). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the ecophysiological and analytical methods applied (e. g. measurement of transpiration, fluorescence microscopy, chlorophyll-fluorometry) will be critically assessed, and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

# **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of plant ecophysiology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

# Workload

450 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 290 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Molecular and Chemical Plant Ecology**

(30 ECTS credits)



| Module title               |                                               |                                                                                                                |                                                                                                                                                        | Abbreviation                                                                                                                                                   |
|----------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Methods in Biology |                                               |                                                                                                                |                                                                                                                                                        | 07-MS31-152-m01                                                                                                                                                |
| e coord                    | inator                                        |                                                                                                                | Module offered by                                                                                                                                      |                                                                                                                                                                |
| of the (                   | Chair of Plant Physic                         | ology and Biophysics                                                                                           | Faculty of Biology                                                                                                                                     |                                                                                                                                                                |
| Metho                      | od of grading                                 | Only after succ. co                                                                                            | ompl. of module(s)                                                                                                                                     |                                                                                                                                                                |
| nume                       | rical grade                                   |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |
| Duration Module level      |                                               | Other prerequisit                                                                                              | Other prerequisites                                                                                                                                    |                                                                                                                                                                |
| 1 semester graduate        |                                               |                                                                                                                |                                                                                                                                                        |                                                                                                                                                                |
|                            | of the one one one one one one one one one on | t Methods in Biology coordinator of the Chair of Plant Physic Method of grading numerical grade m Module level | t Methods in Biology c coordinator of the Chair of Plant Physiology and Biophysics Method of grading numerical grade on Module level Other prerequisit | t Methods in Biology  c coordinator  of the Chair of Plant Physiology and Biophysics  Method of grading  numerical grade  on Module level  Other prerequisites |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

# **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 293 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                          |       |                     |                      |                    | Abbreviation |
|-------------------------------------------------------|-------|---------------------|----------------------|--------------------|--------------|
| Biophysics and Biochemistry                           |       |                     |                      | 07-MS3BB-152-m01   |              |
| Module coordinator                                    |       |                     |                      | Module offered by  |              |
| holder of the Chair of Plant Physiology and Biophysic |       |                     | and Biophysics       | Faculty of Biology |              |
| ECTS                                                  | Metho | od of grading       | Only after succ. cor | npl. of module(s)  |              |
| 10                                                    | nume  | rical grade         |                      |                    |              |
| Duration Module level                                 |       | Other prerequisites |                      |                    |              |
| 1 semester graduate                                   |       |                     |                      |                    |              |
|                                                       |       |                     |                      |                    |              |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                   |                                                             |                     |                      | Abbreviation       |                    |  |
|------------------------------------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|--------------------|--|
| Plant Immunobiology and Pharmaceutical Biology |                                                             |                     |                      |                    | 07-MS31PIP-152-m01 |  |
| Module                                         | e coord                                                     | inator              |                      | Module offered by  |                    |  |
| holder<br>gy                                   | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                    |  |
| ECTS                                           | Metho                                                       | od of grading       | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                             | nume                                                        | rical grade         |                      |                    |                    |  |
| Duration Module level Other                    |                                                             | Other prerequisites |                      |                    |                    |  |
| 1 semester graduate                            |                                                             |                     |                      |                    |                    |  |
| Conten                                         | Contents                                                    |                     |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

# **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### Additional information

--

# Workload

300 h

# Teaching cycle

--



# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                                                             |                     |                      |                    | Abbreviation        |
|-----------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|---------------------|
| Plant Ecology         |                                                             |                     |                      |                    | 07-MS31POEK-152-m01 |
| Module                | coord                                                       | inator              |                      | Module offered by  |                     |
| holder<br>gy          | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                     |
| ECTS                  | Meth                                                        | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 10                    | numerical grade                                             |                     |                      |                    |                     |
| Duration Module level |                                                             | Other prerequisites |                      |                    |                     |
| 1 semester graduate   |                                                             |                     |                      |                    |                     |
| C 4                   | Combonto                                                    |                     |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

# **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

# Workload

300 h

#### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 299 / 59 |
|------------------------------------------|-------------------------------------------------------|---------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |               |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Modul                                   | Module title |                       |                      |                    | Abbreviation         |
|-----------------------------------------|--------------|-----------------------|----------------------|--------------------|----------------------|
| Molecular and Chemical Plant Ecology F1 |              |                       |                      |                    | 07-MS3MCPEF1-152-m01 |
| Modul                                   | e coord      | linator               |                      | Module offered by  |                      |
| holder                                  | of the       | Chair of Plant Physic | ology and Biophysics | Faculty of Biology |                      |
| ECTS                                    | Meth         | od of grading         | Only after succ. co  | ompl. of module(s) |                      |
| 10                                      | nume         | rical grade           |                      |                    |                      |
| Duration Module level Other p           |              | Other prerequisit     | es                   |                    |                      |
| 1 semester graduate -                   |              |                       |                      |                    |                      |
|                                         |              |                       |                      |                    |                      |

Under the guidance of an experienced scientist, students will work on a current research topic from the field of molecular and chemical plant ecology. Particular emphasis will be placed on the molecular and chemical bases of the interactions between plants and abiotic and biotic environmental factors (e. g. cuticular barrier properties, plant-insect, and plant-fungus interactions). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of presentations, publications or logs. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in molecular biology in particular but also in chemical analysis.

# **Intended learning outcomes**

The participants are able to perform scientific experiments in the field of molecular and chemical plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of molecular biology/chemical ecology, adhering to the rules of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

# Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                            |                                                 |                        |                      |                    | Abbreviation         |
|-----------------------------------------|-------------------------------------------------|------------------------|----------------------|--------------------|----------------------|
| Molecular and Chemical Plant Ecology F2 |                                                 |                        |                      |                    | 07-MS3MCPEF2-152-m01 |
| Module coordinator Mo                   |                                                 |                        | Module offered by    |                    |                      |
| holder                                  | holder of the Chair of Plant Physiology and Bio |                        |                      | Faculty of Biology |                      |
| ECTS                                    | Meth                                            | od of grading          | Only after succ. con | npl. of module(s)  |                      |
| 15                                      | (not)                                           | successfully completed |                      |                    |                      |
| Duration Module level C                 |                                                 | Other prerequisites    |                      |                    |                      |
| 1 semester graduate                     |                                                 |                        |                      |                    |                      |
|                                         |                                                 |                        |                      |                    |                      |

Students will work on projects taken from ongoing research in the supervisors' labs from the field of molecular and chemical plant ecology (e. g. cuticular barrier properties, plant-insect, and plant-fungus interactions). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the analytical, molecular biological and/or microbiological methods applied (e. g. PCR, cloning strategies, chromatography, mass spectrometry) will be critically assessed and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

#### **Intended learning outcomes**

The participants are able to independently perform scientific experiments in the field of molecular and chemical plant ecology and to modify them according to the outcome. They are able to independently address, document and interpret questions in the field of molecular/chemical plant ecology, adhering to the rules of good scientific practice. Students are also able to apply specific techniques required to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# Additional information

--

#### Workload

450 h

# Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



# **System Biology**

(30 ECTS credits)

Students who selected this subject area must take module o7-MS3S.



| Modul                   | e title |                         | Abbreviation         |                    |                 |
|-------------------------|---------|-------------------------|----------------------|--------------------|-----------------|
| Systems Biology         |         |                         |                      |                    | 07-MS3S-152-m01 |
| Module coordinator      |         |                         |                      | Module offered by  |                 |
| holder                  | of the  | Chair of Bioinformatics |                      | Faculty of Biology |                 |
| ECTS                    | Meth    | od of grading           | Only after succ. con | npl. of module(s)  |                 |
| 10                      | nume    | rical grade             |                      |                    |                 |
| Duration Module level ( |         | Other prerequisites     |                      |                    |                 |
| 1 semester graduate     |         |                         |                      |                    |                 |
|                         |         |                         |                      |                    |                 |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

# **Intended learning outcomes**

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title            |        |                         |                      |                    | Abbreviation     |
|-------------------------|--------|-------------------------|----------------------|--------------------|------------------|
| Bioinformatics          |        |                         |                      |                    | 07-MS2BI-152-m01 |
| Module coordinator      |        |                         |                      | Module offered by  |                  |
| holder                  | of the | Chair of Bioinformatics |                      | Faculty of Biology |                  |
| ECTS                    | Meth   | od of grading           | Only after succ. con | npl. of module(s)  |                  |
| 10                      | nume   | rical grade             |                      |                    |                  |
| Duration Module level C |        |                         | Other prerequisites  |                    |                  |
| 1 semester graduate     |        |                         |                      |                    |                  |
|                         |        |                         |                      |                    |                  |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

# **Intended learning outcomes**

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)



| Modul                                                   | e title  |                       | Abbreviation         |                    |  |
|---------------------------------------------------------|----------|-----------------------|----------------------|--------------------|--|
| Neurobiology, Behavioural Physiology and Animal Ecology |          |                       |                      | 07-MS1-152-m01     |  |
| Modul                                                   | e coord  | inator                |                      | Module offered by  |  |
| Dean c                                                  | of Studi | es Biologie (Biology) |                      | Faculty of Biology |  |
| ECTS                                                    | Meth     | od of grading         | Only after succ. con | npl. of module(s)  |  |
| 10                                                      | nume     | rical grade           |                      |                    |  |
| Duration Module level Other prerequisite                |          |                       | Other prerequisites  |                    |  |
| 1 semester graduate                                     |          |                       |                      |                    |  |
|                                                         |          |                       |                      |                    |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

# **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                        |           |                        |                          |                    | Abbreviation    |
|-------------------------------------|-----------|------------------------|--------------------------|--------------------|-----------------|
| Molecular and Clinical Neurobiology |           |                        |                          |                    | 07-MS1N-152-m01 |
| Module coordinator                  |           |                        |                          | Module offered by  |                 |
| Manag                               | ging Dire | ector of the Institute | of Clinical Neurobiology | Faculty of Biology |                 |
| ECTS                                | Meth      | od of grading          | Only after succ. con     | npl. of module(s)  |                 |
| 10                                  | nume      | rical grade            |                          |                    |                 |
| Duration Module level Other prered  |           | Other prerequisites    | ,                        |                    |                 |
| 1 semester graduate                 |           |                        |                          |                    |                 |
| Contents                            |           |                        |                          |                    |                 |

Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channelopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a. m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

# **Intended learning outcomes**

Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal disea-

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

# **Additional information**

#### Workload

300 h

# Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's degree (1 major) Biosciences (2021) Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)



| Modul                                  | e title |                      | Abbreviation              |                    |                  |
|----------------------------------------|---------|----------------------|---------------------------|--------------------|------------------|
| Animal Ecology and Tropical Biology    |         |                      |                           |                    | 07-MS1TÖ-152-m01 |
| Module coordinator                     |         |                      |                           | Module offered by  | l .              |
| holder                                 | of the  | Chair of Animal Ecol | logy and Tropical Biology | Faculty of Biology |                  |
| ECTS                                   | Meth    | od of grading        | Only after succ. con      | npl. of module(s)  |                  |
| 10                                     | nume    | rical grade          |                           |                    |                  |
| Duration Module level Other prerequisi |         | Other prerequisites  |                           |                    |                  |
| 1 semester graduate                    |         |                      |                           |                    |                  |
| Contonts                               |         |                      |                           |                    |                  |

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

# **Intended learning outcomes**

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

### **Additional information**

#### Workload

300 h

# **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 314 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                          |                                                               |                     |                      |                    | Abbreviation    |  |
|---------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-----------------|--|
| Animal Communication                  |                                                               |                     |                      |                    | 07-MS1K-152-m01 |  |
| Module                                | e coord                                                       | inator              |                      | Module offered by  |                 |  |
| holder<br>logy                        | holder of the Chair of Behavioral Physiology and Sociobiology |                     |                      | Faculty of Biology |                 |  |
| ECTS                                  | Meth                                                          | od of grading       | Only after succ. con | npl. of module(s)  |                 |  |
| 10                                    | nume                                                          | rical grade         |                      |                    |                 |  |
| Duration Module level Other prerequis |                                                               | Other prerequisites |                      |                    |                 |  |
| 1 semester graduate                   |                                                               |                     |                      |                    |                 |  |
| Conten                                | Contents                                                      |                     |                      |                    |                 |  |

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

# Intended learning outcomes

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

300 h

# **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 316 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                       |       |                     |                      |                    | Abbreviation |
|------------------------------------|-------|---------------------|----------------------|--------------------|--------------|
| Molecular Biology                  |       |                     |                      | 07-MS2-152-m01     |              |
| Module coordinator Mo              |       |                     |                      | Module offered by  |              |
| Dean of Studies Biologie (Biology) |       |                     |                      | Faculty of Biology |              |
| ECTS                               | Metho | od of grading       | Only after succ. cor | npl. of module(s)  |              |
| 10                                 | nume  | rical grade         |                      |                    |              |
| Duration Module level O            |       | Other prerequisites |                      |                    |              |
| 1 semester graduate                |       |                     |                      |                    |              |
| Contents                           |       |                     |                      |                    |              |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

# Workload

300 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 318 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  | ĺ              |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title                             |                                                               |               |                      |                    | Abbreviation      |  |
|------------------------------------------|---------------------------------------------------------------|---------------|----------------------|--------------------|-------------------|--|
| Cell and Developmental Biology Master 1  |                                                               |               |                      |                    | 07-MS2ZE1-152-m01 |  |
| Module                                   | e coord                                                       | inator        |                      | Module offered by  |                   |  |
| holder<br>logy                           | holder of the Chair of Cell Biology and Developmental Biology |               |                      | Faculty of Biology |                   |  |
| ECTS                                     | Meth                                                          | od of grading | Only after succ. con | npl. of module(s)  |                   |  |
| 10                                       | nume                                                          | rical grade   |                      |                    |                   |  |
| Duration Module level Other prerequisite |                                                               |               | Other prerequisites  |                    |                   |  |
| 1 semester graduate                      |                                                               |               |                      |                    |                   |  |
| C                                        | Combando                                                      |               |                      |                    |                   |  |

The module consists of the lecture *Zellpathologie* (*Cytopathology*) and the seminar *Zellbiologie-Meilensteine und Perspektiven* (*Milestones and Perspectives of Cell Biology*). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar *Milestones and Perspectives of Cell Biology*, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

#### Intended learning outcomes

Students possess a knowledge of the theoretical principles underlying cell pathology and are able to put this into the broader context of cell biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 320 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                  |         |               |                      | Abbreviation       |                   |  |
|---------------------------------------------------------------|---------|---------------|----------------------|--------------------|-------------------|--|
| Cell and Developmental Biology Master 2                       |         |               |                      |                    | 07-MS2ZE2-152-m01 |  |
| Module                                                        | e coord | inator        |                      | Module offered by  |                   |  |
| holder of the Chair of Cell Biology and Developmental Biology |         |               | Developmental Bio-   | Faculty of Biology |                   |  |
| ECTS                                                          | Metho   | od of grading | Only after succ. con | npl. of module(s)  |                   |  |
| 10                                                            | nume    | rical grade   |                      |                    |                   |  |
| Duration Module level Other                                   |         |               | Other prerequisites  | i                  |                   |  |
| 1 semester graduate                                           |         |               |                      |                    |                   |  |
| Conton                                                        | Ctt-    |               |                      |                    |                   |  |

The module consists of the lecture *Signale und Differenzierung* (Signals and Differentiation) and the seminar *Entwicklungsbiologie - Meilensteine und Perspektiven* (*Milestones and Perspectives of Developmental Biology*). The lecture *Signals and Differentiation* does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar *Milestones and Perspectives of Developmental Biology*, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

# **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                      | e title |                       | Abbreviation         |                    |                   |  |
|----------------------------|---------|-----------------------|----------------------|--------------------|-------------------|--|
| Infection Biology          |         |                       |                      |                    | 07-MS2INF-152-m01 |  |
| Module coordinator         |         |                       |                      | Module offered by  | I.                |  |
| holder                     | of the  | Chair of Microbiology |                      | Faculty of Biology |                   |  |
| ECTS                       | Meth    | od of grading         | Only after succ. cor | npl. of module(s)  |                   |  |
| 10                         | nume    | rical grade           |                      |                    |                   |  |
| Duration Module level Othe |         |                       | Other prerequisites  | 5                  |                   |  |
| 1 semester graduate        |         |                       |                      |                    |                   |  |
|                            |         |                       |                      |                    |                   |  |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

# **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                        |                                  |                     |                      |                    | Abbreviation     |
|-------------------------------------|----------------------------------|---------------------|----------------------|--------------------|------------------|
| Pathogenicity of Microorganisms     |                                  |                     |                      |                    | 07-MS2PA-152-m01 |
| Modul                               | e coord                          | inator              |                      | Module offered by  |                  |
| holder of the Chair of Microbiology |                                  |                     |                      | Faculty of Biology |                  |
| ECTS                                | Method of grading Only after suc |                     | Only after succ. con | npl. of module(s)  |                  |
| 10                                  | nume                             | numerical grade     |                      |                    |                  |
| Duration Module level               |                                  | Other prerequisites |                      |                    |                  |
| 1 seme                              | 1 semester graduate              |                     |                      |                    |                  |
|                                     |                                  |                     |                      |                    |                  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 1 | 07-MS2IM1-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| 2.0.09)                |                    |              |                                      |  |
|------------------------|--------------------|--------------|--------------------------------------|--|
| ECTS Method of grading |                    |              | Only after succ. compl. of module(s) |  |
| 10                     | 10 numerical grade |              |                                      |  |
| Duratio                | n                  | Module level | Other prerequisites                  |  |
| 1 seme                 | ster               | graduate     |                                      |  |

Fundamental concepts of modern cellular and molecular immunology. More information is available at http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologen\_master/.

# **Intended learning outcomes**

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Winter semester only

## Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title | Abbreviation      |
|--------------|-------------------|
| Immunology 2 | 07-MS2IM2-152-m01 |

| Module coordinator                                         | Module offered by  |
|------------------------------------------------------------|--------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |
| biology                                                    |                    |

| ,                      |                    |               |                                      |
|------------------------|--------------------|---------------|--------------------------------------|
| ECTS Method of grading |                    | od of grading | Only after succ. compl. of module(s) |
| 10                     | 10 numerical grade |               |                                      |
| Duratio                | n                  | Module level  | Other prerequisites                  |
| 1 seme                 | ster               | graduate      |                                      |

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

## **Intended learning outcomes**

Students are able to understand current topics in immunology and to discuss these in detail.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

Assessment offered: Summer semester only

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

## Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module                                                            | e title                     | Abbreviation               |                                              |  |
|-------------------------------------------------------------------|-----------------------------|----------------------------|----------------------------------------------|--|
| Virolog                                                           | gy 1                        | 07-MS2V1-152-m01           |                                              |  |
| Modul                                                             | e coordinator               | Module offered by          |                                              |  |
| Managing Director of the Institute of Virology and Immuno biology |                             |                            | Faculty of Biology                           |  |
| ECTS                                                              | Method of grading           | Only after succ. con       | mpl. of module(s)                            |  |
| 10                                                                | numerical grade             |                            |                                              |  |
| Duratio                                                           | on Module level             | Other prerequisites        | Other prerequisites                          |  |
| 1 seme                                                            | ster graduate               |                            |                                              |  |
| Conten                                                            | its                         | ,                          |                                              |  |
| This co                                                           | urse offers an introduction | to virology and current re | search in the field of virology.             |  |
| Intend                                                            | ed learning outcomes        |                            |                                              |  |
| Ctoolson                                                          |                             |                            | scues in virology and to discuss those in de |  |

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Winter semester only

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Module title                                               |                    | Abbreviation |
|------------------------------------------------------------|--------------------|--------------|
| Virology 2                                                 | 07-MS2V2-152-m01   |              |
| Module coordinator                                         | Module offered by  |              |
| Managing Director of the Institute of Virology and Immuno- | Faculty of Biology |              |

| ECTS Method of grading |  | od of grading | Only after succ. compl. of module(s) |
|------------------------|--|---------------|--------------------------------------|
| 10 numerical grade     |  | rical grade   |                                      |
| Duration Module le     |  | Module level  | Other prerequisites                  |
| 1 semester             |  | graduate      |                                      |

biology

This course offers an introduction to virology and current research in the field of virology.

## **Intended learning outcomes**

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

Assessment offered: Summer semester only

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Module title           |                     |                                      |               |                    | Abbreviation     |
|------------------------|---------------------|--------------------------------------|---------------|--------------------|------------------|
| Human                  | Genet               | ics                                  |               |                    | 07-MS2HG-152-m01 |
| Modul                  | e coord             | inator                               |               | Module offered by  |                  |
| Manag                  | ing Dire            | ector of the Institute of H          | uman Genetics | Faculty of Biology |                  |
| ECTS Method of grading |                     | Only after succ. compl. of module(s) |               |                    |                  |
| 10                     | 10 numerical grade  |                                      |               |                    |                  |
| Duration Module level  |                     | Other prerequisites                  |               |                    |                  |
| 2 seme                 | 2 semester graduate |                                      |               |                    |                  |
| Combonia               |                     |                                      |               |                    |                  |

This module will discuss current topics in human genetics.

## **Intended learning outcomes**

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title                            |         |                                       |                      |                    | Abbreviation    |
|-----------------------------------------|---------|---------------------------------------|----------------------|--------------------|-----------------|
| Curren                                  | t Metho | ods in Biology                        |                      |                    | 07-MS31-152-m01 |
| Modul                                   | e coord | inator                                |                      | Module offered by  |                 |
| holder of the Chair of Plant Physiology |         |                                       | ology and Biophysics | Faculty of Biology |                 |
| ECTS                                    | Metho   | Method of grading Only after succ. co |                      | ompl. of module(s) |                 |
| 10                                      | nume    | rical grade                           | grade                |                    |                 |
| Duration Module level                   |         | Other prerequisit                     | Other prerequisites  |                    |                 |
| 1 semester graduate                     |         | graduate                              |                      |                    |                 |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

## **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 333 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                     |                             |                           | Abbreviation         |                    |                  |
|----------------------------------|-----------------------------|---------------------------|----------------------|--------------------|------------------|
| Biophy                           | Biophysics and Biochemistry |                           |                      |                    | 07-MS3BB-152-m01 |
| Module coordinator M             |                             |                           | Module offered by    |                    |                  |
| holder                           | of the                      | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                  |
| ECTS                             | Meth                        | od of grading             | Only after succ. con | npl. of module(s)  |                  |
| 10                               | nume                        | rical grade               |                      |                    |                  |
| Duration Module level Other prer |                             | Other prerequisites       |                      |                    |                  |
| 1 semester graduate              |                             |                           |                      |                    |                  |
|                                  |                             |                           |                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

## **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                                |          |                     |                      |                    | Abbreviation       |  |
|-------------------------------------------------------------|----------|---------------------|----------------------|--------------------|--------------------|--|
| Plant Immunobiology and Pharmaceutical Biology              |          |                     |                      |                    | 07-MS31PIP-152-m01 |  |
| Module                                                      | e coord  | inator              |                      | Module offered by  |                    |  |
| holder of the Chair of Ecophysiology and Vegetation Ecology |          |                     | nd Vegetation Ecolo- | Faculty of Biology |                    |  |
| ECTS                                                        | Metho    | od of grading       | Only after succ. con | npl. of module(s)  |                    |  |
| 10                                                          | nume     | rical grade         |                      |                    |                    |  |
| Duration Module level Other prerequisites                   |          | Other prerequisites |                      |                    |                    |  |
| 1 semester graduate                                         |          |                     |                      |                    |                    |  |
| Conten                                                      | Contents |                     |                      |                    |                    |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

### **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

# Workload

300 h

# Teaching cycle

--



## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                |      |                     |                      |                    | Abbreviation        |  |
|-------------------------------------------------------------|------|---------------------|----------------------|--------------------|---------------------|--|
| Plant Ecology                                               |      |                     |                      |                    | 07-MS31P0EK-152-m01 |  |
| Module coordinator                                          |      |                     |                      | Module offered by  |                     |  |
| holder of the Chair of Ecophysiology and Vegetation Ecology |      |                     | nd Vegetation Ecolo- | Faculty of Biology |                     |  |
| ECTS                                                        | Meth | od of grading       | Only after succ. con | npl. of module(s)  |                     |  |
| 10                                                          | nume | rical grade         |                      |                    |                     |  |
| Duration Module level Other prerequisit                     |      | Other prerequisites |                      |                    |                     |  |
| 1 semester graduate                                         |      |                     |                      |                    |                     |  |
|                                                             |      |                     |                      |                    |                     |  |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

# **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

## Workload

300 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title                        |          |                         |                      | Abbreviation       |     |  |
|-------------------------------------|----------|-------------------------|----------------------|--------------------|-----|--|
| Systems Biology F1                  |          |                         |                      | 07-MS3SYF1-152-m01 |     |  |
| Module coordinator                  |          |                         |                      | Module offered by  | l . |  |
| holder                              | of the   | Chair of Bioinformatics |                      | Faculty of Biology |     |  |
| ECTS                                | Meth     | od of grading           | Only after succ. con | npl. of module(s)  |     |  |
| 10                                  | nume     | rical grade             |                      |                    |     |  |
| Duration Module level Other prerequ |          | Other prerequisites     |                      |                    |     |  |
| 1 semester graduate                 |          |                         |                      |                    |     |  |
| Contor                              | Contonte |                         |                      |                    |     |  |

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling).

