Module Catalogue
for the Subject
Mathematical Physics
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2012
Responsible: Faculty of Physics and Astronomy
Responsible: Institute of Mathematics
Contents

The subject is divided into 5
Content and Objectives of the Programme 6
Abbreviations used, Conventions, Notes, In accordance with 7
Compulsory Courses 8
Analysis and Geometry of Classical Systems 9
Algebra and Dynamics of Quantum Systems 10
Professional Specialization Mathematical Physics 11
Scientific Methods and Project Management Mathematical Physics 12
Study Group Mathematical Physics 13
Compulsory Electives 15
Compulsory Electives Mathematics 16
Advanced Mathematics 17
Applied Analysis 18
Topics in Algebra 19
Differential Geometry 20
Complex Analysis 21
Geometric Structures 22
Giovanni-Prodi Lecture (Master) 23
Lie Theory 24
Numeric of large Systems of Equations 25
Basics of Optimization 26
Introduction to Control Theory 27
Stochastical Processes 28
Topology 29
Number Theory 30
Specialisation Mathematics 31
Selected Topics in Analysis 32
Algebraic Topology 33
Discrete mathematic 34
Dynamical Systems and Control 35
Groups and their Representations 36
Geometrical Mechanics 37
Aspects of Geometry 38
Giovanni-Prodi Lecture Selected Topics (Master) 39
Basics in Mathematics 40
Mathematical Continuum Mechanics 41
Mathematical Imaging 42
Selected Topics in Mathematical Physics 43
Modul Theory 44
Non-Linear Analysis 45
Numeric of Partial Differential Equations 46
Optimal Control 47
Quantum Control and Quantum Computing 48
Statistical Analysis 49
Networked Systems 50
Seminars Mathematics 51
Seminar in Applied Differential Geometry 52
Seminar in Algebra 53
Seminar in Dynamical Systems and Control 54
Seminar in Complex Analysis 55
Seminar in Geometry and Topology 56
Giovanni-Prodi Seminar (Master) 57
Interdisciplinary Seminar 58
Seminar in Numerical Mathematics and Applied Analysis 59
Seminar in Mathematics in the Sciences 60
Seminar in Optimization 61

Learning by Teaching Mathematics 62
Learning by teaching Mathematics 1 63

Compulsory Electives Physics 64

Solid State Physics 65
Theoretical Solid State Physics 66
Theoretical Solid State Physics 2 67
Theory of Superconduction 68
Renormalization Group Methods in Field Theory 69
Renormalization Theory 70
Many Body Quantum Theory 71
Relativistic Effects in Mesoscopic Systems 73
Electron Electron Interaction 74
Field Theory in Solid State Physics 75

Astro Physics and Particle Physics 76
Quantum Mechanics II 77
Theory of Relativity 79
General Theory of Relativity 80
Special Theory of Relativity 81
Group Theory 82
Relativistical Quantumfield Theory 83
Quantum Field Theory II 84
Particle Physics (Standard Model) 85
Theoretical Elementary Particle Physics 86
Supersymmetry I and II 87
Theoretical Astrophysics 88
Modern Astrophysics 89
Cosmology 90
Introduction to Plasmaphysics 91
Plasma-Astrophysics 92
Computational Astrophysics 93
Concepts of Theoretical Astroparticle physics 94
Quantum Loop Gravity 95

Complex Systems, Quantumcontrol and Biophysics 96
Physics of Complex Systems 97
Quantum Information and Quantum Computing 98

Oberseminar 99
Advanced Seminar Mathematical Physics 100

Compulsory Electives Workshops and Current Topics 101
Study Group Modern Differential Geometry 102
Study Group Symplectic and Poisson Geometry 103
Study Group Operator Algebras and Representation Theory 104
Study Group Hopf Algebras 105
Study Group Conformal Field Theory 106
Study Group Statistical Mechanics 107
Study Group Quantum Field Theory 108
Study Group Riemannian Geometry 109
Study Group Mathematical Physics 110
Study Group Algebra 111
Study Group Discrete Mathematics 112
Study Group Dynamical Systems and Control 113
Study Group Complex Analysis 114
<table>
<thead>
<tr>
<th>Study Group Geometry and Topology</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Measure and Integral</td>
<td>116</td>
</tr>
<tr>
<td>Study Group Numerical Mathematics and Applied Analysis</td>
<td>117</td>
</tr>
<tr>
<td>Study Group Robotic, Optimization and Control Theory</td>
<td>118</td>
</tr>
<tr>
<td>Study Group Mathematics in the Sciences</td>
<td>119</td>
</tr>
<tr>
<td>Study Group Number Theory</td>
<td>120</td>
</tr>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>121</td>
</tr>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>122</td>
</tr>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>123</td>
</tr>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>124</td>
</tr>
</tbody>
</table>

Thesis

<table>
<thead>
<tr>
<th>Master Thesis Mathematical Physics</th>
<th>125</th>
</tr>
</thead>
</table>
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>Compulsory Electives Mathematics</td>
<td>8-32</td>
<td>16</td>
</tr>
<tr>
<td>Advanced Mathematics</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Specialisation Mathematics</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Seminars Mathematics</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Learning by Teaching Mathematics</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Compulsory Electives Physics</td>
<td>8-32</td>
<td>64</td>
</tr>
<tr>
<td>Solid State Physics</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Astro Physics and Particle Physics</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Complex Systems, Quantumcontrol and Biophysics</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Oberseminar</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Compulsory Electives Workshops and Current Topics</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Thesis</td>
<td>30</td>
<td>125</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

The Master programme Mathematical Physics is offered jointly by the Department of Mathematics and Computer Science and the Department of Physics and Astronomy.

The Master programme in Mathematical Physics is intended to provide the students with the following qualifications:

- capacity of abstraction,
- rigour in analytic reasoning,
- excellent capacity to realize the structure of complex interrelations,
- sound qualification in applying methods of Mathematics and Theoretical Physics to specific problems,
- insight into the intrinsic mathematical interdependence of different fields in Mathematics, Physics and Mathematical Physics as well as into interdisciplinary relations,
- specialisation in one field of mathematical physics during a one-year research project (so-called master project); the research project includes acquisition of the necessary specialized state-of-the-art knowledge and practical skills needed for independent research leading to the master thesis,
- high stamina in dealing with difficult problems,
- high capacity in problem solving,
- ability to carry out independent scientific work on a high level in research and implementation of mathematical physics,
- ability to cooperate responsibly within an interdisciplinary team of mathematicians, physicists and natural scientists,
- insight into and overview over current research in at least one field of contemporary mathematical physics,
- qualification for meeting the standards of a Ph.D. programme in Mathematics, Physics or Mathematical Physics (if applicable).

