

Module Catalogue for the Subject

Mathematical Physics

as a Master's with 1 major with the degree "Master of Science" (120 ECTS credits)

Examination regulations version: 2016 Responsible: Faculty of Mathematics and Computer Science Responsible: Faculty of Physics and Astronomy

JMU Würzburg • generated 19-Apr-2025 • exam. reg. data record 88|b55|-|-|H|2016

Contents

The subject is divided into	5
Learning Outcomes	6
Abbreviations used, Conventions, Notes, In accordance with	8
Compulsory Courses	9
Analysis and Geometry of Classical Systems	
Algebra and Dynamics of Quantum Systems	10 12
Compulsory Electives	
	14
Subfield Mathematics	15
Applied Analysis	16
Topics in Algebra	18
Differential Geometry	20
Complex Analysis	22
Geometric Structures	24
Industrial Statistics 1	26
Lie Theory	28
Numeric of Large Systems of Equations	30
Basics in Optimization Control Theory	32
Stochastic Models of Risk Management	34
Stochastical Processes	36 38
Topology	30 40
Time Series Analysis 1	42
Number Theory	44
Giovanni Prodi Lecture (Master)	46
Selected Topics in Analysis	48
Algebraic Topology	50
Groups and their Representations	52
Geometrical Mechanics	54
Industrial Statistics 2	56
Field Arithmetics	58
Numeric of Partial Differential Equations	60
Selected Topics in Optimization	62
Statistical Analysis	64
Time Series Analysis 2	66
Discrete Mathematics	68
Dynamical Systems	70
Aspects of Geometry	72
Mathematical Continuum Mechanics	74
Mathematical Imaging	76
Selected Topics in Mathematical Physics	78
Selected Topics in Control Theory	80
Inverse Problems	82
Module Theory	84
Non-linear Analysis	86
Optimal Control	88
Networked Systems	90
Complex Geometry Partial Differential Equations of Mathematical Physics	92
Partial Differential Equations of Mathematical Physics Pseudo Riemannian and Riemannian Geometry	94
Functional Analysis	96 98
Applied Differential Geometry	98 100
Giovanni Prodi Lecture Selected Topics (Master)	100
Giovanni Prodi Lecture Advanced Topics (Master)	102
Giovanni i Tour Eccture Auvanceu Topico (master)	104

Seminar in Nyamical Systems and Control Seminar in Complex Analysis Seminar in Applied Differential Geometry Seminar in Geometry and Topology Giovanni Prodi Seminar (Master) Interdisciplinary Seminar Seminar Mathematics in the Sciences Seminar in Numerical Mathematics and Applied Analysis Seminar in Ontimization Seminar in Sottistics Seminar in Statistics Seminar in Statistics Seminar in Statistics Seminar in Sono-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theory to Flate Physics Module Group Astrophysics Computational Astrophysics Computational Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	106
Seminar in Complex Analysis Seminar in Applied Differential Geometry Seminar in Geometry and Topology Giovanni Prodi Seminar (Master) Interdisciplinary Seminar Seminar Mathematics in the Sciences Seminar in Optimization Seminar in Optimization Seminar in Statistics Seminar in Statistics Seminar in Statistics Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Information and Systems Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Information of State Physics Theoretical Information of State Physics Theory in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Astrophysics Cosmology Theoretical Astrophysics Cosmology Theoretical Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Module Group Theoretical Elementary Particle Physics	108
Seminar in Applied Differential Geometry Semior in Geometry and Topology Giovanni Prodi Seminar Seminar Mathematics in the Sciences Seminar in Numerical Mathematics and Applied Analysis Seminar in Numerical Mathematics and Applied Analysis Seminar in Statistics Seminar in Statistics Seminar in Statistics Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Zonformal Field Theory Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Astrophysics Cosmology Theoretical Astrophysics Cosmology Theoretical Astrophysics Computational Astrophysics Compu	110
Seminar in Geometry and Topology Giovanni Prodi Seminar (Maste) Interdisciplinary Seminar Seminar Mathematics in the Sciences Seminar in Numerical Mathematics and Applied Analysis Seminar in Optimization Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theory in Solid State Physics Theory of Superconductivity Computational Materials Science (DFI) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics	112
Giovanni Prodi Seminar (Master) Interdisciplinary Seminar Seminar in Numerical Mathematics and Applied Analysis Seminar in Optimization Seminar in Optimization Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theories Introduction to Plasma Physics Cosmology Theoretical Astrophysics Computational Astr	114
Interdisciplinary Seminar Seminar Mathematics in the Sciences Seminar in Numerical Mathematics and Applied Analysis Seminar in Optimization Seminar in Statistics Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	116
Seminar in Numerical Mathematics and Applied Analysis Seminar in Optimization Seminar in Optimization Seminar in Statistics Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	118
Seminar in Numerical Mathematics and Applied Analysis Seminar in Statistics Seminar in Statistics Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Conformal Field Theory Conformal Field Theory Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory Colorinal Field Physics Relativistic Quantum Field Theory	120
Seminar in Optimization Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theorotical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field The	122
Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Conformal Field Theory Conformal Field Theory Conformal Goupe and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	124
Seminar in Non-linear Analysis Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	126
Learning by Teaching 1 Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	128
Subfield Physics Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Astrophysics Cosmology Theoretical Astrophysics Cosmology Theoretical Astrophysics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	130
Module Group General Theory of Physics Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Amagnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	132
Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	133
Quantum Mechanics II Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	134
Theoretical Quantum Optics Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	
Theory of Relativity Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics Introduction to Plasma Physics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	135 137
Many Body Quantum Theory Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	
Renormalization Group Methods in Field Theory Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Gractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	139 141
Physics of Complex Systems Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	143
Quantum Information and Quantum Computing Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	145
Black Holes Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Amagnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	147
Astrophysics Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	149
Atmospheric Physics Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Tield Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	151
Open Quantum Systems Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	153
Module Group Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Theoretical Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	155
Theoretical Solid State Physics Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	156
Theoretical Solid State Physics 2 Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Computational Astrophysics Relativistic Quantum Field Theory	_
Field Theory in Solid State Physics Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Computational Astrophysics Rodule Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	157 159
Topological Order Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	161
Topology in Solid State Physics Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	163
Theory of Superconductivity Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	165
Computational Materials Science (DFT) Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	167
Conformal Field Theory Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	169
Conformal Field Theory 2 Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	171
Magnetism and Spin Fluids Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	173
Topological Quantum Physics Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	175
Renormalization Group and Critical Phenomena Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	177
Bosonisation and Interactions in One Dimension Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	179
Gauge Theories Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	181
Introduction to Gauge/Gravity Duality Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	183
Introduction to Fractional Quantisation Topological Effects in Electronic Systems Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	185
Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	188
Field Theoretical Aspects of Solid State Physics Module Group Astrophysics Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	190
Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	192
Cosmology Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	194
Theoretical Astrophysics Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	195
Introduction to Plasma Physics High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	197
High Energy Astrophysics Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	199
Computational Astrophysics Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	201
Module Group Theoretical Elementary Particle Physics Relativistic Quantum Field Theory	203
Relativistic Quantum Field Theory	205
,	205
Quantum ficta fiicory ii	208
Theoretical Elementary Particle Physics	200
cter's with a major Mathematical Divisios (2016) MILL Wijrzhurg & generated 40-Apr-2025 & evam reg. da.	nage 2 / 262

Selected Topics of Theoretical Elementary Particle Physics	212
Models Beyond the Standard Model of Elementary Particle Physics	214
Module Group Current Topics	216
Current Topics of Mathematical Physics	217
Current Topics of Mathematical Physics	218
Current Topics of Mathematical Physics	219
Current Topics of Mathematical Physics	220
Subfield Research in Groups	221
Research in Groups - Algebra	222
Research in Groups - Discrete Mathematics	224
Research in Groups - Dynamical Systems and Control Theory	226
Research in Groups - Complex Analysis	228
Research in Groups - Geometry and Topology	230
Research in Groups - Mathematics in Context	232
Research in Groups - Mathematics in the Sciences	234
Research in Groups - Measure and Integral	236
Research in Groups - Numerical Mathematics and Applied Analysis	238
Research in Groups - Robotics, Optimization and Control Theory	240
Research in Groups - Time Series Analysis	242
Research in Groups - Statistics	244
Research in Groups - Number Theory	246
Research in Groups - Control Theory of Quantum Mechanical Systems	248
Research in Groups - Differential Geometry	249
Research in Groups - Deformation Quantization	251
Research in Groups - Non-linear Analysis	253
Research in Groups - Operator Algebras	255
Study Group Modern Differential Geometry	257
Study Group Symplectic and Poisson Geometry	258
Study Group Operator Algebras and Representation Theory	259
Study Group Hopf Algebras	260
Study Group Conformal Field Theory	261
Study Group Statistical Mechanics	262
Study Group Quantum Field Theory	263
Study Group Riemannian Geometry	264
Study Group Mathematical Physics	265
Thesis	266
Professional Specialization Mathematical Physics	267
Scientific Methods and Project Management Mathematical Physics	268
Master Thesis Mathematical Physics	269

The subject is divided into

section / sub-section	ECTS credits	starting page
Compulsory Courses	20	9
Compulsory Electives	50	14
Subfield Mathematics	8	15
Subfield Physics	8	133
Module Group General Theory of Physics		134
Module Group Theoretical Solid State Physics		156
Module Group Astrophysics		194
Module Group Theoretical Elementary Particle Physics		205
Module Group Current Topics		216
Subfield Research in Groups	10	221
Thesis	50	266

Learning Outcomes

German contents and learning outcome available but not translated yet.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, sich selbständig mithilfe von, auch fremdsprachiger, Fachliteratur in aktuelle Forschungsgebiete der Mathematischen Physik einzuarbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen zu komplexen Sachverhalten einem Fachpublikum gegenüber verständlich zu präsentieren.
- Die Absolventinnen und Absolventen besitzen vertiefte Kenntnisse der mathematischen Grundlagen der klassischen und Quantenphysik.
- Die Absolventinnen und Absolventen besitzen die für selbstständiges wissenschaftliches Arbeiten, insbesondere für ein Promotionsstudium erforderlichen Fach- und Methodenkenntnisse, sowie Denk- und Arbeitsweisen.
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und sind in der Lage, sie bei umfangreichen Arbeiten zu beachten.
- Die Absolventinnen und Absolventen besitzen weiterführende Kenntnisse aktueller Gebiete der Mathematischen Physik und können sicher mit fortgeschrittenen Methoden dieser Gebiete umgehen.
- Die Absolventinnen und Absolventen besitzen vertiefte Kenntnisse und Überblick über die aktuelle Forschung in mindestens einem Teilgebiet der Mathematischen Physik.
- Die Absolventinnen und Absolventen sind in der Lage, mit internationalen Fachvertretern und -vertreterinnen auf dem aktuellen Stand der Forschung Fragestellungen der Mathematischen Physik zu diskutieren.
- Die Absolventinnen und Absolventen kennen angrenzende Gebiete der Mathematik und Physik, und erkennen interdisziplinäre Zusammenhänge.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen zielgruppenorientiert verständlich zu formulieren und zu präsentieren.
- Die Absolventinnen und Absolventen sind in der Lage, komplexe Probleme aus anderen Gebieten zu erkennen, strukturieren und modellieren, mit mathematischen und physikalischen Methoden Lösungswege zu entwickeln und diese Ergebnisse zu interpretieren und bewerten.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in internationalen, interdisziplinär zusammengesetzten Teams zu arbeiten und hierbei Verantwortung zu tragen.
- Die Absolventinnen und Absolventen sind in der Lage, sich neue Wissensgebiete und aktuelle Entwicklungen selbständig, effizient und systematisch zu erschließen.
- Die Absolventinnen und Absolventen sind in der Lage, auch bei unvollständig vorliegenden Informationen mathematisch-physikalische Probleme wissenschaftlich und unter Beachtung der

Regeln guter wissenschaftlicher Praxis selbstständig zu bearbeiten und die Ergebnisse und Folgen ihrer Arbeit darzustellen, zu bewerten und zu vertreten.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, in partizipativen Prozessen gestaltend mitzuwirken.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, komplexe Ideen und Lösungsvorschläge allgemeinverständlich zu formulieren und professionell zu präsentieren.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

04-Apr-2016 (2016-52) 12-Jun-2024 (2024-77) 14-Nov-2024 (2024-98)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

Compulsory Courses

(20 ECTS credits)

Module	Module title				Abbreviation
Analysis and Geometry of Classical Systems			10-M=MP1-161-m01		
Module coordinator Mo				Module offered by	
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Conten	Contents				

Modern analytic methods (such as partial differential equations) and geometric methods (such as differential geometry) for the description of classical physics. Examples include movements of deformable bodies as reaction to outer load (deformation of elastic bodies, flow of a fluid, stream of a gas). Additional examples include geometric mechanics and symplectic geometry, classical field theory and classical gauge theory, general relativity theory.