# **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of systems biology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

## Workload

300 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                    |                         |                      | Abbreviation       |                    |
|-----------------------|--------------------|-------------------------|----------------------|--------------------|--------------------|
| Syster                | Systems Biology F2 |                         |                      |                    | 07-MS3SYF2-152-m01 |
| Module coordinator    |                    |                         |                      | Module offered by  |                    |
| holder                | of the             | Chair of Bioinformatics |                      | Faculty of Biology |                    |
| ECTS                  | Meth               | od of grading           | Only after succ. con | npl. of module(s)  |                    |
| 15                    | (not)              | successfully completed  |                      |                    |                    |
| Duration Module level |                    | Other prerequisites     |                      |                    |                    |
| 1 semester graduate   |                    |                         |                      |                    |                    |
| <i>-</i> .            |                    |                         |                      |                    |                    |

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling). The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

## **Intended learning outcomes**

Proficiency in one or more methods in systems biology that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

450 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# Module Group 4

(ECTS credits)



# **Neuroethology - Neurogenetics**

(30 ECTS credits)

Students must combine the topics "Neuroethology -- Neurogenetics" and "Neuroethology -- Behavioural Physiology and Sociobiology".



| Module title               |          |                           |                      |                    | Abbreviation |
|----------------------------|----------|---------------------------|----------------------|--------------------|--------------|
| Neurogenetics of Behaviour |          |                           |                      | 07-MS1NB-152-m01   |              |
| Module coordinator         |          |                           |                      | Module offered by  |              |
| holder                     | of the   | Chair of Neurobiology and | d Genetics           | Faculty of Biology |              |
| ECTS                       | Meth     | od of grading             | Only after succ. con | npl. of module(s)  |              |
| 10                         | nume     | rical grade               |                      |                    |              |
| Duration Module level C    |          | Other prerequisites       |                      |                    |              |
| 1 semester graduate        |          |                           |                      |                    |              |
| Camban                     | Combando |                           |                      |                    |              |

To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the art view on current and important topics of behavioural neurobiology (incl. e. g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

## **Intended learning outcomes**

In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour. In the seminar, students practise presenting and discussing research findings in English.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

## Workload

300 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 347 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                |          |                          |                      | Abbreviation       |  |
|-----------------------------|----------|--------------------------|----------------------|--------------------|--|
| Endogenous Clocks           |          |                          |                      | 07-MS1CB-152-m01   |  |
| Module coordinator          |          |                          |                      | Module offered by  |  |
| holder                      | of the   | Chair of Neurobiology an | d Genetics           | Faculty of Biology |  |
| ECTS                        | Meth     | od of grading            | Only after succ. con | npl. of module(s)  |  |
| 10                          | nume     | rical grade              |                      |                    |  |
| Duration Module level Other |          | Other prerequisites      | i                    |                    |  |
| 1 semester graduate         |          |                          |                      |                    |  |
| Contor                      | Contents |                          |                      |                    |  |

Introduction into endogenous clocks of unicellular organisms, fungi, plants and animals, with a focus on the neuronal organisation of the clock in the brain of mammals and insects. The biological functions of endogenous clocks and the underlying mechanisms will be discussed on the molecular, cellular and organismic levels. It will be explained how clocks adjust to a 24h day with variable photoperiods. Applied aspects regarding e. g. shift work or jetlag will also be discussed.

#### **Intended learning outcomes**

The students learn fundamental principles underlying chronobiology/endogenous clocks and obtain an insight into current research in the field. In the seminar, they practise their presentation skills and the discussion of research findings in English.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                          |        |                           |                      |                    | Abbreviation |
|---------------------------------------|--------|---------------------------|----------------------|--------------------|--------------|
| Neurobiology F1                       |        |                           |                      | 07-MS1NF1-152-m01  |              |
| Module coordinator N                  |        |                           |                      | Module offered by  |              |
| holder                                | of the | Chair of Neurobiology and | d Genetics           | Faculty of Biology |              |
| ECTS                                  | Meth   | od of grading             | Only after succ. con | npl. of module(s)  |              |
| 10                                    | nume   | rical grade               |                      |                    |              |
| Duration Module level Other prerequis |        | Other prerequisites       |                      |                    |              |
| 1 seme                                | ster   | graduate                  |                      |                    |              |
|                                       |        |                           |                      |                    |              |

A current topic in the field of neurobiology will be investigated. The practical course will be offered in different specialisations: molecular, clinical, cellular, developmental or behavioural neurobiology or in neurogenetics. In addition to a literature search, a variety of neurobiological methods (for example: electrophysiology, immuno-histochemistry, molecular biological techniques, clinical and neurogenetic techniques) and different model systems are offered. The experimental results will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

## **Intended learning outcomes**

The participants are able to conduct scientific research within the field of neurobiology. They have acquired the knowledge and skills (e. g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to carry out and document neurobiological experiments according to best practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                |          |                           |                      | Abbreviation       |                   |
|-----------------------------|----------|---------------------------|----------------------|--------------------|-------------------|
| Neurobiology F2             |          |                           |                      |                    | 07-MS1NF2-152-m01 |
| Module coordinator          |          |                           |                      | Module offered by  |                   |
| holder                      | of the   | Chair of Neurobiology and | d Genetics           | Faculty of Biology |                   |
| ECTS                        | Meth     | od of grading             | Only after succ. con | npl. of module(s)  |                   |
| 15                          | (not)    | successfully completed    |                      |                    |                   |
| Duration Module level Other |          | Other prerequisites       | i                    |                    |                   |
| 1 semester graduate         |          |                           |                      |                    |                   |
| Conter                      | Contents |                           |                      |                    |                   |

The students will independently work on a smaller project within a current line of research at the Chair. Neurobiological, genetic or molecular techniques will be tested and adapted according to the research aim. The progress of the experiments and the current line of research will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

# **Intended learning outcomes**

The participants are able to independently conduct scientific research within the field of neurobiology and to adapt a research plan according to the experimental progress. They have acquired the knowledge and skills (e. g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to independently carry out, document and interpret neurobiological experiments according to best practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

450 h

# **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Neuroethology - Behavioural Physiology and Sociobiology**

(30 ECTS credits)

Students must combine the topics "Neuroethology -- Neurogenetics" and "Neuroethology -- Behavioural Physiology and Sociobiology".



| Modul                                                   | Module title |                      |                      |                    | Abbreviation   |
|---------------------------------------------------------|--------------|----------------------|----------------------|--------------------|----------------|
| Neurobiology, Behavioural Physiology and Animal Ecology |              |                      |                      | <i>'</i>           | 07-MS1-152-m01 |
| Module coordinator M                                    |              |                      |                      | Module offered by  |                |
| Dean c                                                  | of Studi     | es Biologie (Biology | )                    | Faculty of Biology |                |
| ECTS                                                    | Meth         | od of grading        | Only after succ. cor | mpl. of module(s)  |                |
| 10                                                      | nume         | rical grade          |                      |                    |                |
| Duration Module level Other prerequisites               |              |                      | Other prerequisites  | 5                  |                |
| 1 semester graduate                                     |              |                      |                      |                    |                |
|                                                         |              |                      |                      |                    |                |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

# **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                                  |      |               |                      |                    | Abbreviation     |  |
|---------------------------------------------------------------|------|---------------|----------------------|--------------------|------------------|--|
| Experimental Sociobiology                                     |      |               |                      |                    | 07-MS1ES-152-m01 |  |
| Module coordinator                                            |      |               |                      | Module offered by  |                  |  |
| holder of the Chair of Behavioral Physiology and Sociobiology |      |               | ology and Sociobio-  | Faculty of Biology |                  |  |
| ECTS                                                          | Meth | od of grading | Only after succ. con | npl. of module(s)  |                  |  |
| 10                                                            | nume | rical grade   |                      |                    |                  |  |
| Duration                                                      |      | Module level  | Other prerequisites  |                    |                  |  |
| 1 semester                                                    |      | graduate      |                      |                    |                  |  |
| Contonto                                                      |      |               |                      |                    |                  |  |

The lecture covers the diversity and the development of social behaviour as well as the behavioural physiology and mechanisms of neurobiology that are the basis of the organisation of social groups. A special focus is on current research in the Faculty. With the help of selected publications, the seminar will discuss and explore in more detail the topics covered in the lecture.

#### **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex correlations in behavioural biology. Students are able to recognise and interpret relationships between various aspects of sociobiology. They are able to formulate scientific questions in the context of sociobiology and are able to discuss cutting edge literature in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 358 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                   |      |               |                      |                    | Abbreviation      |  |
|----------------------------------------------------------------|------|---------------|----------------------|--------------------|-------------------|--|
| Behavioural Physiology and Sociobiology F1                     |      |               |                      |                    | 07-MS1VF1-152-m01 |  |
| Module coordinator                                             |      |               |                      | Module offered by  |                   |  |
| holder of the Chair of Behavioral Physiology and Sociobic logy |      |               | ology and Sociobio-  | Faculty of Biology |                   |  |
| ECTS                                                           | Meth | od of grading | Only after succ. con | npl. of module(s)  |                   |  |
| 10                                                             | nume | rical grade   |                      |                    |                   |  |
| Duration                                                       |      | Module level  | Other prerequisites  |                    |                   |  |
| 1 semester                                                     |      | graduate      |                      |                    |                   |  |
|                                                                |      |               |                      |                    |                   |  |

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will gain an insight into the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

## **Intended learning outcomes**

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they are able to process and document the results obtained and to present them to a scientific audience.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 360 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                  |          |                        |                      |                    | Abbreviation      |
|-----------------------------------------------|----------|------------------------|----------------------|--------------------|-------------------|
| Behavioural Physiology and Sociobiology F2    |          |                        |                      |                    | 07-MS1VF2-152-m01 |
| Module                                        | e coord  | inator                 |                      | Module offered by  |                   |
| holder of the Chair of Behavioral Physio logy |          |                        | ology and Sociobio-  | Faculty of Biology |                   |
| ECTS                                          | Metho    | od of grading          | Only after succ. con | npl. of module(s)  |                   |
| 15                                            | (not)    | successfully completed |                      |                    |                   |
| Duration Module level                         |          | Other prerequisites    |                      |                    |                   |
| 1 semester graduate                           |          |                        |                      |                    |                   |
| Cantan                                        | Contonto |                        |                      |                    |                   |

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will learn to plan experimental series and to apply the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

#### Intended learning outcomes

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they have learned to interpret the results obtained, taking into account current literature, and to place them in the context of other research in the field.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

# Workload

450 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Cell and Developmental Biology**

(30 ECTS credits)

Students must combine the topics "Molecular Infection Biology" and "Cell and Developmental Biology".



| Module title                       |          |                     |                      | Abbreviation       |  |
|------------------------------------|----------|---------------------|----------------------|--------------------|--|
| Molecular Biology                  |          |                     |                      | 07-MS2-152-m01     |  |
| Module coordinator                 |          |                     |                      | Module offered by  |  |
| Dean of Studies Biologie (Biology) |          |                     |                      | Faculty of Biology |  |
| ECTS                               | Meth     | od of grading       | Only after succ. cor | npl. of module(s)  |  |
| 10                                 | nume     | rical grade         |                      |                    |  |
| Duration Module level              |          | Other prerequisites | Other prerequisites  |                    |  |
| 1 semester graduate                |          |                     |                      |                    |  |
| Conter                             | Contents |                     |                      |                    |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 365 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title                            |                                                               |                     |                      | Abbreviation       |                   |
|-----------------------------------------|---------------------------------------------------------------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 2 |                                                               |                     |                      |                    | 07-MS2ZE2-152-m01 |
| Module                                  | e coord                                                       | inator              |                      | Module offered by  |                   |
| holder<br>logy                          | holder of the Chair of Cell Biology and Developmental Biology |                     |                      | Faculty of Biology |                   |
| ECTS                                    | Metho                                                         | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                      | nume                                                          | rical grade         |                      |                    |                   |
| Duration Module level Other prerequisit |                                                               | Other prerequisites |                      |                    |                   |
| 1 semester graduate                     |                                                               |                     |                      |                    |                   |
| Conten                                  | Contents                                                      |                     |                      |                    |                   |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

## **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

## **Teaching cycle**

# Referred to in LPO I (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title             |          |                       |                  | Abbreviation        |                    |  |
|--------------------------|----------|-----------------------|------------------|---------------------|--------------------|--|
| Methods in Life Sciences |          |                       |                  |                     | 07-MLS1-152-m01    |  |
| Module coordinator       |          |                       |                  | Module offered by   | y                  |  |
| degree                   | e progra | mme coordinator Biolo | ogie (Biology)   | Faculty of Biology  | Faculty of Biology |  |
| ECTS                     | Meth     | od of grading         | Only after succ. | compl. of module(s) |                    |  |
| 10                       | nume     | rical grade           |                  |                     |                    |  |
| Duration Module level (  |          | Other prerequisites   |                  |                     |                    |  |
| 1 semester graduate      |          |                       |                  |                     |                    |  |
| Contents                 |          |                       |                  |                     |                    |  |

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

#### **Intended learning outcomes**

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

#### Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021)



| Module title                                                  |           |                     |                      | Abbreviation       |                    |
|---------------------------------------------------------------|-----------|---------------------|----------------------|--------------------|--------------------|
| Cell and Developmental Biology F1                             |           |                     |                      |                    | 07-MS2ZEF1-152-m01 |
| Module                                                        | e coord   | inator              |                      | Module offered by  |                    |
| holder of the Chair of Cell Biology and Developmental Biology |           |                     | Developmental Bio-   | Faculty of Biology |                    |
| ECTS                                                          | Meth      | od of grading       | Only after succ. con | npl. of module(s)  |                    |
| 10                                                            | nume      | rical grade         |                      |                    |                    |
| Duration Module level Other prerequisit                       |           | Other prerequisites | i                    |                    |                    |
| 1 semester graduate                                           |           |                     |                      |                    |                    |
| C 1                                                           | Combonido |                     |                      |                    |                    |

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. Large parts of this practical course are devoted to small projects, which should provide sustained insights into current research activities of the Chair. Interactions with Master's students, doctoral researchers and post-docs prepare participants for a working in a team-based environment.

## **Intended learning outcomes**

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

\_\_

# Workload

300 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 371 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                   |         |                        |                      | Abbreviation       |                    |
|------------------------------------------------|---------|------------------------|----------------------|--------------------|--------------------|
| Cell and Developmental Biology F2              |         |                        |                      |                    | 07-MS2ZEF2-152-m01 |
| Module                                         | e coord | inator                 |                      | Module offered by  |                    |
| holder of the Chair of Cell Biology and Dology |         |                        | Developmental Bio-   | Faculty of Biology |                    |
| ECTS                                           | Meth    | od of grading          | Only after succ. con | npl. of module(s)  |                    |
| 15                                             | (not)   | successfully completed |                      |                    |                    |
| Duration Module level                          |         | Other prerequisites    |                      |                    |                    |
| 1 semester graduate                            |         |                        |                      |                    |                    |
| C                                              | Ctt-    |                        |                      |                    |                    |

Well-defined aspects of scientific projects are addressed with independently designed experiments in the context of current research projects in the field of cell and developmental biology. The techniques applied are evaluated on the basis of the results obtained and modified where necessary. The results of all experiments as well as the impact on the research project are presented and discussed in a progress report seminar within the research group.

#### Intended learning outcomes

The participants are able to independently carry out scientific experiments in the fields of cell and developmental biology and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

450 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 373 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Molecular Infection Biology**

(30 ECTS credits)

Students must combine the topics "Molecular Infection Biology" and "Cell and Developmental Biology".



| Module title          |          |                       |                     | Abbreviation       |                |
|-----------------------|----------|-----------------------|---------------------|--------------------|----------------|
| Molecular Biology     |          |                       |                     |                    | 07-MS2-152-m01 |
| Module coordinator    |          |                       |                     | Module offered by  |                |
| Dean o                | of Studi | es Biologie (Biology) |                     | Faculty of Biology |                |
| ECTS                  | Meth     | od of grading         | Only after succ. co | mpl. of module(s)  |                |
| 10                    | nume     | rical grade           |                     |                    |                |
| Duration Module level |          | Other prerequisites   | Other prerequisites |                    |                |
| 1 semester graduate   |          |                       |                     |                    |                |
| Contents              |          |                       |                     |                    |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 376 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title             |                                              |               |                  | Abbreviation        |                    |                 |
|--------------------------|----------------------------------------------|---------------|------------------|---------------------|--------------------|-----------------|
| Methods in Life Sciences |                                              |               |                  |                     |                    | 07-MLS1-152-m01 |
| Module coordinator       |                                              |               |                  | М                   | Module offered by  |                 |
| degree                   | degree programme coordinator Biologie (Biolo |               |                  | Fa                  | Faculty of Biology |                 |
| ECTS                     | Meth                                         | od of grading | Only after succ. | compl               | of module(s)       |                 |
| 10                       | nume                                         | rical grade   |                  |                     |                    |                 |
| Duration Module level    |                                              |               | Other prerequis  | Other prerequisites |                    |                 |
| 1 semester graduate      |                                              |               |                  |                     |                    |                 |
| Combants                 |                                              |               |                  |                     |                    |                 |

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

#### **Intended learning outcomes**

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

#### Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021)



| Module title                         |          |                       |                      |                   | Abbreviation     |
|--------------------------------------|----------|-----------------------|----------------------|-------------------|------------------|
| Pathog                               | genicity | of Microorganisms     |                      |                   | 07-MS2PA-152-m01 |
| Module coordinator Module offered by |          |                       |                      |                   |                  |
| holder                               | of the   | Chair of Microbiology | Faculty of Biology   |                   |                  |
| ECTS                                 | Meth     | od of grading         | Only after succ. con | npl. of module(s) |                  |
| 10                                   | nume     | rical grade           |                      |                   |                  |
| Duration Module level                |          | Other prerequisites   |                      |                   |                  |
| 1 semester graduate                  |          |                       |                      |                   |                  |
|                                      |          |                       |                      |                   |                  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |         |                       |                      |                   | Abbreviation      |  |
|-----------------------|---------|-----------------------|----------------------|-------------------|-------------------|--|
| Microb                | oiology | F1                    |                      |                   | 07-MS2MF1-152-m01 |  |
| Module coordinator    |         |                       |                      | Module offered by |                   |  |
| holder                | of the  | Chair of Microbiology | Faculty of Biology   |                   |                   |  |
| ECTS                  | Meth    | od of grading         | Only after succ. con | npl. of module(s) |                   |  |
| 10                    | nume    | rical grade           |                      |                   |                   |  |
| Duration Module level |         | Other prerequisites   |                      |                   |                   |  |
| 1 semester graduate   |         |                       |                      |                   |                   |  |
|                       |         |                       |                      |                   |                   |  |

Participants will work independently on a current research project dealing with microbial pathogens and their interactions with the host. Participants will employ a variety of state-of-the-art methods within the fields of molecular biology, microbiology, cellular biology, and immunology as well as data analysis and literature research techniques. Results will be documented and discussed in a seminar paper or an oral presentation.

# **Intended learning outcomes**

Participants will acquire the skills to experimentally address scientific questions in molecular biology and infection biology, properly document experimental results and adhere to the standards of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

# **Additional information**

The internship must be completed full-time within a period of 5 to 6 weeks.

#### Workload

300 h

#### Teaching cycle

Teaching cycle: Ongoing, after consultation with the supervisor and registration for both winter and summer semesters.

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |         |                          |                      |                   | Abbreviation      |  |
|-----------------------|---------|--------------------------|----------------------|-------------------|-------------------|--|
| Microb                | oiology | F2                       |                      |                   | 07-MS2MF2-152-m01 |  |
| Modul                 | e coord | inator                   |                      | Module offered by |                   |  |
| holder                | of the  | Chair of Microbiology    | Faculty of Biology   |                   |                   |  |
| ECTS                  | Meth    | od of grading            | Only after succ. con | npl. of module(s) |                   |  |
| 15                    | (not)   | ) successfully completed |                      |                   |                   |  |
| Duration Module level |         |                          | Other prerequisites  |                   |                   |  |
| 1 semester graduate   |         |                          |                      |                   |                   |  |
|                       |         |                          |                      |                   |                   |  |

Participants will work independently on a current research project dealing with microbiology and infection biology. They will apply advanced experimental techniques in microbiology, cell biology and molecular biology according to the project requirements. Progress of the research project will be reported in a seminar paper, a research paper or an oral presentation.

# **Intended learning outcomes**

The participants will acquire the skills to independently perform basic research on microbiology and infection biology according to the standards of good scientific practice and to properly document, interpret and present experimental results.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

The internship must be completed full-time within a period of 10 to 12 weeks.

# Workload

450 h

# **Teaching cycle**

Teaching cycle: Ongoing, after consultation with the supervisor and registration for both winter and summer semesters.

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Systems Biology and Metabolomics - Systems Biology**

(30 ECTS credits)

Students must combine the topics "Systems Biology and Metabolomics -- Systems Biology" and "Systems Biology and Metabolomics -- Metabolomics".



| Modul                 | e title            |                         | Abbreviation         |                    |                   |  |
|-----------------------|--------------------|-------------------------|----------------------|--------------------|-------------------|--|
| Topics                | in Syst            | tems Biology            |                      |                    | 07-MS3TSY-152-m01 |  |
| Modul                 | Module coordinator |                         |                      | Module offered by  |                   |  |
| holder                | of the             | Chair of Bioinformatics |                      | Faculty of Biology |                   |  |
| ECTS                  | Meth               | od of grading           | Only after succ. con | npl. of module(s)  |                   |  |
| 10                    | nume               | rical grade             |                      |                    |                   |  |
| Duration Module level |                    | Other prerequisites     |                      |                    |                   |  |
| 1 seme                | ester              | graduate                |                      |                    |                   |  |
| Canta                 | Contonto           |                         |                      |                    |                   |  |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

#### **Intended learning outcomes**

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

----

Allocation of places

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                                                   | e title                            |                     | Abbreviation         |                    |                |  |
|---------------------------------------------------------|------------------------------------|---------------------|----------------------|--------------------|----------------|--|
| Neurobiology, Behavioural Physiology and Animal Ecology |                                    |                     |                      |                    | 07-MS1-152-m01 |  |
| Module coordinator Module offered by                    |                                    |                     |                      |                    |                |  |
| Dean o                                                  | Dean of Studies Biologie (Biology) |                     |                      | Faculty of Biology |                |  |
| ECTS                                                    | Meth                               | od of grading       | Only after succ. con | npl. of module(s)  |                |  |
| 10                                                      | nume                               | rical grade         |                      |                    |                |  |
| Duration Module level Other p                           |                                    | Other prerequisites |                      |                    |                |  |
| 1 seme                                                  | 1 semester graduate                |                     |                      |                    |                |  |
|                                                         |                                    |                     |                      |                    |                |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

## **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

#### Workload

300 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                          |      |                     |                     |                    | Abbreviation       |
|---------------------------------------|------|---------------------|---------------------|--------------------|--------------------|
| Systems Biology F1                    |      |                     |                     |                    | 07-MS3SYF1-152-m01 |
| Module coordinator Module offered by  |      |                     |                     |                    |                    |
| holder of the Chair of Bioinformatics |      |                     | cs                  | Faculty of Biology |                    |
| ECTS                                  | Meth | od of grading       | Only after succ. co | mpl. of module(s)  |                    |
| 10                                    | nume | erical grade        |                     |                    |                    |
| Duration Module level                 |      | Other prerequisites | 5                   |                    |                    |
| 1 semester graduate                   |      |                     |                     |                    |                    |
| Conto                                 | ntc  | •                   |                     |                    |                    |

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling).

#### **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of systems biology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |        |                         |                      |                   | Abbreviation       |  |
|-----------------------|--------|-------------------------|----------------------|-------------------|--------------------|--|
| Systems Biology F2    |        |                         |                      |                   | 07-MS3SYF2-152-m01 |  |
| Module coordinator    |        |                         |                      | Module offered by | l .                |  |
| holder                | of the | Chair of Bioinformatics | Faculty of Biology   |                   |                    |  |
| ECTS                  | Meth   | od of grading           | Only after succ. con | npl. of module(s) |                    |  |
| 15                    | (not)  | successfully completed  |                      |                   |                    |  |
| Duration Module level |        | Other prerequisites     |                      |                   |                    |  |
| 1 semester graduate   |        |                         |                      |                   |                    |  |
|                       |        |                         |                      |                   |                    |  |

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling). The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

#### Intended learning outcomes

Proficiency in one or more methods in systems biology that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

# Workload

450 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Systems Biology and Metabolomics - Metabolomics**

(30 ECTS credits)

Students must combine the topics "Systems Biology and Metabolomics -- Systems Biology" and "Systems Biology and Metabolomics -- Metabolomics".



| Modul                 | Module title |                       |                      |                    | Abbreviation   |  |
|-----------------------|--------------|-----------------------|----------------------|--------------------|----------------|--|
| Molecu                | ılar Bio     | logy                  |                      |                    | 07-MS2-152-m01 |  |
| Module coordinator    |              |                       |                      | Module offered by  |                |  |
| Dean o                | f Studi      | es Biologie (Biology) |                      | Faculty of Biology |                |  |
| ECTS                  | Meth         | od of grading         | Only after succ. con | npl. of module(s)  |                |  |
| 10                    | nume         | rical grade           |                      |                    |                |  |
| Duration Module level |              | Other prerequisites   |                      |                    |                |  |
| 1 semester graduate   |              |                       |                      |                    |                |  |
| Conter                | Contents     |                       |                      |                    |                |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

\_\_

# Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 395 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Module title          |         |                         |                      | Abbreviation       |                   |
|-----------------------|---------|-------------------------|----------------------|--------------------|-------------------|
| Topics                | in Bioi | nformatics              |                      |                    | 07-MS2TBI-152-m01 |
| Module coordinator    |         |                         |                      | Module offered by  |                   |
| holder                | of the  | Chair of Bioinformatics |                      | Faculty of Biology |                   |
| ECTS                  | Meth    | od of grading           | Only after succ. con | ıpl. of module(s)  |                   |
| 10                    | nume    | rical grade             |                      |                    |                   |
| Duration Module level |         | Other prerequisites     |                      |                    |                   |
| 1 semester graduate   |         |                         |                      |                    |                   |
|                       |         |                         |                      |                    |                   |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. next generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

#### **Intended learning outcomes**

Students are able to understand recent results in bioinformatics and discuss their implications. They have developed an advanced knowledge about typical techniques, scientific objectives and scientific questions.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                                  |       |                     |                      |                    | Abbreviation      |
|---------------------------------------------------------------|-------|---------------------|----------------------|--------------------|-------------------|
| Cell and Developmental Biology Master 2                       |       |                     |                      |                    | 07-MS2ZE2-152-m01 |
| Module coordinator                                            |       |                     |                      | Module offered by  |                   |
| holder of the Chair of Cell Biology and Developmental Biology |       |                     | Developmental Bio-   | Faculty of Biology |                   |
| ECTS                                                          | Metho | od of grading       | Only after succ. con | npl. of module(s)  |                   |
| 10                                                            | nume  | rical grade         |                      |                    |                   |
| Duration Module level                                         |       | Other prerequisites |                      |                    |                   |
| 1 semester graduate                                           |       |                     |                      |                    |                   |
| Contents                                                      |       |                     |                      |                    |                   |

The module consists of the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie - Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signals and Differentiation does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments. In the seminar Milestones and Perspectives of Developmental Biology, classic ground-breaking publications in the field of developmental biology are discussed from an unusual point of view.

