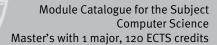


Module Catalogue for the Subject

Computer Science

as a Master's with 1 major with the degree "Master of Science" (120 ECTS credits)


Examination regulations version: 2023 Responsible: Faculty of Mathematics and Computer Science Responsible: Institute of Computer Science

The subject is divided into	5
Learning Outcomes	6
Abbreviations used, Conventions, Notes, In accordance with	7
Compulsory Courses	8
Seminar 1 - Current Topics in Computer Science	9
Seminar 2 - Current Topics in Computer Science	10
Practical Course - Current Topics in Computer Science	11
Compulsory Electives	
• •	12
General Compulsory Electives	13
3D Point Cloud Processing	14
Operating Systems	15
Data Science	16
Databases 2	18
Interactive Computer Graphics	19
Computational Complexity	20
Cryptography and Data Security	21
Advanced Programming	22
Security of Software Systems	24
Computer Architecture	26
Control Principles of Modern Communication Systems	27
Introduction to IT Security	28
Knowledge-based Systems	29
Project - Current Topics in Computer Science	30
Autonomous Mobile Systems	32
Algorithms for Geographic Information Systems	33
Computational Geometry	34
Approximation Algorithms	36
Automata Theory	38
Avionics Systems	40
Multimodal User Interfaces	42
Computability Theory	44
Bioinformatics	46
Deductive Databases	48
Logic Programming	50
E-Learning	52
Programming with neural nets	53
Machine Learning for Natural Language Processing	54
Information Retrieval	56 - 8
3D User Interfaces	58
Computational Complexity II	60
Artificial Intelligence 1	61
Artificial Intelligence 2 Performance Evaluation of Distributed Systems	63 65
Performance Evaluation of Distributed Systems Mathematical Logic	65 67
Medical Informatics	67 60
Systems Benchmarking	69
Professional Project Management	71
Robotics 1	73
Robotics 2	75 77
Discrete Event Simulation	77 79
Energy Informatics 1	79 81
Real-Time Interactive Systems	82
Software Architecture	84
	54

Spacecraft System Analysis	86
Machine Learning (for User Interfaces)	87
Visualization of Graphs	89
Selected Topics in Games Engineering	91
Selected Topics in Algorithms	92
Selected Topics in Theory	93
Selected Topics in Software Engineering	94
Selected Topics in IT Security	95
Selected Topics in Internet Technologies	96
Selected Topics in Intelligent Systems	98
Selected Topics in Embedded Systems	99
NLP and Text Mining	100
Selected Topics in Aerospace Engineering	102
Selected Topics in HCI	104
Selected Topics in Data Science	105
Selected Topics in Autonomous Mobile Systems	106
Selected Topics in Computer Science Telecommunication Systems	107 108
Remote Sensing	
Quantum Communications	110 111
Deep Reinforcement Learning for Optimal Control	113
Computer Vision	115
Modeling and Simulation of Smart Energy Systems	116
Sustainable Mobility	117
Machine Learning for Networks 1	118
Machine Learning for Networks 2	120
Statistical Network Analysis	122
Image Processing and Computational Photography	124
Reinforcement Learning and Computational Decision Making	126
Music Information Retrieval	127
Operations Research	128
Selected Topics in Computer Science and Sustainability	130
Multilingual NLP	131
Embedded Systems	133
Virtual Prototyping of Embedded Systems	134
Projects and Tarining	136
Space Systems Design	137
Design of Planetary Bases and Orbital Stations	138
Practical course - Space Technology	139
Aircraft Construction	140
Flight Simulator	141
Game Research Lab - Theory	142
Game Research Lab - Architectures	144
Game Research Lab - Design	146
Game Research Lab - Applications	148
Practical Course - Algorithms and Theory 1	150
Practical Course - Algorithms and Theory 2	151
Practical Course - Software Engineering 1	152
Practical Course - Software Engineering 2	153
Practical Course - Internet Technology 1	154
Practical Course - Internet Technology 2	155
Practical Course - Intelligent Systems 1	156
Practical Course - Intelligent Systems 2	157
Practical Course - Embedded Systems 1	158
Practical Course - Human Computer Interaction 1	159
Practical Course - Human Computer Interaction 1	160 161
Practical Course - Human Computer Interaction 2	161

Practical Course - Ethical Hacking Lab / Software	162
Practical Course - Ethical Hacking Lab / Networks	163
Practical Course - Data Science 1	164
Practical Course - Data Science 2	165
Practical Course - Computer Science and Sustainability 1	166
Practical Course - Computer Science and Sustainability 2	167
Telecommunication Systems Lab	168
Radar Signal Processing	170
Practical Computer Vision	172
Image Processing and Computational Photography Lab	173
Thesis	174
Concluding Colloquium Computer Science	175
Master's Thesis Computer Science	176

The subject is divided into

section / sub-section	ECTS credits	starting page
Compulsory Courses	20	8
Compulsory Electives	70	12
General Compulsory Electives	50	13
Projects and Tarining		136
Thesis	30	174

Learning Outcomes

German contents and learning outcome available but not translated yet.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen können erweiterte mathematische, technische, theoretische und praktische Konzepte der Informatik anwenden.
- Die Absolventinnen und Absolventen können tiefergehende Kenntnisse in mindestens einem Teilgebiet abrufen.
- Die Absolventinnen und Absolventen k\u00f6nnen fortgeschrittene hard- und/oder softwaregetriebene Experimente durchf\u00fchren, analysieren, auswerten und die erhaltenen Ergebnisse darstellen.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, fortgeschrittene Zusammenhänge zu strukturieren
- Die Absolventinnen und Absolventen sind in der Lage, fortgeschrittene Methoden der Informatik auf konkrete praktische oder theoretische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen setzen die erlernten theoretischen und praktischen Methoden in geschlossener Form ein, um zu zeigen, dass sie zur Anwendung der Konzepte wissenschaftlichen Arbeitens befähigt sind.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegen\u00fcber darstellen und vertreten.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegen\u00fcber darstellen und vertreten.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem Team zusammenzuarbeiten und auftretende Konflikte zu lösen (Teamfähigkeit).
- Die Absolventinnen und Absolventen können ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in international zusammengesetzten Teams anwenden.
- Die Absolventinnen und Absolventen kennen wichtige Anforderungen und Arbeitsweisen im gewerblichen Umfeld sowie in Forschung und Entwicklung.
- Die Absolventinnen und Absolventen sind befähigt, Probleme zu analysieren und zu lösen und sich in weniger vertraute Themenkomplexe einzuarbeiten.

Persönlichkeitsentwicklung

- Eigenverantwortlichkeit, Selbstständigkeit, Zeitmanagement, Teamfähigkeit
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.