For the Master thesis the student works independently on a topic in Mathematical Physics and solves a problem within a limited time frame, following scientific criteria and applying established methods or modifying them if necessary.

The Masters exam ascertains that the candidate has a good overview in the field of Mathematical Physics and possesses the ability to use the corresponding scientific methods independently. The degree Master of Science in Mathematical Physics constitutes a further professional and scientific qualification.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

12-Jul-2012 (2012-115)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses
(50 ECTS credits)
Module Catalogue for the Subject
Mathematical Physics
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis and Geometry of Classical Systems</td>
<td>10-M=MP1-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Modern analytic methods (such as partial differential equations) and geometric methods (such as differential geometry) for the description of classical physics. Examples include movements of deformable bodies as reaction to outer load (deformation of elastic bodies, flow of a fluid, stream of a gas). Additional examples include geometric mechanics and symplectic geometry, classical field theory and classical gauge theory, general relativity theory.

Intended learning outcomes

The student gains insight into modern methods in mathematics, which are applied in classical physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra and Dynamics of Quantum Systems</td>
<td>10-M=MP2-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Modern algebraic methods for dynamics of quantum systems, e. g. operator algebras with applications in algebraic quantum field theory, spectral theory, symmetries and representation theory.

Intended learning outcomes
The student gains insight into modern methods in mathematics, which are applied in quantum physics. He/She masters advanced techniques in this field and is able to apply them to complex problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Specialization Mathematical Physics</td>
<td>11-FS-MP-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee Mathematische Physik (Mathematical Physics)</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

ECTS Method of grading Only after succ. compl. of module(s)
--- --- ---
10 numerical grade --

Duration Module level Other prerequisites
--- --- ---
1 semester graduate Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to current questions of a subdiscipline of Mathematical Physics with special relevance to the planned topic of the Master's thesis. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of a current subdiscipline of Mathematical Physics with a special relevance to the intended topic of the Master's thesis. They know the current state of research in this area and are able to summarise their knowledge in an oral presentation.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk with discussion (approx. 30 to 45 minutes)
Language of assessment: German, English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Methods and Project Management</td>
<td>11-MP-MP-122-m01</td>
</tr>
<tr>
<td>Mathematical Physics</td>
<td></td>
</tr>
</tbody>
</table>

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to the methods of scientific work, taking into account methods of project planning. Application to questions of Mathematical Physics. Writing of a scientific project plan for the planned Master’s thesis.

Intended learning outcomes

The students have knowledge of scientific methods and methodological work, including project planning methods of a current subdiscipline of Mathematical Physics with special relevance to the intended topic of the Master’s thesis. They are able to draft a project plan for the Master’s thesis and to plan the required work. They are able to describe their projects in oral presentations.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Talk with discussion (approx. 30 to 45 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Study title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Mathematical Physics</td>
<td>11-MP-AG-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinate</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee Mathematische Physik (Mathematical Physics)</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to current questions of Mathematical Physics as a preparation for a Master’s thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes

The students have advanced knowledge of the subdiscipline of Mathematical Physics and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses (type, number of weekly contact hours, language — if other than German)

Mathematics Courses:
Arbeitsgemeinschaft Algebra (Study Group Algebra): V (2 weekly contact hours) + S (2 weekly contact hours), German or English, once a year
Arbeitsgemeinschaft Diskrete Mathematik (Study Group Discrete Mathematics): V (2 weekly contact hours) + S (2 weekly contact hours), German or English, available as necessary
Arbeitsgemeinschaft Dynamische Systeme und Regelung (Study Group Dynamical Systems and Control): V (2 weekly contact hours) + S (2 weekly contact hours), German or English, available as necessary
Arbeitsgemeinschaft Funktionentheorie (Study Group Complex Analysis): V (2 weekly contact hours) + S (2 weekly contact hours), German or English, available as necessary
Arbeitsgemeinschaft Geometrie und Topologie (Study Group Geometry and Topology): V (2 weekly contact hours) + S (2 weekly contact hours), German or English, available as necessary
Arbeitsgemeinschaft Mathematische Physik (Study Group Mathematical Physics): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Operatoralgebren und Darstellungstheorie (Study Group Operator Algebras and Representation Theory): S (no set number of weekly contact hours, mentoring during study group sessions), German or English

Physics courses:
Arbeitsgemeinschaft Hopf-Algebren (Study Group Hopf Algebras): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Konforme Feldtheorie (Study Group Conformal Field Theory): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Moderne Differentialgeometrie (Study Group Modern Differential Geometry): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Mathematische Physik (Study Group Mathematical Physics): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Operatoralgebren und Darstellungstheorie (Study Group Operator Algebras and Representation Theory): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Quantenfeldtheorie (Study Group Quantum Field Theory): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Riemannsche Geometrie (Study Group Riemannian Geometry): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Symplektische und Poisson-Geometrie (Study Group Symplectic and Poisson Geometry): S (no set number of weekly contact hours, mentoring during study group sessions), German or English
Arbeitsgemeinschaft Statistische Mechanik (Study Group Statistical Mechanics): S (no set number of weekly contact hours, mentoring during study group sessions), German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Mathematics Courses:
This module will be assessed by one or two of the following methods (to be selected by the lecturer at the beginning of the course):
• Topics covered in one lecture with seminar that is assigned to this module: presentation (60 to 180 minutes), written elaboration (approx. 5 to 30 pages), written examination (approx. 60 to 120 minutes), oral examination of one candidate each (approx. 15 to 20 minutes) or oral examination in groups of 2 candidates (approx. 20 to 30 minutes).
Language of assessment: German or English.
Assessment will be offered in the semester in which the respective course is offered and in the subsequent semester; the courses will be available as necessary or every four semesters.
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. The lecturer may require that participants have previous knowledge and/or skills in certain areas and/or meet certain prerequisites (e.g. preparation of a written outline of their talk) to qualify for admission to assessment. Students will be informed about the details at the beginning of the course. Registration for the seminar will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment, the lecturer will put their registration for assessment into effect at the end of the course. If the lecturer selects two methods of assessment, the grades achieved in the two assessments will be equally weighted in the calculation of the module grade.

Physics courses:
This module will be assessed by a talk on the topics covered in the seminar and a discussion (approx. 30 to 45 minutes total).
Language of assessment German or English
Students must register for assessment online (details to be announced).