#### **Intended learning outcomes**

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

### Referred to in LPO I (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title        |                       |                      |                     |                                      | Abbreviation |
|---------------------|-----------------------|----------------------|---------------------|--------------------------------------|--------------|
| Pharm               | aceutic               | al Biology and Meta  | 07-MS3PBMF1-152-m01 |                                      |              |
| Module coordinator  |                       |                      |                     | Module offered by                    | I.           |
| holder              | of the                | Chair of Pharmaceuti | ical Biology        | Biology Faculty of Biology           |              |
| ECTS                | Meth                  | od of grading        | Only after succ. co | Only after succ. compl. of module(s) |              |
| 10                  | nume                  | rical grade          |                     |                                      |              |
| Duratio             | Duration Module level |                      | Other prerequisites | Other prerequisites                  |              |
| 1 semester graduate |                       |                      |                     |                                      |              |
| Conter              | Contents              |                      |                     |                                      |              |

All organisms are able to reprogram their metabolism in response to various endogenous or exogenous perturbations. Reprogramming of metabolism is often correlated to phenotypic changes e. g. in disease development, physiology or behaviour. At the Chair of Pharmaceutical Biology, we apply metabolomics for gene function- or stress response analysis. Students can choose a topic from the variety of ongoing projects. Depending on the scientific question addressed by the research team at the Chair, the methodological approach involves techniques in the field of metabolomics/bioanalytics and/or molecular biology. In this module, students will be trained to use quantitative metabolite analysis methods (chromatography, mass spectrometry) and apply advanced molecular biology techniques. Depending on the project, different model organisms are studied. Prior knowledge in metabolite analysis or mass spectrometry is not required. Current scientific questions in the life sciences form the basis to impart scientific concepts and to train students in the laboratory. The module involves the experimental design, realisation and critical evaluation of scientific experiments as well as the documentation and presentation of the progress. More information is available on request or can be found at http://www.pbio.bio-zentrum.uni-wuerzburg.de/.

#### Intended learning outcomes

Students will be trained in using specific molecular biology methods and/or metabolomics approaches to address scientific questions, in the documentation of experimental procedures and results, and in the interpretation of data.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 400 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title        |                       |                           |                      |                    | Abbreviation        |
|---------------------|-----------------------|---------------------------|----------------------|--------------------|---------------------|
| Pharm               | aceutic               | al Biology and Metabolo   | mics F2              |                    | 07-MS3PBMF2-152-m01 |
| Module coordinator  |                       |                           |                      | Module offered by  |                     |
| holder              | of the                | Chair of Pharmaceutical E | Biology              | Faculty of Biology |                     |
| ECTS                | Meth                  | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 15                  | (not)                 | successfully completed    |                      |                    |                     |
| Duratio             | Duration Module level |                           | Other prerequisites  |                    |                     |
| 1 semester graduate |                       |                           |                      |                    |                     |
| Contents            |                       |                           |                      |                    |                     |

Students will be involved in current research projects in pharmaceutical biology or in collaborative research projects that focus on the regulation of metabolism and analysis of metabolic pathways (e.g. in the context of reactions towards biotic or abiotic stress, functional and phenotypic analysis of mutants, or drug metabolism). Aspects of the scientific question will be independently addressed by the students. Molecular biology methods and/or metabolomic approaches will be optimised for and adapted to the specific problem. Experimental results and progress in the understanding of biological problems will be documented in the form of a log and presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wuerzburg.de/.

#### **Intended learning outcomes**

The participants are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach scientific topics in pharmaceutical biology and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. They are able to apply specific techniques required to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

## Workload

450 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Molecular and Computational Biology - Computational Biology**

(30 ECTS credits)

Students may combine the topic "Molecular and Computational Biology -- Computational Biology" with "Molecular and Computational Biology -- Molecular Biology". Alternatively, they may combine this topic with "Protein Chemistry" or "Molecular and Cellular Biophysics".



| Module title              |          |                         |                      |                    | Abbreviation      |
|---------------------------|----------|-------------------------|----------------------|--------------------|-------------------|
| Topics in Systems Biology |          |                         |                      |                    | 07-MS3TSY-152-m01 |
| Module coordinator        |          |                         |                      | Module offered by  |                   |
| holder                    | of the   | Chair of Bioinformatics |                      | Faculty of Biology |                   |
| ECTS                      | Meth     | od of grading           | Only after succ. con | npl. of module(s)  |                   |
| 10                        | nume     | rical grade             |                      |                    |                   |
| Duration Module level     |          | Other prerequisites     |                      |                    |                   |
| 1 semester graduate       |          |                         |                      |                    |                   |
| Conter                    | Contents |                         |                      |                    |                   |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

#### Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

#### Workload

300 h

#### Teaching cycle

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul               | e title               |                         | Abbreviation         |                    |                   |
|---------------------|-----------------------|-------------------------|----------------------|--------------------|-------------------|
| Topics              | in Bioi               | nformatics              |                      |                    | 07-MS2TBI-152-m01 |
| Module coordinator  |                       |                         |                      | Module offered by  |                   |
| holder              | of the                | Chair of Bioinformatics |                      | Faculty of Biology |                   |
| ECTS                | Meth                  | od of grading           | Only after succ. cor | npl. of module(s)  |                   |
| 10                  | nume                  | rical grade             |                      |                    |                   |
| Durati              | Duration Module level |                         | Other prerequisites  | ;                  |                   |
| 1 semester graduate |                       | graduate                |                      |                    |                   |
| Contents            |                       |                         |                      |                    |                   |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. next generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

#### **Intended learning outcomes**

Students are able to understand recent results in bioinformatics and discuss their implications. They have developed an advanced knowledge about typical techniques, scientific objectives and scientific questions.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

#### Workload

300 h

#### Teaching cycle

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul               | e title               |                         | Abbreviation         |                    |                     |
|---------------------|-----------------------|-------------------------|----------------------|--------------------|---------------------|
| Comp                | utationa              | al Biology F1           |                      |                    | 07-MS3COBF1-152-m01 |
| Module coordinator  |                       |                         |                      | Module offered by  | I.                  |
| holder              | of the                | Chair of Bioinformatics |                      | Faculty of Biology |                     |
| ECTS                | Meth                  | od of grading           | Only after succ. cor | npl. of module(s)  |                     |
| 10                  | nume                  | rical grade             |                      |                    |                     |
| Durati              | Duration Module level |                         | Other prerequisites  |                    |                     |
| 1 semester graduate |                       | graduate                |                      |                    |                     |
| <i>~</i> .          | C                     |                         |                      |                    |                     |

Detailed insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. Results are documented in the form of a presentation, a publication or a term paper.

#### **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of bioinformatics. They are able to design experiments, collect data and interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

| Master's with 1 major Biosciences (2016) | JMU |
|------------------------------------------|-----|
|                                          |     |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title             |        |                         |                      | Abbreviation       |                     |
|--------------------------|--------|-------------------------|----------------------|--------------------|---------------------|
| Computational Biology F2 |        |                         |                      |                    | 07-MS3COBF2-152-m01 |
| Module coordinator       |        |                         |                      | Module offered by  |                     |
| holder                   | of the | Chair of Bioinformatics |                      | Faculty of Biology |                     |
| ECTS                     | Meth   | od of grading           | Only after succ. con | npl. of module(s)  |                     |
| 15                       | (not)  | successfully completed  |                      |                    |                     |
| Duration Module level    |        | Other prerequisites     |                      |                    |                     |
| 1 semester graduate      |        |                         |                      |                    |                     |
|                          |        |                         |                      |                    |                     |

Advanced insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

#### Intended learning outcomes

Proficiency in one or more methods in bioinformatics that allows students to successfully conduct scientific research (for their Master's thesis). Ability to independently address topics in bioinformatics as well as document and interpret findings, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

## Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# Molecular and Computational Biology - Molecular Biology

(30 ECTS credits)

Students must combine the topics "Molecular and Computational Biology" and "Molecular and Computational Biology -- Molecular Biology".



| Module title        |                       |                       |                                      |                   | Abbreviation   |
|---------------------|-----------------------|-----------------------|--------------------------------------|-------------------|----------------|
| Molecu              | Molecular Biology     |                       |                                      |                   | 07-MS2-152-m01 |
| Module coordinator  |                       |                       |                                      | Module offered by |                |
| Dean o              | f Studi               | es Biologie (Biology) | Faculty of Biology                   |                   |                |
| ECTS                | Meth                  | od of grading         | Only after succ. compl. of module(s) |                   |                |
| 10                  | nume                  | rical grade           |                                      |                   |                |
| Duratio             | Duration Module level |                       | Other prerequisites                  |                   |                |
| 1 semester graduate |                       |                       |                                      |                   |                |
| Contents            |                       |                       |                                      |                   |                |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

### **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 412 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Modul                 | e title                                    | ,                   |                      |                    | Abbreviation    |
|-----------------------|--------------------------------------------|---------------------|----------------------|--------------------|-----------------|
| Metho                 | Methods in Life Sciences                   |                     |                      |                    | 07-MLS1-152-m01 |
| Modul                 | e coord                                    | inator              |                      | Module offered by  |                 |
| degree                | degree programme coordinator Biologie (Bio |                     |                      | Faculty of Biology |                 |
| ECTS                  | Meth                                       | od of grading       | Only after succ. con | ıpl. of module(s)  |                 |
| 10                    | nume                                       | rical grade         |                      |                    |                 |
| Duration Module level |                                            | Other prerequisites |                      |                    |                 |
| 1 semester graduate   |                                            |                     |                      |                    |                 |
|                       |                                            |                     |                      |                    |                 |

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

#### **Intended learning outcomes**

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021)



| Module title                                |                                                 |                     |                      | Abbreviation       |                 |
|---------------------------------------------|-------------------------------------------------|---------------------|----------------------|--------------------|-----------------|
| <b>Topics and Concepts in Life Sciences</b> |                                                 |                     |                      |                    | 07-MLS2-152-m01 |
| Module coordinator Module offered by        |                                                 |                     |                      |                    |                 |
| degree                                      | degree programme coordinator Biologie (Biology) |                     |                      | Faculty of Biology |                 |
| ECTS                                        | Metho                                           | od of grading       | Only after succ. con | npl. of module(s)  |                 |
| 10                                          | nume                                            | rical grade         |                      |                    |                 |
| Duration Module level                       |                                                 | Other prerequisites |                      |                    |                 |
| 1 semester graduate                         |                                                 |                     |                      |                    |                 |
|                                             |                                                 |                     |                      |                    |                 |

A broad variety of topics and concepts from the areas of neuroscience, infection and immunity, integrative biology, and biomedicine including for example: protein characterisation, DNA repair, Drosophila, computational biology, and neurocircuits.

#### **Intended learning outcomes**

Students have an overview of the current research topics in the Graduate School of Life Sciences and are able to explain their significance and scientific background.

**Courses** (type, number of weekly contact hours, language — if other than German)

V<sub>(3)</sub>

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title        |                                 |                       |                      | Abbreviation       |                  |
|---------------------|---------------------------------|-----------------------|----------------------|--------------------|------------------|
| Pathog              | Pathogenicity of Microorganisms |                       |                      |                    | 07-MS2PA-152-m01 |
| Modul               | Module coordinator              |                       |                      | Module offered by  |                  |
| holder              | of the                          | Chair of Microbiology | У                    | Faculty of Biology |                  |
| ECTS                | Meth                            | od of grading         | Only after succ. cor | npl. of module(s)  |                  |
| 10                  | nume                            | rical grade           |                      |                    |                  |
| Durati              | Duration Module level Othe      |                       | Other prerequisites  | 5                  |                  |
| 1 semester graduate |                                 | graduate              |                      |                    |                  |
| <u> </u>            |                                 |                       |                      |                    |                  |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title              |                        |                     |                    | Abbreviation    |
|-----------------------|----------------------|------------------------|---------------------|--------------------|-----------------|
| Molecu                | Molecular Biology F1 |                        |                     |                    | 07-MSF1-152-m01 |
| Modul                 | e coord              | inator                 |                     | Module offered by  |                 |
| degree                | progra               | mme coordinator Biolog | gie (Biology)       | Faculty of Biology |                 |
| ECTS                  | Meth                 | od of grading          | Only after succ. co | mpl. of module(s)  |                 |
| 10                    | nume                 | rical grade            |                     |                    |                 |
| Duration Module level |                      | Other prerequisites    |                     |                    |                 |
| 1 semester graduate   |                      |                        |                     |                    |                 |
| Contents              |                      |                        |                     |                    |                 |

Practical course on a topic in molecular biology. Students spend five weeks working on a small, well-defined scientific lab project and learn how to present their data. They learn to discuss their data in a seminar. The students learn to apply defined experimental procedures and methods, to independently address scientific questions and to document their experimental work in an appropriate manner.

#### **Intended learning outcomes**

Students have reinforced previously acquired lab skills, acquired new molecular lab techniques and learned how to transfer theoretical knowledge into experiments. Students have gained expertise in the analysis of raw data, their interpretation and their presentation.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

300 h

#### Teaching cycle

### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Modul                 | e title | ,                       |                     |                    | Abbreviation    |
|-----------------------|---------|-------------------------|---------------------|--------------------|-----------------|
| Molecular Biology F2  |         |                         |                     |                    | 07-MSF2-152-m01 |
| Module coordinator    |         |                         |                     | Module offered by  | I.              |
| degree                | progra  | mme coordinator Biologi | e (Biology)         | Faculty of Biology |                 |
| ECTS                  | Metho   | od of grading           | Only after succ. co | mpl. of module(s)  |                 |
| 15                    | (not)   | successfully completed  |                     |                    |                 |
| Duration Module level |         | Other prerequisites     | 5                   |                    |                 |
| 1 semester graduate   |         |                         |                     |                    |                 |
| Contents              |         |                         |                     |                    |                 |

Current problems in the field of molecular biology are addressed by critically reading and presenting original research papers. The participants will be involved in the development of a research plan and will learn to apply advanced techniques to answer a scientific question in molecular biology. This practical course will have a duration of 12 weeks (three months) and will prepare participants for their theses.

#### Intended learning outcomes

Students are able to independently work in a laboratory. They are able to answer and discuss questions in the field of molecular biology. Students are able to adhere to the principles of good scientific practice as well as to document, interpret and discuss their results. They are able to apply specific molecular techniques that are reguired to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

#### Workload

450 h

#### Teaching cycle

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



# **Plant Ecology**

(30 ECTS credits)

Students must combine the topics "Plant Ecology" and "Animal Ecology".



| Module title          |                                                             |                     |                      |                    | Abbreviation        |
|-----------------------|-------------------------------------------------------------|---------------------|----------------------|--------------------|---------------------|
| Plant E               | Plant Ecology                                               |                     |                      |                    | 07-MS31POEK-152-m01 |
| Module                | coord                                                       | inator              |                      | Module offered by  |                     |
| holder<br>gy          | holder of the Chair of Ecophysiology and Vegetation Ecology |                     |                      | Faculty of Biology |                     |
| ECTS                  | Meth                                                        | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 10                    | nume                                                        | rical grade         |                      |                    |                     |
| Duration Module level |                                                             | Other prerequisites |                      |                    |                     |
| 1 semester graduate   |                                                             |                     |                      |                    |                     |
| C 4                   | Contonto                                                    |                     |                      |                    |                     |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated. Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

#### **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021) exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Module title          |                    |                       | Abbreviation         |                    |  |
|-----------------------|--------------------|-----------------------|----------------------|--------------------|--|
| Molecular Biology     |                    |                       |                      | 07-MS2-152-m01     |  |
| Modul                 | Module coordinator |                       |                      | Module offered by  |  |
| Dean o                | f Studi            | es Biologie (Biology) |                      | Faculty of Biology |  |
| ECTS                  | Meth               | od of grading         | Only after succ. con | npl. of module(s)  |  |
| 10                    | nume               | rical grade           |                      |                    |  |
| Duration Module level |                    | Other prerequisites   |                      |                    |  |
| 1 semester graduate   |                    |                       |                      |                    |  |
| Contents              |                    |                       |                      |                    |  |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

### **Intended learning outcomes**

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### Additional information

--

#### Workload

300 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 425 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



| Modul                                | e title                                               |                     |                      |                    | Abbreviation        |
|--------------------------------------|-------------------------------------------------------|---------------------|----------------------|--------------------|---------------------|
| Physic                               | Physiological Plant Ecology F1                        |                     |                      |                    | 07-MS3PPEF1-152-m01 |
| Module coordinator Module offered by |                                                       |                     |                      |                    |                     |
| holder                               | holder of the Chair of Plant Physiology and Biophysic |                     |                      | Faculty of Biology |                     |
| ECTS                                 | Meth                                                  | od of grading       | Only after succ. con | npl. of module(s)  |                     |
| 10                                   | nume                                                  | rical grade         |                      |                    |                     |
| Duration Module level                |                                                       | Other prerequisites |                      |                    |                     |
| 1 semester graduate                  |                                                       |                     |                      |                    |                     |
|                                      |                                                       |                     |                      |                    |                     |

Under the guidance of an experienced scientist, students will work on a current research topic from the field of ecology/ecophysiology. Particular emphasis will be placed on the physiological bases of the interactions between plants and abiotic and biotic environmental factors (e. g. water relations, stress, biogeography). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of a presentation, a publication or a log. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in ecophysiology in particular but also in chemical analysis.

#### **Intended learning outcomes**

The participants are able to perform scientific experiments in the field of physiological plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of ecology/ecophysiology, adhering to the rules of good scientific practice.

Courses (type, number of weekly contact hours, language - if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 427 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                         |        |                           |                      | Abbreviation       |                     |
|--------------------------------------|--------|---------------------------|----------------------|--------------------|---------------------|
| Physiological Plant Ecology F2       |        |                           |                      |                    | 07-MS3PPEF2-152-m01 |
| Module coordinator Module offered by |        |                           |                      |                    |                     |
| holder                               | of the | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                     |
| ECTS                                 | Metho  | od of grading             | Only after succ. con | npl. of module(s)  |                     |
| 15                                   | (not)  | successfully completed    |                      |                    |                     |
| Duration Module level                |        | Other prerequisites       |                      |                    |                     |
| 1 semester graduate                  |        |                           |                      |                    |                     |
|                                      |        |                           |                      |                    |                     |

Students will work on projects taken from ongoing research in the supervisors' labs in the field of plant ecology and ecophysiology (e. g. plant-insect-, plant-fungus interactions; biogeography; water relations). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the ecophysiological and analytical methods applied (e. g. measurement of transpiration, fluorescence microscopy, chlorophyll-fluorometry) will be critically assessed, and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

#### **Intended learning outcomes**

Students have gained knowledge on experimental setups and methods used in the field of plant ecophysiology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (29) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

### Additional information

--

#### Workload

450 h

#### **Teaching cycle**

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 429 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                           |      |               |                     |                                      | Abbreviation         |  |
|--------------------------------------------------------|------|---------------|---------------------|--------------------------------------|----------------------|--|
| Molecular and Chemical Plant Ecology F1                |      |               |                     |                                      | 07-MS3MCPEF1-152-m01 |  |
| Module coordinator                                     |      |               |                     | Module offered by                    |                      |  |
| holder of the Chair of Plant Physiology and Biophysics |      |               |                     | Faculty of Biology                   |                      |  |
| ECTS                                                   | Meth | od of grading | Only after succ. co | Only after succ. compl. of module(s) |                      |  |
| 10                                                     | nume | rical grade   |                     |                                      |                      |  |
| Duration                                               |      | Module level  | Other prerequisit   | Other prerequisites                  |                      |  |
| 1 semester                                             |      | graduate      |                     |                                      |                      |  |
| Combando                                               |      |               |                     |                                      |                      |  |

Under the guidance of an experienced scientist, students will work on a current research topic from the field of molecular and chemical plant ecology. Particular emphasis will be placed on the molecular and chemical bases of the interactions between plants and abiotic and biotic environmental factors (e. g. cuticular barrier properties, plant-insect, and plant-fungus interactions). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of presentations, publications or logs. The participants will be involved in ongoing projects and will deepen their knowledge on applying special methods, in molecular biology in particular but also in chemical analysis.

## **Intended learning outcomes**

The participants are able to perform scientific experiments in the field of molecular and chemical plant ecology and to apply appropriate methods. They are also able to address and document questions in the field of molecular biology/chemical ecology, adhering to the rules of good scientific practice.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (14) + S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

### Additional information

--

#### Workload

300 h

#### **Teaching cycle**

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title          |                                               |                        |                      |                    | Abbreviation         |  |
|-----------------------|-----------------------------------------------|------------------------|----------------------|--------------------|----------------------|--|
| Moleci                | Molecular and Chemical Plant Ecology F2       |                        |                      |                    | 07-MS3MCPEF2-152-m01 |  |
| Modul                 | e coord                                       | inator                 |                      | Module offered by  |                      |  |
| holder                | holder of the Chair of Plant Physiology and B |                        |                      | Faculty of Biology |                      |  |
| ECTS                  | Meth                                          | od of grading          | Only after succ. con | npl. of module(s)  |                      |  |
| 15                    | (not)                                         | successfully completed |                      |                    |                      |  |
| Duration Module level |                                               | Other prerequisites    |                      |                    |                      |  |
| 1 semester graduate   |                                               |                        |                      |                    |                      |  |
| _                     |                                               |                        |                      |                    |                      |  |

Students will work on projects taken from ongoing research in the supervisors' labs from the field of molecular and chemical plant ecology (e. g. cuticular barrier properties, plant-insect, and plant-fungus interactions). They will do this work to a large extent on their own responsibility by performing advanced experiments, their documentation and evaluation. Based on the results obtained, the analytical, molecular biological and/or microbiological methods applied (e. g. PCR, cloning strategies, chromatography, mass spectrometry) will be critically assessed and, where necessary, modified. The progress of the experiments and their contribution to more general projects will be documented and presented in the form of presentations, publications or logs.

#### **Intended learning outcomes**

The participants are able to independently perform scientific experiments in the field of molecular and chemical plant ecology and to modify them according to the outcome. They are able to independently address, document and interpret questions in the field of molecular/chemical plant ecology, adhering to the rules of good scientific practice. Students are also able to apply specific techniques required to answer scientific questions.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

--

#### Additional information

--

#### Workload

450 h

#### Teaching cycle

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



# **Animal Ecology**

(30 ECTS credits)

Students must combine the topics "Plant Ecology" and "Animal Ecology".



| Modul                                                   | e title             |                       | Abbreviation        |                    |                |  |
|---------------------------------------------------------|---------------------|-----------------------|---------------------|--------------------|----------------|--|
| Neurobiology, Behavioural Physiology and Animal Ecology |                     |                       |                     |                    | 07-MS1-152-m01 |  |
| Modul                                                   | e coord             | linator               |                     | Module offered by  |                |  |
| Dean o                                                  | of Studi            | es Biologie (Biology) |                     | Faculty of Biology |                |  |
| ECTS                                                    | Meth                | od of grading         | Only after succ. co | mpl. of module(s)  |                |  |
| 10                                                      | nume                | rical grade           |                     |                    |                |  |
| Duration Module level Other                             |                     | Other prerequisites   | Other prerequisites |                    |                |  |
| 1 seme                                                  | 1 semester graduate |                       |                     |                    |                |  |
| <i>~</i> .                                              | Contonto            |                       |                     |                    |                |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

# **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology. In the seminar, students practise the discussion of research findings.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

#### Workload

300 h

### **Teaching cycle**

--

# Referred to in LPO I (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module                                | e title                   |                           | Abbreviation         |                    |                   |  |
|---------------------------------------|---------------------------|---------------------------|----------------------|--------------------|-------------------|--|
| Animal Ecology and Tropical Biology 2 |                           |                           |                      |                    | 07-MS1TÖ2-152-m01 |  |
| Module                                | e coord                   | inator                    |                      | Module offered by  | L                 |  |
| holder                                | of the                    | Chair of Animal Ecology a | and Tropical Biology | Faculty of Biology |                   |  |
| ECTS                                  | Meth                      | od of grading             | Only after succ. con | npl. of module(s)  |                   |  |
| 10                                    | nume                      | rical grade               |                      |                    |                   |  |
| Duratio                               | Duration Module level Oth |                           | Other prerequisites  |                    |                   |  |
| 1 seme                                | 1 semester graduate       |                           |                      |                    |                   |  |
| Conten                                | Contents                  |                           |                      |                    |                   |  |

This module provides the fundamentals of the biology of tropical habitats and tropical communities. A special focus is on the global significance of tropical systems (ecosystem goods and ecosystem services), but the biological features of these highly diverse biomes are also highlighted.

#### Intended learning outcomes

The students will acquire deep knowledge of ecological theories and up-to-date research issues in the field of animal ecology of the tropics. They will be qualified to interpret scientific work and apply the knowledge they have acquired to the solution of current environmental risks.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

# **Additional information**

#### Workload

300 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module  | e title                                                    |               |                                      |                    | Abbreviation       |  |
|---------|------------------------------------------------------------|---------------|--------------------------------------|--------------------|--------------------|--|
| Animal  | Ecolog                                                     | gy F1         |                                      |                    | 07-MS1TÖF1-152-m01 |  |
| Module  | e coord                                                    | inator        |                                      | Module offered by  |                    |  |
| holder  | holder of the Chair of Animal Ecology and Tropical Biology |               |                                      | Faculty of Biology |                    |  |
| ECTS    | Metho                                                      | od of grading | Only after succ. compl. of module(s) |                    |                    |  |
| 10      | nume                                                       | rical grade   |                                      |                    |                    |  |
| Duratio | Duration Module level                                      |               | Other prerequisites                  |                    |                    |  |
| 1 seme  | ster                                                       | graduate      |                                      |                    |                    |  |
| Conten  | Contents                                                   |               |                                      |                    |                    |  |

This module consists of several exercises and a seminar series over the course of the entire semester. The exercises can be chosen from the following electives: 1. Wild and honeybee ecology (over the course of the semester): fundamentals and techniques of beekeeping, resource utilisation, behaviour experiments, pollinator diversity and plant-pollinator-interactions. 2. Ecology and taxonomy of insects (block, 2 weeks): observation and recording in the habitat, identification and characteristics of different arthropod groups, field experiments. 3. Ecological modelling (block, 2 weeks): current methods of ecological processes modelling, simulation models, the students' own modelling project on current issues in ecology. 4. Agroecology (block, 1 week): insect communities in agroecosystems, biological pest control in landscape context, evaluation of agri-environment schemes. 5. Forest ecology (block, 1 week): arthropod communities in forest ecosystems, methods of detection, influence of management on diversity patterns and functional groups. 6. Tropical ecology (block): small projects ecological or nature conservation-related issues to be implemented in a tropical ecosystem in East Africa. In the seminar, recent scientific publications on the topics covered in the modules listed above will be presented and discussed.