Befähigung zum gesellschaftlichen Engagement

- Die Absolventinnen und Absolventen können Entwicklungen im Informationssektor kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt in Ansätzen erfassen (Technikfolgenabschätzung).
- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, kultureller etc. Fragestellungen erweitert und können in Ansätzen begründet Position beziehen.
- Die Absolventinnen und Absolventen entwickeln die Bereitschaft und Fähigkeit, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

22-Mar-2023 (2023-27)

13-Dec-2023 (2023-109)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

Compulsory Courses

(20 ECTS credits)

Module title				Abbreviation	
Seminar 1 - Current Topics in Computer Science			r Science		10-I=SEM3-232-m01
Module coordinator				Module offered by	
Dean of Studies Informatik (Computer Science)		Science)	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisite		i			
1 semester graduate					
C 1	Combando				

Independent review of a current topic in computer science based on literature and, where applicable, software with written and oral presentation.

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

S (2)

Module taught in: German and English

The course is offered in parallel in both German and English.

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (10 to 15 pages) and presentation (30 to 45 minutes) with subsequent discussion on a topic from the field of computer science

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, KI, ES, LR, HCI, GE, SEC, IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Seminar 2 - Current Topics in Computer Science			ter Science		10-I=SEM4-232-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)		r Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites					
1 semester graduate					
<i>c</i> .					

Independent review of a current topic in computer science based on literature and, where applicable, software with written and oral presentation.

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

S (2)

Module taught in: German and English

The course is offered in parallel in both German and English.

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (10 to 15 pages) and presentation (30 to 45 minutes) with subsequent discussion on the topic of the seminar

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, KI, ES, LR, HCI, GE, SEC, IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				Abbreviation	
Practical Course - Current Topics in Computer Science					10-I=PRAK-232-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	(not)	successfully completed			
Duration Module level Other prerequisites					
1 semester graduate					
<i>c</i> .					

Completion of a practical task.

Intended learning outcomes

The practical allows participants to work on a problem in computer science in teams.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

P (6)

Module taught in: German and English

The course is offered in parallel in both German and English.

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (5 to 15 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, KI, ES, LR, HCI, GE, SEC, IN

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Compulsory Electives

(70 ECTS credits)

General Compulsory Electives

(50 ECTS credits)

Module title			Abbreviation		
3D Point Cloud Processing					10-l=3D-232-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science XVII Institute of Computer Sci			mputer Science		
ECTS	Meth	od of grading	Only after succ.	compl. of module(s	s)
5 numerical grade					
Duration Module level Other prerequisite		ites			
1 semester graduate					
Conto	atc	•			

Laser scanning, Kinect and camera models, basic data structures (lists, arrays, oc-trees), calculating normals, kd trees, registration, features, segmentation, tracking, applications for airborne mapping, applications to mobile mapping.

Intended learning outcomes

Students understand the fundamental principles of all aspects of 3D point cloud processing and are able to communicate with engineers / surveyors / CV people / etc. Students are able to solve problems of modern sensor data processing and have experienced that real application scenarios are challenging in terms of computational requirements, in terms of memory requirements and in terms of implementation issues.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI,L-R,HCI,GE

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Module title					Abbreviation
Operating Systems					10-l=BS-232-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisite		<u> </u>			
1 seme	1 semester graduate				

Introduction to computer systems, historical development of operating systems, architectural approaches, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system security, operating system virtualisation.

Intended learning outcomes

Students have the knowledge and practical skills to build and use the essential components of operating systems.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,ES,GE,SEC

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module title				Abbreviation	
Data Science					10-l=DM-232-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science X			e X	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prere		Other prerequisites			
1 semester graduate					
Conten	Contents				

Foundations in the following areas: definition of data mining and knowledge, discovery in databases, process model, relationship to data warehouse and OLAP data preprocessing, data visualisation, unsupervised learning methods (cluster- and association methods), supervised learning (e. g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, further learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT, KI, HCI, GE, SEC, IN

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title			Abbreviation		
Databases 2					10-I=DB2-212-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisit		Other prerequisites			
1 semester graduate					

Data warehouses and data mining; web databases; introduction to Datalog.

Intended learning outcomes

The students have advanced knowledge about relational databases, XML and data mining.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, KI, HCI

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Module title			Abbreviation			
Interactive Computer Graphics					10-l=ICG-232-m01	
Module coordinator				Module	Module offered by	
holder	of the	Chair of Computer So	cience IX Institute of Computer Science			
ECTS	Meth	od of grading	Only after succ.	compl. of mo	dule(s)	
5	nume	rical grade				
Duration Module level Other prerequisites						
1 semester graduate						
C 1						

Computer graphics studies methods for digitally synthesising and manipulating visual content. This course specifically concentrates on interactive graphics with an additional focus on 3D graphics as a requirement for many contemporary as well as for novel human-computer interfaces and computer games. The course will cover topics about light and images, lighting models, data representations, mathematical formulations of movements, projection as well as texturing methods. Theoretical aspects of the steps involved in ray-tracing and the raster pipeline will be complemented by algorithmical approaches for interactive image syntheses using computer systems. Accompanying software solutions will utilise modern graphics packages and languages like OpenGL, GLSL and/ or DirectX.

Intended learning outcomes

At the end of the course, the students will have a broad understanding of the underlying theoretical models of computer graphics. They will be able to implement a prominent variety of these models, to build their own interactive graphics applications and to choose the right software tool for this task.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI.

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title					Abbreviation	
Computational Complexity					10-l=KT-232-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer So	cience I	Institute of Comput	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					

Properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchy, complexity of probabilistic algorithms.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchies, complexity of probabilistic algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,KI,ES,GE,IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation	
Cryptography and Data Security					10-l=KD-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science I			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					

Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,IT,KI,GE,SEC,IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation
Advanced Programming					10-l=APR-212-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Scie	nce II	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
Contents					

With the knowledge of basic programming, taught in introductory lectures, it is possible to realize simpler programs. If more complex problems are to be tackled, suboptimal results like long, incomprehensible functions and code duplicates occur. In this lecture, further knowledge is to be conveyed on how to give programs and code a sensible structure. Also, further topics in the areas of software security and parallel programming are discussed.