To pass this module, students must pass the assessment for the course they attended.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Compulsory Electives

(40 ECTS credits)
Compulsory Electives Mathematics
(8-32 ECTS credits)
Advanced Mathematics

(ECTS credits)
Module title	**Abbreviation**
Applied Analysis | 10-M=AAAN-102-m01

Module coordinator | **Module offered by**
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

Duration | **Module level** | **Other prerequisites**
1 semester | graduate | Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The student is acquainted with the fundamental notions, methods and results of higher analysis. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and questions in physics and other natural and engineering sciences.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics in Algebra</td>
<td>10-M=AALG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Contemporary topics in algebra, for example coding theory, elliptic curves, algebraic combinatorics or computer algebra.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in a contemporary field of algebra, and is able to apply these skills to complex questions.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Geometry</td>
<td>10-M=ADGM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e. g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Central and advanced results in differential geometry, in particular about differentiable and Riemannian manifolds.

Intended learning outcomes
The student is acquainted with concepts and methods for differentiable manifolds or Riemannian manifolds, is able to apply these methods and knows about the interaction of local and global methods in differential geometry.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title: Complex Analysis
Abbreviation: 10-M=AFTH-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: numerical grade --
Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
In-depth study of mapping properties of analytic functions and their generalisations with modern analytic and geometric methods. Structural properties of families of holomorphic and meromorphic functions. Special functions (e.g. elliptic functions).

Intended learning outcomes
The student is acquainted with the fundamental notions, methods and results of higher complex analysis, in particular the (geometric) mapping properties of holomorphic functions. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Geometric Structures
Abbreviation: 10-M=AGMS-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Tits buildings, generalised polygons or related geometric structures, automorphisms, BN pairs in groups, Moufang conditions, classification results.

Intended learning outcomes:
The student is acquainted with the fundamental notions, methods and results concerning a type of geometric structure. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni-Prodi Lecture (Master)</td>
<td>10-M=AGPC-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e. g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: English, German if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Title

Lie Theory

Abbreviation

10-M=ALTH-102-m01

Module Coordinator

Dean of Studies Mathematik (Mathematics)

Module Offered by

Institute of Mathematics

ECTS

10

Method of Grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module Level

Graduate

Other Prerequisites

Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Linear Lie groups and their Lie algebras, exponential function, structure and classification of Lie algebras, classic examples, applications, e.g. in physics and control theory.

Intended Learning Outcomes

The student is acquainted with the fundamental results, theorems and methods in Lie theory. He/She is able to apply these to common problems, and knows about the interactions of group theory, analysis, topology and linear algebra.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric of large Systems of Equations</td>
<td>10-M=ANGG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Discretisation of elliptic differential equations, classical iteration methods, preconditioners, multigrid methods.

Intended learning outcomes

The student is acquainted with the most important methods for solving large systems of equations, and knows the most efficient way to solve a given system of equations.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Basics of Optimization | 10-M=AOPT-102-m01

Module coordinator	Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of at least a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Fundamental methods and techniques in continuous optimization, unrestricted optimization, conditions for optimality, restricted optimization, examples and applications in natural and engineering sciences as well as economics.

Intended learning outcomes
The student knows the fundamental methods of continuous optimization, can judge their strengths and weaknesses and can decide which method is the most suitable in applications.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Control Theory</td>
<td>10-M-ARTh-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to mathematical systems theory: stability, controllability and observability, state feedback and stability, basics in optimal control.

Intended learning outcomes
The student is acquainted with the fundamental notions and methods of control theory. He/She is able to establish a connection between these results and broader theories, and learns about the interactions of geometry and other fields of mathematics.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Stochastical Processes | 10-M-ASTP-102-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Markov chains, queues, stochastic processes in C[0,1], Brownian motion, Donsker’s theorem, projective limits.

Intended learning outcomes
The student is acquainted with the fundamental notions and methods of stochastical processes and can apply them to practical problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>10-M=ATOP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Set-theoretic topology, topological invariants (e.g. fundamental group, connection), construction of topological spaces, covering spaces.

Intended learning outcomes

The student is acquainted with the fundamental results, theorems and methods in topology and is able to apply these to common problems.

Courses

| (type, number of weekly contact hours, language — if other than German) |
| V + Ü (no information on SWS (weekly contact hours) and course language available) |

Method of assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Number Theory
Abbreviation: 10-M-AZTH-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Number-theoretic functions and their associated Dirichlet series resp. Euler products, their analytic theory with applications to prime number distribution and diophantine equations; discussion of the Riemann hypothesis, overview of the development of modern number theory.

Intended learning outcomes
The student is acquainted with the fundamental methods of analytic number theory, can deal with algebraic structures in number theory and knows methods for the solution of diophantine equations. He/She has insight into modern developments in number theory.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Specialisation Mathematics
(ECTS credits)
Module title	Abbreviation
Selected Topics in Analysis | 10-M=VANA-122-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
In-depth discussion of a specialised topic in analysis taking into account recent developments and interrelations with other mathematical concepts.

Intended learning outcomes
The student is acquainted with advanced results in a selected topic in analysis, and is able to apply these to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total) Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Algebraic Topology

Abbreviation
10-M=VATP-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Homology, homotopy invariance, exact sequences, cohomology, application to the topology of Euclidean spaces.

Intended learning outcomes
The student is acquainted with advanced results in algebraic topology.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Mathematic</td>
<td>10-M=VDIM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Advanced methods and results in a selected field of discrete mathematics (e.g. coding theory, cryptography, graph theory or combinatorics)

Intended learning outcomes

The student is acquainted with advanced results in a selected topic in discrete mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Dynamical Systems and Control

Abbreviation
10-M=VDSR-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Basics in dynamical systems and control: non-linear dynamics, stability theory, ergodic theory, Hamiltonian systems; selected advanced topics, e.g. networked dynamical systems, non-linear stability, dynamics with restricted communication, entropy of dynamical systems.

Intended learning outcomes
The student masters the mathematical methods in the theory of dynamic systems and control, and is able to analyse their quality.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Groups and their Representations

Abbreviation
10-M\=VGDS-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SBoMe at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Finite permutation groups and character theory of finite groups, interrelations and special techniques such as the S-rings of Schur.

Intended learning outcomes
The student masters advanced algebraic concepts and methods. He/She gains the ability to work on contemporary research questions in group theory and representation theory and can apply his/her skills to complex problems.

Courses

- **V + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title: Geometrical Mechanics

Abbreviation: 10-M=VGEM-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 10

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites:

Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Introduction to geometric mechanics: basic notions of differential geometry and symplectic geometry, Euler-Lagrange equations, Hamiltonian mechanics on manifolds.