#### **Intended learning outcomes**

Students will have expanded their knowledge on ecological theories and current research issues in animal ecology. They will be able to design, perform, statistically analyse and interpret scientific research. They will be familiar with animal ecological methods and possible sources of error in data interpretation. They will have deepened their knowledge of the biology and ecology of important functional taxa of arthropods. Students will have acquired the knowledge and skills necessary to perform scientific activities in the context of an F2 practical course or a Master's thesis.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

# Workload

300 h

# Teaching cycle

--



#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul    | e title               |                           | Abbreviation         |                    |                    |
|----------|-----------------------|---------------------------|----------------------|--------------------|--------------------|
| Anima    | l Ecolog              | gy and Tropical Biology F | 2                    |                    | 07-MS1TÖF2-152-m01 |
| Modul    | e coord               | inator                    |                      | Module offered by  |                    |
| holder   | of the                | Chair of Animal Ecology a | nd Tropical Biology  | Faculty of Biology |                    |
| ECTS     | Meth                  | od of grading             | Only after succ. con | npl. of module(s)  |                    |
| 15       | (not)                 | successfully completed    |                      |                    |                    |
| Duratio  | Duration Module level |                           | Other prerequisites  |                    |                    |
| 1 seme   | ester                 | graduate                  |                      |                    |                    |
| Contents |                       |                           |                      |                    |                    |

In the F2 practical course, students will explore a scientific question as independently as possible. They will develop hypotheses, prepare a work schedule, collect data, perform experiments in the field, greenhouse or laboratory and will statistically analyse data. Students will document the results of their work in a log similar to a short scientific paper, including an introduction, material and methods, findings and a discussion of these. Students will also be required to present their findings during a wrap-up seminar. The various research groups at the Chair of Animal Ecology and Tropical Biology offer a wide variety of opportunities for students to complete an F2 practical course in Germany, another country in Europe or in the tropics. F2 practical courses may be completed in the context of an ongoing research project of the Institute or in cooperation with other institutions. For more detailed information on the F2 practical course as well as current topics or appointments for consultations, please refer to WueCampus, check out the notice board of the Chair or contact the research groups directly.

#### Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the fields of animal ecology and tropical ecology. They are qualified to design scientific research and are able to collect data and interpret them statistically. They have developed knowledge and skills that allow them to set up a scientific project for their Master's thesis.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

# **Additional information**

# Workload

450 h

#### **Teaching cycle**

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 442 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Molecular and Cellular Biophysics**

(30 ECTS credits)

Students must combine the topics "Molecular and Cellular Biophysics" and "Molecular and Computational Biology -- Computational Biology".



| Module title |                                                 |                |                      |                    | Abbreviation |
|--------------|-------------------------------------------------|----------------|----------------------|--------------------|--------------|
| Biophy       | sics ar                                         | d Biochemistry |                      | 07-MS3BB-152-m01   |              |
| Modul        | e coord                                         | inator         |                      | Module offered by  |              |
| holder       | holder of the Chair of Plant Physiology and Bio |                |                      | Faculty of Biology |              |
| ECTS         | Meth                                            | od of grading  | Only after succ. con | npl. of module(s)  |              |
| 10           | nume                                            | rical grade    |                      |                    |              |
| Duratio      | Duration Module level                           |                | Other prerequisites  |                    |              |
| 1 seme       | 1 semester graduate                             |                |                      |                    |              |
|              |                                                 |                |                      |                    |              |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                                | e title  |                        | Abbreviation        |                     |                    |  |
|--------------------------------------|----------|------------------------|---------------------|---------------------|--------------------|--|
| Biophy                               | ysics ar | nd Molecular Biotechn  |                     | 07-MS2BT-152-m01    |                    |  |
| Module coordinator Module offered by |          |                        |                     |                     |                    |  |
| holder                               | of the   | Chair of Biotechnology | and Biophysics      | Faculty of Biology  | Faculty of Biology |  |
| ECTS                                 | Meth     | od of grading          | Only after succ. o  | compl. of module(s) |                    |  |
| 10                                   | nume     | rical grade            |                     |                     |                    |  |
| Duration Module level Othe           |          | Other prerequisit      | Other prerequisites |                     |                    |  |
| 1 semester graduate                  |          |                        |                     |                     |                    |  |
| Contor                               | Contents |                        |                     |                     |                    |  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

#### Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# Allocation of places

--

# **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)



Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul  | e title               |                          | Abbreviation        |                    |                    |  |
|--------|-----------------------|--------------------------|---------------------|--------------------|--------------------|--|
| Biophy | ysics of              | Plant Membrane Prote     | ins F1              |                    | 07-MS3BPF1-152-m01 |  |
| Modul  | e coord               | inator                   |                     | Module offered by  |                    |  |
| holder | of the                | Chair of Plant Physiolog | gy and Biophysics   | Faculty of Biology |                    |  |
| ECTS   | Meth                  | od of grading            | Only after succ. co | ompl. of module(s) |                    |  |
| 10     | nume                  | rical grade              |                     |                    |                    |  |
| Durati | Duration Module level |                          | Other prerequisites |                    |                    |  |
| 1 seme | 1 semester graduate   |                          |                     |                    |                    |  |
| Conto  | Contents              |                          |                     |                    |                    |  |

The module provides an in-depth insight into biophysical strategies and methods which are used for the functional characterisation of plant membrane proteins. The students will be integrated into research projects on current topics in molecular plant membrane biology.

#### **Intended learning outcomes**

The students have knowledge of general biophysical strategies and methods with a focus on plant membrane proteins, they are able to independently work on related scientific issues and to document the results obtained.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

#### Workload

300 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul   | e title                                  |                           | Abbreviation         |                    |                    |
|---------|------------------------------------------|---------------------------|----------------------|--------------------|--------------------|
| Biophy  | Biophysics of Plant Membrane Proteins F2 |                           |                      |                    | 07-MS3BPF2-152-m01 |
| Modul   | e coord                                  | inator                    |                      | Module offered by  |                    |
| holder  | of the                                   | Chair of Plant Physiology | and Biophysics       | Faculty of Biology |                    |
| ECTS    | Meth                                     | od of grading             | Only after succ. cor | npl. of module(s)  |                    |
| 15      | (not)                                    | successfully completed    |                      |                    |                    |
| Duratio | Duration Module level                    |                           | Other prerequisites  |                    |                    |
| 1 seme  | 1 semester graduate                      |                           |                      |                    |                    |
|         |                                          |                           |                      |                    |                    |

The students perform their research work within the context of a current research project on the biophysics of plant membrane proteins in a largely independent manner under supervision of a principal investigator.

#### **Intended learning outcomes**

The students are able to address scientific issues in biophysics, using appropriate biophysical methods. They are able to independently design the appropriate experiments as well as to analyse, document, present and discuss the results.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# **Additional information**

--

#### Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title        |                       |                      |                   |                     | Abbreviation       |  |
|---------------------|-----------------------|----------------------|-------------------|---------------------|--------------------|--|
| Biophy              | ysics ar              | nd Molecular Biotec  | hnology F1        |                     | 07-MS2BTF1-152-m01 |  |
| Module coordinator  |                       |                      |                   | Module offered by   | У                  |  |
| holder              | of the                | Chair of Biotechnolo | gy and Biophysics | Faculty of Biology  | Faculty of Biology |  |
| ECTS                | Meth                  | od of grading        | Only after succ.  | compl. of module(s) |                    |  |
| 10                  | nume                  | rical grade          |                   |                     |                    |  |
| Durati              | Duration Module level |                      | Other prerequisi  | Other prerequisites |                    |  |
| 1 semester graduate |                       |                      |                   |                     |                    |  |
| Contents            |                       |                      |                   |                     |                    |  |

This practical course provides students with an insight into different biotechnological and biophysical topics and methods. Under expert guidance, students will perform selected experiments on the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells.

### Intended learning outcomes

Students will have acquired a knowledge of fundamental biotechnological and biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms. Students will have acquired practical experience performing experiments, using a variety of scientific tools. In the seminar, students will have acquired detailed theoretical knowledge on these experiments and will have delivered a short presentation (15 minutes) on one of the experiments they performed.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(14) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# Additional information

--

#### Workload

300 h

### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title |                       |                           |                     |                    | Abbreviation       |
|--------------|-----------------------|---------------------------|---------------------|--------------------|--------------------|
| Biophy       | ysics ar              | nd Molecular Biotechnolo  | gy F2               |                    | 07-MS2BTF2-152-m01 |
| Modul        | e coord               | inator                    |                     | Module offered by  |                    |
| holder       | of the                | Chair of Biotechnology ar | nd Biophysics       | Faculty of Biology |                    |
| ECTS         | Meth                  | od of grading             | Only after succ. co | mpl. of module(s)  |                    |
| 15           | (not)                 | successfully completed    |                     |                    |                    |
| Durati       | Duration Module level |                           | Other prerequisites |                    |                    |
| 1 seme       | 1 semester graduate   |                           |                     |                    |                    |
| Contar       | Contents              |                           |                     |                    |                    |

This practical course provides students with an insight into different biotechnological and biophysical topics and is close to laboratory research. Under expert guidance, students will perform selected experiments on one of the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells. Performing experiments under expert guidance, students will become acquainted with techniques and instruments. Over the duration of the course, students will then be required to work increasingly independently on current research topics. Work on current research topics will spark the students' interest in topics and will help them select a topic for their Master's thesis.

# **Intended learning outcomes**

Students will become acquainted with modern biophysical methods and their applications in biotechnology. They will be able to independently work on scientific problems, to independently study relevant literature and to develop a quantitative understanding of biophysical mechanisms. In the seminar, students will acquire further theoretical knowledge on experiments and will give short presentations on experiments performed.

**Courses** (type, number of weekly contact hours, language — if other than German)

P(29) + S(1)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

#### **Additional information**

# Workload

450 h

# Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Protein Chemistry**

(30 ECTS credits)

Students must combine the topics "Protein Chemistry" and "Molecular and Computational Biology -- Computational Biology".



| Module title                                          |                                    |                 |                      | Abbreviation       |                  |
|-------------------------------------------------------|------------------------------------|-----------------|----------------------|--------------------|------------------|
| Biophysics and Biochemistry                           |                                    |                 |                      |                    | 07-MS3BB-152-m01 |
| Modul                                                 | e coord                            | inator          |                      | Module offered by  |                  |
| holder of the Chair of Plant Physiology and Biophysic |                                    |                 | and Biophysics       | Faculty of Biology |                  |
| ECTS                                                  | Method of grading Only after succ. |                 | Only after succ. con | npl. of module(s)  |                  |
| 10                                                    | nume                               | numerical grade |                      |                    |                  |
| Duration Module level                                 |                                    |                 | Other prerequisites  |                    |                  |
| 1 semester graduate                                   |                                    |                 |                      |                    |                  |
|                                                       |                                    |                 |                      |                    |                  |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

# **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

# **Allocation of places**

--

#### **Additional information**

--

#### Workload

300 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                           |                                                    |                                       |  | Abbreviation       |                  |
|----------------------------------------|----------------------------------------------------|---------------------------------------|--|--------------------|------------------|
| Biophysics and Molecular Biotechnology |                                                    |                                       |  |                    | 07-MS2BT-152-m01 |
| Modul                                  | e coord                                            | inator                                |  | Module offered by  |                  |
| holder                                 | holder of the Chair of Biotechnology and Biophysic |                                       |  | Faculty of Biology |                  |
| ECTS                                   | Meth                                               | Method of grading Only after succ. co |  | npl. of module(s)  |                  |
| 10                                     | nume                                               | umerical grade                        |  |                    |                  |
| Duration Module level                  |                                                    | Other prerequisites                   |  |                    |                  |
| 1 semester graduate                    |                                                    |                                       |  |                    |                  |
| Contents                               |                                                    |                                       |  |                    |                  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

#### Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V(2) + S(1)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# **Allocation of places**

--

# **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 460 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                           |                                                        |        |                      | Abbreviation        |  |
|----------------------------------------|--------------------------------------------------------|--------|----------------------|---------------------|--|
| Biochemistry and Structural Biology F1 |                                                        |        |                      | 07-MS3BSBF1-152-m01 |  |
| Modul                                  | e coord                                                | inator |                      | Module offered by   |  |
| holder                                 | holder of the Chair of Plant Physiology and Biophysics |        |                      | Faculty of Biology  |  |
| ECTS                                   | Method of grading Only after succ. co                  |        | Only after succ. con | npl. of module(s)   |  |
| 10                                     | numerical grade                                        |        |                      |                     |  |
| Duration Module level                  |                                                        |        | Other prerequisites  |                     |  |
| 1 semester graduate                    |                                                        |        |                      |                     |  |
| Contents                               |                                                        |        |                      |                     |  |

The module provides an in-depth insight into strategies and methods in protein biochemistry and structural biology. The students will be integrated into research projects on current topics in biochemistry and structural biolo-

#### Intended learning outcomes

The students have knowledge about general strategies and methods of protein biochemistry and structural biology with a focus on membrane proteins. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language – if other than German, examination offered – if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

### Allocation of places

#### **Additional information**

#### Workload

300 h

#### **Teaching cycle**

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                           |                                    |                           |                     |                    | Abbreviation        |
|----------------------------------------|------------------------------------|---------------------------|---------------------|--------------------|---------------------|
| Biochemistry and Structural Biology F2 |                                    |                           |                     |                    | 07-MS3BSBF2-152-m01 |
| Module coordinator                     |                                    |                           |                     | Module offered by  | I                   |
| holder                                 | of the                             | Chair of Plant Physiology | and Biophysics      | Faculty of Biology |                     |
| ECTS                                   | Method of grading Only after succ. |                           | Only after succ. co | mpl. of module(s)  |                     |
| 15                                     | (not)                              | successfully completed    |                     |                    |                     |
| Duration Module level                  |                                    | Other prerequisites       |                     |                    |                     |
| 1 semester graduate                    |                                    |                           |                     |                    |                     |
| Control                                |                                    |                           |                     |                    |                     |

The students perform their research work within the context of a current research project on biochemistry and structural biology in a largely independent manner under supervision of a principal investigator.

### Intended learning outcomes

The students are able to independently perform and organise their scientific laboratory work in the fields of biochemistry and structural biology and to document the results obtained. They are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language - if other than German)

P(29) + S(1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

# **Additional information**

--

#### Workload

450 h

#### Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



# **Subtopic Additional Achievements**

(15 ECTS credits)



| Module                         | e title  |                                                         |                      |                    | Abbreviation    |
|--------------------------------|----------|---------------------------------------------------------|----------------------|--------------------|-----------------|
| Laboratory Course 1            |          |                                                         |                      |                    | 07-MSL1-152-m01 |
| Module coordinator             |          |                                                         |                      | Module offered by  |                 |
| Coordinator BioCareers         |          |                                                         |                      | Faculty of Biology |                 |
| ECTS                           | Metho    | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |
| 5 (not) successfully completed |          |                                                         |                      |                    |                 |
| Duration Module level          |          |                                                         | Other prerequisites  |                    |                 |
| 1 semester graduate            |          | Please consult with course advisory service in advance. |                      |                    |                 |
| Conton                         | Contents |                                                         |                      |                    |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 2-3 weeks).

## **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P(5)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

#### **Additional information**

--

#### Workload

150 h

### **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul               | Module title          |                        |                                                         |                   | Abbreviation    |
|---------------------|-----------------------|------------------------|---------------------------------------------------------|-------------------|-----------------|
| Laboratory Course 2 |                       |                        |                                                         |                   | 07-MSL2-152-m01 |
| Module coordinator  |                       |                        |                                                         | Module offered by |                 |
| Coordi              | nator B               | ioCareers              | Faculty of Biology                                      |                   |                 |
| ECTS                | Metho                 | od of grading          | Only after succ. con                                    | npl. of module(s) |                 |
| 10                  | (not)                 | successfully completed |                                                         |                   |                 |
| Durati              | Duration Module level |                        | Other prerequisites                                     |                   |                 |
| 1 seme              | 1 semester graduate   |                        | Please consult with course advisory service in advance. |                   |                 |
| Contants            |                       |                        |                                                         |                   |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

## **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul              | e title               |                        |                                                         |                    | Abbreviation    |
|--------------------|-----------------------|------------------------|---------------------------------------------------------|--------------------|-----------------|
| Labora             | Laboratory Course 3   |                        |                                                         |                    | 07-MSL3-152-m01 |
| Module coordinator |                       |                        |                                                         | Module offered by  |                 |
| Coordi             | inator B              | ioCareers              |                                                         | Faculty of Biology |                 |
| ECTS               | Meth                  | od of grading          | Only after succ. con                                    | npl. of module(s)  |                 |
| 15                 | (not)                 | successfully completed |                                                         |                    |                 |
| Duratio            | Duration Module level |                        | Other prerequisites                                     |                    |                 |
| 1 seme             | 1 semester graduate   |                        | Please consult with course advisory service in advance. |                    |                 |
|                    |                       |                        |                                                         |                    |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 6-9 weeks).

## **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P (30)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

450 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title             |                        |                                                         |                                      | Abbreviation    |
|-----------------------|---------------------|------------------------|---------------------------------------------------------|--------------------------------------|-----------------|
| External Internship 1 |                     |                        |                                                         |                                      | 07-MSA1-152-m01 |
| Module coordinator    |                     |                        |                                                         | Module offered by                    |                 |
| Coordi                | nator B             | ioCareers              |                                                         | Faculty of Biology                   |                 |
| ECTS                  | Meth                | od of grading          | Only after succ. con                                    | Only after succ. compl. of module(s) |                 |
| 5                     | (not)               | successfully completed |                                                         |                                      |                 |
| Duration Module level |                     | Other prerequisites    |                                                         |                                      |                 |
| 1 seme                | 1 semester graduate |                        | Please consult with course advisory service in advance. |                                      |                 |
|                       |                     |                        |                                                         | <u> </u>                             |                 |

Practical course during stay abroad on a selected topic in biology (duration: 2-3 weeks).

## **Intended learning outcomes**

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P (10)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

#### Workload

150 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                       |                        |                                                         |                    | Abbreviation    |
|-----------------------|-----------------------|------------------------|---------------------------------------------------------|--------------------|-----------------|
| External Internship 2 |                       |                        |                                                         |                    | 07-MSA2-152-m01 |
| Module coordinator    |                       |                        |                                                         | Module offered by  |                 |
| Coordi                | nator B               | ioCareers              |                                                         | Faculty of Biology |                 |
| ECTS                  | Metho                 | od of grading          | Only after succ. con                                    | npl. of module(s)  |                 |
| 10                    | (not)                 | successfully completed |                                                         |                    |                 |
| Duratio               | Duration Module level |                        | Other prerequisites                                     |                    |                 |
| 1 seme                | 1 semester graduate   |                        | Please consult with course advisory service in advance. |                    |                 |

External placement on a biological topic. Students spend 4-6 weeks working on a well-defined scientific project and learn how to present their data.

## **Intended learning outcomes**

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

300 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



| Module title          |                       |                                                         |                      |                    | Abbreviation    |
|-----------------------|-----------------------|---------------------------------------------------------|----------------------|--------------------|-----------------|
| External Internship 3 |                       |                                                         |                      |                    | 07-MSA3-152-m01 |
| Module coordinator    |                       |                                                         |                      | Module offered by  |                 |
| Coordi                | nator B               | ioCareers                                               |                      | Faculty of Biology |                 |
| ECTS                  | Metho                 | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |
| 15                    | (not)                 | successfully completed                                  |                      |                    |                 |
| Duratio               | Duration Module level |                                                         | Other prerequisites  |                    |                 |
| 1 semester graduate   |                       | Please consult with course advisory service in advance. |                      |                    |                 |

External placement on a biological topic. Students spend 6-9 weeks working on a well-defined scientific lab project and learn how to present their data.

## **Intended learning outcomes**

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

P (30)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

450 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                                  | e title               |                        | Abbreviation                         |                    |  |  |
|-----------------------------------------|-----------------------|------------------------|--------------------------------------|--------------------|--|--|
| Bioche                                  | mistry,               | Physiology and Genetic | 07-MSCC-152-m01                      |                    |  |  |
| Module coordinator Mo                   |                       |                        | Module offered by                    |                    |  |  |
| degree programme coordinator Biologie ( |                       |                        | e (Biology)                          | Faculty of Biology |  |  |
| ECTS                                    | Metho                 | od of grading          | Only after succ. compl. of module(s) |                    |  |  |
| 5                                       | (not)                 | successfully completed |                                      |                    |  |  |
| Duratio                                 | Duration Module level |                        | Other prerequisites                  |                    |  |  |
| 1 semester graduate                     |                       |                        |                                      |                    |  |  |
| Conten                                  | Contents              |                        |                                      |                    |  |  |

Introduction to cell culture, cell culture lab equipment, cellular biochemistry and cell structures, cell proliferation, generation of in vitro cell models and their applications, cell culture formats, fundamental cell analytical technologies.

## **Intended learning outcomes**

Students are able to understand the biochemistry, physiology and genetics of mammalian cell culture, and are able to use these techniques.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

S (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

#### Workload

150 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title         |                       |                         |                                      |                     | Abbreviation    |
|----------------------|-----------------------|-------------------------|--------------------------------------|---------------------|-----------------|
| Molecular Techniques |                       |                         |                                      |                     | 03-MSMT-152-m01 |
| Module coordinator   |                       |                         |                                      | Module offered by   |                 |
| degree               | progra                | mme coordinator Biologi | e (Biology)                          | Faculty of Medicine |                 |
| ECTS                 | Metho                 | od of grading           | Only after succ. compl. of module(s) |                     |                 |
| 3                    | (not)                 | successfully completed  |                                      |                     |                 |
| Duratio              | Duration Module level |                         | Other prerequisites                  |                     |                 |
| 1 seme               | 1 semester graduate   |                         |                                      |                     |                 |
| Conten               | Contents              |                         |                                      |                     |                 |

Introduction to new and cutting edge molecular techniques as well as methods for scientific investigation.

## **Intended learning outcomes**

Students are able to apply molecular techniques and methods as well as to integrate these into experimental strategies and experimental set-ups to answer scientific questions.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

S (3)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

#### Workload

90 h

## **Teaching cycle**

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Modul              | e title               |                         | Abbreviation                         |                    |               |
|--------------------|-----------------------|-------------------------|--------------------------------------|--------------------|---------------|
| Linux and Perl     |                       |                         |                                      |                    | 07-ML-152-m01 |
| Module coordinator |                       |                         |                                      | Module offered by  |               |
| holder             | of the                | Chair of Bioinformatics |                                      | Faculty of Biology |               |
| ECTS               | Meth                  | od of grading           | Only after succ. compl. of module(s) |                    |               |
| 5                  | (not)                 | successfully completed  |                                      |                    |               |
| Duratio            | Duration Module level |                         | Other prerequisites                  |                    |               |
| 1 seme             | 1 semester graduate   |                         |                                      |                    |               |
|                    |                       |                         |                                      |                    |               |

Introduction to the Linux operating system, writing computer programs using the programming language Perl to answer bioinformatic questions.

## **Intended learning outcomes**

Students are able to use Linux as user and to write simple Perl scripts to answer bioinformatic questions.

Courses (type, number of weekly contact hours, language - if other than German)

S (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

#### Workload

150 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title               |                       |                         |                      |                    | Abbreviation     |
|----------------------------|-----------------------|-------------------------|----------------------|--------------------|------------------|
| Methods in Life Sciences B |                       |                         |                      |                    | 07-MLS1B-152-m01 |
| Module coordinator         |                       |                         |                      | Module offered by  |                  |
| degree                     | progra                | mme coordinator Biologi | e (Biology)          | Faculty of Biology |                  |
| ECTS                       | Meth                  | od of grading           | Only after succ. cor | npl. of module(s)  |                  |
| 7                          | (not)                 | successfully completed  |                      |                    |                  |
| Duratio                    | Duration Module level |                         | Other prerequisites  |                    |                  |
| 1 seme                     | 1 semester graduate   |                         |                      |                    |                  |
| Contents                   |                       |                         |                      |                    |                  |

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

#### **Intended learning outcomes**

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

Courses (type, number of weekly contact hours, language - if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

## Allocation of places

--

#### **Additional information**

--

#### Workload

210 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| e title                                         |                                  | Abbreviation                                                                                           |                                                                                                                                                |  |
|-------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ds in Li                                        | fe Sciences                      |                                                                                                        | 07-MLS1-152-m01                                                                                                                                |  |
| coord                                           | inator                           |                                                                                                        | Module offered by                                                                                                                              |  |
| degree programme coordinator Biologie (Biology) |                                  |                                                                                                        | Faculty of Biology                                                                                                                             |  |
| Metho                                           | od of grading                    | Only after succ                                                                                        | c. compl. of module(s)                                                                                                                         |  |
| nume                                            | rical grade                      |                                                                                                        |                                                                                                                                                |  |
| Duration Module level                           |                                  | Other prerequi                                                                                         | Other prerequisites                                                                                                                            |  |
| emester graduate                                |                                  |                                                                                                        |                                                                                                                                                |  |
|                                                 | coord<br>progra<br>Metho<br>nume | ds in Life Sciences coordinator programme coordinator B Method of grading numerical grade Module level | ds in Life Sciences  coordinator  programme coordinator Biologie (Biology)  Method of grading  numerical grade  n Module level  Other prerequi |  |

Versioned molecular techniques, lipid research methods, microscopic methods, immunohistochemistry, mouse models and gene-knockout approaches, protein and molecular biology techniques, PCR, advanced protein biochemistry, methods in bioinformatics and computational biology.