Intended learning outcomes

Students learn advanced programming paradigms. Different patterns are then implemented in multiple languages and their efficiency measured using standard metrics. In addition, parallel processing concepts are introduced culminating in the use of GPU architectures for extremely quick processing.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,KI,LR, HCI, ES,GE,SEC

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) eXtended Artificial Intelligence (xtAI) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Security of Software Systems					10-l=SSS-232-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Contor	Contonts				

The lecture provides an overview of common software vulnerabilities, state-of-the-art attack techniques on modern computer systems, as well as the measures implemented to protect against these attacks. In the course, the following topics are discussed:

- x86-64 instruction set architecture and assembly language
- Runtime attacks (code injection, code reuse, defenses)
- Web security
- · Blockchains and smart contracts
- Side-channel attacks
- Hardware security

Intended learning outcomes

Students gain a deep understanding of software security, from hardware and low-level attacks to modern concepts such as blockchains. The lecture prepares for research in the area of security and privacy, while the exercises allow students to gain hands-on experience with attacks and analysis of systems from an attacker's perspective.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,KI,LR, HCI, ES, SEC,IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 24 / 176
	data record Master (120 ECTS) Informatik - 2023	

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Module title					Abbreviation
Computer Architecture					10-I=RAK-232-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Camban	Contonto				

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, ES, LR, GE.

Workload

150 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Module title				Abbreviation		
Contro	l Princi	ples of Modern Comn	nunication Systems		10-I=SKS-232-m01	
Module coordinator				Module offered by	Module offered by	
holder	of the	Chair of Computer Sci	ence III	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisit	Other prerequisites		
1 seme	1 semester undergraduate					
Conto	Contents					

- Control mechanisms of computer networks and modern communication systems
- Control mechanisms implemented and deployed on the Internet such as the Internet of Things (IoT)
- Overlays and decentralized mechanisms
- Broadband access networks
- Mobile and wireless communication systems
- Introduction of analytical performance evaluation

Intended learning outcomes

The students possess advanced knowledge regarding the structure, architecture and control mechanisms of modern communication systems and are able to apply it to evaluate systems and protocols within simulations and measurement setups. In addition, students have gathered insights of the basic methodologies in the field of analytical performance evaluation.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT, ES, LR

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Module title				,	Abbreviation	
Introduction to IT Security					10-l=SEC-232-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Sci	ience II	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Conter	Contents					

The course provides a broad sweep through concepts and technologies related to IT security:

- Theoretical aspects: information-theoretic security, computational security, introduction to cryptography (historical and modern ciphers, hash functions, pseudo-random generators, message authentication codes, public key cryptography)
- Network security: protocol security, security of TCP/IP, public key infrastructure, user authentication
- Software security: Software vulnerabilities, common programming errors and exploitation techniques, reverse engineering and obfuscation, malware and anti-malware
- Platform security: access control models, security policies, operating system security, virtualization, security mechanisms with support in hardware

Intended learning outcomes

Students will be introduced to the main concepts and abstractions of IT security. They learn how to model threats and analyze security of a system critically from the attacker view point. After visiting the lecture students are going to understand the purpose and function of several security technologies, as well as their limitations. The exercises provide some hands-on experience of security flows in software.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SEC

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 28 / 176
	data record Master (120 ECTS) Informatik - 2023	

Module title					Abbreviation	
Knowledge-based Systems					10-I=WBS-232-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Scie	nce VI	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, KI, HCI, GE

Workload

150 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation
Project - Current Topics in Computer Science					10-I=PRJAK-212-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Contor	Contents				

Completion of a project task (in Teams).

Intended learning outcomes

The project allows participants to work on a problem in computer science in teams.

Courses (type, number of weekly contact hours, language — if other than German)

P (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered (Each project is offered one time only. The project will not be repeated; there will not be another project with the same topic. Assessment can, therefore, only be offered for the project offered in the respective semester)

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, KI, ES, LR, HCI, GE

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

__

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Management (2022)

Master's degree (1 major) Media Entertainment (2022)

Master's degree (1 major) Psychology of digital media (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Autonomous Mobile Systems					10-LURI=AMS-232-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Scienc	ce XVII	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
C 1	Contonto				

(1) What are mobile robots? (2) Sensors (3) Sensor data processing (4) Locomotion and kinematics (5) Localization (6) Localization in maps (7) Mapping and SLAM (8) Navigation (9) Sensor data interpretation (10) Robot control architectures

Intended learning outcomes

Students know Bayesian concepts for sensor data processing for a mobile system and are able to apply the concepts to mobile robots. Derived concepts like Kalman filter, Particle filter, POMDPs, etc. are understood. They have learned the steps to build and program mobile systems.

Courses (type, number of weekly contact hours, language - if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT, KI, ES, LR, GE

Workload

300 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Modul	e title	,			Abbreviation	
Algori	thms fo	r Geographic Inform	nation Systems		10-I=AGIS-232-m01	
Module coordinator				Module offer	Module offered by	
holder of the Chair of Computer Science I			cience I	Institute of C	Institute of Computer Science	
ECTS	Meth	hod of grading Only after succ. cor		compl. of module	e(s)	
5	nume	rical grade				
Duration Module level		Module level	Other prerequis	Other prerequisites		
1 semester		graduate				
Contents						

Algorithmic foundations of geographic information systems and their application in selected problems of acquisition, processing, analysis and presentation of spatial information. Processes of discrete and continuous optimisation. Applications such as the creation of digital height models, working with GPS trajectories, tasks of spatial planning as well as cartographic generalisation.

Intended learning outcomes

The students are able to formalise algorithmic problems in the field of geographic information systems as well as to select and improve suitable approaches to solving these problems.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,KI,HCI,LR,IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title				Abbreviation		
Comp	utationa	al Geometry			10-l=AG-232-m01		
Modul	e coord	linator		Module offered by			
holder of the Chair of Computer Science I				Institute of Compu	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)			
5	nume	rical grade					
Duration		Module level	Other prerequisit	Other prerequisites			
1 semester		graduate					
Combanda							

In many areas of computer science -- for example robotics, computer graphics, virtual reality and geographic information systems -- it is necessary to store, analyse, create or manipulate spatial data. This class is about the algorithmic aspects of these tasks: We will acquire techniques that are needed to plan and analyse geometric algorithms and data structures. Every technique will be illustrated with a problem in the practical areas listed above.

Intended learning outcomes

The students are able to decide which algorithms or data structures are suitable for the solution of a given geometric problem. The students are able to analyse new problems and to come up with their own efficient solutions based on the concepts and techniques acquired in the lecture.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,HCI,GE,IN

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title				Abbreviation		
Approx	ximatio	n Algorithms			10-l=APA-161-m01		
Modul	e coord	linator		Module offered by			
holder of the Chair of Computer Science I				Institute of Computer Science			
ECTS	Meth	thod of grading Only after succ. co		mpl. of module(s)			
5	nume	nerical grade					
Duration Module level		Other prerequisites					
1 semester		graduate					
Contants							

The task of finding the optimal solution for a given problem is omnipresent in computer science. Unfortunately, there are many problems without an efficient algorithm for an optimal solution. As a result, in practice, methods are used which do not always give the optimal solution but always give good solutions. This lecture will discuss drafting and analysing techniques for algorithms which have a proven approximation quality. With the help of practical optimisation problems, the lecture will introduce students to important drafting techniques such as greedy, local search, scaling as well as methods based on linear programming.