Intended learning outcomes

The student is able to apply fundamental methods and concepts of geometry to problems in mechanics, and knows about the interrelation of these fields.

Courses:

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I:

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects of Geometry</td>
<td>10-M=V GEO-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

In-depth discussion of a special type of geometry taking into account recent developments and interrelations with other mathematical structures, e.g. topological geometries, diagram geometries.

Intended learning outcomes

The student is acquainted with advanced results in a selected field of geometry and can apply his/her skills to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

| V + Ü (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giovanni-Prodi Lecture Selected Topics (Master)</td>
<td>10-M=VGPC-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to a specialised topic in mathematics by an international expert.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of a contemporary research topic in mathematics. He/She is able to establish a connection between his/her acquired skills and other branches of mathematics and applications in other subjects.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (approx. 90 to 120 minutes; usually chosen), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups of 2 candidates (approx. 30 minutes total)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: English, German if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics in Mathematics</td>
<td>10-M=VGRM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Discussion of problems and questions on the foundation of mathematics, applying methods of set theory, logic and philosophy.

Intended learning outcomes

The student is acquainted with the foundational methods in mathematics and logic.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Mathematical Continuum Mechanics
Abbreviation | 10-M=VKOM-122-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Partial differential equations and/or variational methods in the context of continuum mechanics.

Intended learning outcomes

The student masters the mathematical methods in mathematical continuum mechanics and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Imaging</td>
<td>10-M=VMBV-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Mathematical fundamentals of image processing and computer vision such as elementary projective geometry, camera models and camera calibration, rigid and non-rigid registration, reconstruction of 3D objects from camera pictures; algorithms; module might also include an introduction to geometric methods and tomography.

Intended learning outcomes

The student masters the mathematical methods in the theory of image processing and knows about their main fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Selected Topics in Mathematical Physics

Abbreviation: 10-M=VMPH-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)

Module offered by: Institute of Mathematics

ECTS: 5

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Selected topics in mathematical physics (e.g. differential equations of mathematical physics, probability theory, hydrodynamics, hyperbolic conservation equations, mathematical materials science, quantum mechanics).

Intended learning outcomes

The student is acquainted with advanced results in a field in mathematical physics. He/She knows mathematical methods in mathematical physics and can apply them to solve problems in physics.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Theory</td>
<td>10-M=VMTH-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Basics in module theory: modules and module spaces, canonical decomposition and representations, simple, semi-simple and complex modules, module trees and their defibrations, distortion theorems, reduction theorems.

Intended learning outcomes

The student masters mathematical methods in module theory and is able to analyse their quality.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Non-Linear Analysis | 10-M=VNAN-102-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Methods in nonlinear analysis (e.g. topological methods, monotony and variational methods) with applications.

Intended learning outcomes
The student is acquainted with the concepts of non-linear analysis, can compare them and assess their applicability on practical problems.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric of Partial Differential Equations</td>
<td>10-M=VNPE-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e. g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Types of partial differential equations, qualitative properties, finite differences, finite elements, error estimates (numerical methods for elliptic, parabolic and hyperbolic partial differential equations; finite elements method, discontinuous Gelerkin finite elements method, finite differences and finite volume methods).

Intended learning outcomes

The student is acquainted with advanced methods for discretising partial differential equations.

Courses

| V + Ü (no information on SWS (weekly contact hours) and course language available) |

Method of assessment

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (go to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Optimal Control
Abbreviation: 10-M=VOST-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Basics in optimal control of ordinary and partial differential equations, theory of optimal control, conditions for optimality, methods for numerical solution.

Intended learning outcomes
The student is acquainted with advanced methods in optimal control. He gains the ability to work on contemporary research questions in continuous optimization.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Quantum Control and Quantum Computing
Abbreviation: 10-M=VQKC-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Basics in dynamics of quantum-mechanical systems (e.g., density operators, observables, Schrödinger equation, Liouville-von-Neumann equation), bilinear control systems in quantum mechanics (e.g., finite-dimensional spin systems and/or infinite-dimensional Schrödinger equations with external control), applications (e.g., in quantum computing or magnetic resonance spectroscopy).

Intended learning outcomes:
The student is acquainted with advanced methods in quantum-mechanical control systems. He gains the ability to work on contemporary research questions in and applications of control systems in quantum mechanics.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Statistical Analysis

Module title: Statistical Analysis
Abbreviation: 10-M=VSTA-102-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

- Contingency tables, categorical regression, one-factorial variance analysis, two-factorial variance analysis, discriminant function analysis, cluster analysis, principal component analysis, factor analysis.

Intended learning outcomes

The student is acquainted with the fundamental methods in statistical analysis and can apply them to practical problems.

Courses

- **V + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (90 to 120 minutes), b) oral examination of one candidate each (approx. 20 minutes), c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment

German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Networked Systems

Abbreviation
10-M=VVSY-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g., successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Contemporary topics in networked linear and non-linear dynamical systems (homogenous and non-homogenous systems); analysis of control-theoretical aspects (controllability, accessibility, etc.).

Intended learning outcomes
The student is acquainted with advanced methods in the field of networked systems. He gains the ability to work on contemporary research questions in networked systems.

Courses
(type, number of weekly contact hours, language — if other than German)

\[V + Ü (no information on SWS (weekly contact hours) and course language available) \]

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one of the following methods of assessment: a) written examination (60 to 90 minutes), b) oral examination of one candidate each (approx. 15 minutes), c) oral examination in groups (groups of 2, approx. 20 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Seminars Mathematics

(ECTS credits)
Seminar in Applied Differential Geometry

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Applied Differential Geometry</td>
<td>10-M=SADG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

A modern topic in applied differential geometry.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes</td>
</tr>
<tr>
<td>Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters</td>
</tr>
<tr>
<td>Language of assessment: German, English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Seminar in Algebra

Abbreviation
10-M=SALG-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
A modern topic in algebra.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
(No information on SWS (weekly contact hours) and course language available)

Method of assessment
(No information on SWS (weekly contact hours) and course language available)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Seminar in Dynamical Systems and Control

<table>
<thead>
<tr>
<th>module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar in Dynamical Systems and Control</td>
<td>10-M=SDSR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

A modern topic in dynamical systems and control.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Seminar in Complex Analysis | 10-M=SFTH-102-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents

A modern topic in complex analysis.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Seminar in Geometry and Topology
Abbreviation: 10-M=SGMT-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents:
A modern topic in geometry and topology.