Recommended previous knowledge:

Basic knowledge from the modules "Differential Geometry", "Introduction to Topology" and "Geometric Analysis" is recommended. Furthermore, basic knowledge of classical field theory is useful.

Intended learning outcomes

The student gains insight into modern methods in mathematics, which are applied in classical physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
Algebra and Dynamics of Quantum Systems			10-M=MP2-161-m01		
Module coordinator N				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	i		
1 semester graduate					
Conten	Contents				

Modern algebraic methods for dynamics of quantum systems, e. g. operator algebras with applications in algebraic quantum field theory, spectral theory, symmetries and representation theory.

Recommended previous knowledge:

Basic knowledge from the modules "Functional Analysis", "Introduction to Topology" and "Introduction to Complex Analysis" is recommended. Basic knowledge of quantum mechanics is also useful.

Intended learning outcomes

The student gains insight into modern methods in mathematics, which are applied in quantum physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Compulsory Electives

(50 ECTS credits)

Subfield Mathematics

(8 ECTS credits)

Module title					Abbreviation	
Applied Analysis					10-M=AAAN-161-m01	
Module coordinator				Module offered by	I.	
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duration Module level Other prerequisite		es				
1 semester graduate						
<i>c</i> .						

Contents

In-depth study of functional analysis and operator theory, Sobolev spaces and partial differential equations, theory of Hilbert spaces and Fourier analysis, spectral theory and quantum mechanics, numerical methods (in particular FEM methods), principles of functional analysis, function spaces, embedding theorems, compactness, theory of elliptic, parabolic and hyperbolic partial differential equations with methods from functional analysis.

Recommended previous knowledge:

Familiarity with the contents of the module "Functional Analysis" is strongly recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title				Abbreviation	
Topics in Algebra				10-M=AALG-161-m01	
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Contemporary topics in algebra, for example coding theory, elliptic curves, algebraic combinatorics or computer algebra.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in a contemporary field of algebra, and is able to apply these skills to complex questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 18 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title				Abbreviation
Differential Geometry					10-M=ADGM-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	5		
1 semester graduate					
Contents					

Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Recommended previous knowledge:

Basic knowledge from the modules "Introduction to Differential Geometry", "Introduction to Topology" and "Geometric Analysis" is recommended.

Intended learning outcomes

The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geometry.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	Module title				Abbreviation
Complex Analysis					10-M=AFTH-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other		Other prerequisites	;		
1 semester graduate					
Contents					

In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e. g. elliptic functions).

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Complex Analysis" is recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title			Abbreviation		
Geometric Structures					10-M=AGMS-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level (Other prerequisites	5		
1 semester graduate					
Contents					

Tits buildings, generalised polygons or related geometric structures, automorphisms, BN pairs in groups, Moufang conditions, classification results.

Recommended previous knowledge:

Basic knowledge from the modules "Introduction to Differential Geometry" and "Introduction to Topology" is recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions, methods and results concerning a type of geometric structure. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Industrial Statistics 1					10-M=AIST-161-m01
Modul	Module coordinator			Module offered by	
Dean of Studies Mathematik (Mathemati			hematics)	Institute of Mathematics	
ECTS	Meth	Method of grading Only after succ.		mpl. of module(s)	
10	numerical grade				
Duration I		Module level	Other prerequisites	S	
1 semester graduate					

Contents

Theory of parameter and domain estimates, tests for statistical estimates, distribution models, empirical distribution analysis, comparative analysis, statistical product testing, survey sampling, audit sampling.

Intended learning outcomes

The student masters the fundamental statistical methods for industrial applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Lie Theory					10-M=ALTH-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematik			natics)	Institute of Mathematics	
ECTS	Meth	od of grading Only after succ. con		npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e.g. in physics and control theory.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Functional Analysis" and "Introduction to Topology" is recommended. Furthermore, basic knowledge of the contents of the module "Introduction to Differential Geometry" is useful.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title Numeric of Large Systems of Equations			Abbreviation		
			ations		10-M=ANGG-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics		thematics)	Institute of Mathen	natics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Contents

Discretisation of elliptic differential equations, classical iteration methods, preconditioners, multigrid methods.

Recommended previous knowledge:

Basic knowledge of numerical mathematics, such as that acquired in the modules "Numerical Mathematics 1" and "Numerical Mathematics 2", is required. Knowledge of the contents of the module "Basics in Optimization" is also recommended.

Intended learning outcomes

The student is acquainted with the most important methods for solving large systems of equations, and knows the most efficient way to solve a given system of equations.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Basics	Basics in Optimization				10-M=AOPT-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematik			thematics)	Institute of Mathematics	
ECTS	Meth	ethod of grading Only after succ. co		mpl. of module(s)	
10	nume	erical grade			
Duration Module level		Other prerequisites	Other prerequisites		
ı semester gra		graduate			
Contents					

Fundamental methods and techniques in continuous optimization, unrestricted optimization, conditions for optimality, restricted optimization, examples and applications in natural and engineering sciences as well as econo-

Intended learning outcomes

The student knows the fundamental methods of continous optimization, can judge their strengths and weaknesses and can decide which method is the most suitable in applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Control Theory					10-M=ARTH-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematik			natics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	c. compl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

Introduction to mathematical systems theory: stability, controllability and observability, state feedback and stability, basics in optimal control.

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of control theory. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Modul	e title				Abbreviation
Stocha	Stochastic Models of Risk Management				10-M=ASMR-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathema			atics)	Institute of Mathematics	
ECTS	Meth	hod of grading Only after succ. co		npl. of module(s)	
10	nume	erical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Camban	. 4 -		•		

Contents

Measure theory, risk diagrams, failure mode and effects analysis, risk assessment in auditing, shortfall measures, value at risk, conditional value at risk, axiomatic of risk measures, modelling of interdependencies, copula, modelling of functional interrelations, regression models, basics in time series modelling, aggregated losses, estimates of shortfall measures, estimates of value at risk and conditional value at risk, basics in empirical time series analysis, methods of exponential smoothing, predictions and prediction domains, estimates of value at risk in time series, elementary empirical regression analysis, simulation methods.

Intended learning outcomes

The student is acquainted with the fundamental methods of stochastic risk analysis.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 36 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Stochastical Processes					10-M=ASTP-161-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisites	Other prerequisites			
1 semester graduate						
Contents						

Markov chains, queues, stochastic processes in C[0,1], Brownian motion, Donsker's theorem, projective limits.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental notions and methods of stochastical processes and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 38 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Modul	Module title				Abbreviation
Topology					10-M=ATOP-161-m01
Modul	e coord	inator		Module offered by	
Dean o	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. com	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					

Set-theoretic topology, topological invariants (e. g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + U(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation		
Time Series Analysis 1					10-M=AZRA-161-m01	
Module coordinator				Module offered by		
Dean o	f Studi	es Mathematik (Ma	thematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level Othe		Other prerequisite	es		
1 semester graduate						
Conten	Contents					

Additive model, linear filters, autocorrelation, moving average, autoregressive processes, Box-Jenkins method.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental methods of time series analysis and can apply them to practical problems.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 42 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Master's degree (1 major) Mathematical Physics (2020)

Module title					Abbreviation
Number Theory					10-M=AZTH-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other		Other prerequisites			
1 semester graduate -					
Contor	Contonts				

Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Recommended previous knowledge:

Basic knowledge of algebra and number theory is assumed, such as can be acquired in the modules "Introduction to Algebra", "Introduction to Number Theory" and "Applied Algebra".

Intended learning outcomes

The student is acquainted with the fundamental methods of analytics number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Giovan	Giovanni Prodi Lecture (Master)				10-M=AGPCin-152-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Mathematics International (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title				Abbreviation	
Selecte	Selected Topics in Analysis				10-M=VANA-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Conten	Contents				

In-depth discussion of a specialised topic in analysis taking into account recent developments and interrelations with other mathematical concepts.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in analysis, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 48 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	Module title				Abbreviation
Algebr	Algebraic Topology				10-M=VATP-161-m01
Modul	Module coordinator			Module offered by	
Dean c	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	1 semester graduate				
Camban	Cambonto				

Homology, homotopy invariance, exact sequences, cohomology, application to the topology of Euclidean spaces.

Recommended previous knowledge:

Basic knowledge of topology is assumed, such as can be acquired in the module "Introduction to Topology".

Intended learning outcomes

The student is acquainted with advanced results in algebraic topology.

Courses (type, number of weekly contact hours, language - if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's with 1 major Mathematical Physics (2016)

JMU Würzburg • generated 19-Apr-2025 • exam. reg. data record Master (120 ECTS) Mathematische Physik - 2016

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Groups and their Representations					10-M=VGDS-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathen	natics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other		Other prerequisites	Other prerequisites		
1 semester graduate					
Conten	Contents				

Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation
Geome	Geometrical Mechanics				10-M=VGEM-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathen	natics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level Oth		Other prerequisites			
1 semester graduate					
Conten	Contents				

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: symplectic geometry, cotangent bundles and other examples of symplectic manifolds, symmetries and Noether theorem, phase space reduction, normal forms, introduction to Poisson geometry.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the module "Introduction to Topology" is also recommended. Knowledge of theoretical mechanics can also be useful.

Intended learning outcomes

The student is acquainted with selected advanced applications of differential geometry to geometric mechanics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Indust	Industrial Statistics 2				10-M=VIST-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level Oth			Other prerequisite	S	
1 semester graduate					

Linear models, regression analysis, nonlinear regression, experimental design, basics in time series modelling, basics in empirical time series analysis, methods of exponential smoothing, predictions and prediction domains, statistical process monitoring.

Intended learning outcomes

The student masters advanced statistical methods for industrial applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Economathematics (2025)

Modul	e title	·			Abbreviation
Field Arithmetics					10-M=VKAR-161-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level			Other prerequisites		
1 semester graduate					
C 1					

Combination of Galois theory, group theory and the theory of function fields with the aim of application in number theory, e. g. topics around Hilbert's irreducibility theorem, permutation polynomials (e. g. Calitz-Wan-conjecture) and the inverse problem in Galois theory.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in algebra and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Numer	Numeric of Partial Differential Equations				10-M=VNPE-161-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duration Module level Other		Other prerequisites	s			
1 semester graduate						
Conten	Contents					

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and partial differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Applied Analysis".

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Selected Topics in Optimization					10-M=VOPT-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level O		Other prerequisites			
1 semester graduate					

Selected topics in optimization, e. g. inner point methods, semidefinite programs, non-smooth optimization, game theory, optimization with differential equations.

Intended learning outcomes

The student is acquainted with advanced methods in continuous optimization. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Statistical Analysis					10-M=VSTA-161-m01	
Module coordinator				Module offered by		
Dean of Studies Mathematik (Mathematics)			atics)	Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate -						
Conten	Contents					

Contingency tables, categorical regression, one-factorial variance analysis, two-factorial variance analysis, discriminant function analysis, cluster analysis, principal component analysis, factor analysis.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student is acquainted with the fundamental methods in statistical analysis and can apply them to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Module title				Abbreviation	
Time S	Time Series Analysis 2				10-M=VZRA-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	i	
1 seme	ester	graduate			
C 1	Combants				

State-space models, Kalman filter, frequency spaces, Fourier analysis, periodograms, characterisation of autocovariance functions.

Intended learning outcomes

The student is acquainted with advanced methods in time series analysis. He gains the ability to work on contemporary research questions in this field.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Module title					Abbreviation
Discret	Discrete Mathematics				10-M=VDIM-161-m01
Module coordinator				Module offered by	
Dean o	f Studie	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					

Advanced methods and results in a selected field of discrete mathematics (e. g. coding theory, cryptography, graph theory or combinatorics)

Recommended previous knowledge:

Basic knowledge of the contents of the module "Introduction to Discrete Mathematics" is required.

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (3) + Ü (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 68 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Dynamical Systems					10-M=VDSY-161-m01
Module	Module coordinator			Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	5 numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					

Fundamentals of dynamical systems, e. g. stability theory, ergodic theory, Hamiltonian systems.

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student masters the mathematical methods in the theory of dynamic systems, and is able to analyse their quality.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Modul	e title			'	Abbreviation	
Aspects of Geometry					10-M=VGEO-161-m01	
Module coordinator				Module offered by		
Dean	of Studi	es Mathematik (Mat	hematics)	Institute of N	stitute of Mathematics	
ECTS	Meth	od of grading	Only after succ	. compl. of module	e(s)	
5	nume	rical grade				
Duration Module level Other		Other prerequi	sites			
1 semester graduate						
Conte	ntc.	-				

In-depth discussion of a special type of geometry taking into account recent developments and interrelations with other mathematical structures, e. g. topological geometries, diagram geometries.

Recommended previous knowledge:

Basic knowledge from the modules "Differential Geometry" and "Introduction to Topology" is recommended.