Intended learning outcomes

The students are able to analyse easy approximation methods in terms of their quality. They understand fundamental drafting techniques such as greedy, local search and scaling as well as methods based on linear programming and are able to apply these to new problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,GE

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2018)

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title				Abbreviation
Automata Theory					10-I=AUT-212-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequis			Other prerequisites		
1 semester graduate					
Contor	Contents				

Finite automata, regular languages, star-free languages, natural equivalence relations, predicate logic with words, language acceptance through monoids, syntactic monoid, predicate logical and algebraic characterisation of regular languages and star-free languages, two-way automata.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of finite automata, regular languages, star-free languages, natural equivalence relations, predicate logic with words, language acceptance through monoids, syntactic monoid, predicate logical and algebraic characterisation of regular and star-free languages, two-way automata.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, IT, ES, HCI, GE

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Master's degree (1 major) Computer Science (2025)

Module title					Abbreviation
Avionics Systems					10-I=AVS-161-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Science	e VIII	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Othe			Other prerequisites		
1 semester graduate					
Conton	Contonte				

The course *Avionik-Systeme* (*Avionics Systems*) offers an overview of software, hardware, sensors, actuators and communication of airplanes and satellites: 1. software module and the software structure 2. control 3. ground control, 4. sensors and actuators, 5. sensor fusion, 6. reliability

Intended learning outcomes

At the end of the course, the students should be familiar with typical structures of avionic systems for satellites and airplanes. They should be able to design these. They should be able to program simple controls.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES.LR

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Multim	nodal U	ser Interfaces			10-HCI=MMUI-161-m01	
Modul	e coord	linator		Module offered by		
holder	holder of the Chair of Computer Science IX			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other prerequ			S		
1 semester graduate						
Conter	Contents					

The multimodal interaction paradigm simultaneously uses various modalities like speech, gesture, touch, or gaze, to communicate with computers and machines. Basically, multimodal interaction includes the analysis as well as the synthesis of multimodal utterances. This course concentrates on the analysis, i.e., the input processing. Input processing has the goal to derive meaning from signal to provide a computerized description and understanding of the input and to execute the desired interaction. In multimodal systems, this process is interleaved between various modalities and multiple interdependencies exist between simultaneous utterances necessary to take into account for a successful machine interpretation.

In this course, students will learn about the necessary steps involved in processing unimodal as well as multimodal input. The course will highlight typical stages in multimodal processing. Using speech processing as a primary example, they learn about:

- 1. A/D conversion
- 2. Segmentation
- 3. Syntactical analysis
- 4. Semantic analysis
- 5. Pragmatic analysis
- 6. Discourse analysis

A specific emphasize will be on stages like morphology and semantic analysis. Typical aspects of multimodal interdependencies, i.e., temporal and semantic interrelations are highlighted and consequences for an algorithmic processing are derived. Prominent multimodal integration (aka multimodal fusion) approaches are described, including transducers, state machines, and unification.

Intended learning outcomes

After the course, the students will be able to build their own multimodal interfaces. They will have a broad understanding of all the necessary steps involved and will know prominent algorithmic solutions for each of them. Student will learn about available tools for reoccurring tasks and their pros and cons.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation of project results (approx. 40 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI,GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Aerospace Computer Science (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Computability Theory					10-I=BER-212-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Science	ce I	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisite			Other prerequisites		
1 semester graduate					
_					

Gödel numbering, computable functions, decidable and countable sets, halting problem, m-reducibility, creative and productive sets, relative computability, Turing reduction, countable degrees, arithmetic hierarchy.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of Gödel numbers, countable functions, decidable and countable sets, halting problem, m-reducibility, creative and productive sets, relative computability, Turing reduction, countable degrees, arithmetic hierarchy.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,IT,KI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Bioinfo	ormatic	s			07-MS2BI-152-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Bioinformatics			Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duration Module level Other pre			Other prerequisites		
1 semester graduate					
_					

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e. g. net generation sequences, proteomics data), analysis of different functional RNAs (e. g. miRNAs, lncRNAs).

Intended learning outcomes

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (30 to 60 minutes, including multiple choice questions) or
- c) oral examination of one candidate each (30 to 60 minutes) or
- d) oral examination in groups of up to 3 candidates (30 to 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Biochemistry (2015)

Master's degree (1 major) Biology (2015)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Biosciences (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Biosciences (2017)

Master's degree (1 major) Biochemistry (2017)

Master's degree (1 major) Biosciences (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Biochemistry (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Biosciences (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

exchange program Biosciences (2022)

Master's degree (1 major) Biosciences (2023)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Biosciences (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Deductive Databases					10-I=DDB-212-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prered			Other prerequisites		
1 semester graduate					

Syntax and semantics of definite and normal logic programs; Model, proof, and fixpoint theory; Connection to relational databases; Evaluation methods for Datalog; Negation and stratification; Structural properties of logic programs: recursion, equivalence, transformation; Outlook on disjunctive logic programs.

Intended learning outcomes

The students have fundamental and practicable knowledge about Datalog (including negation).

They are able to compactly implement declarative programs in Datalog and to compare existing programs w.r.t. their equivalence and other properties.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT.SE.IT.KI

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title				Abbreviation
Logic F	Progran	nming			10-I=LP-212-m01
Module	e coord	inator		Module offered by	
holder	of the	Chair of Computer Scienc	ce VI	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequis			Other prerequisites		
1 semester graduate					
_					

Logic-relational programming paradigm, top-down evaluation with SLD(NF) resolution. Introduction to the logic programming language Prolog: recursion, predicate-oriented programming, backtracking, cut, side effects, aggregations. Connection to (deductive) databases. Comparison with Datalog, short introduction of advanced concepts like constraint logic programming.

Intended learning outcomes

The students have fundamental and practicable knowledge of logic programming. They are able to implement compact and declarative programs in Prolog, and to compare this approach to the traditional imperative programming paradigm.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,IT,KI

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) eXtended Artificial Intelligence (xtAI) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	Module title				Abbreviation	
E-Learning					10-l=EL-212-m01	
Module coordinator				Module o	ffered by	
holder	of the	Chair of Computer So	cience VI	Institute o	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ	. compl. of mod	lule(s)	
5	nume	rical grade				
Durati	Duration Module level Other prerequisit			sites		
1 semester graduate						
Conto	Contents					

Learning paradigms, learning system types, author systems, learning platforms, standards for learning systems, intelligent tutoring systems, student models, didactics, problem-oriented learning and case-based training systems, adaptive tutoring systems, computer-supported cooperative learning, evaluation of learning systems.