Intended learning outcomes:
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses:
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes
Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.
Language of assessment: German, English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title: Giovanni-Prodi Seminar (Master)
Abbreviation: 10-M=SGPC-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
A modern topic in the research expertise of the current holder of the Giovanni Prodi Chair.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes
Language of assessment: English, German if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject

Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Seminar</td>
<td>10-M=SIDZ-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

A modern topic in mathematics with interdisciplinary aspects.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours, Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Seminar in Numerical Mathematics and Applied Analysis

Abbreviation
10-M=SNMA-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
A modern topic in numerical mathematics or applied analysis.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Seminar in Mathematics in the Sciences | 10-M=SMNW-122-m01

Module coordinator	Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

A modern topic in mathematics in the sciences.

Intended learning outcomes

The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Seminar in Optimization

Abbreviation
10-M=SOPT-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
A modern topic in optimisation.

Intended learning outcomes
The student is able to elaborate a contemporary research topic. This includes comprehending and structuring of the topic and the available literature, preparing a talk and the ability to participate in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 90 minutes

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Learning by Teaching Mathematics
(ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning by teaching Mathematics 1</td>
<td>10-M=ELT1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Supervising a tutorial or study group in the Bachelor’s programme under guidance of the respective lecturer.

Intended learning outcomes

The student gains his/her first experience in teaching university mathematics. He/She knows basic didactical methods and can apply them in practical situations.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical examination (approx. 90 minutes)
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives Physics
(8-32 ECTS credits)
Solid State Physics

(ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Solid State Physics</td>
<td>11-TFK-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
- Principles of Theoretical Solid-State Physics
- Fermi liquid theory
- Electron-electron interaction
- Variational methods
- Magnetism
- Superconductivity

Intended learning outcomes
The students have basic knowledge of the theoretical description of solid-state phenomena. They know the corresponding mathematical or theoretical methods and are able to apply them to basic problems of solid-state theory and to understand the connections to experimental results. The individual students have elaborated on an advanced topic of solid-state theory and have discussed this topic in a seminar presentation.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Solid State Physics 2</td>
<td>11-TFK2-111-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

a) metal-insulators and topological insulators
b) transport phenomena
c) magnetic impurities in metals. Kondo effect and heavy fermions
d) electron-phonon interaction
e) one-dimensional conductors

Intended learning outcomes
The students have advanced knowledge of the theoretical description of solid-state phenomena. They know the mathematical or theoretical methods and are able to apply them to problems of solid-state theory and understand the connections to experimental results. The individual students have elaborated on an advanced topic of solid-state theory and have discussed this topic in a seminar presentation.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + R (no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

- a) written examination (approx. 90 minutes) or
- b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or
- c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or
- d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Superconduction</td>
<td>11-TSL-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have basic knowledge of the theoretical models for the description of superconductivity. They know the properties and application areas of these models and are able to apply calculation methods to simple problems.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language (if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R + V</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renormalization Group Methods in Field Theory</td>
<td>11-RMFT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
<tr>
<td>and Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Renormalisation group methods for non-linear partial differential equations, field theoretical contexts and non-analysed behaviour of cryogenic temperatures.

Intended learning outcomes

The students gain an overview of non-linearities in partial differential equations and their solution on the basis of the renormalisation group method.

Courses

- **V + R** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Renormalization Theory

Abbreviation
11-RNT-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have gained an overview of renormalisation group methods for non-linear partial differential equations. They know important examples and corresponding solving methods and are able to apply them to specific tasks.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Many Body Quantum Theory

Abbreviation: 11-QVTP-092-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: Only after succ. compl. of module(s)

Numerical grade: --
Duration: 1 semester
Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
This will usually be a course on quantum many particle physics approached by the perturbative methods using Green’s functions.
An outline could be:

1. Single-particle Green’s function
2. Review of second quantization
3. Diagrammatic method using many particle Green’s functions at temperature T=0
4. Diagrammatic method for finite T
5. Landau theory of Fermi liquids
6. Superconductivity
7. One-dimensional systems and bosonization

Intended learning outcomes
The students have mastered the principles of quantum field theory in many-particle systems. They are able to apply the acquired methods to current problems of Theoretical Solid-State Physics.

Courses
(type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	**Abbreviation**
Relativistic Effects in Mesoscopic Systems | 11-RMS-092-m01

Module coordinator	**Module offered by**
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Relativistic effects in mesoscopic systems. - Spin-orbit coupling. - Dirac equation. - Quantum Hall effect. - Topological insulators. - Majorana fermions

Intended learning outcomes
The students have mastered the mathematical methods for the description of relativistic quantum systems, especially in the field of mesoscopic physics. They are able to apply their knowledge to simple systems.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

Module title
Electron Electron Interaction

Abbreviation
11-EEW-102-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
1. Introduction, systems, Landau theory
2. Interacting electron gas
3. One-dimensional electron gas (without interaction)
4. Introduction to boson phase fields and interactions
5. Calculation of correlation functions
6. Method of functional integrals
7. Renormalisation groups
8. Consideration of spin
9. One-dimensional lattice models
10. Impurities in Luttinger liquids

Intended learning outcomes
The students know the principles of the theoretical description of electron-electron interactions in one dimension.

Courses
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Theory in Solid State Physics</td>
<td>11-FTFK-112-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

This will usually be a course on quantum many particle physics using the method of functional integration. An outline could be:

1. Coherent states and review of second quantization
2. The functional integral formalism at finite temperatures T
3. Perturbation theory at $T=0$
4. Order parameters and broken symmetry
5. Green's functions
6. The Landau theory of Fermi liquids
7. Further developments

Intended learning outcomes

The students have mastered the principles of quantum field theory in many-particle systems. They are able to apply the acquired methods to current problems of Theoretical Solid-State Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Astro Physics and Particle Physics

(ECTS credits)
Module title	Abbreviation
Quantum Mechanics II | 11-QM2-092-m01

Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

"Quantum mechanics II" constitutes the central theoretical course of the international Master's program in Physics. It builds upon basics which are acquired in the lecture "Quantum mechanics I" of the Bachelor's degree. While the specific emphasis can be adjusted individually, the core topics that are supposed to be covered should include:

1. Second quantisation: Fermions and bosons
2. Band structures of particles in a crystal
3. Angular momentum, symmetry operators, Lie Algebras
4. Scattering theory: Potential scattering, partial wave expansion
5. Relativistic quantum mechanics: Klein-Gordon equation, Dirac equation, Lorentz group, fine structure splitting of atomic spectra
6. Quantum entanglement
7. Canonical formalism