Intended learning outcomes

The student is acquainted with advanced results in a selected field of geometry and can apply his/her skills to complex problems.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Mathe	Mathematical Continuum Mechanics				10-M=VKOM-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mat	hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level C		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Partial differential equations and/or variational methods in the context of continuum mechanics.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student masters the mathematical methods in mathematical continuum mechanics and knows about their main fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Mathematical Imaging					10-M=VMBV-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

Contents

Mathematical fundamentals of image processing and computer vision such as elementary projective geometry, camera models and camera calibration, rigid and non-rigid registration, reconstruction of 3D objects from camera pictures; algorithms; module might also include an introduction to geometric methods and tomography.

Recommended previous knowledge:

Basic knowledge of functional analysis, such as that taught in the module "Functional Analysis", is recommended.

Intended learning outcomes

The student masters the mathematical methods in the theory of image processing and knows about their main fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Selected Topics in Mathematical Physics					10-M=VMPH-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Mat	thematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Selected topics in mathematical physics, for example continuum mechanics, fluid dynamics, mathematical material sciences, geometric field theory, advanced topics in quantum theory.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is acquainted with an advanced topic in mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Selected Topics in Control Theory					10-M=VTRT-161-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Selected topics in linear and non-linear control theory, e. g. networked linear control systems, controllability of bilinear systems.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student gains insight into contemporary research problems in control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 80 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Module title					Abbreviation
Inverse Problems					10-M=VIPR-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	compl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

Linear operator equations, ill-posed problems, regularisation theory, Tikhonov regularisation, iterative regularisation methods, examples of ill-posed problems.

Recommended previous knowledge:

Basic knowledge of functional analysis, such as that taught in the module "Functional Analysis", is recommended.

Intended learning outcomes

The student can judge whether a given problem is well posed or ill posed. He/She can apply regularisation methods and examine them regarding stability and convergence, and is familiar with selected inverse problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Module title					Abbreviation
Module Theory					10-M=VMTH-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate					
Contents					

Basics in module theory: modules and module spaces, canonical decomposition and representations, simple, semi-simple and complex modules, module trees and their defibrations, distorsion theorems, reduction theorems.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student masters mathematical methods in module theory and is able to analyse their quality.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Non-linear Analysis					10-M=VNAN-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 seme	1 semester graduate				
Contents					

Methods in nonlinear analysis (e. g. topological methods, monotony and variational methods) with applications.

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and partial differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Applied Analysis".

Intended learning outcomes

The student is acquainted with the concepts of non-linear analysis, can compare them and assess their applicability on practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 86 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Optimal Control					10-M=VOST-161-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Mat	thematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester graduate						
Contents						

Basics in optimal control of ordinary and partial differential equations, theory of optimal control, conditions for optimality, methods for numerical solution.

Recommended previous knowledge:

We recommend basic knowledge of functional analysis and ordinary differential equations, such as can be acquired in the modules "Introduction to Functional Analysis" and "Ordinary Differential Equations". Knowledge of the contents of the module "Basics in Optimization" may also be useful.

Intended learning outcomes

The student is acquainted with advanced methods in optimal control. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Networked Systems					10-M=VVSY-161-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mat	thematics)	Institute of Mathen	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
5	nume	rical grade				
Duration Module level Oth		Other prerequisit	Other prerequisites			
1 seme	1 semester graduate					
<i>-</i> .						

Contents

Contemporary topics in networked linear and non-linear dynamical systems (homogenous and non-homogenous systems); analysis of control-theoretical aspects (controllability, accessibility, etc.).

Recommended previous knowledge:

Basic knowledge of the contents of the module "Ordinary Differential Equations" is useful.

Intended learning outcomes

The student is acquainted with advanced methods in the field of networked systems. He gains the ability to work on contemporary research questions in networked systems.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(3) + \ddot{U}(1)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 90 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups (groups of 2, approx. 10 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Complex Geometry					10-M=VKGE-161-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Wirtinger calculus, complex structures and complex manifolds, metrics on complex manifolds (e. g. conformal, hermitian, Kähler), differential operators on complex manifolds, classification of complex manifolds.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Introduction to Complex Analysis" and " Complex Analysis" or "Geometric Complex Analysis" is recommended.

Intended learning outcomes

The student knows and masters advanced methods and notions in complex differential geometry. He is familiar with the central concepts in this fied and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Partial	Differe	ential Equations of Math	nematical Physics		10-M=VPDP-161-m01	
Modul	e coord	inator		Module offered by		
Dean	of Studi	es Mathematik (Mather	natics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
10	nume	rical grade				
Duration Module level Ot			Other prerequisites	;		
1 seme	ester	graduate				
Contor	Contants					

Contents

Elliptic, parabolic, and hyperbolic equations; Laplace equation, heat equation and wave equation as standard examples; initial and boundary value problems; well-posed and ill-posed problems; solution methods; extensions and generalisations; Hilbert space methods; Sobolev spaces and Fourier transforms.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student is acquainted with fundamental concepts and solution methods in the theory of partial differential equations, as well as standard examples from mathematical physics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation				
Pseud	o Riema	annian and Riemanı	nian Geometry		10-M=VPRG-161-m01		
Modul	e coord	linator		Module offered by			
Dean c	of Studi	es Mathematik (Ma	thematics)	Institute of Mathematics			
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)			
10	nume	erical grade					
Duration Module level			Other prerequisite	Other prerequisites			
1 semester graduate							
Conter	Contents						

The module builds on the topics covered in module 10-M=ADGM and discusses these in more detail: Riemannian and pseudo-Riemannian manifolds, Levi-Civita connection and curvature, geodesics and the exponential map, Jacobi fields, comparison theorems in Riemannian geometry, submanifolds, integration, d'Alembert and Laplace operators, causal structure of Lorenz manifolds, Einstein equations and applications in general relativity theory.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Introduction to Topology", "Geometric Mechanics" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is acquainted with advanced topics in differential geometry on Riemannian and pseudo-Riemannian manifolds. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 96 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title			Abbreviation			
Functio	onal An	alysis			10-M=AFAN-161-m01		
Modul	e coord	inator		Module offered by			
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics			
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)			
10	nume	rical grade					
Duration Module level			Other prerequisites	Other prerequisites			
1 seme	ester	graduate					
Conten	Contents						

Banach and Hilbert spaces, bounded operators, principles of functional analysis, further contemporary topics in functional analysis and applications to other fields of mathematics.

Recommended previous knowledge:

Familiarity with the contents of the module "Advanced Analysis" is strongly recommended.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in a contemporary field of functional analysis, and is able to apply these skills to complex questions.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation		
Applie	d Differ	ential Geometry			10-M=VADG-161-m01		
Module	e coord	inator		Module offered by			
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics			
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites	3			
1 seme	ester	graduate					
Conten	Contents						

The module builds on the topics covered in module 10-M=ADGM and discusses selected applications of differential geometry, e. g. at the interface of control theory and mechanics (subriemannian geometry), in the smooth optimisation on manifolds or applications in physics.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Applied Differential Geometry", "Geometric Mechanics", "Pseudo-Riemannian and Riemannian Geometry" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is acquainted with selected advanced applications of differential geometry. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation		
Giovan	ıni Prod	li Lecture Selected Topic	cs (Master)		10-M=VGPSin-152-m01
Module coordinator Module offered by					
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Mathematics International (2025)

Modul	e title		Abbreviation			
Giovanni Prodi Lecture Advanced Topics (Master)					10-M=VGPAin-152-m01	
Modul	Module coordinator Module offered by					
Dean o	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics		
ECTS	ECTS Method of grading Only after succ. cor			npl. of module(s)		
10	10 numerical grade					
Duration Module level			Other prerequisites			
1 semester graduate						

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Mathematics International (2025)

Modul	e title		Abbreviation			
Giovar	nni Prod	li Lecture Modern Topic	s (Master)		10-M=VGPMin-152-m01	
Modul						
Dean o	of Studi	es Mathematik (Mathem	natics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duration Module level			Other prerequisites			
1 seme	ester	graduate				
Canta	Contonte					

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, 15 minutes per candidate)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Mathematics International (2025)

Module	e title	'	Abbreviation			
Semina	ar in Al	gebra			10-M=SALG-161-m01	
Modul	e coord	inator		Module offered by		
Dean o	f Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites	Other prerequisites		
1 seme	ster	graduate				
Conten	Contents					

A modern topic in algebra.

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Seminar in Dynamical Systems and Control				10-M=SDSC-161-m01	
Module coordinator Mo				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Contents					

A modern topic in dynamical systems and control.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022) Master's degree (1 major) Mathematical Physics (2022) Master's degree (1 major) Economathematics (2022) exchange program Mathematics (2023)

Module title			Abbreviation		
Seminar in Complex Analysis				10-M=SCOA-161-m01	
Module coordinator				Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
5	nume	rical grade			
Duration Module level (Other prerequisites			
1 seme	1 semester graduate				
Contents					

A modern topic in complex analysis.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Introduction to Complex Analysis" and " Complex Analysis" is recommended.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Seminar in Applied Differential Geometry				10-M=SADG-161-m01		
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	erical grade				
Duration Module level Ot		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

A modern topic in applied differential geometry.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Applied Differential Geometry", "Geometric Mechanics", "Pseudo-Riemannian and Riemannian Geometry" and "Lie Theory" is also recommended.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Seminar in Geometry and Topology				10-M=SGTO-161-m01	
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other pro		Other prerequisites			
1 semester graduate					
Contents					

A modern topic in geometry and topology.

Recommended previous knowledge:

Basic knowledge of the contents of the modules "Introduction to Differential Geometry" and "Introduction to Topology" is recommended.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation	
Giovanni Prodi Seminar (Master)			10-M=SGPCin-152-m01	
Module	e coordinator		Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)		Institute of Mathematics	
ECTS	Method of grading	Only after succ. compl. of module(s)		

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
5 numerical grade		rical grade	
Duration Mo		Module level	Other prerequisites
1 semester		graduate	

Contents

A modern topic in the research expertise of the current holder of the Giovanni Prodi Chair.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

S (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics International (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematics International (2021)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Mathematics International (2022)

Master's degree (1 major) Economathematics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Mathematics International (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title			Abbreviation	
Interdisciplinary Seminar			10-M=SIDC-161-m01	
Module coordinator Module o		Module offered by		
Dean o	f Studies Mathematik (Mathema	atics)	Institute of Mathem	natics
ECTS	Method of grading	Only after succ. compl. of module(s)		
_	numa aria al arra da			

5 numerical grade --

DurationModule levelOther prerequisites1 semestergraduate--

Contents

A modern topic in mathematics with interdisciplinary aspects.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Seminar Mathematics in the Sciences				10-M=SMSC-161-m01	
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Conten	Contents				

A modern topic in mathematics in the sciences.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation
Seminar in Numerical Mathematics and Applied Analysis			10-M=SNMA-161-m01		
Module coordinator M				Module offered by	l .
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level Other prerequis		Other prerequisites		
1 semester graduate					
Conter	Contents				

A modern topic in numerical mathematics or applied analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis and/or numerical mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title			Abbreviation
Seminar in Optimization			10-M=SOPT-161-m01
Module coordinator	Modu	Module offered by	
Dean of Studies Mathematik (Mathematics)	Institu	Institute of Mathematics	

ECTS	Method of grading		Only after succ. compl. of module(s)
5	numerical grade		
Duration Module level		Module level	Other prerequisites
1 semester		graduate	

Contents

A modern topic in optimisation.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

S (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title				Abbreviation	
Seminar in Statistics				10-M=SSTA-161-m01	
Module coordinator				Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 semester graduate					
Contents					

A modern topic in statistics.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended. Depending on the content of the course, other prior knowledge may also be helpful; consultation with the lecturer is recommended.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation	
Semina	ar in No	on-linear Analysis			10-M=SNLA-161-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
5	nume	umerical grade				
Duration Module level			Other prerequisites	5		
1 semester graduate						
Conten	Contents					

A modern topic in non-linear analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	Module title Abbreviation					
Learning by Teaching 1					10-M=ELT1-161-m01	
Modul	Module coordinator			Module offered by		
Dean of Studies Mathematik (Mathematics)			atics)	Institute of Mathem	natics	
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ester	graduate				
Conter	nts					
Superv	ising a	tutorial or study group in	the Bachelor's progr	amme under guidan	ce of the respective lecturer.	
Intend	ed lear	ning outcomes				
		ains his/her first experier can apply them in practio		rsity mathematics. H	le/She knows basic didactical	
Course	es (type, r	number of weekly contact hours, l	anguage — if other than Ger	man)		
T (o)	-					
Metho	d of ass	sessment (type, scope, langua	ge — if other than German, o	examination offered — if no	ot every semester, information on whether	
module i	s creditab	le for bonus)				
Assess	ment o	f tutoring activities by su	pervising lecturers or	exercise supervisor	s (1 to 2 teaching units)	
Allocat	tion of p	olaces				
Additio	onal inf	ormation				
Worklo	oad					
150 h						
Teachi	ng cycl	e				
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module appears in						
Master's degree (1 major) Mathematics (2016)						
Master's degree (1 major) Economathematics (2016)						
	Master's degree (1 major) Mathematical Physics (2016)					
Master	Master's degree (1 major) Computational Mathematics (2016)					