Intended learning outcomes

The students possess a theoretical and practical knowledge about eLearning and are able to assess possible applications.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, KI, HCI, GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation	
Programming with neural nets					10-I=PNN-212-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)		
5	nume	rical grade				
Duration Module level Other prered			Other prerequisites			
1 semester graduate						
_						

Overview over NN, implementation of important NN-architectures like FCN, CNN and LSTMs, practical example for NN-architectures, among others in the area of image and language processing.

Intended learning outcomes

Knowledge about possible applications and limitations of NN, for important architectures (eg. FCN, CNN, LSTM) and how they are implemented in NN-tools like Tensorflow/Keras, ability to program network structures from literature, to prepare data and solve concrete tasks for NN.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IT,KI,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Machi	ne Lear	ning for Natural Langu	age Processing		10-l=NLP-212-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Scie	ence X	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Other prerequisit			S		
1 semester graduate						
Contar	Contents					

The lecture conveys advanced knowledge about methods in computational text processing. To this end, it presents state of the art models and techniques in the area of machine learning, as well as their technical background, and their respective applications in Natural Language Processing. As one important building block of almost all modern NLP-models, different techniques for learning representations of words, so called Word Embeddings, are presented. Starting from this we cover, among others, models from the area of Deep Learning, like CNNs, RNNs and Sequence-to-Sequence architectures. The theoretical foundations of these models, like their training with Backpropagation, are also covered in depth. For all models presented in the lecture, we show their application to problems like sentiment analysis, text generation and machine translation in practice.

Intended learning outcomes

The participants have solid knowledge on problems and methods in the area of computational text processing and are able to identify and apply suitable methods for a specific task.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT.KI.HCI

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Master's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
Information Retrieval					10-l=IR-212-m01	
Module coordinator				Module offered	Module offered by	
holder	holder of the Chair of Computer Science XII			Institute of Con	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)	
5	nume	rical grade				
Durati	Duration Module level Other prerequisit			tes		
1 semester graduate						
Conto	Contents					

IR models (e. g. Boolean and vector space model, evaluation), processing of text (tokenising, text properties), data structures (e. g. inverted index), query elements (e. g. query operations, relevance feedback, query languages and paradigms, structured queries), search engine (e. g. architecture, crawling, interfaces, link analysis), methods to support IR (e. g. recommendation systems, text clustering and classification, information extraction).

Intended learning outcomes

The students possess theoretical and practical knowledge in the area of information retrieval and have acquired the technical know-how to create a search engine.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT,KI,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				_	Abbreviation	
3D User Interfaces					10-HCl=3DUI-161-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science IX			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level Other p			Other prerequisites			
1 semester graduate						

This module will give students the opportunity to learn about the specificities of 3D User Interfaces (3DUI) development using Virtual, Augmented or Mixed Reality technologies. The module content will be mainly dedicated to learn and practice the skills essential to the design and implementation of high-quality 3D interaction techniques. Design guidelines as well as classical and innovative 3D Interaction techniques will be studied. In addition, the course will address novel research themes such as 3D interaction for large displays and games; and integrating 3DUIs with mobile devices, robotics, and the environment. Students will be assessed through a group practical project (team work), which will consist of a program, a presentation, a technical report (2 ages) and a video. Previous years, the assignment replicated the IEEE 3DUI Contest 2011, where teams of students competed between each other to find the best solution (see results at https://www.youtube.com/watch?v=gYs-pBW7Agc and https://www.youtube.com/watch?v=gYs-pBW7Agc)

Intended learning outcomes

After the course, the students will gain a solid background on the theory and the methods to create your own 3D spatial interfaces. They will have a broad understanding of the particular difficulties of designing and developing spatial interfaces, as well as evaluating then. Students will also learn about traditional and novel 3D input/output devices (e.g., motion tracking system and Head-mounted Display).

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation of project results (approx. 30 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI,GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Computational Complexity II					10-l=KT2-212-m01	
Module coordinator				Module offered by		
holder of the Chair of Computer Science I			ce I	Institute of Computer Science		
ECTS	Method of grading Only after succ. co			npl. of module(s)		
5	numerical grade					
Duration Module level			Other prerequisites			
1 semester graduate						

Properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchy, complexity of probabilistic algorithms.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of properties of NP-complete sets, autoreducibility, interactive proof systems, polynomial time hierarchies, complexity of probabilistic algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, SE, IT, ES

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Artificial Intelligence 1					10-l=Kl1-212-m01	
Modul	e coord	inator		Module offered by		
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	ECTS Method of grading Only after succ. co			npl. of module(s)		
5 numerical grade						
Duration Module level			Other prerequisites			
1 semester graduate						
Camban	Contents					

Intelligent agents, uninformed and heuristic search, constraint problem solving, search with partial information, propositional and predicate logic and inference, knowledge representation.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence in the area of agents, search and logic and are able to assess possible applications.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,KI,HCI

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Module title					Abbreviation	
Artificial Intelligence 2					10-l=Kl2-212-m01	
Modul	e coord	inator		Module offered by		
holder	holder of the Chair of Computer Science VI			Institute of Computer Science		
ECTS	S Method of grading Only after succ. co			npl. of module(s)		
5	numerical grade					
Duration Module level			Other prerequisites			
1 semester graduate						

Planning, probabilistic closure and Bayesian networks, utility theory and decidability problems, learning from observations, knowledge while learning, neural networks and statistical learning methods, reinforcement learning, processing of natural language.

Intended learning outcomes

The students possess theoretical and practical knowledge about artificial intelligence in the area of probabilistic closure, learning and language processing and are able to assess possible applications.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,KI,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Module title				Abbreviation		
Perfor	mance l	Evaluation of Distributed	Systems		10-I=LVS-232-m01	
Modul	e coord	inator		Module offered by		
holder	holder of the Chair of Computer Science III			Institute of Computer Science		
ECTS	Method of grading Only after succ. co		Only after succ. con	npl. of module(s)		
5 numerical grade						
Duration Module level			Other prerequisites			
1 seme	1 semester graduate					
Contor	Contents					

The performance evaluation of distributed systems is illustrated and practically performed on a contemporary example, e.g., the Internet of Things (IoT). The following topics will be conveyed:

Traffic theoretic models, fundamental concepts of theory of probability, transformation techniques, stochastic processes, methods for performance analysis of technical systems, queuing and traffic theory, discrete-time and continuous Markov chains, analysis of Markov and non-Markov systems, practical examples for performance evaluation of computer systems and networks: service quality and other characteristics.