## **Intended learning outcomes**

Students are able to review and expand their knowledge of standard molecular techniques and are able to choose methods and techniques to design experiments in a specific research area.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

## Allocation of places

--

#### **Additional information**

--

## Workload

300 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biochemistry (2019)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Biosciences (2021)



| Modul                                  | e title               |                         | Abbreviation         |                    |                  |
|----------------------------------------|-----------------------|-------------------------|----------------------|--------------------|------------------|
| Topics and Concepts in Life Sciences B |                       |                         |                      |                    | 07-MLS2B-152-m01 |
| Module coordinator                     |                       |                         |                      | Module offered by  |                  |
| degree                                 | progra                | mme coordinator Biologi | e (Biology)          | Faculty of Biology |                  |
| ECTS                                   | Meth                  | od of grading           | Only after succ. con | ıpl. of module(s)  |                  |
| 7                                      | (not)                 | successfully completed  |                      |                    |                  |
| Duratio                                | Duration Module level |                         | Other prerequisites  |                    |                  |
| 1 seme                                 | ester                 | graduate                |                      |                    |                  |
|                                        |                       |                         |                      |                    |                  |

A broad variety of topics and concepts from the areas of neuroscience, infection and immunity, integrative biology, and biomedicine including for example: protein characterisation, DNA repair, Drosophila, computational biology, and neurocircuits.

## **Intended learning outcomes**

Students have an overview of the current research topics in the Graduate School of Life Sciences and are able to explain their significance and scientific background.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: English

## Allocation of places

--

#### **Additional information**

--

#### Workload

210 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                           | e title                              |               | Abbreviation     |                     |                    |  |
|-------------------------------------------------|--------------------------------------|---------------|------------------|---------------------|--------------------|--|
| Topics                                          | Topics and Concepts in Life Sciences |               |                  |                     | 07-MLS2-152-m01    |  |
| Module coordinator                              |                                      |               |                  | Module off          | Module offered by  |  |
| degree programme coordinator Biologie (Biology) |                                      |               | ogie (Biology)   | Faculty of E        | Faculty of Biology |  |
| ECTS                                            | Meth                                 | od of grading | Only after succ. | compl. of modu      | ıle(s)             |  |
| 10                                              | nume                                 | rical grade   |                  |                     |                    |  |
| Duratio                                         | Duration Module level                |               | Other prerequis  | Other prerequisites |                    |  |
| 1 seme                                          | ester                                | graduate      |                  |                     |                    |  |
| Combando                                        |                                      |               |                  |                     |                    |  |

A broad variety of topics and concepts from the areas of neuroscience, infection and immunity, integrative biology, and biomedicine including for example: protein characterisation, DNA repair, Drosophila, computational biology, and neurocircuits.

#### **Intended learning outcomes**

Students have an overview of the current research topics in the Graduate School of Life Sciences and are able to explain their significance and scientific background.

**Courses** (type, number of weekly contact hours, language — if other than German)

V<sub>(3)</sub>

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: English

## Allocation of places

--

#### **Additional information**

--

## Workload

300 h

## **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | Module title            |                    |                     |           |                    | Abbreviation       |  |
|-----------------------|-------------------------|--------------------|---------------------|-----------|--------------------|--------------------|--|
| Moleci                | Molecular Tumor Biology |                    |                     |           |                    | 07-TUM-MOL-152-m01 |  |
| Modul                 | Module coordinator      |                    |                     |           | le offered by      |                    |  |
| degree                | progra                  | amme coordinator B | iologie (Biology)   | Facult    | Faculty of Biology |                    |  |
| ECTS                  | Meth                    | od of grading      | Only after succ     | compl. of | module(s)          |                    |  |
| 5                     | nume                    | rical grade        |                     |           |                    |                    |  |
| Duration Module level |                         | Other prerequis    | Other prerequisites |           |                    |                    |  |
| 1 semester graduate   |                         |                    |                     |           |                    |                    |  |
| <i>c</i> .            |                         |                    |                     |           |                    |                    |  |

The lecture *Molekulare Tumorbiologie* (*Molecular Tumour Biology*) discusses molecular characteristics of tumours and relevant biological processes (such as signal transduction, cell growth, cell proliferation, metabolism), tumour-specific modifications and current molecular biological methods in tumour research.

## **Intended learning outcomes**

Understanding of current topics and challenges in tumour research, understanding of the methods which could be used address these challenges.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Modul                  | Module title       |                     |                     |             | Abbreviation        |  |
|------------------------|--------------------|---------------------|---------------------|-------------|---------------------|--|
| Clinical Tumor Biology |                    |                     |                     |             | 07-TUM-CLIN-152-m01 |  |
| Modul                  | Module coordinator |                     |                     |             | Module offered by   |  |
| degree                 | progra             | mme coordinator Bio | ologie (Biology)    | Faculty     | Faculty of Biology  |  |
| ECTS                   | Meth               | od of grading       | Only after succ.    | compl. of n | module(s)           |  |
| 5                      | nume               | rical grade         |                     |             |                     |  |
| Duration Module level  |                    | Other prerequis     | Other prerequisites |             |                     |  |
| 1 semester graduate    |                    |                     |                     |             |                     |  |
| <i>~</i> .             | Combonies -        |                     |                     |             |                     |  |

In the lecture series *Klinische Tumorbiologie* (*Clinical Tumour Biology*), current clinical aspects will be addressed. Several tumour types will be discussed (such as tumours of the skin, lung, intestine, breast, blood). Additional topics: diagnostics and pathology, different treatments and therapies and clinical trials.

#### **Intended learning outcomes**

Knowledge of the similarities and differences of various tumour types. Understanding of requirements, possibilities and limitations of clinical medicine.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Modul                        | e title  |                           |                      |                                 | Abbreviation     |
|------------------------------|----------|---------------------------|----------------------|---------------------------------|------------------|
| Current Methods in Biology B |          |                           |                      |                                 | 07-MS31B-152-m01 |
| Modul                        | e coord  | inator                    |                      | Module offered by               |                  |
| holder                       | of the ( | Chair of Plant Physiology | and Biophysics       | d Biophysics Faculty of Biology |                  |
| ECTS                         | Metho    | od of grading             | Only after succ. con | npl. of module(s)               |                  |
| 7                            | (not)    | successfully completed    |                      |                                 |                  |
| Duration Module level        |          | Other prerequisites       |                      |                                 |                  |
| 1 semester graduate          |          |                           |                      |                                 |                  |
| _                            |          |                           |                      |                                 |                  |

This lecture series imparts the theoretical background of fundamental and up-to-date molecular biological methods in plant sciences. Special emphasis is placed on analytical tools, large-scale data analysis and their application.

## **Intended learning outcomes**

At the end of the lecture series, students will (I) be able to qualitatively evaluate results acquired with analytical and molecular biological methods and to integrate them into the context of the current scientific knowledge in this field (II) have gained an overview of the advantages/disadvantages of analytical and molecular biological approaches (III) be able to apply the knowledge they have acquired to design their own experimental strategies for addressing a specific research question.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

210 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 492 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                | e title                                      |                        |                      |                    | Abbreviation         |
|-----------------------|----------------------------------------------|------------------------|----------------------|--------------------|----------------------|
| Plant Ecology B       |                                              |                        |                      |                    | 07-MS31POEKB-152-m01 |
| Module                | e coord                                      | inator                 |                      | Module offered by  |                      |
| holder<br>gy          | holder of the Chair of Ecophysiology and Veg |                        |                      | Faculty of Biology |                      |
| ECTS                  | Meth                                         | od of grading          | Only after succ. con | npl. of module(s)  |                      |
| 5                     | (not)                                        | successfully completed |                      |                    |                      |
| Duration Module level |                                              | Other prerequisites    |                      |                    |                      |
| 1 semester graduate   |                                              |                        | <u> </u>             | ·                  |                      |
| C 4                   | Ct                                           |                        |                      |                    |                      |

The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e. g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Corresponding experimental approaches will be illustrated.

## **Intended learning outcomes**

Participants are able to identify and interpret ecological and ecophysiological interrelations and to discuss them in the context of the current state of knowledge in these fields.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

150 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 494 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022) Master's degree (1 major) Biosciences (2023)



| Modul                 | e title                                          |                           | Abbreviation         |                          |                     |  |
|-----------------------|--------------------------------------------------|---------------------------|----------------------|--------------------------|---------------------|--|
| Plant I               | Plant Immunobiology and Pharmaceutical Biology B |                           |                      |                          | 07-MS31PIPB-152-m01 |  |
| Module coordinator    |                                                  |                           |                      | Module offered by        |                     |  |
| holder                | of the                                           | Chair of Pharmaceutical E | Biology              | ology Faculty of Biology |                     |  |
| ECTS                  | Meth                                             | od of grading             | Only after succ. cor | npl. of module(s)        |                     |  |
| 5                     | (not)                                            | successfully completed    |                      |                          |                     |  |
| Duration Module level |                                                  | Other prerequisites       |                      |                          |                     |  |
| 1 semester graduate   |                                                  |                           |                      |                          |                     |  |
| <i>~</i> .            | C                                                |                           |                      |                          |                     |  |

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

# **Intended learning outcomes**

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

150 h

## Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

\_\_\_

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 496 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                  |          |                           |                     |                       | Abbreviation      |
|-------------------------------|----------|---------------------------|---------------------|-----------------------|-------------------|
| Biophysics and Biochemistry B |          |                           |                     |                       | 07-MS3BBB-152-m01 |
| Modul                         | e coord  | inator                    |                     | Module offered by     |                   |
| holder                        | of the ( | Chair of Plant Physiology | and Biophysics      | rs Faculty of Biology |                   |
| ECTS                          | Metho    | od of grading             | Only after succ. co | ompl. of module(s)    |                   |
| 5                             | (not)    | successfully completed    |                     |                       |                   |
| Duration Module level         |          | Other prerequisites       |                     |                       |                   |
| 1 semester graduate           |          |                           |                     |                       |                   |

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

## **Intended learning outcomes**

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

#### Workload

150 h

# **Teaching cycle**

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                    | e title                  |                          | Abbreviation        |                    |                   |  |
|------------------------------------------|--------------------------|--------------------------|---------------------|--------------------|-------------------|--|
| Biophysics and Molecular Biotechnology B |                          |                          |                     |                    | 07-MS2BTB-152-m01 |  |
| Modul                                    | e coord                  | inator                   |                     | Module offered by  |                   |  |
| holder                                   | of the                   | Chair of Biotechnology a | and Biophysics      | Faculty of Biology |                   |  |
| ECTS                                     | Meth                     | od of grading            | Only after succ. co | mpl. of module(s)  |                   |  |
| 5                                        | nume                     | rical grade              |                     |                    |                   |  |
| Durati                                   | Duration Module level Ot |                          | Other prerequisites |                    |                   |  |
| 1 semester graduate                      |                          |                          |                     |                    |                   |  |
| Conto                                    | Contants                 |                          |                     |                    |                   |  |

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, electrokinetic techniques, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

## **Intended learning outcomes**

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$ 

V (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

# Allocation of places

## **Additional information**

# Workload

150 h

#### Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- |
|------------------------------------------|-------------------------------------------------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                | e title                            | '                        | Abbreviation         |                    |  |  |
|-----------------------|------------------------------------|--------------------------|----------------------|--------------------|--|--|
| Neurob                | oiology                            | , Behavioural Physiology | 07-MS1B-152-m01      |                    |  |  |
| Module coordinator M  |                                    |                          |                      | Module offered by  |  |  |
| Dean o                | Dean of Studies Biologie (Biology) |                          |                      | Faculty of Biology |  |  |
| ECTS                  | Metho                              | od of grading            | Only after succ. con | npl. of module(s)  |  |  |
| 7                     | (not)                              | successfully completed   |                      |                    |  |  |
| Duration Module level |                                    | Other prerequisites      |                      |                    |  |  |
| 1 semester graduate   |                                    |                          |                      |                    |  |  |
| Conten                | Contents                           |                          |                      |                    |  |  |

Timing matters: Temporal organisation in the animal kingdom. Timing plays an important role in all living systems. Animals make use of endogenous clocks to predict and adapt to daily or seasonal changes in environmental parameters. To be at the right place at the right time is of great fitness relevance if -for example- a mating partner or enough food has to be found. Many mutualistic, antagonistic or social interactions can only take place if animals are at the same place at the same time and in the appropriate developmental stage. The lecture gives an introduction to the mechanisms underlying the temporal organisation in the animal kingdom. Adopting an integrative approach, the lecture goes from timing mechanisms on the neuronal level to individual behaviour and then to interactions in social groups, populations or partners in complex and variable ecosystems.

#### **Intended learning outcomes**

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

**Courses** (type, number of weekly contact hours, language — if other than German)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

## Workload

210 h

#### Teaching cycle

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                            |       |                        |                                      |                    | Abbreviation    |
|-----------------------------------------|-------|------------------------|--------------------------------------|--------------------|-----------------|
| Neurogenetics of Behaviour B            |       |                        |                                      |                    | 07-MNBB-152-m01 |
| Module coordinator                      |       |                        |                                      | Module offered by  |                 |
| holder of the Chair of Neurobiology and |       |                        | d Genetics                           | Faculty of Biology |                 |
| ECTS                                    | Metho | od of grading          | Only after succ. compl. of module(s) |                    |                 |
| 5                                       | (not) | successfully completed |                                      |                    |                 |
| Duration                                |       | Module level           | Other prerequisites                  |                    |                 |
| 1 semester                              |       | graduate               |                                      |                    |                 |
|                                         | _     |                        |                                      |                    |                 |

To understand how the brain controls behaviour is at the heart of neuroscience. Both brain and behaviour can be overwhelmingly complex and plastic, yet neurogenetic methods are powerful tools to dissect the principles of how the brain controls behaviour. The lecture and seminar will give a state-of-the art view on current and important topics of behavioural neurobiology (incl. e. g. sleep, control of appetite and feeding, social behaviour, mating, mirror neurons, molecular mechanisms of auditory-guided behaviour, neurogenetic techniques) focusing on genetic model systems such as the fruit fly Drosophila, the mouse, and the nematode C. elegans.

## **Intended learning outcomes**

In the lecture, students acquire theoretical and methodological insights into current topics in the field of neurogenetics in general and the neurogenetics of behaviour.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

150 h

#### Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 504 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | ta record Master (120 ECTS) Biowissenschaften - 2016  |                |



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                               |                     |                           |                      |                    | Abbreviation       |  |
|--------------------------------------------|---------------------|---------------------------|----------------------|--------------------|--------------------|--|
| Neuromodulation and Neuronal Development B |                     |                           |                      |                    | 07-MENMNDB-152-m01 |  |
| Modul                                      | e coord             | inator                    |                      | Module offered by  |                    |  |
| holder                                     | of the              | Chair of Neurobiology and | d Genetics           | Faculty of Biology |                    |  |
| ECTS                                       | Meth                | od of grading             | Only after succ. con | npl. of module(s)  |                    |  |
| 5                                          | (not)               | successfully completed    |                      |                    |                    |  |
| Duration Module level                      |                     | Other prerequisites       |                      |                    |                    |  |
| 1 seme                                     | 1 semester graduate |                           |                      |                    |                    |  |
| <i>c</i> .                                 | C-ut-ut-            |                           |                      |                    |                    |  |

Neuromodulation: cellular and molecular biology of neuromodulators and their receptors, modulation of synaptic transmission and membrane potential, theoretical and functional aspects of neuromodulation, model systems used to study modulation of neuronal circuits. Fundamental principles of molecular developmental neurobiology. Focus is on the establishment of the neuroectoderm, pattern generation and regional specification, neuronal precursors, neuronal growth, differentiation of neurons, axonal pathfinding, neuronal connectivity.

## **Intended learning outcomes**

The students learn fundamental principles underlying neuromodulation and neuronal development and obtain an insight into current research in the field.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

### Workload

150 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |        |                           |                      |                    | Abbreviation     |  |
|-----------------------|--------|---------------------------|----------------------|--------------------|------------------|--|
| Endogenous Clocks B   |        |                           |                      |                    | 07-MECBB-152-m01 |  |
| Module coordinator    |        |                           |                      | Module offered by  |                  |  |
| holder                | of the | Chair of Neurobiology and | d Genetics           | Faculty of Biology |                  |  |
| ECTS                  | Meth   | od of grading             | Only after succ. con | npl. of module(s)  |                  |  |
| 5                     | (not)  | successfully completed    |                      |                    |                  |  |
| Duration Module level |        | Other prerequisites       |                      |                    |                  |  |
| 1 semester graduate   |        |                           |                      |                    |                  |  |
|                       |        |                           |                      |                    |                  |  |

Introduction into endogenous clocks of unicellular organisms, fungi, plants and animals, with a focus on the neuronal organisation of the clock in the brain of mammals and insects. The biological functions of endogenous clocks and the underlying mechanisms will be discussed on the molecular, cellular and organismic levels. It will be explained how clocks adjust to a 24h day with variable photoperiods. Applied aspects regarding e. g. shift work or jetlag will also be discussed.

### **Intended learning outcomes**

The students learn fundamental principles underlying chronobiology/endogenous clocks and obtain an insight into current research in the field.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

#### Workload

150 h

# **Teaching cycle**

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

exchange program Biosciences (2022)



| Module              | e title                               | ,                         |                      | Abbreviation       |                 |  |
|---------------------|---------------------------------------|---------------------------|----------------------|--------------------|-----------------|--|
| Animal              | Animal Ecology and Tropical Biology B |                           |                      |                    | 07-MTÖB-152-m01 |  |
| Module              | e coord                               | inator                    |                      | Module offered by  |                 |  |
| holder              | of the (                              | Chair of Animal Ecology a | nd Tropical Biology  | Faculty of Biology |                 |  |
| ECTS                | Metho                                 | od of grading             | Only after succ. con | npl. of module(s)  |                 |  |
| 5                   | (not)                                 | successfully completed    |                      |                    |                 |  |
| Duratio             | Duration Module level                 |                           | Other prerequisites  |                    |                 |  |
| 1 semester graduate |                                       |                           |                      |                    |                 |  |
| Conten              | Contents                              |                           |                      |                    |                 |  |

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change.

## Intended learning outcomes

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ \\$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

#### Workload

150 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |                     |                           |                      |                    | Abbreviation     |  |
|-----------------------|---------------------|---------------------------|----------------------|--------------------|------------------|--|
| Anima                 | l Ecolog            | gy and Tropical Biology 2 | В                    |                    | 07-MTÖ2B-152-m01 |  |
| Module coordinator    |                     |                           |                      | Module offered by  |                  |  |
| holder                | of the              | Chair of Animal Ecology a | nd Tropical Biology  | Faculty of Biology |                  |  |
| ECTS                  | Meth                | od of grading             | Only after succ. con | npl. of module(s)  |                  |  |
| 5                     | (not)               | successfully completed    |                      |                    |                  |  |
| Duration Module level |                     | Other prerequisites       |                      |                    |                  |  |
| 1 seme                | 1 semester graduate |                           |                      |                    |                  |  |
| Contor                | Contents            |                           |                      |                    |                  |  |

This module provides the fundamentals of the biology of tropical habitats and tropical communities. A special focus is on the global significance of tropical systems (ecosystem goods and ecosystem services), but the biological features of these highly diverse biomes are also highlighted.

#### Intended learning outcomes

The students will acquire deep knowledge of ecological theories and up-to-date research issues in the field of tropical ecology. They will be qualified to interpret scientific work and apply the knowledge they have acquired to the solution of current environmental risks.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

#### Workload

150 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title                                   |          |                        |                      |                    | Abbreviation   |
|------------------------------------------------|----------|------------------------|----------------------|--------------------|----------------|
| Animal Communication B                         |          |                        |                      |                    | 07-MKB-152-m01 |
| Module                                         | e coord  | inator                 |                      | Module offered by  |                |
| holder of the Chair of Behavioral Physiol logy |          |                        | ology and Sociobio-  | Faculty of Biology |                |
| ECTS                                           | Meth     | od of grading          | Only after succ. con | npl. of module(s)  |                |
| 7                                              | (not)    | successfully completed |                      |                    |                |
| Duration Module level                          |          | Other prerequisites    |                      |                    |                |
| 1 semester graduate                            |          |                        |                      |                    |                |
| Conton                                         | Contents |                        |                      |                    |                |

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling.

#### **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

210 h

## Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                                        | Module title |                        |                      |                    | Abbreviation    |
|-----------------------------------------------|--------------|------------------------|----------------------|--------------------|-----------------|
| Experi                                        | mental       | Sociobiology B         |                      |                    | 07-MESB-152-m01 |
| Module                                        | e coord      | inator                 |                      | Module offered by  |                 |
| holder of the Chair of Behavioral Physic logy |              |                        | ology and Sociobio-  | Faculty of Biology |                 |
| ECTS                                          | Meth         | od of grading          | Only after succ. con | npl. of module(s)  |                 |
| 7                                             | (not)        | successfully completed |                      |                    |                 |
| Duration Module level                         |              | Other prerequisites    |                      |                    |                 |
| 1 semester graduate                           |              |                        |                      |                    |                 |
| Contents                                      |              |                        |                      |                    |                 |

The lectures highlight the diversity and the evolution of social behaviour, but also focus on the physiological, neurobiological and behavioural mechanisms underlying the organisation of social groups. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

#### **Intended learning outcomes**

Students understand the value of an integrative approach when looking at complex correlations in behavioural biology. Students are able to recognise and interpret relationships between various aspects of sociobiology. They are able to formulate scientific questions in the context of sociobiology and are able to discuss cutting edge literature in depth.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

# Workload

210 h

## **Teaching cycle**

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

| Master's v | vith 1 major Biosciences (2016) | JMU W |
|------------|---------------------------------|-------|
|            |                                 | 40.00 |



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |          |                        |                      | _                  | Abbreviation    |
|-----------------------|----------|------------------------|----------------------|--------------------|-----------------|
| Molecular Biology B   |          |                        |                      |                    | 07-MS2B-152-m01 |
| Module coordinator    |          |                        |                      | Module offered by  |                 |
| Dean c                | of Studi | es Biologie (Biology)  |                      | Faculty of Biology |                 |
| ECTS                  | Meth     | od of grading          | Only after succ. con | npl. of module(s)  |                 |
| 7                     | (not)    | successfully completed |                      |                    |                 |
| Duration Module level |          | Other prerequisites    |                      |                    |                 |
| 1 semester graduate   |          |                        |                      |                    |                 |
| <i>a</i> .            |          |                        |                      |                    |                 |

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

# Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (3)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course. Language of assessment: German and/or English

Allocation of places

## **Additional information**

#### Workload

210 h

#### Teaching cycle

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

| Master's with 1 major Biosciences (2016) | JMU Würzburg • generated 19-Apr-2025 • exam. reg. da- | page 517 / 591 |
|------------------------------------------|-------------------------------------------------------|----------------|
|                                          | to record Master (420 ECTS) Piguissenschaften 2016    |                |



## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) FOKUS Life Sciences (2025)



| Module title          |          |                        |                      |                    | Abbreviation        |
|-----------------------|----------|------------------------|----------------------|--------------------|---------------------|
| Infection Biology B   |          |                        |                      |                    | 07-MS2INF-B-152-m01 |
| Module coordinator    |          |                        |                      | Module offered by  |                     |
| holder                | of the ( | Chair of Microbiology  |                      | Faculty of Biology |                     |
| ECTS                  | Metho    | od of grading          | Only after succ. con | npl. of module(s)  |                     |
| 5                     | (not)    | successfully completed |                      |                    |                     |
| Duration Module level |          | Other prerequisites    |                      |                    |                     |
| 1 semester graduate   |          |                        |                      |                    |                     |
|                       |          |                        |                      |                    |                     |

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

### **Intended learning outcomes**

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

### **Additional information**

--

#### Workload

150 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biomedicine (2018)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                      |        |                        |                      |                    | Abbreviation       |
|-----------------------------------|--------|------------------------|----------------------|--------------------|--------------------|
| Pathogenicity of Microorganisms B |        |                        |                      |                    | 07-MS2PA-B-152-m01 |
| Module coordinator                |        |                        |                      | Module offered by  |                    |
| holder                            | of the | Chair of Microbiology  |                      | Faculty of Biology |                    |
| ECTS                              | Meth   | od of grading          | Only after succ. con | npl. of module(s)  |                    |
| 5                                 | (not)  | successfully completed |                      |                    |                    |
| Duration Module level             |        | Other prerequisites    |                      |                    |                    |
| 1 semester graduate               |        |                        |                      |                    |                    |
|                                   |        |                        |                      |                    |                    |

Fundamental principles of the mode of action of microbial pathogenicity factors will be presented using selected prokaryotic and eukaryotic pathogens as model organisms. In addition, current research methods in infection biology will be presented.