Subfield Physics

(8 ECTS credits)

Module Group General Theory of Physics

(ECTS credits)

Module title	Abbreviation
Quantum Mechanics II	11-QM2-161-m01
	· · · · · · · · · · · · · · · · · · ·

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

	1 7					
ECTS	ECTS Method of grading		Only after succ. compl. of module(s)			
8	numerical grade		-			
Duratio	n	Module level	Other prerequisites			
1 semester		undergraduate	-			

Contents

The contents of this lecture build upon and will be chosen in accordance with the topics of the Bachelor's degree course "Quantum Mechanics I". Topics might include:

for QM:

- 1. Historical introduction
- 2. Single-particle states in a central potential
- 3. Principles of quantum mechanics
- 4. Spin and angular momentum
- 5. Approximations of energy eigenvalues
- 6. Approximations for time-dependent problems
- 7. Second quantisation
- 8. Potential scattering
- 9. General scattering theory
- 10. Canonical formalism
- 11. Charged particles in electromagnetic fields
- 12. Quantum theory of radiation
- 13. Quantum entanglement

Intended learning outcomes

The students acquire in-depth knowledge of advanced quantum mechanics. This knowledge is highly relevant to most of the theoretical Master's degree courses in Astrophysics, Particle Physics and Condensed Matter Physics. The completion of this course is highly recommended.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 135 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Theoretical Quantum Optics					11-TQ0-221-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS Method of grading Only after succ. co			Only after succ. con	npl. of module(s)	
8 numerical grade					
Duration Module level			Other prerequisites		

1 semester Contents

1. Semi-classical atom-field interactions

graduate

- 2. Interaction of atoms with quantized light fields and dressed-atom model
- 3. Master equation and open systems
- 4. Coherence and interference effects
- 5. Coherent light propagation in resonant media
- 6. Photon statistics and correlations
- 7. Quantum optics of many-body systems

Intended learning outcomes

Comprehensive understanding of phenomena involving light and its interaction with atoms at the microscopical level. Knowledge of density matrix formalism for quantum systems and the related mathematical concepts. In-depth understanding of quantum properties of light and their experimental signatures, including photon statistics and correlations. Knowledge of the theory of open systems and master equation description involving Lindblad superoperators. Understanding and modeling the role of coherence and interference in light propagation effects in resonant atomic media. Knowledge of cooperative effects in many-body systems: super- and subradiance, collective light shifts and their applications.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

..

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Module title					Abbreviation
Theory of Relativity					11-RTT-161-m01
Module	e coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS Method of grading Only			Only after succ. con	npl. of module(s)	
6	6 numerical grade				
Duration Module level			Other prerequisites		

1 semester Contents

- 1. Mathematical Foundations
- 2. Differential forms
- 3. Brief Summary of the special relativity

graduate

- 4. Elements of differential geometry
- 5. Electrodynamics as an example of a relativistic gauge theory
- 6. Field equations of the fundamental structure of general relativity
- 7. Stellar equilibrium and other astrophysical applications
- 8. Introduction to cosmology

Intended learning outcomes

The students become familiar with the principal physical and mathematical concepts of general relativity. The main topics include modern formulation on the basis of differential forms. Furthermore, the similarities between electrodynamics as a gauge theory and general relativity are emphasised. The students learn to apply the theory to simple models of stellar equilibrium and are introduced to basic elements of cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Many Body Quantum Theory					11-QVTP-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Theoretical Physi and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	ECTS Method of grading Only after succ. co		Only after succ. con	npl. of module(s)	
8 numerical grade					
Duration Module level		Other prerequisites			
1 semester graduate			<u> </u>		

Contents

In this lecture, Quantum Physics of many-particle systems are introduced on the basis of the perturbative methods of the Green's functions. A possible outline might be:

- 1. Single-particle Green's function
- 2. Review of second quantisation
- 3. Perturbation theory using many-particle Green's functions at temperature T=o
- 4. Perturbation theory for finite temperatures
- 5. Landau theory of Fermi liquids
- 6. Superconductivity
- 7. One-dimensional systems and bosonisation

Intended learning outcomes

The students acquire knowledge of the methods of quantum field theory in a non-relativistic context. This knowledge enables them to study properties of Fermi liquids (and bosonic systems) beyond the one-particle picture, and to understand the effects of interactions, including superconductivity and the Kondo effect.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Renorr	nalizat	ion Group Methods in Fie	eld Theory		11-RMFT-161-m01
Module coordinator Module of				Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Method of grading Only after succ. co		Only after succ. cor	npl. of module(s)	
8	nume	rical grade			
Duration Module level Other		Other prerequisites	3		
1 semester graduate					

Contents

This course is complementary to the discussion of Wilson's renormalisation group (RG) as covered in the course "Renormalisation Group and Critical Phenomena" (11-CRP). It focuses on the diagrammatic formulation of RG flow equations and its relation to diagrammatic perturbation expansions. This is of particular relevance for interacting fermion systems in the context of functional renormalisation groups. An outline of the course might be:

- 1. Wilson's RG
- 2. Path integrals of interacting fermions
- 3. Bethe-Salpeter equation
- 4. RG flow equations for the one-particle and two-particle vertex
- 5. Comparison of flow equations with diagrammatic resummation schemes (such as the random phase approximation)
- 6. RG flow equations for spin systems.

Intended learning outcomes

The students become familiar with the modern diagram-based description of many-particle systems. This knowledge serves as a theoretical basis for the examination of phenomena such as superconductivity, charge and spin density waves, and nematic instabilities.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Abbreviation
Physics of Complex Systems	11-PKS-161-m01
	 •

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

ECTS	Method of grading		Only after succ. compl. of module(s)
6	numerical grade		-
Duratio	Duration Module level		Other prerequisites
1 seme	ster	graduate	-

Contents

- 1. Theory of critical phenomena in thermal equilibriumt
- 2. Introduction into the physics out of equilibriumt
- 3. Entropy production and fluctuationst
- 4. Phase transitions away from equilibriumt
- 5. Universalityt
- 6. Spin glassest
- 7. Theory of neural networks

Intended learning outcomes

The students acquire in-depth knowledge of a wide variety of concepts and methods essential for a thorough understanding of cooperative phenomena in complex many-particle systems. The main focus includes a thorough understanding of the concepts of entropy, entropy production and universality. The students are prepared for research activities in different areas of physics of complex systems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 145 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Į.	Abbreviation
Quantum Information and Quantum Computing	1	11-QIC-161-m01
Modulo coordinator	Modulo offered by	

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

ECTS	Method of grading		Only after succ. compl. of module(s)
6	numerical grade		11-QM2 or 11-TFK
Duratio	Duration Module level		Other prerequisites
1 seme	ster	graduate	

Contents

- 1. Brief summary of classical information theory
- 2. Quantum theory seen from the perspective of information theory
- 3. Composite systems and the Schmidt decomposition
- 4. Entanglement measures
- 5. Quantum operations, POVMs, and the theorems of Kraus and Stinespring
- 6. Quantum gates and quantum computers
- 7. Elements of the theory of decoherence

Intended learning outcomes

The students acquire a comprehensive understanding of quantum states and density matrices beyond the usual textbook interpretation. The learn how to safely handle tensor products and multipartite quantum systems. The main topics of the lecture include basic mathematical concepts of quantum information theory and the limits of quantum computing arising from decoherence.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 147 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module	title				Abbreviation
Black Holes					11-SLQ-232-m01
Module	Module coordinator			Module offered by	
Managing Director of the Institute of Th and Astrophysics		eoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	ECTS Method of grading Only after succ. co		Only after succ. con	npl. of module(s)	
6	nume	umerical grade			
Duration Module level		Other prerequisites			
1 semester graduate			<u> </u>		

PART 1 - Classical solutions

- 1. Vacuum solutions of Einstein's equation the Schwarzschild solution, Birkhoff's theorem, the Eddington-Finkelstein coordinates, Kruskal extension and eternal black holes, the Penrose diagram, conformal compactification and Carter-Penrose diagram
- 2. Gravitational collapse the Oppenheimer-Snyder solution
- 3. Charged and rotating black holes Cauchy horizons, ergosphere
- 4. ADM formalism energy and angular momentum
- 5. Black hole thermodynamics

PART 2 - Astrophysical observations of black holes

- 1. Spin and mass measurements of black holes
- 2. Black hole electromagnetism
- 3. Gravitational waves and their measurement

PART 3 – Quantum aspects of black hole

- 1. Introduction to QFT on curved spacetime: Rindler spacetime, Unruh effect
- 2. Derivation of Hawking radiation
- 3. Hawking's original formulation of the information paradox
- 4. The "holography of information" information paradox in AdS/CFT, the Page curve and Islands
- 5. Firewall, fuzzball, complementarity possible resolutions of information paradox
- 6. Wormholes and the factorization puzzle

Intended learning outcomes

This course plays a bridging role joining the basics on GR learnt in the GR I course and the active research directions in the fields of Astronomy, Astrophysics, General Relativity, String Theory and Gauge/Gravity Duality. Through this course, the students will gain sufficient commands over the applications of general relativity in connection with research directions in this area. This in turn will motivate them to pursue careers as a researcher in the aforementioned directions and help them to successful begin their Master and PhD projects.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 149 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

and Astrophysics

Module title		Abbreviation
Astrophysics		11-APM-242-m01
Module coordinator	Module offered by	
Managing Director of the Institute of Theoretical Physics	Faculty of Physics a	and Astronomy

ECTS	Method of grading		Only after succ. compl. of module(s)
6	numerical grade		
Duratio	Duration Module level		Other prerequisites
1 seme	ster	graduate	

Contents

History of Astronomy, Coordinates and Time Measurement, the Solar System, Exoplanets, Astronomical Scales, Telescopes and Detectors, Stellar Structure and Atmospheres, Stellar Evolution and their End Stages, Interstellar Medium, Molecular Clouds, Structure of the Milky Way, the Local Universe, the Expanding Universe, Galaxies, Active Galactic Nuclei, Large-Scale Structures, Cosmology.

Intended learning outcomes

The student has achieved a deepened of the modern astrophysical world view. He/She is familiar with the methods and instruments of astrophysical research. He/She is able to interpret astronomical observations of various object classes in the context of theoretical astrophysical models.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Approval from examination committee required.

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020) Master's degree (1 major) Mathematical Physics (2020) Master's degree (1 major) Mathematical Physics (2022) exchange program Physics (2023)

Module title Abbreviation				Abbreviation	
Atmospheric Physics					11-ATP-242-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
6	nume	rical grade			
Duration Module level Other prerequisites					
1 semester graduate					

Formation of atmospheres. Planetary atmospheres in the solar system: chemical composition and thermodynamics. Radiative transfer and radiative balance. Fluid mechanics. Greenhouse effect. Climate Models: Equilibrium and Runaway. Physics of clouds. Electric and magnetic fields. Solar wind and interplanetary medium. Meteorites, asteroids, cosmic rays. Atmospheres of exoplanets.

Intended learning outcomes

Students have knowledge of the physics of planetary atmospheres, especially the Earth's atmosphere and near-Earth space. They are able to use the acquired knowledge in the planning of space missions and in the exploration of exoplanets. They are able to model the physical mechanisms of the terrestrial climate and interpret the effects of global warming.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 153 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Module title	Abbreviation
Open Quantum Systems	11-0QS-242-m01

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

. ,			
ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
6	6 numerical grade		
Duratio	n	Module level	Other prerequisites
1 semester		graduate	

Contents

density matrix theory, stochastic processes in Hilbert space, non-Markovian processes, relativistic quantum processes

Intended learning outcomes

development of a theoretical understanding of quantum system coupled to their environment

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Module Group Theoretical Solid State Physics

(ECTS credits)

Module title					Abbreviation
Theoretical Solid State Physics					11-TFK-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Theo and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	ompl. of module(s)	
8 numerical grade					
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

The contents of this two-term course will depend on the choice of the lecturer, and may include parts of the syllabus which could alternatively be offered as "Quantum Many Body Physics" (11-QVTP).