Intended learning outcomes

The students possess the methodic knowledge and the practical skills necessary to model technical systems by means of the theory of probability and mathematical statistics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,GE,IN

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Mathematical Logic					10-I=ML-212-m01	
Module	e coord	inator		Module offered by		
holder of the Chair of Computer Science I			ce I	Institute of Computer Science		
ECTS Method of grading Only after succ. cor			Only after succ. con	npl. of module(s)		
5	5 numerical grade					
Duration Module level			Other prerequisites			
1 semester graduate						
_						

Propositional logic, first-order predicate logic, proof and deduction, Gödel's completeness theorem, Tarski theorem, Gödel's incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of propositional logic, first-order predicate logic, proof and deduction, Gödel's completeness theorem, Tarski theorem, Gödel's incompleteness theorem, undecidability and nonaxiomatisability of elemental arithmetic.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,KI,ES

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Medical Informatics					10-I=MI-212-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Science	ce VI	Institute of Computer Science		
ECTS	ECTS Method of grading Only after succ. cor			npl. of module(s)		
5 numerical grade						
Duration Module level			Other prerequisites			
1 semester graduate						

Electronic patient folder, coding of medical data, hospital information systems, operation of computers in infirmary and functional units, medical decision making and assistance systems, statistics and data mining in medical research, case-based training systems in medical training.

Intended learning outcomes

The students possess theoretical and practical knowledge about the application of computer science methods in medicine.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

 $Language\ of\ assessment:\ German\ and/or\ English$

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, IT, KI, HCI, GE

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Systems Benchmarking					10-l=SB-212-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science II			Institute of Computer Science		
ECTS	Method of grading Only after succ. co		Only after succ. cor	npl. of module(s)		
5 numerical grade						
Duration Module level			Other prerequisites			
1 seme	1 semester graduate					
Conto	Contents					

Benchmarking has become a major discipline in science and technology as a driver of product quality, efficiency, and sustainability. Reliable and fair benchmarks enable educated decisions and play an important role as evaluation tools during system design, development, and maintenance. In research, benchmarks play an integral part in the evaluation and validation of new approaches and methodologies. The course introduces the foundations of benchmarking as a discipline, covering the three fundamental elements of each benchmarking approach: metrics, workloads, and measurement methodology. More specifically the following topics are covered: benchmarking basics, metrics, statistical measurements, experimental design, workloads, measurement tools, operational analysis, basic queueing models, and benchmark standardization. Furthermore, the course covers selected application areas and case studies, such as benchmarking of energy efficiency, virtualization, storage, microservices, cloud elasticity, performance isolation, resource demand estimation, and software and system security.

Intended learning outcomes

Students are able to design and build fair and reliable benchmarks, metrics, and measurement tools. Students can evaluate the quality of existing benchmarking approaches and benchmark results.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IT,ES,HCI,GE

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) eXtended Artificial Intelligence (xtAl) (2020)

Master's degree (1 major) Aerospace Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Information Systems (2024)

Module	e title			Abbreviation		
Profes	sional I	Project Management			10-I=PM-212-m01	
Module	e coord	inator		Module offered by		
holder	of the	Chair of Computer Science	e III	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate W			We recommend completing module 10-I=PRJAK in parallel.			
Conton	Contents					

Project goals, project assignment, project success criteria, business plan, environment analysis and stakeholder management, initialisation, definition, planning, execution/control, finishing of projects, reporting, project communication and marketing, project organisation, team building and development, opportunity and risk management; conflict and crisis management, change and claim management; contract and procurement management, quality management, work techniques, methods and tools; leadership and social skills in project management, project management, project portfolio management, PMOs; peculiarities of software projects; agile project management/SCRUM, combination of classic and agile methods.

Intended learning outcomes

The students possess practically relevant knowledge about the topics of production management and/or professional project management. They are familiar with the critical success criteria and are able to initiate, define, plan, control and review projects.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IT,KI,ES,LR,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Management (2022)

Master's degree (1 major) Media Entertainment (2022)

Master's degree (1 major) Psychology of digital media (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title				·	Abbreviation	
Robotics 1					10-LURI=RO1-232-m01	
Module coordinator				Mo	Module offered by	
holder of the Chair of Computer Science XVII			cience XVII	Ins	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ	. compl.	of module(s)	
5	nume	rical grade				
Duration Module level		Other prerequis	Other prerequisites			
1 semester graduate						
Conter	ıtc	•				

History, applications and properties of robots, direct kinematics of manipulators: coordinate systems, rotations, homogenous coordinates, axis coordinates, arm equation. Inverse kinematics: solution properties, end effector configuration, numerical and analytical approaches, examples of different robots for analytical approaches. Workspace analysis and trajectory planning, dynamics of manipulators: Lagrange-Euler model, direct and inverse dynamics. Mobile robots: direct and inverse kinematics, propulsion system, tricycle, Ackermann steering, holonomes and non-holonome restrictions, kinematic classification of mobile robots, posture kinematic model. Movement control and path planning: roadmap methods, cell decomposition methods, potential field methods. Sensors: position sensors, speed sensors, distance sensors.

Intended learning outcomes

The students master the fundamentals of robot manipulators and vehicles and are, in particular, familiar with their kinematics and dynamics as well as the planning of paths and task execution.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI, ES, LR, HCI, GE

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Robotics 2					10-LURI=RO2-232-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Science	ce XVII	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 semester graduate						
Conten	Contents					

Foundations of dynamic systems, controllability and observability, controller design through pole assignment: feedback and feed-forward, state observer, feedback with state observer, time discrete systems, stochastic systems: foundations of stochastics, random processes, stochastic dynamic systems, Kalman filter: derivation, initialising, application examples, problems of Kalman filters, extended Kalman filter.

Intended learning outcomes

The students master all fundamentals that are necessary to understand Kalman filters and their use in applications of robotics. The students possess a knowledge of advanced controller and observer methods and recognise the connections between the dual pairs controllability - observability as well as controller design and observer design. They also recognise the relationship between the Kalman filter as a state estimator and an observer.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2) + P(1)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI, ES, LR, HCI, GE

Workload

300 h

Teaching cycle

Teaching cycle: every year, summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Master's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Discret	te Even	t Simulation			10-l=ST-232-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scie	nce III	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate						
Contor	Contents					

The simulation of communication systems is illustrated and practically performed on contemporary examples, e.g., popular Internet services or the Internet of Things (IoT). The following topics will be conveyed: Introduction to simulation techniques, discrete-event simulation and process-oriented simulation, generating random numbers and random variables, statistical analysis of simulation results, evaluation of measured data, designing and evaluating simulation experiments, special random processes, possibilities and limitations of modelling and simulation, advanced concepts and techniques, practical execution of simulation projects.