Intended learning outcomes

The students acquire in-depth knowledge of advanced quantum mechanics and have a thorough understanding of the mathematical and theoretical concepts of the listed topics. They are able to describe or model problems of modern theoretical Quantum Physics mathematically, to solve problems analytically, to use approximation methods and to interpret the results physically. The course is pivotal to subsequent theory courses in Astrophysics, High-Energy Physics and Condensed Matter/Solid-State Physics. The course is mandatory for all Master's students.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Theory of Relativity</td>
<td>11-RTT-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Mathematical foundations of the theory of relativity; differential forms; brief summary of special relativity; elements of differential geometry; electrodynamics as an example of a relativistic gauge theory; field equations of general relativity; stellar models; introduction to cosmology; Hamiltonian formulation

Intended learning outcomes

The students are familiar with the basic physical and mathematical concepts of general relativity. They have a mathematical understanding of the formulation of general relativity on the basis of differential forms. They are able to apply the acquired knowledge to problems of Astrophysics and cosmology.

Courses (type, number of weekly contact hours, language — if other than German)

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Theory of Relativity</td>
<td>11-ART-112-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Mathematical foundations of the theory of relativity; differential forms; brief summary of special relativity; elements of differential geometry; electrodynamics as an example of a relativistic gauge theory; field equations of general relativity; stellar models; introduction to cosmology; Hamiltonian formulation

Intended learning outcomes

The students are familiar with the basic physical and mathematical concepts of general relativity. They have a mathematical understanding of the formulation of general relativity on the basis of differential forms. They are able to apply the acquired knowledge to problems of Astrophysics and cosmology.

Courses

(V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Special Theory of Relativity

Abbreviation: 11-SRT-112-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by: Faculty of Physics and Astronomy

ECTS: 4

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Mathematical principles; differential forms; special relativity; Minkowski space; Lorentz transformation, Hamiltonian equation of motion; relativistic free particle

Intended learning outcomes:
The students are familiar with the physical concepts and mathematical principles of special relativity. They are familiar with modern mathematical formulation of special relativity. They are able to apply the acquired knowledge to problems of special relativity.

Courses:
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module Catalogue for the Subject
Mathematical Physics

Module: Group Theory

Abbreviation: 11-GRT-092-m01

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Theory</td>
<td>11-GRT-092-m01</td>
</tr>
</tbody>
</table>

Module Coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students know the basics of group theory, especially of Lie groups. They are able to identify problems of group theory and to solve them by using the acquired methods. They are able to apply group theory to the formulation and processing of physical problems.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Relativistic Quantumfield Theory | 11-RQFT-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

<table>
<thead>
<tr>
<th>type</th>
<th>scope</th>
<th>language</th>
<th>examination offered</th>
<th>information on whether module is creditable for bonus</th>
</tr>
</thead>
</table>
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Quantum Field Theory II | 11-QFT2-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have advanced knowledge of the methods and concepts of quantum field theory. They have mastered the principles, especially of renormalisation and gauge theories. They are able to formulate and solve simple problems of quantum field theory by using the acquired calculation methods.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Particle Physics (Standard Model) | 11-TPS-092-m01

Module coordinator	Module offered by
Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to the theory of electroweak interaction and spontaneous symmetry breaking. Experiments on the standard model and determination of model parameters.

Intended learning outcomes
The students know the theoretical fundamental laws of the standard model of Particle Physics and the key experiments that have established and confirmed the standard model. They are able to interpret experimental or theoretical results in the framework of the standard model and know its validity and limits.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Theoretical Elementary Particle Physics | 11-TEP-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS | Method of grading | Only after succ. compl. of module(s)
8 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students are familiar with the mathematical methods of Elementary Particle Physics. They understand the structure of the standard model based on symmetry principles and experimental observations. They know calculation methods for the processing of simple problems and processes of Elementary Particle Physics. Furthermore, they know the tests and limits of the standard model and the basics of extended theories.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersymmetry I and II</td>
<td>11-SUS-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have knowledge of the mathematical and physical principles of supersymmetry and supersymmetric models. They understand the theory's formalism and recognise its connections to other models as well as its importance for phenomenology of elementary particles.

Courses

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Astrophysics</td>
<td>11-AST-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Theoretical Astrophysics, models for the description of complex observation results, numeric simulations.

Intended learning outcomes

The students have basic knowledge of the methods of Theoretical Astrophysics. They are able to design complex observations and to test the models with the help of simulations.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Modern Astrophysics | 11-MAS-111-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to a field of modern Astrophysics, e.g. extra-galactic jets.

Intended learning outcomes
The students know the current state of research on the modern topic of Astrophysics. They know the physical values and are to plan and conduct observations in this area. This includes the ability to conceptualise a specific observational project and e.g. to apply for observation time at large telescopes.

Courses (type, number of weekly contact hours, language — if other than German)
V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmology</td>
<td>11-AKM-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Expanding space-time, Friedmannian cosmology, basics of general relativity, the early universe, inflation, dark matter, primordial nucleosynthesis, cosmic microwave background, structure formation, supercluster, galaxies and galaxy clusters, intergalactic medium, cosmological parameters

Intended learning outcomes

The students have basic knowledge of cosmology. They know the theoretical methods of cosmology and are able to relate them to observations. They have gained insights into current research topics and are able to work on scientific questions.

Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Introduction to Plasmaphysics | 11-EPP-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, Magnetohydrodynamics, Transport equations for energetic particles, Properties of magnetic turbulence, Propagation of solar particles within the solar wind, Particle acceleration via shock waves and via interaction with plasma turbulence, Particle acceleration and transport in galaxies and other astrophysical objects, Cosmic radiation.

Intended learning outcomes

The students know the principles of Plasma Physics, especially the description of transport phenomena in plasma. They are able to solve basic problems of Plasma Physics and to apply this knowledge to Astrophysics.

Courses

| type, number of weekly contact hours, language — if other than German |
| V + R (no information on SWS (weekly contact hours) and course language available) |

Method of assessment

| type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus |
| a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes) |
| Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009. |
| Language of assessment: German, English |

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

| Plasma-Astrophysics | 11-APL-092-m01 |

Module coordinator

| Managing Director of the Institute of Theoretical Physics and Astrophysics |

Module offered by

| Faculty of Physics and Astronomy |

ECTS

| 6 |

Method of grading

| numerical grade |

Only after succ. compl. of module(s)

| -- |

Duration

| 1 semester |

Module level

| graduate |

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes

The students have basic knowledge of Plasma Astrophysics. They have mastered the theoretical description of motion and acceleration of charged particles in space, they know corresponding measuring methods and can compare and evaluate theory and experiments.