A possible syllabus may be:

- 1 Band structure (Sommerfeld theory of metals, Bloch theorem, k.p approach and effective Hamiltonians for topological insulators (TIs), bulk-surface correspondence, general properties of TIs)
- 2 Electron-electron interactions in solids (path integral method for weakly interacting fermions, mean field theory, random phase approximation (RPA), density functional theory)
- 3 Application of mean field theory and the RPA to magnetism
- 4 BCS theory of superconductivity

Intended learning outcomes

During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Quantum Technology (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Faculty of Physics and Astronomy

and Astrophysics

Module title	Abbreviation	
Theoretical Solid State Physics 2	11-TFK2-161-m01	
Module coordinator	Module offered by	

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
8	8 numerical grade		
Duration		Module level	Other prerequisites
1 semester		graduate	

Contents

A continuation of the first semester (11-TFK) might be the following syllabus:

- 5. Advanced topics of the theory of superconductivity (Bogoliubov-de Gennes equations, effective field theory, Anderson-Higgs description of the Meissner effect)
- 6. Unconventional superconductors (e.G. copper-oxide high-Tc superconductors)
- 7. Green's function methods and Feynman diagrammatic technique

Managing Director of the Institute of Theoretical Physics

8. The Kondo Effect (Anderson's "poor mans scaling", renormalization group)

Intended learning outcomes

During the two-semester lecture, the students acquire a basic understanding of many topics of Solid-State Physics, which are addressed in classical textbooks, and thereby advance their knowledge of the underlying concepts and the methods of description. The course builds upon the courses "Experimental Condensed Matter Physics" and "Quantum Mechanics".

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 159 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title		Abbreviation
Field Theory in Solid State Physics		11-FTFK-161-m01
Module coordinator	Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics	Faculty of Physics and Astronomy	

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
8	8 numerical grade		
Duratio	n	Module level	Other prerequisites
1 semester		graduate	
			Other prerequisites

This will usually be a course on quantum many particle physics using the method of functional integration. An outline could be:

- 1. Coherent states and review of second quantization
- 2. The functional integral formalism at finite temperatures T
- 3. Perturbation theory at T=o
- 4. Order parameters and broken symmetry
- 5. Green's functions
- 6. The Landau theory of Fermi liquids
- 7. Further developments

Intended learning outcomes

The students are enabled to apply the modern methods of path and functional integrals to quantum many-particle systems. These methods complement the traditional methods of Green's functions and Feyman diagrams.

Courses (type, number of weekly contact hours, language - if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 161 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Topological Order					11-TOPO-161-mo1
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Ph			Applied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
6 numerical grade					
Duration Module level		Other prerequisites			
1 semester graduate					
Conten	Contents				

Topologically ordered phases possess no order in the conventional sense (i.e., no broken symmetry and no local order parameter). The order is instead characterized by topological quantum numbers. In the course, the general concepts will be illustrated with the study of specific examples of systems with topological order.

The topics discussed may include:

- 1. Fractional charge and statistics in quantized Hall fluids
- 2. Spin charge separation in spin chains and chiral spin liquids
- 3. Non-Abelian statistics of fractionalized excitations
- 4. Majorana zero modes in p-wave superconductors
- 5. Topological degeneracies on higher genus surfaces (e.g., torus geometry)
- 6. Spinons and visons in spin liquids including Kitaev models.

Intended learning outcomes

The students acquire in-depth knowledge of topological order in quantum condensates.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Module taught in: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 163 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Topology in Solid State Physics					11-TFP-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physic			pplied Physics	Faculty of Physics and Astronomy	
ECTS	CTS Method of grading Only after		Only after succ. con	npl. of module(s)	
6	numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					

- 1. Geometric phase in quantum systems
- 2. Mathematical basics of topology
- 3. Time-reversal symmetry
- 4. Hall conductance and Chern numbers
- 5. Bulk-boundary correspondence
- 6. Graphene (as a topological insulator)
- 7. Quantum Spin Hall insulators
- 8. Z2 invariants
- 9. Topological superconductors

Intended learning outcomes

The students acquire a theoretical understanding of topological concepts in modern Solid-State Physics. These concepts serve as a basis of many research activities of the Faculty of Physics and Astronomy at the University of Würzburg.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

laster's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-
	ta record Master (120 ECTS) Mathematische Physik - 2016

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Modul	Module title Abbreviation				
Theory of Superconductivity					11-TSL-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		heoretical Physics	Faculty of Physics and Astronomy		
ECTS Method of grading Only after succ. o		Only after succ. co	ompl. of module(s)		
6	nume	rical grade			
Duration Module level Other prerequisite		5			
1 semester graduate					
Contents					

Overview of the phenomenology of conventional and unconventional superconductivity. Empirical Matthias rules for superconductivity. Review of BCS theory and critical discussion of its applicability for different types of superconductors. Extension of the phenomenological Ginzburg-Landau theory to a quantum field theory using Feynman diagrams and functional integrals. Ward identities and response functions. Goldstone modes, phase fluctuations, and coupling to the electromagnetic field. Interpretation of the Meissner effect using the Higgs mechanism. Interplay of magnetism and conventional/unconventional superconductivity. Discussion of current research topics and perspective on room-temperature superconductivity.

Intended learning outcomes

This lecture focuses on the understanding of unconventional superconductivity and the interactions with magnetism in the current research context. The first part of the lecture addresses conventional molecular field theory of superconductivity (BCS theory), which fails when applied to new material classes such as high-temperature superconductors. Subsequently, it introduces tools of quantum field theory necessary to expand BCS theory. Thereby it especially focuses on Meissner effect and Higgs mechanism. The last part of the lecture discusses current developments concerning the description and analysis of (un)conventional superconductors and their fascinating connection to competing magnetic phases.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places **Additional information** Workload 180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title			Abbreviation	
Computational Materials Science (DFT)			11-CMS-161-m01	
Module coordinator			Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics		Faculty of Physics a	and Astronomy	
ECTS	Method of grading	Only after succ. compl. of module(s)		
8	numerical grade			

Other prerequisites

1 semester Contents

Duration

- 1. Density functional theory (DFT)
- 2. Wannier functions and localized basis functions
- 3. Numerical evaluation of topological invariants
- 4. Hartree-Fock and static mean-field theory

Module level

graduate

- 5. Many-body methods for solid state physics
- 6. Anderson impurity model (AIM) and Kondo physics
- 7. Dynamical mean-field theory (DMFT)
- 8. DFT + DMFT methods for realistic modeling of solids
- 9. Strongly correlated electrons

Intended learning outcomes

Aside from the theoretical discussion of these topics, the students carry out hands-on exercises from the CIP pool. The participants are introduced to the use of DFT software packages such as VASP or Wien2k and to the construction of maximally localised Wannier functions through the projection of DFT results on atom orbitals with the software wannier9o. Furthermore, the students learn how to construct many-particle solutions of AIM and observe border cases such as the Kondo regime. Impurity solvers such as exact diagonalisation or continuous-time quantum Monte Carlo are utilised to solve the self consistency equations of dynamic molecular field theory (DMFT). These steps are necessary to reach the peak of the lecture: a DFT-DMFT calculation of a strongly correlated transition metal oxide such as SrVO3.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 169 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Functional Materials (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Functional Materials (2025)

Module title Abbreviation			Abbreviation		
Conformal Field Theory					11-KFT-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy		
ECTS	Meth	Method of grading Only after succ. co		mpl. of module(s)	
6	6 numerical grade				
Duration Module level Other pr		Other prerequisites	5		
1 semester graduate					

Conformal field theory (CFT) was developed in the 1980s and found immediate application in string theory and two-dimensional statistical mechanics, where critical exponents and correlation functions for many models (Ising, tricritical Ising, 3-state Potts, etc.) could be exactly calculated. The physical idea is that the principle of scale invariance is elevated from a global to a local invariance, which, for reasons of consistency, amounts to invariance under conformal transformations. This, in turn, yields a rich and fascinating mathematical structure for two dimensional systems (either two space dimensions or one time and one space dimension). CFT has become relevant to many interesting areas of condensed matter physics, including Abelian and non-Abelian bosonisation, quantised Hall states (where the bulk wave function is described in terms of conformal correlators, and the edge in terms of 1+1 dimensional CFTs), the two-channel Kondo effect, fractional topological insulators, and in particular fault-tolerant topological quantum computers involving non-Abelian anyons (Ising and Fibonacci anyons, for example, owe their names to the fusion rules of the associated conformal fields.) A potential syllabus for the first term of the course is:

- o. Introduction (scale and conformal invariance, critical exponents, the transverse Ising model at the self-dual point)
- 1. Conformal theories in D dimensions (conformal group, conformal algebra in 2D, constraints on correlation functions)
- 2. Conformal theories in D=2 (primary fields and correlation functions, quantum field theory, canonical quantisation and Noether's theorem, radial quantisation and Polyakov's theorem, time ordering and functional integration, the free boson and vertex operators, conformal Ward identities)
- 3. Central charge and Virasoro algebra (central charge, the Schwarzian derivative, free fermion, (Abelian) bosonisation, mode expansions and Virasoro algebra, cylinder geometry and Casimir effect, in- and out-states, highest weight states, descendant fields and operator product expansions, conformal blocks, duality and bootstrap)
- 4. Kac determinant and unitarity (Verma modules and null states, Kac determinant formula, non-unitarity proof, conformal grids, minimal models in general).

Intended learning outcomes

The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or

e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

__

Workload

180 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title Abbreviation			Abbreviation	
Conformal Field Theory 2					11-KFT2-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy		
ECTS Method of grading Only after succ. o		Only after succ. cor	ompl. of module(s)		
6 numerical grade					
Duration Module level Other prerequis		Other prerequisites			
1 semester graduate					
Contents					

- 5. Minimal models (critical statistical mechanics models (Ising, tricritical Ising, 3 state Potts model, restricted solid-on-solid models), correlation functions of the critical Ising model, fusion rules and Verlinde algebra, Landau-Ginzburg description of minimal models, modified Coulomb gas method and its application to the Ising model, superconformal models)
- 6. Free bosons and fermions (mode expansions, twist fields, fermionic zero modes and fermion parity)
- 7. Free fermions on the torus (operator implementation of the partition function, vacuum energies, representations of Virasoro algebra, modular group and fermionic spin structures, Virasoro characters, critical Ising model on the torus, Jacobi theta function identities)
- 8. Free bosons on the torus (Lagrangian formulation of the partition function, fermionisation, orbifolds in general, S1/Z2 orbifold, Gaussian and Askhin-Teller models, duality between original and orbifold theories, marginal operators, the space of c=1 theories)

Intended learning outcomes

The students acquire practical and conceptional familiarity with the methods of conformal field theory. As the completion of "Quantum Mechanics II" (11-QM2) is the only prerequisite to take part in this course, the students also acquire basic knowledge of critical phenomena, quantum field theory and functional integrals. The course is primarily addressed to students of Theoretical Physics and aims to increase their general level of knowledge by becoming acquainted with a sophisticated subdiscipline with applications in many subdisciplines of Condensed Matter Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title Abbreviation				
Magnetism and Spin Fluids					11-MSF-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy		
ECTS Method of grading Only after succ. o		Only after succ. con	npl. of module(s)		
6 numerical grade					
Duration Module level Other prerequis		Other prerequisites			
1 semester graduate					
Contents					

The contents of the course vary from year to year and include topics such as spin-wave theory, spin-chains, spin ladders and spin liquids with topological orders. Depending on the lecturer, the focus may lie on magnetically ordered systems or on spin liquids.

Possible topics are:

- 1. Principles of magnetism. Ferromagnetic and antiferromagnetic exchange, super-exchange, Hubbard, t-j- and Heisenberg models
- 2. Magnetic order (Holstein-Primakoff bosons and spin-wave theory)
- 3. Valence bond solids in spin chains (Majumdar-Gosh and AKLT Models, spinon confinement and the Haldane gap)
- 4. Critical spin-1/2 chains (spinon excitations in the Haldane-Shastry model, holon excitations in the Kuramo-to-Yokohama model)
- 5. Coupled spin chains and ladders
- 6. Chiral spin liquids (Abelian and possibly non-Abelian)
- 7. Kitaev's toric code model (spinon and vison excitations)
- 8. Kitaev's honeycomb lattice model (non-Abelian statistics).