Intended learning outcomes

The students possess the methodic knowledge and the practical skills necessary for the stochastic simulation of (technical) systems, the evaluation of results and the correct assessment of the possibilities and limits of simulation methods.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT,KI,ES,GE,IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Modul	Module title				Abbreviation	
Energy	Energy Informatics 1				10-l=El1-232-m01	
Modul	Module coordinator				Module offered by	
holder	of the	Chair of Computer S	cience III	Ins	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ	. compl.	of module(s)	
5	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 seme	ester	graduate				
<i>-</i> .	Combando					

Fundamentals of physical units; Fundamentals of the structure of energy systems and their components; Modeling of energy systems; Energy markets; Components of intelligent power grids and smart grids; Demand side management and flexible consumers; Virtual power plants; Sector coupling; Current research topics

Intended learning outcomes

Students understand the basic structure of energy systems and their components (wind and PV plants, power plants, electricity grids, consumers, storage technologies and markets). They can use modeling, simulation and optimization methods for the analysis of sustainable energy systems and are able to model energy systems with modern software tools. In addition, they are able to interpret and evaluate concepts for intelligent power grids (smart grids) as well as for the integration of renewable energies, energy storage, electric vehicles, heat pumps and other flexible loads. They will also be able to identify opportunities, risks and challenges of the energy transition as well as the role of informatics in this context.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module title					Abbreviation	
Real-Time Interactive Systems					10-HCI=RIS-182-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer S	Science IX	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	erical grade				
Duration Module level		Other prerequisit	Other prerequisites			
1 semester graduate						
Conto	nt c	-				

This course provides an introduction into the requirements, concepts, and engineering art of highly interactive human-computer systems. Such systems are typically found in perceptual computing, Virtual, Augmented, Mixed Reality, computer games, and cyber-physical systems. Lately, these systems are often termed Real-Time Interactive Systems (RIS) due to their common aspects.

The course covers theoretical models derived from the requirements of the application area as well as common hands-on and novel solutions necessary to tackle and fulfill these requirements. The first part of the course will concentrate on the conceptual principles characterizing real-time interactive systems. Questions answered are: What are the main requirements? How do we handle multiple modalities? How do we define the timeliness of RIS? Why is it important? What do we have to do to assure timeliness? The second part will introduce a conceptual model of the mission-critical aspects of time, latencies, processes, and events necessary to describe a system's behavior. The third part introduces the application state, it's requirements of distribution and coherence, and the consequences these requirements have on decoupling and software quality aspects in general. The last part introduces some potential solutions to data redundancy, distribution, synchronization, and interoperability. Along the way, typical and prominent state-of-the-art approaches to reoccurring engineering tasks are discussed. This includes pipeline systems, scene graphs, application graphs (aka field routing), event systems, entity and component models, and others. Novel concepts like actor models and ontologies will be covered as alternative solutions. The theoretical and conceptual discussions will be put into a practical context of today's commercial and research systems, e.g., X₃D, instant reality, Unity₃d, Unreal Engine 4, and Simulator X.

Intended learning outcomes

After the course, the students will have a solid understanding of the boundary conditions defined by both, the physiological and psychological characteristics of the human users as well as by the architectures and technological characteristics of today's computer systems. Participants will gain a solid understanding about what they can expect from today's technological solutions. They will be able to choose the appropriate approach and tools to solve a given engineering task in this application area and they will have a well-founded basis enabling them to develop alternative approaches for future real-time interactive systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title	,			Abbreviation	
Software Architecture					10-I=SAR-161-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer Scier	ice II	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester graduate						
c .	Combants					

Introduction to software architecture, architectural styles and patterns, software metrics, evaluation of architectural styles, software components, interface models and design guidelines, design-by-contract, component-based software engineering, service-oriented architectures, microservice architectures, scalability of databases, cloud-native and serverless computing, continuous integration, continuous delivery, continuous deployment, model-driven architecture

Intended learning outcomes

The students possess a fundamental and applicable knowledge about advanced topics in software engineering with a focus on modern software architectures and fundamental approaches to model-driven software engineering.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE,IT,ES

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Economathematics (2025)

Modul	e title				Abbreviation	
Space	craft Sy	stem Analysis			10-LURI=SSA-232-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer S	cience VIII	Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level O		Other prerequisit	Other prerequisites		
1 seme	1 semester graduate					
<i>c</i> .						

Introduction: history of space flight, system design of spacecraft. Space dynamics: two-body dynamics, Kepler orbits, disturbance forces, transfer orbits. Mission analysis: earth and sun-synchronous orbits, shadows, solar angle of incidence. Thermal control of satellites: thermal analysis, thermal design and technologies, verification of thermal designs. Telecommunication: ground contact analysis, data transmission, satellite monitoring (telemetry, telecommando). Structure and mechanisms. Energy systems: primary, secondary, management, power generation: solar cells. On-board data processing. Propulsion systems. Tests (mechanical, electrical). Operation of spacecraft. Ground segment.

Intended learning outcomes

The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES, LR

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Modul	Module title				Abbreviation	
Machine Learning (for User Interfaces)					10-HCI=MLUI-161-m01	
Module coordinator				Module of	Module offered by	
holder	of the	Chair of Computer So	cience IX	Institute o	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ	compl. of mod	ule(s)	
5	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 semester graduate						
Contents						

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us practical speech recognition, effective web search, self-driving cars, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. It is one of today's prominent paradigms in HCI applicable in all areas where the understanding of user input of high variability, specifically for natural interactions using, e.g., gesture, speech, or eye-gaze, is paramount. Many researchers also think it is the best way to make progress towards human-level AI.

In this course, students will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work. Students not only learn the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, they learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning

This course provides a broad introduction to machine learning, data-mining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building gesture-based and multimodal interfaces, text and speech understanding (web search, anti-spam), smart robots (perception, control), computer vision, medical informatics, audio, database mining, and other areas.

Intended learning outcomes

After the course, the students will be able to solve machine learning tasks on their own using assistive technologies, e.g., like Octave. In addition, they will be able to derive main principles and apply these in own programs. Students will be able to choose the appropriate approach and tools to solve a given machine learning task in various application area, specifically in HCI.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

presentation of project results (approx. 40 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI,GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation	
Visual	ization	of Graphs			10-l=VG-161-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Computer S	cience I	Institute of Comp	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisi	Other prerequisites			
1 seme	ester	graduate				
<i>-</i> .	Ctt-					

This course covers the most important algorithms to draw graphs. Methods from the course *Algorithmische Graphentheorie* (*Algorithmic Graph Theory*) such as divide and conquer, flow networks, integer programming and the planar separator theorem will be used. We will become familiar with measures of quality of a graph drawing as well as algorithms to optimise these measures.

Intended learning outcomes

The participants get an overview of graph visualisation and become familiar with typical tools. They consolidate their knowledge about the modelling and solving of problems with the help of graphs and graph algorithms.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,HCI,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Computational Mathematics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 89 / 176
	data record Master (120 ECTS) Informatik - 2023	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title		Abbreviation			
Select	ed Topi	cs in Games Engineering	3		10-l=AGE-232-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scien	ce IX	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	ester	graduate				
Conto	Contonte					

Selected chapters of Games Engineering.