Courses

| R + V (no information on SWS (weekly contact hours) and course language available) |

Method of assessment

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Astrophysics</td>
<td>11-NMA-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute</td>
<td>Faculty of Physics and</td>
</tr>
<tr>
<td>of Theoretical Physics and</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Astrophysics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students are able to solve typical problems and equations of Astrophysics and other subdisciplines of Physics with the help of numerical simulations. They are especially capable of choosing adequate strategies to approach such problems and of validating the results.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts of Theoretical Astroparticle physics</td>
<td>11-ATT-111-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Concepts of Theoretical Astro-Particle Physics, e.g. Dark matter, cosmic radiation, neutrinos, baryogenesis, cosmic accelerators, dark energy, inflation.

Intended learning outcomes

The students have basic knowledge of the concepts of Theoretical Astroparticle Physics. They are able to describe phenomena of Astroparticle Physics on the basis of methods of Theoretical Physics and to find solution approaches for problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Loop Gravity</td>
<td>11-QSG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Aside from string theory, quantum loop gravity (QLG) is one of the most important approaches to a quantum mechanical description of gravity. General relativity is formulated in Hamiltonian formalism and the elemental variables are identified with the corresponding Poisson brackets. These variables are quantised in the typical manner on discretised graphs, so-called spin networks. In doing so, e.g. a quantisation of elemental volumes appears. Therefore, QLG belongs to the speculative theories which paint a picture of the constitution of space and time.

Intended learning outcomes

The students know the principles of quantum loop gravity. They have acquired advanced knowledge of a selected topic and have proved their knowledge in a seminar presentation.

Courses

(V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Complex Systems, Quantumcontrol and Biophysics
(ECTS credits)
Module title	Abbreviation
Physics of Complex Systems | 11-PKS-092-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
6 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
1. Theory of critical phenomena in thermal equilibrium
2. Introduction into the physics out of equilibrium
3. Entropy production and fluctuations
4. Phase transitions away from equilibrium
5. Universality
6. Spin glasses
7. Theory of neural networks

Intended learning outcomes
The students have specific and advanced knowledge in the field of physics of complex systems. They know the methods of Statistical Physics, Computational Physics and non-linear dynamics, which are used to describe such systems. They are able to work on current research problems in this area.

Courses (type, number of weekly contact hours, language — if other than German)
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Information and Quantum Computing</td>
<td>11-QIC-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

The first part introduces the theoretical concepts of quantum information and quantum computers. It discusses the main quantum algorithms. The second part discusses experimental possibilities for the realisation of entangled states. One of the main topics is the production, controlling and manipulation of coherent two-electron spin states. The third part covers the description and explanation of decoherence of quantum mechanical states.

Intended learning outcomes

The students have an advanced understanding of quantum theory and basic knowledge of quantum calculation. They are able to solve simple problems of quantum information theory.

Courses

(R + V (no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(type, number of weekly contact hours, language — if other than German)</td>
</tr>
<tr>
<td>a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)</td>
<td></td>
</tr>
</tbody>
</table>

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009. Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Oberseminar
(ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Seminar Mathematical Physics</td>
<td>11-OSM-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Directors of the Institute of Applied Physics and the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Seminar on current issues of Mathematical Physics.

Intended learning outcomes

The students have advanced knowledge of a current specialist field of Mathematical Physics. They are able to extract knowledge from professional publications and to summarise this knowledge and present it to a professional audience.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives Workshops and Current Topics

(ECTS credits)
Module title
Study Group Modern Differential Geometry

Abbreviation
11-AG-MMDG-122-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to current questions of Modern Differential Geometry as a preparation for a Master’s thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of modern differential geometry and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk with discussion (approx. 30 to 45 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Symplectic and Poisson Geometry</td>
<td>11-AG-SPG-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to current questions of symplectic geometry and Poisson geometry as a preparation for a Master's thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes

The students have advanced knowledge of Symplectic and Poisson geometry and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

talk with discussion (approx. 30 to 45 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Study Group Operator Algebras and Representation Theory

Module title: Study Group Operator Algebras and Representation Theory
Abbreviation: 11-AG-OAD-122-m01

Module coordinator: chairperson of examination committee
Module offered by: Faculty of Physics and Astronomy

ECTS: 10
Method of grading: numerical grade
Duration: 1 semester
Module level: graduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to current questions of operator algebra and representation theory as a preparation for a Master’s thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of operator algebra and representation theory and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk with discussion (approx. 30 to 45 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Hopf Algebras</td>
<td>11-AG-HAL-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Introduction to current questions of Hopf algebra as a preparation for a Master's thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of Hopf algebra and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk with discussion (approx. 30 to 45 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Study Group Conformal Field Theory

Abbreviation
11-AG-KFT-122-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to current questions of conformal field theory as a preparation for a Master’s thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of conformal field theory and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk with discussion (approx. 30 to 45 minutes)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Statistical Mechanics</td>
<td>11-AG-STM-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Introduction to current questions of statistical mechanics as a preparation for a Master's thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes

The students have advanced knowledge of statistical mechanics and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk with discussion (approx. 30 to 45 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Mathematical Physics
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Quantum Field Theory</td>
<td>11-AG-QFT-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

ECTS Method of grading
- **10** numerical grade: Only after succ. compl. of module(s)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Introduction to current questions of quantum field theory as a preparation for a Master's thesis in this research. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of quantum field theory and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
- **S** (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- talk with discussion (approx. 30 to 45 minutes)
 - Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.
 - Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
- (examination regulations for teaching-degree programmes)
Study Group Riemannian Geometry

Module title

Abbreviation

11-AG-RGE-122-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

ECTS

Method of grading

Only after succ. compl. of module(s)

10

numerical grade

--

Duration

Module level

Other prerequisites

1 semester

graduate

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Introduction to current questions of Riemannian geometry as a preparation for a Master's thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes

The students have advanced knowledge of Riemannian geometry and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk and discussion (approx. 30 to 45 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Study Group Mathematical Physics

Abbreviation
11-AG-MPH-122-m01

Module coordinator
chairperson of examination committee Mathematische Physik (Mathematical Physics)

Module offered by
Faculty of Physics and Astronomy

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Introduction to current questions of Mathematical Physics as a preparation for a Master’s thesis in this research area. Summary of the required fundamental topics in a seminar presentation.