Intended learning outcomes

The students develop an understanding of the electronic origins of magnetism, spin-wave theory, spin-charge separation in one dimensional systems and spin-liquids as examples of systems with a topological order in two dimensions.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

__

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module	Module title Abbreviation				
Topological Quantum Physics					11-TQP-161-m01
Module coordinator Module offered by					
Managing Director of the Institute of Theoretical Physics and Astrophysics		neoretical Physics	Faculty of Physics and Astronomy		
ECTS Method of grading Only after succ. o		Only after succ. con	npl. of module(s)		
6 numerical grade					
Duration Module level Other prerequisi		Other prerequisites			
1 seme	1 semester graduate				
Contents					

The course is aimed at Masters students pursuing either experimental or theoretical work in their thesis. Depending on the lecturers emphasis, it is meant to provide an introduction to topological superconductors and insulators assuming only "Quantum mechanics II" (11-QM2) as a prerequisite. The contents may include:

- 1. Introduction to superconductivity (including BCS theory)
- 2. Majorana fermions and topological superconductors in 1D (Kitaev wires)
- 3. Topological superconductors in two dimensions (2D) (including Majorana edge states and non-Abelian statistics)
- 4. Integer quantum Hall effect and Chern insulators (Haldane model, Jackiw-Rebbi solitons and edge states)
- 5. Berry's phase and Chern invariants
- 6. Time reversal symmetry and topological insulators in 2D
- 7. Topological insulators in 3D

Intended learning outcomes

In-depth understanding of the topological concepts of Quantum Physics relevant to current research projects of Condensed Matter Physics at the University of Würzburg.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title		Abbreviation
Renormalization Group and Critical Phenomena		11-CRP-161-m01
Module coordinator	Module offered by	
Managing Director of the Institute of Theoretical Physics and Astronaud Astrophysics Faculty of Physics and Astron		and Astronomy

ECTS	Method of grading		Only after succ. compl. of module(s)		
6	numerical grade				
Duratio	n	Module level	Other prerequisites		
1 seme	ster	graduate			

- 1. Phase transitions
- 2. Mean field theory
- 3. The concept of the renormalization group (RG) Phase diagrams and fixed points
- 4. Perturbation-theoretical renormalization group
- 5. Low-dimensional systems
- 6. Conformal symmetry

Intended learning outcomes

The students acquire profound knowledge of the principles of scale invariance and of the renormalisation group (RG) in Statistical Physics. They understand the concept of RG flow with respect to effective field theories in both statistical and quantum field theory.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Bosoni	sation	and Interactions in One I	Dimension		11-BWW-161-m01
Module	Module coordinator			Module offered by	
Manag and As	_	ector of the Institute of Th sics	neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate			

- 1.Instability of Fermi systems in one dimension (1D)
- 2. Abelian bosonisation and Luttinger liquids (spinless fermions, correlation functions, models with spin, renormalization group, and the sine-Gordon model).

The below mentioned topics will be presented in different years:

- 3. Interacting fermions on a lattice (Hubbard model, t/J model, transport properties)
- 4.Bethe ansatz
- 5.Spin-1/2 chains
- 6.Disordered systems
- 7. Non-abelian bosonisation and the WZW model (Kac-Moody algebras, Sugawara construction, Knizhnik-Zamolodchikov equation, applications of the WZW model)

Intended learning outcomes

The students become familiar with the peculiarities of one-dimensional (1D) electron systems and acquire the theoretical tools to understand phenomena relevant to experiments, including disorder effects and transport in 1D.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Gauge Theories					11-EIT-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Thand Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate			

The main topic of the course will usually be lattice gauge theories. The concepts may be taught and illustrated by elaborating on the role of lattice gauge theories in spin systems.

A possible outline might be:

- 1. Introduction to lattice gauge theories for spin systems
- 2. Phase transitions
- 3. The transfer matrix
- 4. The two-dimensional (2D) Ising model
- 5. Ising lattice gauge theory
- 6. Abelian lattice gauge theories
- 7. The planar Heisenberg (XY) model in 2D (Kosterlitz-Thouless transition)
- 8. Non-Abelian lattice gauge theories

Intended learning outcomes

The students acquire in-depth understanding of gauge fields in classical and Quantum Physics. They are able to apply this knowledge to spin systems, illustrating the interplay between microscopic models and field-theoretic descriptions.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Introduction to Gauge/Gravity Duality					11-GGD-161-mo1
Module coordinator				Module offered by	
Managing Director of the Institute of Theorem and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
8	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate			

- 1. Elements of quantum field theory:
 - Quantisation of the free field
 - Interactions
 - Renormalisation Group
 - Gauge Fields
 - Conformal Symmetry
 - Large N expansion
 - Supersymmetry
- 2. Elements of gravity
 - Manifolds, coordinate covariance and metric
 - Riemann curvature
 - Maximally symmetric spacetimes
 - Black holes
- 3. Elements of string theory
 - Open and closed strings
 - Strings in background fields
 - Type IIB String Theory
 - D-Branes
- 4. The AdS/CFT correspondence
 - Statement of the correspondence
 - Near-horizon limit of D₃-Branes
 - Field-operator correspondence
 - Tests of the correspondence: Correlation functions
 - Tests of the correspondence: Conformal anomaly
 - Holographic principle
- 5. Extensions to non-conformal theories
 - Holographic renormalisation group
 - Holographic C-Theorem
- 6. Applications I: Thermo- and hydrodynamics
 - Quantum field theory at finite temperature
 - Black holes
 - Holographic linear response formalism
 - Transport coefficients: Shear viscosity and conductivities
- 7. Applications II: Condensed matter physics
 - Finite charge density and Reissner-Nordström black holes
 - Quantum critical behaviour
 - Holographic fermions
 - Holographic superconductors
 - Entanglement entropy
- 8. Applications III: Particle physics
 - Gravity dual of confinement
 - Gravity dual of chiral symmetry breaking
 - Quark-gluon plasma

Intended learning outcomes

The students acquire a thorough understanding of the foundations of gauge/gravity duality and the ability to carry out basic tests. Depending on the pre-existing knowledge and interests of the students, the module addresses a selection of the aforementioned topics. Knowledge of quantum mechanics and classical electrodynamics is a prerequisite for this course. Knowledge of quantum field theory and general relativity is useful, but not a prerequisite.

Courses (type, number of weekly contact hours, language - if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Introdu	ıction t	o Fractional Quantisatio	n		11-EFQ-161-m01
Module	Module coordinator			Module offered by	
Managing Director of the Institute of Theoretical P and Astrophysics			heoretical Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration Module level Other prere		Other prerequisites			
1 semester graduate					
C 4	4				

The course will elaborate on instances of fractional quantisation in nature, mostly employing examples from the following list:

- 1. Midgap states in polyacethylene
- 2. Abelian quantised Hall states (Laughlin states, fractional charge and statistics, hierarchy states, effective Chern-Simons theory)
- 3. Non-Abelian quantised Hall states (Pfaffian states, Majorana fermions, non-Abelian statistics, Read-Rezayi states)
- 4. Spin chains (Haldane-Shastry model, spinon excitations, holon excitations in the Kuramoto-Yokoyama model, Yangian symmetry)
- 5. Chiral spin liquids (Abelian and non-Abelian) 6. Kitaev models (toric code model, honeycomb model).

Intended learning outcomes

The students become familiar with emergent phenomena in many-particle systems and with Anderson's philosophical principle of "More is different" by studying specific examples of quantum condensates exhibiting fractional quantisation.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Workload

180 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Topological Effects in Electronic Systems					11-TEF-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Theore and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate			

The continuous development of the field of topological phases including topological insulators, superconductors, and spin liquids requires a continuous adaptation of the graduate curriculum. The course aims to deepen the students understanding of concepts related to contemporary research and/or to keep up with contemporary developments. The specific choice of topics will vary with the lecturers from year to year.

Intended learning outcomes

The course offers the opportunity to get acquainted with topics of immediate relevance to research conducted at the University of Würzburg.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

__

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title					Abbreviation
Field Theoretical Aspects of Solid State Physics					11-FTAS-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics			neoretical Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate		<u> </u>	

The topics of the course will vary from year to year and may include the description of superconductors through classical field theory (the Higgs mechanism), non-linear sigma models for spin chains, Chern-Simons and axion theories as effective descriptions of quantised Hall fluids and topological insulators, respectively, or the SU(2) level k Wess-Zumino-Witten model as an example of a conformal field theory with a symmetry group (or algebra) beyond the Virasoro algebra.

Intended learning outcomes

The students acquire an in-depth understanding of quantum field theory and its fundamental importance for almost all areas of Condensed Matter Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

._

Workload

180 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 192 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module Group Astrophysics

(ECTS credits)

Module title	Abbreviation
Cosmology	11-AKM-161-m01

 Module coordinator
 Module offered by

 Managing Director of the Institute of Theoretical Physics and Astronomy and Astrophysics
 Faculty of Physics and Astronomy

ECTS	Method of grading		Only after succ. compl. of module(s)
6	numerical grade		-
Duratio	Duration Module level		Other prerequisites
1 seme	ster	graduate	-

Contents

Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, galaxies and galaxy clusters, intergalactic medium, cosmological parameters.

Intended learning outcomes

The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to process scientific questions.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

__

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Abbreviation
Theoretical Astrophysics	11-AST-161-m01

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

· · · / ·		
CTS Method of grading		Only after succ. compl. of module(s)
numerical grade		
on	Module level	Other prerequisites
ster	graduate	
	nume	numerical grade Module level

Contents

Topics in theoretical astrophysics such as e.g. white dwarfs, neutron stars and black holes, supernovae, pulsars, accretion and jets, shock waves, radiation transport, and gravitational lensing

Intended learning outcomes

Knowledge of basic processes and methods of Theoretical Astrophysics. Ability to formulate theoretical models.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

ion
1-m01
omy

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
6 numerical grade		rical grade	
Duration		Module level	Other prerequisites
1 semester		graduate	

Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, magnetohydrodynamics, transport equations for energetic particles, properties of magnetic turbulence, propagation of solar particles within the solar wind, particle acceleration via shock waves and via interaction with plasma turbulence, particle acceleration and transport in galaxies and other astrophysical objects, cosmic radiation.

Intended learning outcomes

The students have knowledge of the basic processes of Plasma Astrophysics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V(2) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Abbreviation
High Energy Astrophysics	11-APL-161-m01

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

ECTS	ECTS Method of grading		Only after succ. compl. of module(s)
6	numerical grade		
Duratio	n	Module level	Other prerequisites
1 semester		graduate	

Contents

Radiative processes, interaction of light with matter, particle acceleration processes, pair creation, nuclear processes, pion production, astrophysical shock waves, kinetic equations

Intended learning outcomes

The student gains knowledge in fundamentals of High-Energy Astrophysics, such as particle acceleration and non-thermal radiative processes in astrophysical objects

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

and Astrophysics

Module title		Abbreviation
Computational Astrophysics		11-NMA-161-m01
Module coordinator	Module offered by	
Managing Director of the Institute of Theoretical Physics	Faculty of Physics a	and Astronomy

1 /			
ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
6	6 numerical grade		-
Duratio	n	Module level	Other prerequisites
1 semester		graduate	-

Contents

Various methods used in astrophysical simulations with special emphasis on their applications. N-body algorithms (tree- and polynomial codes). Particle-mesh methods (particle-in-cell methods). Vlasow methods (e.g., Lattice-Boltzmann). Hyperbolic conservation laws (fluid dynamics, finite difference method, Riemann solver, ENO). Methods of high-performance computing. Message-passing interface (MPI). GPGPU programming (OPEN-CL).

Intended learning outcomes

The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 203 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module Group Theoretical Elementary Particle Physics

(ECTS credits)

Module title	Abbreviation	
Relativistic Quantum Field Theory		11-RQFT-161-m01

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

1 /			
ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
8	8 numerical grade		
Duration		Module level	Other prerequisites
1 semester		graduate	

Contents

- 1. Symmetries
- 2. Relativistic single-particle states
- 3. Lagrange formalism for fields
- 4. Field quantisation
- 5. Scattering theory and S-matrix
- 6. Gauge principle and interaction
- 7. Perturbation theory
- 8. Feynman rules
- 9. Quantum electrodynamic processes in Born approximation
- 10. Radiative corrections
- 11. Renormalisation (optional)

Intended learning outcomes

The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Module title	Abbreviation
Quantum Field Theory II	11-QFT2-161-m01
	•

Module coordinatorModule offered byManaging Director of the Institute of Theoretical Physics
and AstrophysicsFaculty of Physics and Astronomy

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)
8	numerical grade		
Duratio	n	Module level	Other prerequisites
1 semester		graduate	

Contents

- 1. Generating Functionals
- 2. Path Integrals
- 3. Renormalization
- 4. Renormalization group
- 5. Gauge theories
- 6. Spontaneous Symmetry Breaking
- 7. Effective Field Theory (optional)

Intended learning outcomes

The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve problems of quantum field theory by using the acquired calculation methods.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Master's with 1 major Mathematical Physics (2016)	JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 208 / 269
	ta record Master (120 ECTS) Mathematische Physik - 2016	

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation
Theore	Theoretical Elementary Particle Physics				11-TEP-161-m01
Module	coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS Method of grading			Only after succ. compl. of module(s)		
8	8 numerical grade				

Other prerequisites

1 semester Contents

Duration

1. Fundamental particles and forces

Module level

graduate

- 2. Symmetries and groups
- 3. Quark model of hadrons
- 4. Quark parton model and deep inelastic scattering
- 5. Principles of quantum field theory
- 6. Gauge theories
- 7. Spontaneous symmetry breaking
- 8. Electroweak standard model
- 9. Quantum chrome dynamics
- 10. Extensions of the standard model.