#### **Intended learning outcomes**

Students have gained fundamental knowledge in infection biology and pathogenicity research and the mechanisms behind infectious diseases.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

V (2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

### **Additional information**

--

#### Workload

150 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biomedicine (2018)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                 |                                              |                                                                                                            |                                               |                            | Abbreviation                                                |  |
|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|-------------------------------------------------------------|--|
| Cell and Developmental Biology Master 1 B    |                                              |                                                                                                            |                                               |                            | 07-MZE1-B-152-m01                                           |  |
| Module                                       | coord                                        | inator                                                                                                     |                                               | Module offered by          | ,                                                           |  |
| holder<br>logy                               | of the (                                     | Chair of Cell Biology and                                                                                  | Developmental Bio-                            | Faculty of Biology         |                                                             |  |
| ECTS                                         | Metho                                        | od of grading                                                                                              | Only after succ. con                          | npl. of module(s)          |                                                             |  |
| 3                                            | (not)                                        | successfully completed                                                                                     |                                               |                            |                                                             |  |
| Duratio                                      | n                                            | Module level                                                                                               | Other prerequisites                           | i e                        |                                                             |  |
| 1 seme                                       | ster                                         | graduate                                                                                                   |                                               |                            |                                                             |  |
| Conten                                       | ts                                           |                                                                                                            |                                               |                            |                                                             |  |
|                                              |                                              | <i>llpathologie</i> (Cytopatholonsequences, such as inf                                                    |                                               |                            | cell and unravels their biological ic disorders and cancer. |  |
| Intende                                      | ed lear                                      | ning outcomes                                                                                              |                                               |                            |                                                             |  |
|                                              | •                                            | ossess scientific backgro<br>biology research.                                                             | ound knowledge on c                           | ytopathology and a         | re able to put this into the broade                         |  |
| Course                                       | <b>S</b> (type, r                            | number of weekly contact hours,                                                                            | anguage — if other than Ge                    | rman)                      |                                                             |  |
| V (1)<br>Module                              | taugh                                        | t in: German and/or Engl                                                                                   | ish                                           |                            |                                                             |  |
|                                              |                                              | <b>sessment</b> (type, scope, langua                                                                       | ge — if other than German,                    | examination offered — if r | not every semester, information on whether                  |  |
| c) oral d) oral                              | examin<br>examir                             | mination (30 to 60 minut<br>ation of one candidate e<br>nation in groups of up to<br>ssessment: German and | ach (30 to 60 minute<br>3 candidates (30 to 6 | s) or                      | or                                                          |  |
| Allocat                                      | ion of p                                     | olaces                                                                                                     |                                               |                            |                                                             |  |
|                                              |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Additio                                      | nal inf                                      | ormation                                                                                                   |                                               |                            |                                                             |  |
|                                              |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Worklo                                       | ad                                           |                                                                                                            |                                               |                            |                                                             |  |
| 90 h                                         |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Teachi                                       | ng cycl                                      | e                                                                                                          |                                               |                            |                                                             |  |
|                                              | -                                            |                                                                                                            |                                               |                            |                                                             |  |
| Referre                                      | d to in                                      | LPO I (examination regulation                                                                              | s for teaching-degree progra                  | ammes)                     |                                                             |  |
|                                              |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Module appears in                            |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Master's degree (1 major) Biology (2015)     |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Master's degree (1 major) Biosciences (2016) |                                              |                                                                                                            |                                               |                            |                                                             |  |
| Master's degree (1 major) Biosciences (2017) |                                              |                                                                                                            |                                               |                            |                                                             |  |
|                                              | _                                            | ee (1 major) Biosciences                                                                                   |                                               |                            |                                                             |  |
| Master                                       | Master's degree (1 major) Biosciences (2021) |                                                                                                            |                                               |                            |                                                             |  |

Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)



| Module                                                        | Module title                              |                     |                      |                   | Abbreviation      |
|---------------------------------------------------------------|-------------------------------------------|---------------------|----------------------|-------------------|-------------------|
| Cell an                                                       | Cell and Developmental Biology Master 2 B |                     |                      |                   | 07-MZE2-B-152-m01 |
| Module                                                        | Module coordinator                        |                     |                      | Module offered by |                   |
| holder of the Chair of Cell Biology and Developmental Biology |                                           | Developmental Bio-  | Faculty of Biology   |                   |                   |
| ECTS                                                          | CTS Method of grading Only                |                     | Only after succ. con | npl. of module(s) |                   |
| 3 (not) successfully completed                                |                                           |                     |                      |                   |                   |
| Duration Module level                                         |                                           | Other prerequisites |                      |                   |                   |
| 1 semester graduate                                           |                                           |                     |                      |                   |                   |
| Conton                                                        | Contents                                  |                     |                      |                   |                   |

The lecture Signale und Differenzierung (Signals and Differentiation) does not attempt to impart pure textbook knowledge. Instead, historically important as well as particularly interesting and important trend-setting topics in developmental biology are presented. The topics range from classical developmental subjects such as tissue regeneration and morphogenetic cell migration to molecular stem cell biology, epigenetic plasticity, origins of multicellularity and development within changing environments.

## Intended learning outcomes

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

**Courses** (type, number of weekly contact hours, language — if other than German)

V (1)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

90 h

## Teaching cycle

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) FOKUS Life Sciences (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)



Master's degree (1 major) Biosciences (2024) Master's degree (1 major) FOKUS Life Sciences (2025)



| Modul                                 | e title                        |              |                                      |                   | Abbreviation     |
|---------------------------------------|--------------------------------|--------------|--------------------------------------|-------------------|------------------|
| Bioinformatics B                      |                                |              |                                      |                   | 07-MBI-B-152-m01 |
| Module coordinator                    |                                |              |                                      | Module offered by |                  |
| holder of the Chair of Bioinformatics |                                |              | Faculty of Biology                   |                   |                  |
| ECTS                                  | TS Method of grading           |              | Only after succ. compl. of module(s) |                   |                  |
| 5                                     | 5 (not) successfully completed |              |                                      |                   |                  |
| Duration                              |                                | Module level | Other prerequisites                  |                   |                  |
| 1 semester                            |                                | graduate     |                                      |                   |                  |
|                                       |                                |              |                                      |                   |                  |

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

### **Intended learning outcomes**

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

### **Additional information**

--

#### Workload

150 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biomedicine (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biomedicine (2018)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                                | e title                      |              |                      |                   | Abbreviation    |
|---------------------------------------|------------------------------|--------------|----------------------|-------------------|-----------------|
| Systen                                | Systems Biology B            |              |                      |                   | 07-MS-B-152-m01 |
| Module coordinator                    |                              |              |                      | Module offered by |                 |
| holder of the Chair of Bioinformatics |                              |              | Faculty of Biology   |                   |                 |
| ECTS                                  | S Method of grading          |              | Only after succ. con | npl. of module(s) |                 |
| 5                                     | (not) successfully completed |              | I                    |                   |                 |
| Duration                              |                              | Module level | Other prerequisites  | ,                 |                 |
| 1 semester                            |                              | graduate     |                      |                   |                 |

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

## Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

### **Additional information**

--

#### Workload

150 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biomedicine (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biomedicine (2018)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)



Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title   | Abbreviation      |
|----------------|-------------------|
| Immunology 1 B | 03-MIM1-B-152-m01 |

| Module coordinator                                         | Module offered by   |
|------------------------------------------------------------|---------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Medicine |
| biology                                                    |                     |

| ECTS       | ECTS Method of grading         |              | Only after succ. compl. of module(s) |
|------------|--------------------------------|--------------|--------------------------------------|
| 7          | 7 (not) successfully completed |              |                                      |
| Duration   |                                | Module level | Other prerequisites                  |
| 1 semester |                                | graduate     |                                      |

Foundations of molecular and cellular immunology as well as infection biology which allow a deeper understanding of immune-mediated defence mechanisms against infectious diseases. For more information, please visit http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologie\_master/.

## **Intended learning outcomes**

Students will gain a knowledge of fundamental concepts and methods in molecular and cellular immunology and will be able to present and discuss these.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

210 h

## **Teaching cycle**

Teaching cycle: Winter semester only

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



| Module title   | Abbreviation      |
|----------------|-------------------|
| Immunology 2 B | 03-MIM2-B-152-m01 |

| Module coordinator                                         | Module offered by   |
|------------------------------------------------------------|---------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Medicine |
| biology                                                    |                     |

| ECTS     | TS Method of grading         |              | Only after succ. compl. of module(s) |
|----------|------------------------------|--------------|--------------------------------------|
| 7        | (not) successfully completed |              |                                      |
| Duration |                              | Module level | Other prerequisites                  |
| 1 seme   | ster                         | graduate     |                                      |

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immune modulation, development of the immune system, immunogenetics, evolution, infection immunology, and more.

### Intended learning outcomes

Students are able to understand current problems in immunology and to discuss these in detail.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

## **Additional information**

--

#### Workload

210 h

#### Teaching cycle

Teaching cycle: Summer semester only

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title    | Abbreviation       |
|-----------------|--------------------|
| Immunology 1 BS | 03-MIM1-BS-152-m01 |

| Module coordinator                                         | Module offered by   |
|------------------------------------------------------------|---------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Medicine |
| biology                                                    |                     |

| ECTS Method of grading |       |                        |                                      |
|------------------------|-------|------------------------|--------------------------------------|
|                        |       | od of grading          | Only after succ. compl. of module(s) |
| 5                      | (not) | successfully completed |                                      |
| Duratio                | n     | Module level           | Other prerequisites                  |
| 1 semester             |       | graduate               |                                      |

Foundations of molecular and cellular immunology as well as infection biology which allow a deeper understanding of immune-mediated defence mechanisms against infectious diseases. For more information, please visit http://www.virologie.uni-wuerzburg.de/lehrveranstaltungen/vorlesungen\_und\_praktika/immunologie/immunologie\_biologie\_master/.

## **Intended learning outcomes**

Students will gain a knowledge of fundamental concepts and methods in molecular and cellular immunology and will be able to present and discuss these.

**Courses** (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## **Teaching cycle**

Teaching cycle: Winter semester only

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title    | Abbreviation       |
|-----------------|--------------------|
| Immunology 2 BS | 03-MIM2-BS-152-m01 |

 Module coordinator
 Module offered by

 Managing Director of the Institute of Virology and Immuno-biology
 Faculty of Medicine

|                        | · ·                            |               |                                      |
|------------------------|--------------------------------|---------------|--------------------------------------|
| ECTS Method of grading |                                | od of grading | Only after succ. compl. of module(s) |
| 5                      | 5 (not) successfully completed |               |                                      |
| Duration Module level  |                                | Module level  | Other prerequisites                  |
| 1 sem                  | ester                          | graduate      |                                      |

#### **Contents**

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immune modulation, development of the immune system, immunogenetics, evolution, infection immunology, and more.

## Intended learning outcomes

Students are able to understand current problems in immunology and to discuss these in detail.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$ 

S (2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

## **Additional information**

--

#### Workload

150 h

#### Teaching cycle

Teaching cycle: Summer semester only

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title | Abbreviation     |
|--------------|------------------|
| Virology 1 B | 03-MV1-B-152-m01 |
|              |                  |

 Module coordinator
 Module offered by

 Managing Director of the Institute of Virology and Immuno Faculty of Medicine

| FCTS    | Method of grading                              | Only after succ. con | ant of module(s)    |
|---------|------------------------------------------------|----------------------|---------------------|
| biology | <u>,                                      </u> |                      |                     |
| Managi  | ing Director of the Institute of Vi            | rology and Immuno-   | Faculty of Medicine |

| ECTS Method of grading |       | od of grading          | Only after succ. compl. of module(s) |
|------------------------|-------|------------------------|--------------------------------------|
| 7                      | (not) | successfully completed |                                      |
| Duratio                | n     | Module level           | Other prerequisites                  |
| 1 seme                 | ster  | graduate               |                                      |
|                        |       |                        |                                      |

#### **Contents**

This course offers an introduction to virology and current research in the field of virology.

## **Intended learning outcomes**

Students are able to understand current problems in virology and to discuss these in detail.

Courses (type, number of weekly contact hours, language - if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

#### Allocation of places

--

## **Additional information**

--

#### Workload

210 h

## **Teaching cycle**

Teaching cycle: Winter semester only

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)



| Module title | Abbreviation     |
|--------------|------------------|
| Virology 2 B | 03-MV2-B-152-m01 |

| Module coordinator                                         | Module offered by   |
|------------------------------------------------------------|---------------------|
| Managing Director of the Institute of Virology and Immuno- | Faculty of Medicine |
| biology                                                    |                     |

| 0,      |                                |              |                                      |
|---------|--------------------------------|--------------|--------------------------------------|
| ECTS    | ECTS Method of grading         |              | Only after succ. compl. of module(s) |
| 7       | 7 (not) successfully completed |              |                                      |
| Duratio | on                             | Module level | Other prerequisites                  |
| 1 seme  | ster                           | graduate     |                                      |

This course offers an introduction to virology and current research in the field of virology.

## **Intended learning outcomes**

Students are able to understand current problems in virology and to discuss these in detail.

**Courses** (type, number of weekly contact hours, language — if other than German)

V(1) + S(2)

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Students will be informed about the method, length and scope of the assessment prior to the course.

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

#### Workload

210 h

## **Teaching cycle**

Teaching cycle: Summer semester only

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)



| e title               |                                     | Abbreviation                                                                                                            |                                                                                                                                                         |                           |  |
|-----------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| s Work                | shop                                |                                                                                                                         |                                                                                                                                                         | 07-MKEWO-152-m01          |  |
| e coord               | inator                              |                                                                                                                         | Module offered by                                                                                                                                       |                           |  |
| progra                | mme coordinator Biologi             | e (Biology)                                                                                                             | Faculty of Biology                                                                                                                                      | Faculty of Biology        |  |
| Metho                 | od of grading                       | Only after succ.                                                                                                        | compl. of module(s)                                                                                                                                     |                           |  |
| (not)                 | successfully completed              |                                                                                                                         |                                                                                                                                                         |                           |  |
| Duration Module level |                                     | Other prerequisites                                                                                                     |                                                                                                                                                         |                           |  |
| 1 semester graduate   |                                     |                                                                                                                         |                                                                                                                                                         |                           |  |
|                       | s Work e coord progra Metho (not) s | s Workshop  c coordinator  programme coordinator Biologi  Method of grading  (not) successfully completed  Module level | s Workshop  c coordinator  programme coordinator Biologie (Biology)  Method of grading  (not) successfully completed  on Module level  Other prerequisi | s Workshop  c coordinator |  |

This course will use a combination of lectures (daily) and practical experiments. Topics to be covered in the lecture (subject to change): - nuclear envelope, nuclear pores and nuclear-cytoplasmic transport. - nuclear envelope, nuclear lamina and their role in chromatin organisation and genetic diseases. - DNA, chromatin and chromosomes. - structure and function of nucleoli. - nuclear-cytoskeletal interactions.

## Intended learning outcomes

Students are able to perform practical experiments, applying their theoretical knowledge.

**Courses** (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(5) + V(1)$ 

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

### **Additional information**

--

#### Workload

210 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title Abbreviation               |          |                        |                                      |                   | Abbreviation |
|-----------------------------------------|----------|------------------------|--------------------------------------|-------------------|--------------|
| Gene Regulation and Signal Transduction |          |                        |                                      | 07-MGRSD-152-m01  |              |
| Module coordinator                      |          |                        |                                      | Module offered by |              |
| Dean of Studies Biologie (Biology)      |          |                        | Faculty of Biology                   |                   |              |
| ECTS                                    | Metho    | od of grading          | Only after succ. compl. of module(s) |                   |              |
| 3                                       | (not)    | successfully completed |                                      |                   |              |
| Duration Module level                   |          | Other prerequisites    |                                      |                   |              |
| 1 semester graduate                     |          |                        |                                      |                   |              |
| Conten                                  | Contents |                        |                                      |                   |              |

In this lecture, important aspects of gene regulation and signal transduction of bacteria will be described and discussed. The lecture will discuss regulatory mechanisms on the transcriptional and post transcriptional level. Whenever appropriate, special emphasis will be placed on regulatory phenomena in pathogenic bacteria.

## Intended learning outcomes

The lecture will discuss aspects covered in the lecture *Molekulare Biologie* (*Molecular Biology*, course no. 0610200) and in the special lecture *Mikrobiologie*/Infektionsbiologie (Microbiology/Infection Biology, course no. 0610220) in more detail and will explore some additional aspects.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$ 

V (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

90 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



| Module title                       |       |                        | Abbreviation         |                   |                  |
|------------------------------------|-------|------------------------|----------------------|-------------------|------------------|
| Microbial Ecology                  |       |                        |                      |                   | 07-MMIÖK-152-m01 |
| Module coordinator                 |       |                        |                      | Module offered by |                  |
| Dean of Studies Biologie (Biology) |       |                        | Faculty of Biology   |                   |                  |
| ECTS                               | Meth  | od of grading          | Only after succ. con | npl. of module(s) |                  |
| 3                                  | (not) | successfully completed |                      |                   |                  |
| Duration Module level              |       | Other prerequisites    |                      |                   |                  |
| 1 semester graduate                |       |                        |                      |                   |                  |
| Contracts                          |       |                        |                      |                   |                  |

This lecture discusses fundamental principles of the interaction of bacteria with their environment. A major emphasis is on the interaction of mutualistic bacteria with other organisms including bacteria, invertebrates and vertebrates and, where appropriate, the comparison with commensal and pathogenic interactions. The lecture complements the focus Infektionsbiologie (Infection Biology) of the degree programme Zelluläre und Molekulare Mikrobiologie / Infektionsbiologie (Cellular and Molecular Biology / Infection Biology) in which mainly human pathogens and their host interaction mechanisms are presented. Thus, the lecture intends to identify and describe fundamental concepts of the interaction of bacteria with different host organisms and their evolution.

## **Intended learning outcomes**

Students understand the fundamental principles and evolution of the mechanisms of interaction between bacteria and eukaryotic host organisms.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$ 

V (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

90 h

## **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



| Module title                                              |                                           |                        |                      |                    | Abbreviation                 |
|-----------------------------------------------------------|-------------------------------------------|------------------------|----------------------|--------------------|------------------------------|
| Ecolog                                                    | y of Ho                                   | ney Bees and Wild Bees | 07-MHWB-152-m01      |                    |                              |
| Module                                                    | e coord                                   | inator                 |                      | Module offered by  | l.                           |
| holder of the Chair of Animal Ecology and Tropical Biolog |                                           |                        | and Tropical Biology | Faculty of Biology |                              |
| ECTS                                                      | CTS Method of grading Only after succ. co |                        | Only after succ. con | npl. of module(s)  |                              |
| 3                                                         | nume                                      | rical grade            |                      |                    |                              |
| Duratio                                                   | on                                        | Module level           | Other prerequisites  |                    |                              |
| 1 semester graduate                                       |                                           |                        |                      |                    |                              |
| Conten                                                    | its                                       |                        |                      |                    |                              |
| Introdu                                                   | ıction t                                  | -                      |                      | -                  | of beekeeping (colony manage |

Introduction to the life of honeybees and wild bees; principles and techniques of beekeeping (colony management, breeding, diseases); resource use of honeybees and wild bees (bee dances, flower visiting, pollen analysis, foraging behaviour, nesting aid); taxonomy of wild bees, opponents of bees, wild bees in different habitats (field trip), honeybee field trip, e. g. visit to the bee centre in Veitshöchheim.

## **Intended learning outcomes**

The students will expand their knowledge on the biology and ecology of wild and honeybees, on interactions between bees and plants, and on aspects of nature conservation. They will be proficient in experimental methods of pollination ecology, the management of trial colonies, pollen analysis, and the determination of wild bees.

Courses (type, number of weekly contact hours, language - if other than German)

Ü (5)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

90 h

## **Teaching cycle**

\_\_

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Module title                    |                     |                        |                         |                    | Abbreviation    |  |
|---------------------------------|---------------------|------------------------|-------------------------|--------------------|-----------------|--|
| Ecology and Taxonomy of Insects |                     |                        |                         |                    | 07-METI-152-m01 |  |
| Modul                           | e coord             | inator                 |                         | Module offered by  |                 |  |
| holder                          | of the              | Chair of Animal Ecolog | gy and Tropical Biology | Faculty of Biology |                 |  |
| ECTS                            | Metho               | od of grading          | Only after succ. cor    | npl. of module(s)  |                 |  |
| 3                               | nume                | rical grade            |                         |                    |                 |  |
| Duratio                         | on                  | Module level           | Other prerequisites     | ;                  |                 |  |
| 1 seme                          | 1 semester graduate |                        |                         |                    |                 |  |
| Conten                          | Contents            |                        |                         |                    |                 |  |

Identification and classification of the characteristics of different groups of arthropods, especially insects. Knowledge of special form is provided. Observation and recording of arthropods in habitat. Experimental laboratory and field work on ecological or behaviour biological characteristics of the respective groups of arthropods. In addition, compilation of species richness and niche differentiation. The aim is to link the phylogenetic and morphological characteristics of arthropods with their ecological functions.

#### **Intended learning outcomes**

The students will be able to identify typical families and representatives of major insect orders. They will be able to apply special identification keys as well as to record and evaluate special behaviours. They will be able to design and evaluate experimental approaches in ecological laboratory and field studies.

**Courses** (type, number of weekly contact hours, language — if other than German)

Ü (5)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

\_\_

## **Additional information**

--

## Workload

90 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Modul   | e title                  |                           | Abbreviation         |                    |                 |
|---------|--------------------------|---------------------------|----------------------|--------------------|-----------------|
| Model   | ling in I                | Ecology                   |                      |                    | 07-MMIE-152-m01 |
| Modul   | e coord                  | inator                    |                      | Module offered by  |                 |
| holder  | of the                   | Chair of Animal Ecology a | and Tropical Biology | Faculty of Biology |                 |
| ECTS    | Meth                     | od of grading             | Only after succ. con | npl. of module(s)  |                 |
| 3       | nume                     | rical grade               |                      |                    |                 |
| Duratio | Duration Module level    |                           | Other prerequisites  |                    |                 |
| 1 seme  | 1 semester undergraduate |                           |                      |                    |                 |
| Conter  | Contents                 |                           |                      |                    |                 |

On the basis of exemplary tasks in ecology, the students will learn about different simulation techniques and modelling methods. At the same time, they will develop their own simulation program to address demographical or evolutionary questions.

## **Intended learning outcomes**

The students will expand their knowledge in the theory and practice of ecological modelling. They will be able to develop, apply and interpret adequate modelling techniques.

Courses (type, number of weekly contact hours, language - if other than German)

Ü (5)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

## **Additional information**

## Workload

90 h

#### Teaching cycle

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Modul               | e title               | '                    | Abbreviation              |                     |                  |
|---------------------|-----------------------|----------------------|---------------------------|---------------------|------------------|
| Agroed              | cology                |                      |                           |                     | 07-MAGRE-152-m01 |
| Module coordinator  |                       |                      |                           | Module offered by   |                  |
| holder              | of the                | Chair of Animal Ecol | logy and Tropical Biology | Faculty of Biology  |                  |
| ECTS                | Meth                  | od of grading        | Only after succ. con      | npl. of module(s)   |                  |
| 2                   | nume                  | rical grade          |                           |                     |                  |
| Duratio             | Duration Module level |                      | Other prerequisites       | Other prerequisites |                  |
| 1 semester graduate |                       |                      |                           |                     |                  |
| Conter              | Contents              |                      |                           |                     |                  |

Biodiversity and ecosystem functioning in agricultural ecosystems. Insect communities in different crops, pest-beneficial organisms-interactions, and biological pest control. Experiment in comparison of organically and conventionally farmed agricultural land (plant diversity, herbivore, predator, pollinator diversity). Field trip to nature conservation-related agricultural areas (e. g. semi-arid grassland), presentation of agri-environmental measures.

## **Intended learning outcomes**

The students will acquire knowledge about the species diversity, structure and functional role of arthropod communities in agricultural ecosystems. They will be able to perform scientific work in agricultural ecosystems, to perform statistical analyses, and to interpret the results. They will be familiar with problems and possible solutions in agricultural ecosystems in the context of a sustainable use of biodiversity and ecosystem services.

**Courses** (type, number of weekly contact hours, language — if other than German)

Ü (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

## Workload

60 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Modul              | e title                    |                      |                           |                    | Abbreviation    |
|--------------------|----------------------------|----------------------|---------------------------|--------------------|-----------------|
| Forest             | Ecolog                     | у                    |                           |                    | 07-MFEC-152-m01 |
| Module coordinator |                            |                      |                           | Module offered by  |                 |
| holder             | of the                     | Chair of Animal Ecol | logy and Tropical Biology | Faculty of Biology |                 |
| ECTS               | Meth                       | od of grading        | Only after succ. con      | npl. of module(s)  |                 |
| 2                  | nume                       | rical grade          |                           |                    |                 |
| Duratio            | Duration Module level Othe |                      | Other prerequisites       | •                  |                 |
| 1 seme             | 1 semester graduate        |                      |                           |                    |                 |
|                    |                            |                      |                           |                    |                 |

Arthropod communities in forest ecosystems, methods for detection, influence of management on diversity patterns and functional groups. The course includes field studies in forest ecosystems and work of determination as well as the statistical analysis of data.

#### Intended learning outcomes

The students will acquire knowledge of the species diversity, structure and functional role of arthropod communities in forests. On the basis of complex data sets, they will learn to analyse and discuss the structuring patterns of communities. In this context, the course will also discuss associated conservation-related aspects.

Courses (type, number of weekly contact hours, language - if other than German)

Ü (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

60 h

# Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)



| Modul            | e title               |                       |                          |                     | Abbreviation     |  |
|------------------|-----------------------|-----------------------|--------------------------|---------------------|------------------|--|
| Tropical Ecology |                       |                       |                          |                     | 07-MTROP-152-m01 |  |
| Modul            | e coord               | linator               |                          | Module offered by   | I                |  |
| holder           | of the                | Chair of Animal Ecolo | ogy and Tropical Biology | Faculty of Biology  |                  |  |
| ECTS             | Meth                  | od of grading         | Only after succ. con     | npl. of module(s)   |                  |  |
| 5                | nume                  | rical grade           |                          |                     |                  |  |
| Duratio          | Duration Module level |                       | Other prerequisites      | Other prerequisites |                  |  |
| 1 seme           | 1 semester graduate   |                       |                          |                     |                  |  |
| <i>~</i> .       | Ctt                   |                       |                          |                     |                  |  |

Small projects on ecological or nature conservation-related issues will be implemented in a tropical ecosystem. Students should become familiar with different project stages from experiment design, implementation and data analysis through to data presentation. In evening seminars, recent publications in the field of tropical ecology will be presented and discussed.

## **Intended learning outcomes**

The students will learn about various tropical ecosystems and will acquire advanced knowledge of ecological and nature conservation-related research in the tropics. They will learn field ecological methods for the quantitative detection of insects and their biotic interactions and will acquire statistical knowledge in the field of data analysis.

**Courses** (type, number of weekly contact hours, language — if other than German)

Ü (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

## **Additional information**

--

## Workload

150 h

#### Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                        |        |                           |                      |                    | Abbreviation    |
|-------------------------------------|--------|---------------------------|----------------------|--------------------|-----------------|
| Seminar Experimental Animal Ecology |        |                           |                      |                    | 07-MSET-152-m01 |
| Module coordinator                  |        |                           |                      | Module offered by  |                 |
| holder                              | of the | Chair of Animal Ecology a | nd Tropical Biology  | Faculty of Biology |                 |
| ECTS                                | Meth   | od of grading             | Only after succ. cor | npl. of module(s)  |                 |
| 2                                   | (not)  | successfully completed    |                      |                    |                 |
| Duratio                             | on     | Module level              | Other prerequisites  | ;                  |                 |
| 1 semester graduate                 |        | graduate                  |                      |                    |                 |
| Conten                              | ıts    |                           |                      |                    |                 |

Introduction to and discussion of current research in: Honigbienen- und Wildbienenökologie (Ecology of Wild Bees and Honeybees, o7-MHWB), Ökologie und Taxonomie der Insekten (Ecology and Taxonomy of Insects, o7-METI), Modellierung in der Ökologie (Ecological Modelling, o7-MMIE), Agrarökologie (Agroecology, o7-MAGRE), Waldökologie (Forest Ecology, o7-MFEC), Tropenökologie (Tropical Ecology, o7-MTROP).