Intended learning outcomes
The students have advanced knowledge of Mathematical Physics and have gained insights into current research topics. They are able to summarise their knowledge in an oral presentation.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
talk with discussion (approx. 30 to 45 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Algebra</td>
<td>10-M=GALG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in algebra (e.g. ring theory, commutative algebra, differential algebra, local fields, computer algebra, algebras, division rings, quadratic forms).

Intended learning outcomes

The student gains insight into contemporary research problems in algebra. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Discrete Mathematics</td>
<td>10-M=GDIM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in discrete mathematics.

Intended learning outcomes

The student gains insight into contemporary research problems in discrete mathematics. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses

| Type, number of weekly contact hours, language — if other than German |
| V + S (no information on SWS (weekly contact hours) and course language available) |

| Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus) |
| At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes) |

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Study Group Dynamical Systems and Control
Abbreviation: 10-M=GDSR-102-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
Selected modern topics in dynamical systems and control theory.

Intended learning outcomes
The student gains insight into contemporary research problems in dynamical systems and control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)
V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Study Group Complex Analysis

Abbreviation
10-M=GFTH-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
Selected modern topics in complex analysis (e.g. in approximation theory, potential theory, complex dynamics, geometric complex analysis, value distribution theory).

Intended learning outcomes
The student gains insight into contemporary research problems in complex analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)
V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Study Group Geometry and Topology

Abbreviation
10-M=GGMT-102-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
10

Method of grading
Only after succ. compl. of module(s)

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
Selected modern topics in geometry and topology.

Intended learning outcomes
The student gains insight into contemporary research problems in geometry and topology. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses
(V + S) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Measure and Integral</td>
<td>10-M=GMUI-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
10 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents
Aspects of measure and integration theory: sigma algebras and Borel sets, volume and measure, measurable functions and Lebesgue integrals, selected applications, e.g. product measures (with Fubini’s theorem and the transformation rule), L^p spaces and absolute continuity, measures on topological spaces.

Intended learning outcomes
The student gains insight into contemporary research problems in measure and integration theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses
(V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Numerical Mathematics and Applied Analysis</td>
<td>10-M=GNMA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

Selected topics in numerical mathematics, applied analysis or scientific computing.

Intended learning outcomes

The student gains insight into a contemporary research problems in numerical mathematics or applied analysis. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Robotic, Optimization and Control Theory</td>
<td>10-M=GROK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.</td>
</tr>
</tbody>
</table>

Contents

Selected modern topics in robotics, optimisation and control theory.

Intended learning outcomes

The student gains insight into contemporary research problems in robotics, optimization and control theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses

(V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Study Group Mathematics in the Sciences

Abbreviation

10-M=GMNW-122-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

10

Method of grading

Numerical grade

Only after succ. compl. of module(s)

-

Duration

1 semester

Module level

Graduate

Other prerequisites

Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents

A modern topic in mathematics in the sciences.

Intended learning outcomes

The student gains insight into contemporary research problems in mathematics in the sciences. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses

(V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups of 2 candidates (approx. 30 minutes)

Assessment offered: Assessment offered in the semester in which the course is offered and in the subsequent semester, course offered on demand or every four semesters.

Language of assessment: German, English

Allocation of places

-

Additional information

-

Referred to in LPO I

(examination regulations for teaching-degree programmes)

-

Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

Master's with 1 major Mathematical Physics (2012)

JMU Würzburg • generated 17-Sep-2019 • exam. reg. data record Master (120 ECTS) Mathematische Physik - 2012

page 119 / 126
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group Number Theory</td>
<td>10-M=GZTH-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Registration for the seminar must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Some seminars or workshops might only be open for students with previous knowledge and/or skills in certain areas. Where applicable, details will be specified in the class schedule.

Contents

Selected modern topics in number theory (e.g. algebraic number theory, modular forms, diophantine analysis).

Intended learning outcomes

The student gains insight into contemporary research problems in number theory. He/She masters advanced techniques in this field and can apply them to complex problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

At the beginning of the course, the lecturer will choose one or two of the following methods of assessment: a) seminar presentation (approx. 60 to 120 minutes), b) written elaboration of contents equivalent to a seminar presentation of approx. 60 to 120 minutes, c) written examination (approx. 90 to 120 minutes), d) oral examination of one candidate each (approx. 20 minutes), e) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematical Physics

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>11-EXMP5-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee Mathematische Physik (Mathematical Physics)</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Mathematical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

(R no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)</td>
<td>Language of assessment: German, English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Topics in Mathematical Physics</td>
<td>11-EXMP6-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee Mathematische Physik (Mathematical Physics)</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Approval by examination committee required.</td>
</tr>
</tbody>
</table>

Contents

Current topics of Mathematical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master’s programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

(type, number of weekly contact hours, language — if other than German)

R (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Current Topics in Mathematical Physics
Abbreviation: 11-EXMP7-122-m01

Module coordinator: Chairperson of examination committee Mathematische Physik (Mathematical Physics)
Module offered by: Faculty of Physics and Astronomy

ECTS: 7
Method of grading: Only after success completion of module(s)

Duration: 1 semester
Module level: Graduate
Other prerequisites: Approval by examination committee required.

Contents:
Current topics of Mathematical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended learning outcomes:
The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses:
R (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)
Language of assessment: German, English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module Title

Current Topics in Mathematical Physics

Abbreviation

11-EXMP8-122-m01

Module Coordinator

Chairperson of examination committee Mathematische Physik (Mathematical Physics)

Module Offered by

Faculty of Physics and Astronomy

ECTS

8

Method of Grading

Only after succ. compl. of module(s)

Duration

1 semester

Module Level

Graduate

Other Prerequisites

Approval by examination committee required.

Contents

Current topics of Mathematical Physics. Accredited academic achievements, e.g. in case of change of university or study abroad.

Intended Learning Outcomes

The students have advanced competencies corresponding to the requirements of a module of Mathematical Physics of the Master's programme. They have knowledge of a current subdiscipline of Mathematical Physics and understand the methods necessary to acquire this knowledge. They are able to classify the subject-specific contexts and know the application areas.

Courses

R (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

a) written examination (approx. 120 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate) or c) project report (8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Language of assessment: German, English

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Thesis
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis Mathematical Physics</td>
<td>11-MA-MP-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairperson of examination committee Mathematische Physik (Mathematical Physics)</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Mostly independent processing of a task in the field of Mathematical Physics, especially according to known procedures and scientific aspects; writing of the thesis.

Intended learning outcomes

The students are able to independently work on a task from Mathematical Physics, especially according to known methods and scientific aspects and to summarise their results in a final paper.

Courses

(type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment

(type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

written thesis

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--