Intended learning outcomes

The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Abbreviation	
Selected Topics of Theoretical Elementary Particle Physics	11-ATTP-161-m01	
Module coordinator	Module offered by	
Managing Director of the Institute of Theoretical Physics	Faculty of Physics and Astronomy	

and Astrophysics				
ECTS Method of grading		od of grading	Only after succ. compl. of module(s)	
6	numerical grade			
Duratio	on	Module level	Other prerequisites	
1 seme	ster	graduate		

A selection of topics from the following fields will be covered in different years:

- 1. Advanced techniques for precision calculations of scattering amplitudes
- 2. Phenomenology of particle accelerators
- 3. Higgs physics

and Astronhysics

4. Top quark physics

Intended learning outcomes

The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's with 1 major Mathematical Physics (2016)		JMU Würzburg • generated 19-Apr-2025 • exam. reg. da-	page 212 / 269
		ta record Master (120 ECTS) Mathematische Physik - 2016	

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title			Abbreviation		
Models Beyond the Standard Model of Elementary Particle Physics				11-BSM-161-m01	
Module coordinator				Module offered by	
Managing Director of the Institute of Theoretical Physics and Astrophysics		Faculty of Physics and Astronomy			
ECTS Method of grading		Only after succ. compl. of module(s)			
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 seme	ster	graduate			

- 1. Principles of the standard model of Elementary Particle Physics
- 2. Tests of the standard model in low energy experiments and at high energy colliders
- 3. Neutrino physics
- 4. Higgs physics.

In addition, a selection of topics from the following fields will be covered in different years:

- · Phenomenology of experiments at the LHC,
- particle cosmology,
- · extended gauge theories,
- · models with extended Higgs sectors,
- supersymmetry,
- models with additional space-time dimensions

Intended learning outcomes

The students are familiar with the tests and limits of the standard model of Particle Physics, Higgs physics and neutrino physics. They are able to formulate extensions of the standard model. Furthermore, they know how to test these extensions in low energy experiments, at high energy colliders and in cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Physics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module Group Current Topics

(ECTS credits)

Modul	e title			Abbreviation	
Curren	t Topic	s of Mathematical F	Physics		11-EXMP5-161-m01
Module coordinator				Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	Only after succ. compl. of module(s)	
5	nume	erical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 seme	1 semester graduate		Approval from exan	Approval from examination committee required.	
Conter	Contents				

Current topics in Mathematical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + R(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Module	e title		Abbreviation		
Current	t Topic	s of Mathematical Physi	cs		11-EXMP6-161-m01
Module coordinator				Module offered by	
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate		Approval from examination committee required.		
Contents					

Current topics in Mathematical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Module	e title		Abbreviation		
Curren	t Topic	s of Mathematical Phys	ics		11-EXMP7-161-m01
Module coordinator				Module offered by	
chairpe	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
7	numerical grade				
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate		Approval from examination committee required.		
Contents					

Contents

Current topics in Mathematical Physics. Credited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

210 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Modul	e title		Abbreviation		
Curren	t Topic	s of Mathematical P	Physics		11-EXMP8-161-m01
Modul	Module coordinator			Module offered by	
chairp	chairperson of examination committee			Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
8	nume	erical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 semester graduate		graduate	Approval from examination committee required.		
Conter	Contents				

Current topics of Mathematical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses (type, number of weekly contact hours, language - if other than German)

V(4) + R(2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Subfield Research in Groups

(10 ECTS credits)

Modul	e title				Abbreviation
Resea	rch in G	roups - Algebra			10-M=GALG-161-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	numerical grade				
Duration Module level		Other prerequisite	Other prerequisites		
1 semester graduate		graduate			
Conte	Contents				

Selected modern topics in algebra (e.g. ring theory, commutative algebra, differential algebra, local fields, computer algebra, algebras, division rings, quadratic forms).

Recommended previous knowledge:

Basic knowledge of algebra is assumed, such as can be acquired in the modules "Introduction to Algebra" and "Applied Algebra".

Intended learning outcomes

The student gains insight into contemporary research problems in algebra. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title		Abbreviation
Research in Groups - Discrete Mathematics	10-M=GDIM-161-m01	
Module coordinator	Module offered by	

D		Madula laval	Oth - = = = = = = : : = : t - = =	
10	numerical grade			
ECTS	ECTS Method of grading		Only after succ. compl. of module(s)	
Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	

10	manne	ileat Stade	
Duratio	n	Module level	Other prerequisites
1 seme	ster	graduate	

Contents

Selected modern topics in discrete mathematics.

Intended learning outcomes

The student gains insight into contemporary research problems in discrete mathematics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation		
Resea	Research in Groups - Dynamical Systems and Control Theory				10-M=GDSC-161-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	numerical grade				
Duration Module level		Other prerequisites			
1 semester graduate					
Contar	Contents				

Selected modern topics in dynamical systems and control theory.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student gains insight into contemporary research problems in dynamical systems and control theory. He/ She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022) Master's degree (1 major) Mathematical Physics (2022) Master's degree (1 major) Economathematics (2022) exchange program Mathematics (2023)

Module	e title		Abbreviation		
Resear	ch in G	roups - Complex Analy		10-M=GCOA-161-m01	
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)			matics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	Only after succ. compl. of module(s)	
10	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Conten	Contents				

Selected modern topics in complex analysis (e. g. in approximation theory, potential theory, complex dynamics, geometric complex analysis, value distribution theory).

Recommended previous knowledge:

Depending on the current focus of the course, knowledge from different areas of analysis is required. Consultation with the lecturer at the beginning of the course is recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in complex analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title	Abbreviation		
Research in Groups - Geometry and Topology		10-M=GGMT-161-m01	
Module coordinator	Module offered by	1	
Dean of Studies Mathematik (Mathematics)	Institute of Mathe	Institute of Mathematics	

ECTS	Method of grading		Only after succ. compl. of module(s)
10	numerical grade		
Duratio	on	Module level	Other prerequisites
1 semester		graduate	

Contents

Selected modern topics in geometry and topology.

Intended learning outcomes

The student gains insight into contemporary research problems in geometry and topology. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Research in Groups - Mathematics in Context					10-M=GMCX-161-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conto	Contents					

Contents

Reflection on mathematics in a cultural context, for example by discussing part of the history of mathematics, given by a historical period, a geographic region or a particular field of mathematics. Other possibilities arise from the connection of mathematics with literature, language, music, art or the media.

Intended learning outcomes

The student realises the cultural dimension of mathematics and its relation to other cultural fields.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title	'	Abbreviation			
Research in Groups - Mathematics in the Sciences					10-M=GMSC-161-m01	
Module coordinator				Module offered by	Module offered by	
Dean c	of Studi	es Mathematik (Math	nematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisite	Other prerequisites			
1 semester graduate						
Contents						

A modern topic in mathematics in the sciences.

Recommended previous knowledge:

Basic knowledge from the modules "Ordinary Differential Equations" and "Introduction to Partial Differential Equations" is recommended, as well as basic knowledge of functional analysis.

Intended learning outcomes

The student gains insight into contemporary research problems in mathematics in the sciences. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Research in Groups - Measure and Integral					10-M=GMAI-161-m01	
Modul	e coord	inator		Module offered by		
Dean o	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester graduate					
<u> </u>						

Contents

Aspects of measure and integration theory: sigma algebras and Borel sets, volume and measure, measurable functions and Lebesgue integrals, selected applications, e. g. product measures (with Fubini's theorem and the transformation rule), Lp spaces and absolute continuity, measures on topological spaces.

Intended learning outcomes

The student gains insight into contemporary research problems in measure and integration theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Resear	rch in G	roups - Numerical M	10-M=GNMA-161-m01			
Module coordinator Mo				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester graduate					
Conter	Contents					

Selected topics in numerical mathematics, applied analysis or scientific computing.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis and/or numerical mathematics is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student gains insight into a contemporary research problems in numerical mathematics or applied analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title				Abbreviation		
Resear	ch in G	roups - Robotics, Optim	10-M=GROC-161-m01			
Module coordinator Mod				Module offered by		
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conten	Contents					

Selected modern topics in robotics, optimisation and control theory.

Recommended previous knowledge:

Knowledge of the contents of the module "Mathematical Control Theory" or "Control Theory" is required.

Intended learning outcomes

The student gains insight into contemporary research problems in robotics, optimization and control theory. He/ She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Research in Groups - Time Series Analysis					10-M=GTSA-161-m01	
Module coordinator				Module offered by	Module offered by	
Dean o	of Studi	es Mathematik (Math	nematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisi	Other prerequisites		
1 seme	1 semester graduate					
Conte	Contents					

Selected modern topics in time series analysis.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in time series analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bayaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Research in Groups - Statistics					10-M=GSTA-161-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester graduate					
Conter	Contents					

Selected modern topics in statistics.

Recommended previous knowledge:

Basic knowledge of stochastics is required, such as that acquired in the "Stochastics 1" module. Knowledge of the contents of the module "Stochastics 2" is also recommended. Depending on the content of the course, other prior knowledge may also be helpful; consultation with the lecturer is recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in statistics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Economathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Economathematics (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

Master's degree (1 major) Economathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Resear	Research in Groups - Number Theory				10-M=GNTH-161-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Math	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 semester graduate					
Contents					

Selected modern topics in number theory (e. g. algebraic number theory, modular forms, diophantine analysis).

Recommended previous knowledge:

Basic knowledge of algebra and number theory is assumed, such as can be acquired in the modules "Introduction to Algebra", "Introduction to Number Theory" and "Applied Algebra".

Intended learning outcomes

The student gains insight into contemporary research problems in numer theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation			
Research in Groups - Control Theory of Quantum Mechanical Systems					10-M=GCQS-161-m01	
Module coordinator				Module offered by		
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duration Module level		Other prerequisites				
1 seme	1 semester graduate					
C 4	Contonto					

Contents

Selected modern topics in control theory of quantum mechanical systems.

Intended learning outcomes

The student gains insight into contemporary research problems in control theory of quantum mechanical systems. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Module title					Abbreviation	
Resear	rch in G	roups - Differential		10-M=GDGE-161-m01		
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mat	hematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level (Other prerequisites	Other prerequisites		
1 semester graduate						
Contents						

Selected modern topics in differential geometry.

Recommended previous knowledge:

Advanced knowledge of differential geometry is required, such as can be acquired in the module "Differential Geometry". Knowledge of the contents of the modules "Applied Differential Geometry", "Geometric Mechanics", "Pseudo-Riemannian and Riemannian Geometry" and "Lie Theory" is also recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in Differential Geometry. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Research in Groups - Deformation Quantization					10-M=GDFQ-161-m01
Module coordinator				Module offered by	
Dean	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
10	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester graduate				
Contents					

Selected modern topics in deformation quantization.

Recommended previous knowledge:

Knowledge of the contents of the modules "Differential Geometry" and "Geometric Mechanics" is recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in Deformation Quantization. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Resea	rch in G	roups - Non-linear An	alysis		10-M=GNLA-161-m01	
Modul	e coord	linator		Module offered by		
Dean	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contents					

Selected modern topics in non-linear analysis.

Recommended previous knowledge:

Depending on the content, basic and advanced knowledge from different areas of analysis is required. In case of doubt, it is recommended to consult the lecturer.

Intended learning outcomes

The student gains insight into contemporary research problems in Non-linear Analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

Additional information

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	Module title Research in Groups - Operator Algebras				Abbreviation	
Resea					10-M=GOPA-161-mo1	
Modul	Module coordinator				ed by	
Dean	of Studi	es Mathematik (Mat	hematics)	Institute of N	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ	compl. of module	(s)	
10	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contents					

Contents

Selected modern topics in operator algebras.

Recommended previous knowledge:

Knowledge of the contents of the modules "Functional Analysis" and "Algebra and Dynamics of Quantum Systems" is recommended.