## **Intended learning outcomes**

Students have acquired in-depth knowledge about current research in experimental animal ecology and are able to communicate and critically analyse methods and results of scientific publications.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

# Workload

60 h

## Teaching cycle

--

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                    |                       |                        |                      |                   | Abbreviation    |
|---------------------------------|-----------------------|------------------------|----------------------|-------------------|-----------------|
| Presentation of Scientific Data |                       |                        |                      |                   | 07-MPWD-152-m01 |
| Module coordinator              |                       |                        |                      | Module offered by |                 |
| Coordi                          | nator B               | ioCareers              | Faculty of Biology   |                   |                 |
| ECTS                            | Meth                  | od of grading          | Only after succ. con | npl. of module(s) |                 |
| 5                               | (not)                 | successfully completed |                      |                   |                 |
| Duratio                         | Duration Module level |                        | Other prerequisites  |                   |                 |
| 1 seme                          | ster                  | graduate               |                      |                   |                 |
| Contor                          | Contonts              |                        |                      |                   |                 |

Principles for the preparation of scientific manuscripts, citations and the presentation of scientific data. Students will write a scientific mini review and present this in a talk (15 minutes). Content, structure, coherence and the logical chain of arguments will be discussed. Students will write and publish (where possible) a scientific paper or review on a selected topic in a scientific journal. The students' work will be based on original papers as well as on reviews and will follow the instructions of a scientific journal of the students' choice. These instructions can be found on the website of the respective journal under "Instructions to Authors" or similar. Both length of chapters and structure of the article should be based on the style of the journal selected. Attendance of no less than 20 scientific talks (e. g. defences of doctoral theses, presentations of research projects, retreats) including presentations by guest speakers. Students are to obtain proof of attendance from the organisers or speakers.

## **Intended learning outcomes**

The students are familiar with the details of publishing scientific data in written and oral form. They have become familiar with the methodology of scientific publishing in oral or written fashion. In addition, they have enhanced their English reading, speaking and writing skills.

**Courses** (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

## Additional information

--

# Workload

150 h

## **Teaching cycle**

--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)



Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                         | e title                    |                          | Abbreviation         |                    |  |  |
|--------------------------------|----------------------------|--------------------------|----------------------|--------------------|--|--|
| Quality                        | y Assur                    | ance, Good Practice, Bio | 07-MGLN-152-m01      |                    |  |  |
| Module coordinator Module offe |                            |                          |                      | Module offered by  |  |  |
| Coordi                         | nator B                    | ioCareers                |                      | Faculty of Biology |  |  |
| ECTS                           | Meth                       | od of grading            | Only after succ. con | npl. of module(s)  |  |  |
| 5                              | nume                       | rical grade              |                      |                    |  |  |
| Duratio                        | Duration Module level Othe |                          | Other prerequisites  |                    |  |  |
| 1 seme                         | 1 semester graduate        |                          |                      |                    |  |  |
| Conten                         | Contents                   |                          |                      |                    |  |  |

Basic Rules of Good Practice in the Life Sciences including laboratory, manufacturing, clinical and manufacturing practices. DIN en iso 9000-9004 standards, environmental protection and Biological safety and security / dual use criteria. Management concepts in the Biosciences.

#### Intended learning outcomes

The students are aware of several regulations and standards in the Life Sciences field and are aware of Quality standards in the Bioscientific context. Furthermore, they deal with management concepts in the field of science, environmental context and industry.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

a) written examination (30 to 60 minutes, including multiple choice questions) Language of assessment: German and/or English

#### Allocation of places

## **Additional information**

#### Workload

150 h

## **Teaching cycle**

Teaching cycle: summer semester

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title        |                       |                        |                      |                    | Abbreviation    |
|---------------------|-----------------------|------------------------|----------------------|--------------------|-----------------|
| Brain and Mind      |                       |                        |                      |                    | 07-MGUG-152-m01 |
| Module coordinator  |                       |                        |                      | Module offered by  |                 |
| Coordi              | nator B               | ioCareers              |                      | Faculty of Biology |                 |
| ECTS                | Meth                  | od of grading          | Only after succ. con | npl. of module(s)  |                 |
| 3                   | (not)                 | successfully completed |                      |                    |                 |
| Duratio             | Duration Module level |                        | Other prerequisites  |                    |                 |
| 1 semester graduate |                       |                        |                      |                    |                 |
| Contents            |                       |                        |                      |                    |                 |

Philosophical foundations and scientific principles, history and theory of mind, human memory, intentional decision making and biochemical principles of cognitive and emotional processes. Fundamental terms and principles in biology are discussed.

## **Intended learning outcomes**

The students are familiar with the hallmarks of the history of natural sciences. They have developed an increased awareness of how to use fundamental terms and definitions as well as of risks and concerns arising with knowledge and technical developments in the biosciences.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

#### Workload

90 h

## Teaching cycle

# Referred to in LPO I (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                  |                       |                        |                      |                    | Abbreviation    |
|-------------------------------|-----------------------|------------------------|----------------------|--------------------|-----------------|
| Theory and History of Science |                       |                        |                      |                    | 07-MWIG-152-m01 |
| Module coordinator            |                       |                        |                      | Module offered by  |                 |
| Coordi                        | nator B               | ioCareers              |                      | Faculty of Biology |                 |
| ECTS                          | Metho                 | od of grading          | Only after succ. con | npl. of module(s)  |                 |
| 3                             | (not)                 | successfully completed |                      |                    |                 |
| Duratio                       | Duration Module level |                        | Other prerequisites  |                    |                 |
| 1 seme                        | ster                  | graduate               |                      |                    |                 |
| Conten                        | Contents              |                        |                      |                    |                 |

Philosophical foundations and scientific principles, history and theory of mind, human memory, intentional decision making and biochemical principles of cognitive and emotional processes. Fundamental terms and principles in biology are discussed.

## **Intended learning outcomes**

The students are familiar with the hallmarks of the history of natural sciences. They have developed an increased awareness of how to use fundamental terms and definitions as well as of risks and concerns arising with knowledge and technical developments in the biosciences.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

#### Workload

90 h

# Teaching cycle

# Referred to in LPO I (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                                  |                       |                        |                      |                   | Abbreviation    |
|-----------------------------------------------|-----------------------|------------------------|----------------------|-------------------|-----------------|
| Entrepreneurial Management in the Biosciences |                       |                        |                      |                   | 07-MEMB-152-m01 |
| Module coordinator                            |                       |                        |                      | Module offered by | I               |
| Coordi                                        | nator B               | ioCareers              | Faculty of Biology   |                   |                 |
| ECTS                                          | Meth                  | od of grading          | Only after succ. con | npl. of module(s) |                 |
| 10                                            | (not)                 | successfully completed |                      |                   |                 |
| Duratio                                       | Duration Module level |                        | Other prerequisites  |                   |                 |
| 1 seme                                        | 1 semester graduate   |                        |                      |                   |                 |
| <i>~</i> .                                    | Control               |                        |                      |                   |                 |

Overview of the bioscience sector with a particular focus on research and development, fundamental methods and technologies, recent developments and trends in established as well as up-and-coming high-tech industries, legal framework, financing and business models, best practice examples of start-ups as well as established companies, criteria of project-based work, characteristics and elements of project work, case studies, project work in interdisciplinary teams of students where possible, selected guest lectures giving the course practical relevance.

## **Intended learning outcomes**

Students have acquired an insight into industries and developments in the natural sciences. They are familiar with the characteristics of industries and established businesses as well as with specific characteristics of start-up companies and up-and-coming technologies. Students are also familiar with the criteria of project-based work and have gained experience working in interdisciplinary teams. They are better qualified to evaluate what approaches or methods from individual disciplines are most suitable for solving a particular problem. The experience of interdisciplinary project work students have acquired will help them enhance their entrepreneurial skills.

**Courses** (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

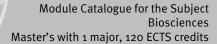
## Additional information

--

#### Workload

300 h

## **Teaching cycle**


--

**Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biology (2015)





Master's degree (1 major) Biosciences (2017) Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Modul                                       | e title  |                        | Abbreviation         |                   |                 |
|---------------------------------------------|----------|------------------------|----------------------|-------------------|-----------------|
| Entrepreneurial Thinking in the Biosciences |          |                        |                      |                   | 07-MUDB-152-m01 |
| Modul                                       | e coord  | inator                 |                      | Module offered by |                 |
| Coordi                                      | nator B  | ioCareers              | Faculty of Biology   |                   |                 |
| ECTS                                        | Metho    | od of grading          | Only after succ. con | npl. of module(s) |                 |
| 5                                           | (not)    | successfully completed |                      |                   |                 |
| Duration Module level                       |          | Other prerequisites    |                      |                   |                 |
| 1 semester graduate                         |          |                        |                      |                   |                 |
| Conter                                      | Contents |                        |                      |                   |                 |

Companies are presented to students opt. together with cooperative workshops. These workshops may also deal with the process of founding start-up companies in the biotech or biomedical sectors. Topics on intellectual property protection are discussed.

## **Intended learning outcomes**

Students gained an insight into the business plans and market of companies. They gained an insight into industrial research and development.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (1)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

# Allocation of places

--

## **Additional information**

--

#### Workload

150 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

\_\_

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                         |                                              |                                                        |                              |                             | Abbreviation                              |  |
|--------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------|-----------------------------|-------------------------------------------|--|
| Specia                               | l Subje                                      | ct Studies Biology and N                               | atural Sciences 1            |                             | 07-MVMINT1-152-m01                        |  |
| Module coordinator Module offered by |                                              |                                                        |                              |                             |                                           |  |
| Coordi                               | nator B                                      | ioCareers                                              |                              | Faculty of Biology          |                                           |  |
| ECTS                                 | Metho                                        | od of grading                                          | Only after succ. com         | ıpl. of module(s)           |                                           |  |
| 2                                    | (not)                                        | successfully completed                                 |                              |                             |                                           |  |
| Duratio                              | on                                           | Module level                                           | Other prerequisites          |                             |                                           |  |
| 1 seme                               | ster                                         | graduate                                               | Please consult with          | course advisory serv        | vice in advance.                          |  |
| Conten                               | nts                                          |                                                        |                              |                             |                                           |  |
|                                      | r specif<br>ass req                          |                                                        | weekly contact hour          | ) in biological or nat      | cural sciences; assessment ungra-         |  |
| Intend                               | ed learı                                     | ning outcomes                                          |                              |                             |                                           |  |
| Specifi                              | c skills                                     | and knowledge on an int                                | terdisciplinary subjec       | t in the biological o       | r natural sciences.                       |  |
| Course                               | <b>S</b> (type, r                            | umber of weekly contact hours, l                       | anguage — if other than Ger  | man)                        |                                           |  |
|                                      |                                              | t in: German and/or Engl<br>night also be offered in V |                              |                             |                                           |  |
|                                      |                                              | sessment (type, scope, langua<br>le for bonus)         | ge — if other than German, e | examination offered — if no | ot every semester, information on whether |  |
|                                      |                                              | mpletion as certified by t<br>ssessment: German and,   |                              |                             |                                           |  |
| Allocat                              | tion of p                                    | olaces                                                 |                              |                             |                                           |  |
|                                      |                                              |                                                        |                              |                             |                                           |  |
| Additio                              | nal inf                                      | ormation                                               |                              |                             |                                           |  |
|                                      |                                              |                                                        |                              |                             |                                           |  |
| Worklo                               | ad                                           |                                                        |                              |                             |                                           |  |
| 60 h                                 |                                              |                                                        |                              |                             |                                           |  |
| Teachi                               | ng cycl                                      | e                                                      |                              |                             |                                           |  |
|                                      |                                              |                                                        |                              |                             |                                           |  |
| Referre                              | ed to in                                     | LPO I (examination regulations                         | s for teaching-degree progra | mmes)                       |                                           |  |
|                                      |                                              |                                                        |                              |                             |                                           |  |
| Module                               | Module appears in                            |                                                        |                              |                             |                                           |  |
| Master                               | Master's degree (1 major) Biology (2015)     |                                                        |                              |                             |                                           |  |
|                                      | Master's degree (1 major) Biosciences (2016) |                                                        |                              |                             |                                           |  |
|                                      | Master's degree (1 major) Biosciences (2017) |                                                        |                              |                             |                                           |  |
|                                      | Master's degree (1 major) Biosciences (2018) |                                                        |                              |                             |                                           |  |
|                                      | Master's degree (1 major) Biosciences (2021) |                                                        |                              |                             |                                           |  |
|                                      | Master's degree (1 major) Biosciences (2023) |                                                        |                              |                             |                                           |  |
| waster                               | Master's degree (1 major) Biosciences (2024) |                                                        |                              |                             |                                           |  |



| Modul                     | e title                                 |                       | Abbreviation         |                     |                  |  |
|---------------------------|-----------------------------------------|-----------------------|----------------------|---------------------|------------------|--|
| Specia                    | l Subje                                 | ect Studies Biology a | 07-MVMINT2-152-m01   |                     |                  |  |
| Module coordinator Module |                                         |                       |                      | Module offered by   |                  |  |
| Coordi                    | nator B                                 | BioCareers            |                      | Faculty of Biology  |                  |  |
| ECTS                      | Meth                                    | od of grading         | Only after succ. con | npl. of module(s)   |                  |  |
| 3                         | nume                                    | erical grade          |                      |                     |                  |  |
| Duratio                   | on                                      | Module level          | Other prerequisites  | ;                   |                  |  |
| 1 seme                    | 1 semester graduate Please consult with |                       |                      | course advisory ser | vice in advance. |  |
| Conter                    | Contents                                |                       |                      |                     |                  |  |

Regular specific lecture, seminar, workshop, retreat or practical course (1 weekly contact hour) in biological or natural sciences with a graded assessment.

## **Intended learning outcomes**

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (1)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

90 h

## Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Modul   | e title                                |                          | Abbreviation         |                      |                  |
|---------|----------------------------------------|--------------------------|----------------------|----------------------|------------------|
| Specia  | l Subje                                | ct Studies Biology and N |                      | 07-MVMINT2B-152-m01  |                  |
| Modul   | e coord                                | inator                   |                      | Module offered by    |                  |
| Coordi  | nator B                                | ioCareers                |                      | Faculty of Biology   |                  |
| ECTS    | Metho                                  | od of grading            | Only after succ. con | npl. of module(s)    |                  |
| 3       | (not)                                  | successfully completed   |                      |                      |                  |
| Duratio | Duration Module level O                |                          | Other prerequisites  |                      |                  |
| 1 seme  | 1 semester graduate Please consult wit |                          |                      | course advisory serv | vice in advance. |
| Conter  | Contents                               |                          |                      |                      |                  |

Regular specific lecture, seminar, workshop, retreat or practical course (1 weekly contact hour) in biological or natural sciences with a graded assessment.

## **Intended learning outcomes**

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

**Courses** (type, number of weekly contact hours, language — if other than German)

S (1)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

90 h

## Teaching cycle

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title |                                                                                              |                                                       |                              | Abbreviation              |                                           |  |  |
|--------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|---------------------------|-------------------------------------------|--|--|
| Specia       | Special Subject Studies Biology and Natural Sciences 3                                       |                                                       |                              |                           | 07-MVMINT3-152-m01                        |  |  |
| Modul        | Module coordinator Module off                                                                |                                                       |                              |                           | <u></u>                                   |  |  |
|              | _                                                                                            | ioCareers                                             |                              | Faculty of Biology        |                                           |  |  |
| ECTS         | 1                                                                                            | od of grading                                         | Only after succ. con         |                           |                                           |  |  |
|              |                                                                                              | successfully completed                                |                              | ipt. or modute(3)         |                                           |  |  |
| 4<br>Durati  |                                                                                              | Module level                                          | Other prerequisites          |                           |                                           |  |  |
| 1 seme       |                                                                                              |                                                       |                              | course advisory sen       | vice in advance                           |  |  |
|              |                                                                                              | graduate                                              | Please consult with          | course advisory serv      | vice ili auvalice.                        |  |  |
| Conte        | _                                                                                            |                                                       | - l                          | :!                        |                                           |  |  |
|              |                                                                                              | fic lecture, seminar, work<br>ces; assessment ungrade |                              | ical course (2 weekl      | y contact hours) in biological or         |  |  |
|              |                                                                                              | ning outcomes                                         | a, pass required.            |                           |                                           |  |  |
|              |                                                                                              | and knowledge on an in                                | tordisciplinant subject      | et in the higherical or   | r natural sciences                        |  |  |
|              |                                                                                              |                                                       |                              |                           | i ilaturat sciences.                      |  |  |
|              | es (type, l                                                                                  | number of weekly contact hours, l                     | anguage — ir other than Gei  | man)                      |                                           |  |  |
| S (2)        |                                                                                              | it in: German and/or Engl                             | : - l-                       |                           |                                           |  |  |
|              | _                                                                                            | night also be offered in V                            |                              |                           |                                           |  |  |
|              |                                                                                              |                                                       |                              | ovamination offered if no | ot every semester, information on whether |  |  |
|              |                                                                                              | ole for bonus)                                        | ge — II other than German,   | exammation onered — ii no | ot every semester, information on whether |  |  |
| Succes       | ssful co                                                                                     | mpletion as certified by t                            | he lecturer                  |                           |                                           |  |  |
|              |                                                                                              | ssessment: German and                                 |                              |                           |                                           |  |  |
| Alloca       | tion of                                                                                      | places                                                |                              |                           |                                           |  |  |
|              |                                                                                              |                                                       |                              |                           |                                           |  |  |
| Additio      | onal inf                                                                                     | ormation                                              |                              |                           |                                           |  |  |
|              |                                                                                              | .:                                                    |                              |                           |                                           |  |  |
| Workle       | nad                                                                                          |                                                       |                              |                           |                                           |  |  |
| 120 h        |                                                                                              |                                                       |                              |                           |                                           |  |  |
|              | ing cycl                                                                                     | Δ                                                     |                              |                           |                                           |  |  |
|              | ing cycl                                                                                     |                                                       |                              |                           |                                           |  |  |
| Doforr       | od to in                                                                                     | IPO I (evenination regulation                         | s for too shing dogree negge | mmoc)                     |                                           |  |  |
| Kelell       | Referred to in LPO I (examination regulations for teaching-degree programmes)                |                                                       |                              |                           |                                           |  |  |
| Modul        | Module appears in                                                                            |                                                       |                              |                           |                                           |  |  |
|              | Module appears in  Mactaria degree (a major) Biology (2045)                                  |                                                       |                              |                           |                                           |  |  |
|              | Master's degree (1 major) Biology (2015)<br>Master's degree (1 major) Biosciences (2016)     |                                                       |                              |                           |                                           |  |  |
|              | Master's degree (1 major) Biosciences (2016)<br>Master's degree (1 major) Biosciences (2017) |                                                       |                              |                           |                                           |  |  |
|              | Master's degree (1 major) Biosciences (2017)<br>Master's degree (1 major) Biosciences (2018) |                                                       |                              |                           |                                           |  |  |
|              | _                                                                                            |                                                       |                              |                           |                                           |  |  |
| maste        | Master's degree (1 major) Biosciences (2021)                                                 |                                                       |                              |                           |                                           |  |  |

Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)



| Modul                                                                       | e title                                 |                    | Abbreviation         |                    |  |
|-----------------------------------------------------------------------------|-----------------------------------------|--------------------|----------------------|--------------------|--|
| Specia                                                                      | al Subje                                | ct Studies Biology |                      | 07-MVMINT4-152-m01 |  |
| Modul                                                                       | e coord                                 | linator            |                      | Module offered by  |  |
| Coordi                                                                      | inator B                                | ioCareers          |                      | Faculty of Biology |  |
| ECTS                                                                        | Meth                                    | od of grading      | Only after succ. con | npl. of module(s)  |  |
| 5                                                                           | nume                                    | rical grade        |                      |                    |  |
| Durati                                                                      | Duration Module level Other prerequisit |                    | Other prerequisites  |                    |  |
| 1 semester graduate Please consult with course advisory service in advance. |                                         |                    | vice in advance.     |                    |  |
|                                                                             |                                         |                    |                      |                    |  |

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences with a graded assessment.

## **Intended learning outcomes**

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

\_\_

## Workload

150 h

## **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

\_\_

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                                                  | e title               |                          | Abbreviation         |                     |  |
|--------------------------------------------------------|-----------------------|--------------------------|----------------------|---------------------|--|
| Specia                                                 | al Subje              | ct Studies Biology and N |                      | 07-MVMINT4B-152-m01 |  |
| Modul                                                  | e coord               | inator                   |                      | Module offered by   |  |
| Coordi                                                 | inator B              | ioCareers                |                      | Faculty of Biology  |  |
| ECTS                                                   | Meth                  | od of grading            | Only after succ. con | npl. of module(s)   |  |
| 5                                                      | (not)                 | successfully completed   |                      |                     |  |
| Duratio                                                | Duration Module level |                          | Other prerequisites  |                     |  |
| 1 semester graduate Please consult with course advisor |                       |                          | course advisory serv | vice in advance.    |  |
|                                                        |                       |                          |                      |                     |  |

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences; assessment ungraded, pass required.

## **Intended learning outcomes**

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |         |                          |                                                         |                   | Abbreviation |
|-----------------------|---------|--------------------------|---------------------------------------------------------|-------------------|--------------|
| Specia                | l Subje | ct Studies Biology and N | 07-MVMINT5-152-m01                                      |                   |              |
| Modul                 | e coord | inator                   |                                                         | Module offered by | l.           |
| Coordi                | nator B | ioCareers                | Faculty of Biology                                      |                   |              |
| ECTS                  | Meth    | od of grading            | Only after succ. con                                    | ıpl. of module(s) |              |
| 6                     | (not)   | successfully completed   |                                                         |                   |              |
| Duration Module level |         | Other prerequisites      |                                                         |                   |              |
| 1 semester graduate   |         |                          | Please consult with course advisory service in advance. |                   |              |
|                       |         |                          |                                                         |                   |              |

Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours) in biological or natural sciences; assessment ungraded, pass required.

## **Intended learning outcomes**

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (3)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

180 h

## Teaching cycle

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

# Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                                                                        |                   |                                                      |                              |                             | Abbreviation                              |  |
|-----------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------|------------------------------|-----------------------------|-------------------------------------------|--|
| Special Subject Studies outside Natural Sciences 1 07-MV1-152-m01                                   |                   |                                                      |                              |                             |                                           |  |
| Module coordinator Module offered by                                                                |                   |                                                      |                              |                             |                                           |  |
| Coordi                                                                                              | nator Bi          | oCareers                                             |                              | Faculty of Biology          |                                           |  |
| ECTS                                                                                                | Metho             | d of grading                                         | Only after succ. con         | npl. of module(s)           |                                           |  |
| 2                                                                                                   | (not) s           | uccessfully completed                                |                              |                             |                                           |  |
| Duratio                                                                                             | on                | Module level                                         | Other prerequisites          |                             |                                           |  |
| 1 seme                                                                                              | ster              | graduate                                             | Please consult with          | course advisory ser         | vice in advance.                          |  |
| Conter                                                                                              | nts               |                                                      |                              |                             |                                           |  |
| Intend                                                                                              |                   | ing outcomes                                         | ecific subject in an are     | ea other than biolog        | y or the natural sciences.                |  |
| Course                                                                                              | <b>S</b> (type, n | umber of weekly contact hours, I                     | language — if other than Ger | rman)                       |                                           |  |
| Course                                                                                              | type: n           | in: German and/or Engl<br>night also be offered in V | , Ü, P, R or E format        |                             |                                           |  |
|                                                                                                     |                   | <b>essment</b> (type, scope, langua<br>e for bonus)  | ge — if other than German,   | examination offered — if no | ot every semester, information on whether |  |
| Successful completion as certified by the lecturer<br>Language of assessment: German and/or English |                   |                                                      |                              |                             |                                           |  |
| Allocation of places                                                                                |                   |                                                      |                              |                             |                                           |  |
|                                                                                                     |                   |                                                      |                              |                             |                                           |  |
| Additio                                                                                             | onal info         | ormation                                             |                              |                             |                                           |  |

--

## Workload

60 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

## Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module  | e title                                   | <u>'</u>             | Abbreviation         |                      |                  |  |
|---------|-------------------------------------------|----------------------|----------------------|----------------------|------------------|--|
| Specia  | l Subje                                   | ct Studies outside N | 07-MV2-152-m01       |                      |                  |  |
| Module  | e coord                                   | inator               |                      | Module offered by    |                  |  |
| Coordi  | nator B                                   | ioCareers            |                      | Faculty of Biology   |                  |  |
| ECTS    | Meth                                      | od of grading        | Only after succ. cor | npl. of module(s)    |                  |  |
| 3       | nume                                      | rical grade          |                      |                      |                  |  |
| Duratio | Duration Module level Othe                |                      | Other prerequisites  | Other prerequisites  |                  |  |
| 1 seme  | 1 semester graduate Please consult with o |                      |                      | course advisory serv | vice in advance. |  |
| Conten  | Contents                                  |                      |                      |                      |                  |  |

Regular specific lecture, seminar, workshop, retreat or practical course (1-2 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (3 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

#### Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

90 h

## Teaching cycle

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Modul   | e title                   |                          | Abbreviation         |                      |                  |  |
|---------|---------------------------|--------------------------|----------------------|----------------------|------------------|--|
| Specia  | l Subje                   | ct Studies outside Natur |                      | 07-MV2B-152-m01      |                  |  |
| Modul   | Module coordinator        |                          |                      | Module offered by    |                  |  |
| Coordi  | Coordinator BioCareers    |                          |                      | Faculty of Biology   |                  |  |
| ECTS    | Meth                      | od of grading            | Only after succ. con | npl. of module(s)    |                  |  |
| 3       | (not)                     | successfully completed   |                      |                      |                  |  |
| Duratio | on                        | Module level             | Other prerequisites  |                      |                  |  |
| 1 seme  | 1 semester graduate Pleas |                          |                      | course advisory serv | vice in advance. |  |
| Conten  | Contents                  |                          |                      |                      |                  |  |

Regular specific lecture, seminar, workshop, retreat or practical course (1-2 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (3 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

#### **Intended learning outcomes**

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (1)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

90 h

## Teaching cycle

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title Abbreviation                          |                                              |                                                                                   |                                             |                                                  | Abbreviation                                                                                                                   |  |
|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Special Subject Studies outside Natural Sciences 3 |                                              |                                                                                   |                                             |                                                  | 07-MV3-152-m01                                                                                                                 |  |
| Module                                             | coord                                        | inator                                                                            |                                             | Module offered by                                |                                                                                                                                |  |
| Coordin                                            | nator B                                      | ioCareers                                                                         |                                             | Faculty of Biology                               |                                                                                                                                |  |
| ECTS                                               | Metho                                        | od of grading                                                                     | Only after succ. com                        | pl. of module(s)                                 |                                                                                                                                |  |
| 4                                                  | (not)                                        | successfully completed                                                            |                                             |                                                  |                                                                                                                                |  |
| Duratio                                            | n                                            | Module level                                                                      | Other prerequisites                         |                                                  |                                                                                                                                |  |
| 1 seme                                             | ster                                         | graduate                                                                          | Please consult with                         | course advisory serv                             | rice in advance.                                                                                                               |  |
| Conten                                             | ts                                           |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| or othe                                            | r institu<br>s. Asso<br>ordina               | utions, in which students<br>essment ungraded, pass<br>tors. Possible subjects ar | will acquire addition required (4 ECTS crec | al skills in areas oth<br>lits); decision on cre | y contact hours), offered by JMU er than biology or the natural edit transfer to be made by moges, social studies, psychology, |  |
| Intende                                            | d lear                                       | ning outcomes                                                                     |                                             |                                                  |                                                                                                                                |  |
| Specific                                           | skills                                       | and knowledge on a spe                                                            | cific subject in an are                     | a other than biology                             | or the natural sciences.                                                                                                       |  |
| Course                                             | <b>5</b> (type, r                            | number of weekly contact hours, l                                                 | anguage — if other than Ger                 | man)                                             |                                                                                                                                |  |
| S (2)<br>Module                                    | taugh                                        | t in: German and/or Engli                                                         | ish                                         |                                                  |                                                                                                                                |  |
|                                                    |                                              |                                                                                   |                                             | examination offered — if no                      | t every semester, information on whether                                                                                       |  |
|                                                    |                                              | le for bonus)                                                                     |                                             |                                                  |                                                                                                                                |  |
|                                                    |                                              | mpletion as certified by t<br>ssessment: German and,                              |                                             |                                                  |                                                                                                                                |  |
| Allocat                                            | ion of p                                     | olaces                                                                            |                                             |                                                  |                                                                                                                                |  |
|                                                    |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Additio                                            | nal inf                                      | ormation                                                                          |                                             |                                                  |                                                                                                                                |  |
|                                                    |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Worklo                                             | ad                                           |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| 120 h                                              |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Teachir                                            | ng cycl                                      | e                                                                                 |                                             |                                                  |                                                                                                                                |  |
|                                                    |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Referre                                            | d to in                                      | LPO I (examination regulations                                                    | s for teaching-degree progra                | mmes)                                            |                                                                                                                                |  |
|                                                    |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Module appears in                                  |                                              |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| Master'                                            | Master's degree (1 major) Biology (2015)     |                                                                                   |                                             |                                                  |                                                                                                                                |  |
| 1                                                  | Master's degree (1 major) Biosciences (2016) |                                                                                   |                                             |                                                  |                                                                                                                                |  |
|                                                    | Master's degree (1 major) Biosciences (2017) |                                                                                   |                                             |                                                  |                                                                                                                                |  |
|                                                    | _                                            | ee (1 major) Biosciences                                                          |                                             |                                                  |                                                                                                                                |  |
|                                                    | _                                            | ee (1 major) Biosciences<br>ee (1 major) Biosciences                              |                                             |                                                  |                                                                                                                                |  |
|                                                    | _                                            | ee (1 major) Biosciences (                                                        | -                                           |                                                  |                                                                                                                                |  |



| Modul                                   | e title  |                      | Abbreviation         |                     |                  |  |
|-----------------------------------------|----------|----------------------|----------------------|---------------------|------------------|--|
| Specia                                  | ıl Subje | ct Studies outside N |                      | 07-MV4-152-m01      |                  |  |
| Module coordinator Mo                   |          |                      |                      | Module offered by   |                  |  |
| Coordi                                  | nator B  | ioCareers            |                      | Faculty of Biology  |                  |  |
| ECTS                                    | Meth     | od of grading        | Only after succ. con | npl. of module(s)   |                  |  |
| 5                                       | nume     | rical grade          |                      |                     |                  |  |
| Duration Module level Other prerequ     |          | Other prerequisites  | ites                 |                     |                  |  |
| 1 semester graduate Please consult with |          |                      | Please consult with  | course advisory sen | vice in advance. |  |
|                                         |          |                      |                      |                     |                  |  |

Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (5 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

#### Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title                                        |       |                                 |                                                         |                     | Abbreviation    |
|-----------------------------------------------------|-------|---------------------------------|---------------------------------------------------------|---------------------|-----------------|
| Special Subject Studies outside Natural Sciences 4B |       |                                 |                                                         |                     | 07-MV4B-152-m01 |
| Module coordinator                                  |       |                                 |                                                         | Module offered by   |                 |
| Coordinator BioCareers                              |       |                                 |                                                         | Faculty of Biology  |                 |
| ECTS                                                | Meth  | ethod of grading Only after suc |                                                         | compl. of module(s) |                 |
| 5                                                   | (not) | (not) successfully completed    |                                                         |                     |                 |
| Duration                                            |       | Module level                    | Other prerequisites                                     |                     |                 |
| 1 semester                                          |       | graduate                        | Please consult with course advisory service in advance. |                     |                 |
|                                                     |       |                                 |                                                         |                     |                 |

Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (5 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

## **Intended learning outcomes**

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

## Workload

150 h

## Teaching cycle

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2020)



Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module                | e title | ,                       |                                                         |                    | Abbreviation   |  |
|-----------------------|---------|-------------------------|---------------------------------------------------------|--------------------|----------------|--|
| Teachi                | ng 1    |                         |                                                         |                    | 07-DR1-152-m01 |  |
| Module                | e coord | inator                  |                                                         | Module offered by  | offered by     |  |
| degree                | progra  | mme coordinator Biologi | e (Biology)                                             | Faculty of Biology |                |  |
| ECTS                  | Meth    | od of grading           | Only after succ. compl. of module(s)                    |                    |                |  |
| 2                     | (not)   | successfully completed  |                                                         |                    |                |  |
| Duration Module level |         | Other prerequisites     |                                                         |                    |                |  |
| 1 semester            |         | undergraduate           | Please consult with course advisory service in advance. |                    |                |  |
| Contents              |         |                         |                                                         |                    |                |  |

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 0.5 weekly contact hours.

## **Intended learning outcomes**

Ability to independently organise, plan and deliver courses.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

S (2)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

## Workload

60 h

# **Teaching cycle**

--

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title                                |          |                        |                                                         |                    | Abbreviation   |  |
|---------------------------------------------|----------|------------------------|---------------------------------------------------------|--------------------|----------------|--|
| Teachi                                      | ng 2     |                        |                                                         |                    | 07-DR2-152-m01 |  |
| Module coordinator                          |          |                        |                                                         | Module offered by  |                |  |
| degree programme coordinator Biologie (Biol |          |                        | e (Biology)                                             | Faculty of Biology |                |  |
| ECTS                                        | Meth     | od of grading          | Only after succ. compl. of module(s)                    |                    |                |  |
| 3                                           | (not)    | successfully completed |                                                         |                    |                |  |
| Duration Module level                       |          | Other prerequisites    |                                                         |                    |                |  |
| 1 semester                                  |          | undergraduate          | Please consult with course advisory service in advance. |                    |                |  |
| Conten                                      | Contents |                        |                                                         |                    |                |  |

Students contribute to and/or independently organise lectures or seminars for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 1 weekly contact hour.

## **Intended learning outcomes**

Ability to independently organise courses.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

90 h

## Teaching cycle

# $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module                | e title |                         |                                                         |                    | Abbreviation   |
|-----------------------|---------|-------------------------|---------------------------------------------------------|--------------------|----------------|
| Teachi                | ng 3    |                         |                                                         |                    | 07-DR3-152-m01 |
| Module                | e coord | inator                  |                                                         | Module offered by  |                |
| degree                | progra  | mme coordinator Biologi | e (Biology)                                             | Faculty of Biology |                |
| ECTS                  | Meth    | od of grading           | Only after succ. compl. of module(s)                    |                    |                |
| 4                     | (not)   | successfully completed  |                                                         |                    |                |
| Duration Module level |         | Other prerequisites     |                                                         |                    |                |
| 1 semester            |         | undergraduate           | Please consult with course advisory service in advance. |                    |                |
| Contents              |         |                         |                                                         |                    |                |

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 1.5 weekly contact hours.

## **Intended learning outcomes**

Ability to independently organise courses.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

## Allocation of places

#### **Additional information**

## Workload

120 h

## Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$ 

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



| Module title             |        |                         |                                                         |                    | Abbreviation   |
|--------------------------|--------|-------------------------|---------------------------------------------------------|--------------------|----------------|
| Teaching 4               |        |                         |                                                         |                    | 07-DR4-152-m01 |
| Module coordinator       |        |                         |                                                         | Module offered by  |                |
| degree                   | progra | mme coordinator Biologi | e (Biology)                                             | Faculty of Biology |                |
| ECTS                     | Meth   | od of grading           | Only after succ. cor                                    | npl. of module(s)  |                |
| 5                        | (not)  | successfully completed  |                                                         |                    |                |
| Duration Module level    |        | Other prerequisites     |                                                         |                    |                |
| 1 semester undergraduate |        |                         | Please consult with course advisory service in advance. |                    |                |
| Contents                 |        |                         |                                                         |                    |                |

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 2 weekly contact hours.

## **Intended learning outcomes**

Ability to independently organise courses.

**Courses** (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

Course type: might also be offered in V, Ü, P, R or E format

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

#### Allocation of places

#### **Additional information**

## Workload

150 h

## Teaching cycle

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title Abbreviation                                                     |                                          |                                                         |                            |                             | Abbreviation                                                          |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------|--|--|--|
| Tutoria                                                                       | l 1                                      |                                                         |                            |                             | 07-FT1-152-m01                                                        |  |  |  |
| Module                                                                        | coord                                    | inator                                                  |                            | Module offered by           |                                                                       |  |  |  |
| degree                                                                        | progra                                   | mme coordinator Biologi                                 | e (Biology)                | Faculty of Biology          |                                                                       |  |  |  |
| ECTS                                                                          | Metho                                    | od of grading                                           | Only after succ. con       | npl. of module(s)           |                                                                       |  |  |  |
| 3                                                                             | (not)                                    | successfully completed                                  |                            |                             |                                                                       |  |  |  |
| Duratio                                                                       | n                                        | Module level                                            | Other prerequisites        | i                           |                                                                       |  |  |  |
| 1 semes                                                                       | ster                                     | undergraduate                                           | Please consult with        | course advisory serv        | vice in advance.                                                      |  |  |  |
| Conten                                                                        | ts                                       |                                                         |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          | tors, students will mento<br>s, in particular exercises |                            | ng courses in particu       | ılar and will help organise and                                       |  |  |  |
| Intende                                                                       | ed lear                                  | ning outcomes                                           |                            |                             |                                                                       |  |  |  |
| ve learr                                                                      | ned to<br>dents t                        |                                                         | ements of their own u      | iniversity education        | topics. In addition, the tutors ha<br>and the university education of |  |  |  |
| Module                                                                        |                                          | t in: German and/or Engl                                |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          | sessment (type, scope, langua<br>ole for bonus)         | ge — if other than German, | examination offered — if no | ot every semester, information on whether                             |  |  |  |
|                                                                               |                                          | mpletion as certified by t<br>ssessment: German and     |                            |                             |                                                                       |  |  |  |
| Allocati                                                                      | ion of p                                 | places                                                  |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          |                                                         |                            |                             |                                                                       |  |  |  |
| Additio                                                                       | nal inf                                  | ormation                                                |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          |                                                         |                            |                             |                                                                       |  |  |  |
| Worklo                                                                        | ad                                       |                                                         |                            |                             |                                                                       |  |  |  |
| 90 h                                                                          |                                          |                                                         |                            |                             |                                                                       |  |  |  |
| Teaching cycle                                                                |                                          |                                                         |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          |                                                         |                            |                             |                                                                       |  |  |  |
| Referred to in LPO I (examination regulations for teaching-degree programmes) |                                          |                                                         |                            |                             |                                                                       |  |  |  |
|                                                                               |                                          |                                                         |                            |                             |                                                                       |  |  |  |
| Module                                                                        | appea                                    | ars in                                                  |                            |                             |                                                                       |  |  |  |
| Master'                                                                       | Master's degree (1 major) Biology (2015) |                                                         |                            |                             |                                                                       |  |  |  |

Master's degree (1 major) Biosciences (2016) Master's degree (1 major) Biosciences (2017) Master's degree (1 major) Biosciences (2018) Master's degree (1 major) Biosciences (2021) Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)



| Module title                                    |                                                                                                                |                        |                                                         |                     | Abbreviation   |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------|---------------------|----------------|--|
| Tutorial 2                                      |                                                                                                                |                        |                                                         |                     | 07-FT2-152-m01 |  |
| Module coordinator                              |                                                                                                                |                        |                                                         | Module offered by   |                |  |
| degree programme coordinator Biologie (Biology) |                                                                                                                |                        | e (Biology)                                             | Faculty of Biology  |                |  |
| ECTS                                            | Metho                                                                                                          | od of grading          | Only after succ. con                                    | compl. of module(s) |                |  |
| 4                                               | (not)                                                                                                          | successfully completed |                                                         |                     |                |  |
| Duratio                                         | on                                                                                                             | Module level           | Other prerequisites                                     |                     |                |  |
| 1 semester undergraduate Please                 |                                                                                                                |                        | Please consult with course advisory service in advance. |                     |                |  |
| Contents                                        |                                                                                                                |                        |                                                         |                     |                |  |
| Workin                                          | Working as tutors, students will mentor other students during courses in particular and will help organise and |                        |                                                         |                     |                |  |

design courses, in particular exercises.

Intended learning outcomes

The tutors are able to communicate complex concepts in a clear and structured way. They have gained experience supervising a group and helping students with personal matters. The tutors have thus enhanced their own interpersonal skills and know how to share their expertise in exploring complex topics. In addition, the tutors have learned to plan and organise key elements of their own university education and the university education of the students they mentor.

**Courses** (type, number of weekly contact hours, language — if other than German)

T(2)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

120 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title                                                                                                   |       |                        |                                                         |                                      | Abbreviation   |
|----------------------------------------------------------------------------------------------------------------|-------|------------------------|---------------------------------------------------------|--------------------------------------|----------------|
| Tutorial 3                                                                                                     |       |                        |                                                         |                                      | 07-FT3-152-m01 |
| Module coordinator                                                                                             |       |                        |                                                         | Module offered by                    |                |
| degree programme coordinator Biologie (Biol                                                                    |       |                        | e (Biology)                                             | Faculty of Biology                   |                |
| ECTS                                                                                                           | Meth  | od of grading          | Only after succ. con                                    | Only after succ. compl. of module(s) |                |
| 5                                                                                                              | (not) | successfully completed |                                                         |                                      |                |
| Duratio                                                                                                        | n     | Module level           | Other prerequisites                                     |                                      |                |
| 1 semester undergraduate F                                                                                     |       |                        | Please consult with course advisory service in advance. |                                      |                |
| Contents                                                                                                       |       |                        |                                                         |                                      |                |
| Working as tutors, students will mentor other students during courses in particular and will help organise and |       |                        |                                                         |                                      |                |

## Intended learning outcomes

design courses, in particular exercises.

The tutors are able to communicate complex concepts in a clear and structured way. They have gained experience supervising a group and helping students with personal matters. The tutors have thus enhanced their own interpersonal skills and know how to share their expertise in exploring complex topics. In addition, the tutors have learned to plan and organise key elements of their own university education and the university education of the students they mentor.

Courses (type, number of weekly contact hours, language - if other than German)

T (3)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Successful completion as certified by the lecturer Language of assessment: German and/or English

## **Allocation of places**

--

#### **Additional information**

--

#### Workload

150 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



# **Additional Laboratory Courses and Internships**

(ECTS credits)



| Module title          |         |                                                         |                      |                    | Abbreviation    |  |
|-----------------------|---------|---------------------------------------------------------|----------------------|--------------------|-----------------|--|
| Laboratory Course 2   |         |                                                         |                      |                    | 07-MSL2-152-m01 |  |
| Module coordinator    |         |                                                         |                      | Module offered by  |                 |  |
| Coordi                | nator B | ioCareers                                               |                      | Faculty of Biology |                 |  |
| ECTS                  | Meth    | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |  |
| 10                    | (not)   | successfully completed                                  |                      |                    |                 |  |
| Duration Module level |         | Other prerequisites                                     |                      |                    |                 |  |
| 1 semester graduate   |         | Please consult with course advisory service in advance. |                      |                    |                 |  |
|                       |         |                                                         |                      |                    |                 |  |

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

#### **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses (type, number of weekly contact hours, language - if other than German)

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

## Allocation of places

--

#### **Additional information**

--

#### Workload

300 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Modul                 | e title            |                        |                                                         |                    | Abbreviation    |
|-----------------------|--------------------|------------------------|---------------------------------------------------------|--------------------|-----------------|
| Laboratory Course 3   |                    |                        |                                                         |                    | 07-MSL3-152-m01 |
| Modul                 | Module coordinator |                        |                                                         | Module offered by  |                 |
| Coordi                | nator B            | ioCareers              |                                                         | Faculty of Biology |                 |
| ECTS                  | Meth               | od of grading          | Only after succ. con                                    | npl. of module(s)  |                 |
| 15                    | (not)              | successfully completed |                                                         |                    |                 |
| Duration Module level |                    |                        | Other prerequisites                                     |                    |                 |
| 1 semester graduate   |                    |                        | Please consult with course advisory service in advance. |                    |                 |
|                       |                    |                        |                                                         |                    |                 |

Practical course, summer school or workshop on specific topics in biology (duration: 6-9 weeks).

#### **Intended learning outcomes**

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

**Courses** (type, number of weekly contact hours, language — if other than German)

P (30)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

#### Workload

450 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



| Module title          |          |                        |                                                         |                    | Abbreviation    |
|-----------------------|----------|------------------------|---------------------------------------------------------|--------------------|-----------------|
| External Internship 2 |          |                        |                                                         |                    | 07-MSA2-152-m01 |
| Module coordinator    |          |                        |                                                         | Module offered by  |                 |
| Coordi                | inator B | ioCareers              |                                                         | Faculty of Biology |                 |
| ECTS                  | Meth     | od of grading          | Only after succ. con                                    | npl. of module(s)  |                 |
| 10                    | (not)    | successfully completed |                                                         |                    |                 |
| Duration Module level |          |                        | Other prerequisites                                     |                    |                 |
| 1 semester graduate   |          |                        | Please consult with course advisory service in advance. |                    |                 |
|                       |          |                        |                                                         |                    |                 |

External placement on a biological topic. Students spend 4-6 weeks working on a well-defined scientific project and learn how to present their data.

#### Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$ 

P (15)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 30 to 60 minutes, including multiple choice questions) or
- b) log (approx. 15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (approx. 20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

## Workload

300 h

### Teaching cycle

--

## $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

---

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)



| Modul                 | e title | ,                                                       |                      |                    | Abbreviation    |
|-----------------------|---------|---------------------------------------------------------|----------------------|--------------------|-----------------|
| External Internship 3 |         |                                                         |                      |                    | 07-MSA3-152-m01 |
| Module coordinator    |         |                                                         |                      | Module offered by  |                 |
| Coordi                | nator B | ioCareers                                               |                      | Faculty of Biology |                 |
| ECTS                  | Meth    | od of grading                                           | Only after succ. con | npl. of module(s)  |                 |
| 15                    | (not)   | successfully completed                                  |                      |                    |                 |
| Duration Module level |         |                                                         | Other prerequisites  |                    |                 |
| 1 semester graduate   |         | Please consult with course advisory service in advance. |                      |                    |                 |
|                       |         |                                                         |                      |                    |                 |

External placement on a biological topic. Students spend 6-9 weeks working on a well-defined scientific lab project and learn how to present their data.

#### Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$ 

P (30)

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- b) log (15 to 30 pages) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes) or
- e) presentation (20 to 45 minutes)

Language of assessment: German and/or English

#### Allocation of places

--

#### **Additional information**

--

### Workload

450 h

### **Teaching cycle**

--

## **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

#### Module appears in

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)



Master's degree (1 major) Biosciences (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)



## **Thesis**

(30 ECTS credits)



| Module title                                                                                                |         |                        |                      |                    | Abbreviation    |
|-------------------------------------------------------------------------------------------------------------|---------|------------------------|----------------------|--------------------|-----------------|
| Master Thesis Biosciences                                                                                   |         |                        |                      |                    | 07-MT-T-162-m01 |
| Module coordinator                                                                                          |         |                        |                      | Module offered by  |                 |
| chairpe                                                                                                     | erson o | f examination committe | e Biologie (Biology) | Faculty of Biology |                 |
| ECTS                                                                                                        | Meth    | od of grading          | Only after succ. cor | npl. of module(s)  |                 |
| 25                                                                                                          | nume    | rical grade            |                      |                    |                 |
| Duratio                                                                                                     | on      | Module level           | Other prerequisites  | 3                  |                 |
| 1 semester undergraduate                                                                                    |         |                        |                      |                    |                 |
| Contents                                                                                                    |         |                        |                      |                    |                 |
| Applying adequate techniques, students address a defined scientific question. They plan and perform experi- |         |                        |                      |                    |                 |

ments to solve problems or summarise and interpret existing data. Students have to develop a research plan and apply advanced and novel techniques in the context of a given research project, adhering to the principles of good scientific practice. The results are summarised in a written thesis and defended in a colloquium. The project is to be completed within a time frame of six months.

#### **Intended learning outcomes**

Students are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. Students are able to discuss and defend their work in the scientific community, drawing on their knowledge of similar or related topics.

**Courses** (type, number of weekly contact hours, language — if other than German)

No courses assigned to module

Module taught in: German and/or English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written thesis

Language of assessment: German and/or English

#### Allocation of places

--

### **Additional information**

Time to complete: 6 months.

#### Workload

750 h

#### **Teaching cycle**

--

#### **Referred to in LPO I** (examination regulations for teaching-degree programmes)

--

## Module appears in

Master's degree (1 major) Biosciences (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Biosciences (2024)



| Module title Abbreviation                                                     |           |                                                                                 |                             |                            |                                           |
|-------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|-----------------------------|----------------------------|-------------------------------------------|
| Oral E                                                                        | xamina    | tion Biosciences                                                                |                             |                            | 07-MT-K-162-m01                           |
| Modul                                                                         | e coord   | linator                                                                         |                             | Module offered by          | I.                                        |
| chairperson of examination committee Biologie (Biology)                       |           |                                                                                 | Biologie (Biology)          | Faculty of Biology         |                                           |
| ECTS                                                                          | Meth      | od of grading                                                                   | Only after succ. con        | npl. of module(s)          |                                           |
| 5                                                                             | nume      | rical grade                                                                     | 07-MT-1                     |                            |                                           |
| Durati                                                                        | on        | Module level                                                                    | Other prerequisites         |                            |                                           |
| 1 seme                                                                        | ester     | undergraduate                                                                   |                             |                            |                                           |
| Conter                                                                        | nts       | -                                                                               |                             |                            |                                           |
|                                                                               |           | f thesis content through c<br>es of questions pertainin                         |                             |                            | exceed 45 minutes (30 minutes             |
|                                                                               |           | ning outcomes                                                                   |                             | •                          | •                                         |
|                                                                               |           | able to discuss and defered topics.                                             | nd their work in the so     | cientific community,       | drawing on their knowledge of si-         |
|                                                                               |           | number of weekly contact hours, l                                               | anguage — if other than Gei | man)                       |                                           |
| K (o)<br>Modul                                                                | e taugh   | nt in: German and/or Engl                                                       | ish                         |                            |                                           |
|                                                                               |           | sessment (type, scope, langua<br>ble for bonus)                                 | ge — if other than German,  | examination offered — if n | ot every semester, information on whether |
| compr                                                                         | ising: ta | um (approx. 45 minutes)<br>alk on thesis (30 minutes)<br>assessment: German and |                             | fence of thesis (15 m      | ninutes); defence usually public          |
|                                                                               | tion of   |                                                                                 |                             |                            |                                           |
|                                                                               |           |                                                                                 |                             |                            |                                           |
| Additio                                                                       | onal inf  | ormation                                                                        |                             |                            |                                           |
|                                                                               |           |                                                                                 |                             |                            |                                           |
| Worklo                                                                        | oad       |                                                                                 |                             |                            |                                           |
| 150 h                                                                         |           |                                                                                 |                             |                            |                                           |
| Teaching cycle                                                                |           |                                                                                 |                             |                            |                                           |
| -                                                                             |           |                                                                                 |                             |                            |                                           |
| Referred to in LPO I (examination regulations for teaching-degree programmes) |           |                                                                                 |                             |                            |                                           |
|                                                                               |           |                                                                                 |                             |                            |                                           |
| Modul                                                                         | e appe    | ars in                                                                          |                             |                            |                                           |
|                                                                               |           | ree (1 major) Biosciences                                                       | (2016)                      |                            |                                           |

Master's degree (1 major) Biosciences (2017) Master's degree (1 major) Biosciences (2018) Master's degree (1 major) Biosciences (2021) Master's degree (1 major) Biosciences (2023) Master's degree (1 major) Biosciences (2024)