Intended learning outcomes

The student gains insight into contemporary research problems in Operator algebras. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Mathematical Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Mathematical Physics (2020)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematical Physics (2022)

exchange program Mathematics (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	Module title Abbreviation						
Study (Study Group Modern Differential Geometry 11-AG-MDG-161-mo1						
Module	coord	inator	Module offered by				
chairpe	erson o	f examination committee		Faculty of Physics a	and Astronomy		
ECTS	Metho	od of grading	Only after succ. com	pl. of module(s)			
10	nume	rical grade					
Duratio	n	Module level	Other prerequisites				
1 seme	ster	graduate					
Conten	ts						
		o current questions of mo y of the required fundam			ion for a Master's thesis in this		
Intende	ed lear	ning outcomes					
		have advanced knowledges. They are able to summ			ave gained insights into current ation.		
Course	S (type, r	number of weekly contact hours, l	anguage — if other than Ger	man)			
S (4) Module	taugh	t in: German or English					
Method	d of ass	sessment (type, scope, langua	ge — if other than German, o	examination offered — if no	ot every semester, information on whether		
module is	creditab	ele for bonus)	,				
		o minutes)					
		ssessment: German and, ffered: In the semester in		offered and in the si	uhsaquant samastar		
Allocat			willer the course is	onered and in the si	ubsequent semester		
	1011 01	riuces					
Vqqi+i~	nal inf	ormation					
Auditio	ııaı IIII	omation					
Worklo	ad						
300 h Teaching cycle							
reaching cycle							
Doforro	Pafarrad to in IDO I () is a second to in IDO I () is a						
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Module appears in							
Master's degree (1 major) Mathematical Physics (2016)							

Master's degree (1 major) Mathematical Physics (2020) Master's degree (1 major) Mathematical Physics (2022)

numerical grade Duration Module level Other prerequis semester graduate Contents	ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
chairperson of examination committee ECTS Method of grading Only after succ. 10 numerical grade Duration Module level Other prerequis 1 semester graduate Contents Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	Faculty of Physics and Astronomy compl. of module(s) sites ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
ECTS Method of grading Only after succ. 10 numerical grade Duration Module level Other prerequis 1 semester graduate Contents Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
numerical grade Duration Module level Other prerequis semester graduate Contents Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	sites ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
Duration Module level Other prerequise 1 semester graduate Contents Introduction to current questions of symplectic geometre thesis in this area. Summary of the required fundament.	ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
1 semester graduate Contents Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	ry and Poisson geometry as a preparation for a Master's tal topics in a seminar presentation.					
Contents Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	tal topics in a seminar presentation.					
Introduction to current questions of symplectic geometr thesis in this area. Summary of the required fundament	tal topics in a seminar presentation.					
thesis in this area. Summary of the required fundament	tal topics in a seminar presentation.					
Intended learning outcomes						
The students have advanced knowledge of Symplectic a rent research topics. They are able to summarise their k						
Courses (type, number of weekly contact hours, language — if other tha	an German)					
S (4) Module taught in: German or English						
Method of assessment (type, scope, language $-$ if other than Gerr module is creditable for bonus)	man, examination offered $-$ if not every semester, information on whether					
talk (60 to 120 minutes) Language of assessment: German and/or English Assessment offered: In the semester in which the cours	se is offered and in the subsequent semester					
Allocation of places						
Additional information						
Workload						
300 h						
Teaching cycle						

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Module title Abbreviation							
Study	Group (Operator Algebras an	d Representation Theory	1	11-AG-OAD-161-m01		
Module	e coord	inator		Module offered by			
chairpe	erson o	f examination commi	ttee	Faculty of Physics	and Astronomy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	·		
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate					
Conten	ıts	. =					
			f operator algebra as a p in a seminar presentatio		ster's thesis in this area. Summary		
Intend	ed lear	ning outcomes					
			ledge of operator algebra		nsights into current research to-		
Course	S (type, ı	number of weekly contact ho	urs, language — if other than Ge	rman)			
S (4) Module	e taugh	t in: German or Englis	sh				
		sessment (type, scope, la ble for bonus)	nguage — if other than German,	examination offered — if n	ot every semester, information on whether		
Langua	age of a	o minutes) ssessment: German a ffered: In the semest	and/or English er in which the course is	offered and in the s	ubsequent semester		
Allocat	tion of	olaces					
-							
Additio	onal inf	ormation					
Worklo	oad						
300 h							
Teachi	Teaching cycle						
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	e appea	ars in					
Master	's degr	ee (1 major) Mathema	atical Physics (2016)				

Module title					Abbreviation
Study Group Hopf Algebras					11-AG-HAL-161-m01
Module	e coord	inator	Module offered by		
chairpe	erson o	f examination committe	e	Faculty of Physics a	and Astronomy
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	graduate			
Conten	ts				
		o current questions of H undamental topics in a		aration for a Master'	s thesis in this area. Summary of
Intend	ed lear	ning outcomes			
		have advanced knowled to summarise their kno			hts into current research topics.
Course	S (type, r	number of weekly contact hours	, language — if other than Ge	rman)	
S (4) Module	e taugh	t in: German or English			
		sessment (type, scope, langule for bonus)	uage — if other than German,	examination offered — if no	ot every semester, information on whether
Langua	ige of a	o minutes) ssessment: German and ffered: In the semester		offered and in the s	ubsequent semester
Allocat					
Additio	nal inf	ormation			
Worklo	ad				

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Module	e title			Abbreviation			
Study	Study Group Conformal Field Theory				11-AG-KFT-161-m01		
Module	e coord	linator		Module offered by			
chairpe	erson o	f examination committe	e	Faculty of Physics and Astronomy			
ECTS	Method of grading Only after succ		Only after succ. con	compl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate					
Conten	its						
	Introduction to current questions of conformal field theory as a preparation for a Master's thesis in this area. Summary of the required fundamental topics in a seminar presentation.						
lutand.	ntandad laavning autcomas						

Intended learning outcomes

The students have advanced knowledge of conformal field theory and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

S (4)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

		Abbreviation					
Study (Group Statistical Mechani	11-AG-STM-161-m01					
Module	coordinator		Module off	ered by			
chairpe	erson of examination com	mittee	Faculty of F	Physics and Astronomy			
ECTS	Method of grading	Only after succ.	compl. of modu	le(s)			
10	numerical grade						
Duratio	on Module level	Other prerequisi	tes				
1 seme	ster graduate						
Conten	ts						
	ction to current questions ary of the required fundar			on for a Master's thesis in this area.			
Intende	ed learning outcomes						
	dents have advanced kno They are able to summari			ave gained insights into current resea ion.			
Course	S (type, number of weekly contact	hours, language — if other than	n German)				
S (4) Module	e taught in: German or Eng	glish					
	d of assessment (type, scope screditable for bonus)	, language — if other than Germ	an, examination offe	red — if not every semester, information on wheth			
Langua	o to 120 minutes) ge of assessment: Germa		s is offered and	in the subsequent semester			
	ion of places	Ster in which the course	. 13 officied diffd	The subsequent semester			
Additional information							
Workload							
300 h							
Feaching cycle							
·cuciiii	-						

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's degree (1 major) Mathematical Physics (2020)

Module title					Abbreviation	
Study Group Quantum Field Theory					11-AG-QFT-161-m01	
Module	e coord	inator		Module offered by	I.	
chairpe	erson o	f examination committee	9	Faculty of Physics a	and Astronomy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ster	graduate				
Conten	its					
		o current questions of qu quired fundamental topi			Master's thesis in this area. Sum-	
Intend	ed lear	ning outcomes				
		have advanced knowled re able to summarise the			ed insights into current research	
Course	S (type, 1	number of weekly contact hours,	language — if other than Ger	rman)		
S (4) Module	e taugh	t in: German or English				
		sessment (type, scope, langu ole for bonus)	age — if other than German, o	examination offered — if no	ot every semester, information on whether	
Langua	age of a	o minutes) Issessment: German and Iffered: In the semester i		offered and in the si	ubsequent semester	
Allocat	ion of	places				
Additio	nal inf	ormation				
Worklo	ad					
300 h						
Teaching cycle						

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Modul	e title				Abbreviation
Study	Group F	Riemannian Geometry			11-AG-RGE-161-m01
Modul	e coord	inator		Module offered by	Į.
chairp	erson o	f examination committe	е	Faculty of Physics a	and Astronomy
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 seme	ester	graduate			
Conter	nts				
		o current questions of R ne required fundamenta			a Master's thesis in this area.
Intend	ed lear	ning outcomes			
		have advanced knowled re able to summarise th			ned insights into current research
Courses (type, number of weekly contact hours, language — if other than German)					
S (4) Modul	e taugh	t in: German or English			
Metho	d of acc	CACCMANT (tuno scono lange	uago if other than German	avamination offered if n	ot every semester, information on whether

module is creditable for bonus)
talk (60 to 120 minutes)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Modul	e title			Abbreviation	
Study	Group	Mathematical Physics	5		11-AG-MPH-161-m01
Modul	e coord	linator		Module offered by	
chairpe	erson o	of examination commi	ttee	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
10	nume	rical grade			
Duratio	on	Module level	Other prerequisites	;	
1 seme	ster	graduate			
Conten	its				
		-	f Mathematical Physics ntal topics in a seminar p		a Master's thesis in this area.
Intend	ed lear	ning outcomes			
			ledge of Mathematical P their knowledge in an o		ned insights into current research
Course	S (type, i	number of weekly contact ho	urs, language — if other than Ge	rman)	
S (4) Module taught in: German or English					
		sessment (type, scope, la ble for bonus)	nguage — if other than German,	examination offered — if no	ot every semester, information on whether
•		o minutes)	and/ar English		

7.55e55inent onered

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Mathematical Physics (2020)

Thesis

(50 ECTS credits)

Modul	Module title Abbreviation						
Profes	sional S	Specialization Mathemat	ical Physics		11-FS-MP-161-m01		
Modul	e coord	inator		Module offered by			
chairp	erson o	f examination committee		Faculty of Physics a	and Astronomy		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)			
10	(not)	successfully completed					
Durati	on	Module level	Other prerequisites	i			
1 seme	ester	graduate					
Conte	nts						
		o current questions of a s a. Summary of the require			a preparation for a Master's thentation.		
Intend	ed lear	ning outcomes					
vance	to the i		ter's thesis. They kno	ow the current state o	ical Physics with a special rele- of research in this area and are		
Course	es (type, r	number of weekly contact hours, l	anguage — if other than Gei	rman)			
Metho	d of ass		ge — if other than German,	examination offered — if no	ot every semester, information on whether		
		le for bonus)					
-		o minutes) ssessment: German and,	or English				
Alloca	tion of p	olaces					
Additio	onal inf	ormation					
Workle	oad						
300 h							
Teachi	Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Modul	Module appears in						
	Master's degree (1 major) Mathematical Physics (2016)						
	Master's degree (1 major) Mathematical Physics (2020)						
Maste	Master's degree (1 major) Mathematical Physics (2022)						

Modul	e title	,		Abbreviation					
Scientific Methods and Project Management Mathematical Physics 11-MP-MP-161-mo1									
Modul	e coord	inator		Module offered by					
chairp	erson o	f examination committee		Faculty of Physics and Astronomy					
ECTS	Meth	od of grading	Only after succ. con	pl. of module(s)					
10	(not)	successfully completed	-						
Duration		Module level	Other prerequisites						
1 semester		graduate	-						
Contents									
Introduction to the methods of scientific work, taking into account methods of project planning. Application to questions of Mathematical Physics. Writing of a scientific project plan for the planned Master's thesis.									
Intended learning outcomes									
The students have knowledge of scientific methods and methodological work, including project planning methods of a current subdiscipline of Mathematical Physics with special relevance to the intended topic of the Master's thesis. They are able to draft a project plan for the Master's thesis and to plan the required work. They are able to describe their projects in oral presentations.									
Courses (type, number of weekly contact hours, language — if other than German)									
R (6) Module taught in: German or English									
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether									
module is creditable for bonus)									
talk (60 to 120 minutes)									
Language of assessment: German and/or English Allocation of places									
Additio	onal inf	ormation							
Worklo	oad								
300 h									
Teaching cycle									
Referred to in LPO I (examination regulations for teaching-degree programmes)									
Module appears in									
Master's degree (1 major) Mathematical Physics (2016)									
	Master's degree (1 major) Mathematical Physics (2020)								
Master's degree (1 major) Mathematical Physics (2022)									

Modul	e title		Abbreviation					
Maste	r Thesis	Mathematical Physics			11-MA-MP-161-m01			
Modul	e coord	inator		Module offered by				
chairperson of examination committee				Faculty of Physics and Astronomy				
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)				
30	nume	rical grade						
Duration		Module level	Other prerequisites					
1 semester		graduate	The supervisor may make the successful completion of certain modules that are relevant for the respective topic a prerequisite for the assignment of the topic.					
Contents								
Mostly independent processing of a task in the field of Mathematical Physics, especially according to known procedures and scientific aspects; writing of the thesis.								
		ning outcomes						
The students are able to independently work on a task from Mathematical Physics, especially according to known methods and scientific aspects and to summarise their results in a final paper.								
Course	S (type, r	number of weekly contact hours, I	anguage — if other than Ger	man)				
No cou	irses as	signed to module						
		sessment (type, scope, langua ole for bonus)	${\sf ge-if}$ other than German, ${\sf or}$	examination offered — if no	ot every semester, information on whether			
Master's thesis (750 to 900 hours total) Registration and assignment of topic in consultation with supervisor. Language of assessment: German and/or English								
Allocat	tion of	places						
Additional information								
Time to	Time to complete: 6 months.							
Workload								
900 h								
Teaching cycle								
								
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)							

Master's degree (1 major) Mathematical Physics (2016) Master's degree (1 major) Mathematical Physics (2020) Master's degree (1 major) Mathematical Physics (2022)

Module appears in