Intended learning outcomes

The students understand the basic approach of games engineering. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation
Selected Topics in Algorithms					10-I=AKA-232-m01
Module	e coord	inator		Module offered by	
holder	of the (Chair of Computer Scienc	e I	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. com	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					

Selected topics in algorithmics.

Intended learning outcomes

The students understand the basic approach of algorithmic computer science. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation		
Selected Topics in Theory					10-l=AKT-232-m01
Module	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science I			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate -					

Selected topics in theory.

Intended learning outcomes

The students understand the basic approach of theoretical computer science. They are able to understand the solutions of complex problems in this area and apply them to similar questions.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title		Abbreviation		
Select	Selected Topics in Software Engineering				10-l=AKSE-232-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 semester graduate					

Selected topics in software engineering.

Intended learning outcomes

The students possess an advanced knowledge about selected aspects of software engineering.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Select	ed Topi	cs in IT Security			10-I=AKITS-232-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					

Selected topics in IT security.

Intended learning outcomes

The students possess an advanced knowledge in the area of IT security. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): SE, KI, LR, HCI, ES, SEC

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Selected Topics in Internet Technologies					10-l=AKIT-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science III			Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level C		Other prerequisit	Other prerequisites		
1 semester graduate						
Contents						

Selected topics in computer communication, for example design aspects of future internet structures: setup and control structures of the internet, multicast protocols, protocols for multimedia communication, optical networks, control mechanisms for redundant and real-time communication networks, p2p networks, ad-hoc networks, or -- new concepts and technologies in mobile communication: digital modulation, signal propagation, channel coding, modern transmission technologies (adaptive modulation and coding, hybrid ARQ, OFDM, MI-MO), mac layer, mobileIP, routing in ad-hoc networks, vertical handover, UMTS IP multimedia subsystem, or -planning and management methods in telecommunication networks: planning methods (forward engineering, reverse engineering), network management paradigms (central and decentral), framework for network management (IETF traffic engineering, ITU-T TMN, OSI management), planning and management methods (IP management mechanisms, network design, measurement, acquisition and evaluation of traffic and performance data, visualisation, result handling, simulation and analysis of networks), management tools, outlook and perspectives, or -- other current topics.

Intended learning outcomes

The students have a knowledge of advanced and current topics in the management and design of modern wired and wireless communication systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IT.

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 96 / 176
	data record Master (120 ECTS) Informatik - 2023	

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title			Abbreviation	
Selecte	ed Topi	cs in Intelligent Systems	i		10-I=AKIS-232-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Scienc	e VI	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester graduate					
<i>c</i> .	Combants				

Selected topics in intelligent systems.

Intended learning outcomes

The students possess an advanced knowledge in the area of intelligent systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title	<u>'</u>			Abbreviation
Selecte	ed Topi	cs in Embedded Sys	tems		10-I=AKES-232-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Ot		Other prerequisite	Other prerequisites		
1 semester graduate					

Selected topics in embedded systems.

Intended learning outcomes

The students possess specialised knowledge in the area of embedded systems. They are able to understand solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
NLP and Text Mining					10-I=STM-162-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science VI			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level O		Other prerequisites			
1 semester graduate					

Foundations in the following areas: definition of NLP and text mining, properties of text, sentence boundary detection, tokenisation, collocation, N-gram models, morphology, hidden Markov models for tagging, probabilistic parsing, word sense disambiguation, term extraction methods, information extraction, sentiment analysis. The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing mostly for English. They are able to solve problems through the methods taught. They have gained experience in the application of text mining algorithms.

Intended learning outcomes

The students possess theoretical and practical knowledge about typical methods and algorithms in the area of text mining and language processing. They are able to solve practical problems with the methods acquired in class. They have gained experience in the application of text mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT, IT, HCI.

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

Master's degree (1 major) Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computational Mathematics (2022)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Mathematics (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation	
Select	Selected Topics in Aerospace Engineering				10-I=AKLR-232-m01	
Module coordinator				Module off	Module offered by	
holder	holder of the Chair of Computer Science VII			Institute of	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ.	compl. of modu	le(s)	
5	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 seme	1 semester graduate					
Combants						

Selected topics in aerospace engineering, for example: satellite communication, rocket science, propulsion systems, sensors and actuators for orientation control, perturbation of orbits, interplanetary orbits, rendezvous and docking, design of space ships, design of planetary bases, life support systems, special aspects of operations, payloads, optical systems, RADAR, earth monitoring, thermo management, structure of space ships, special areas of navigation, space environment, environment simulation, verification and test of space faring systems, space astronomy and planet missions, space medicine and biology, material science, quality management, space law, aeroflight topics, avionics for airplanes, air traffic control, areal navigation, pilot interfaces, air traffic control, air traffic management.

Intended learning outcomes

The students possess an advanced knowledge about the respective topic of the selected area and are able to consider these foundations in their future plans of air or spaceborne systems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Selecte	ed Topi	cs in HCI			10-l=AKHCl-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science IX			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 semester graduate						
Conten	Contents					

Selected topics in HCI.

Intended learning outcomes

The students understand the basic approach of human-computer interaction. They are able to understand the solutions to complex problems in this area and to transfer them to related questions.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}/S(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Selecte	ed Topi	cs in Data Science			10-I=AKDS-232-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 semester graduate						
Conten	Contents					

Selected topics in data science

Intended learning outcomes

Students understand the basic approach of data science. They are able to understand how to solve complex problems in this field and transfer them to related issues.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation		
Select	ed Topi	cs in Autonomous Mobil	e Systems		10-I=AKAMS-232-m01		
Modul	e coord	inator		Module offered by			
Dean of Studies Informatik (Computer Science)				Institute of Computer Science			
ECTS	Metho	Method of grading Only after succ. co		mpl. of module(s)			
5	nume	umerical grade					
Duration		Module level	Other prerequisites				
1 semester		graduate					

Selected topics in autonomous mobile systems

Intended learning outcomes

Students understand the basic approach of autonomous mobile systems. They are able to understand solutions to complex problems in this field and transfer them to related issues.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR, ES, KI.

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Modul	e title			Abbreviation			
Selecto	ed Topi	cs in Computer Science			10-l=AKII-232-m01		
Module coordinator				Module offered by			
Dean o	of Studi	es Informatik (Computer	Science)	Institute of Computer Science			
ECTS	Meth	od of grading	Only after succ. compl. of module(s)				
5	nume	merical grade					
Duration		Module level	Other prerequisites				
1 semester		graduate					
Contents							

Selected topics in computer science.

Intended learning outcomes

The students are able to understand the solutions to complex problems in computer science and to transfer them to related questions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}/S(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: if announced

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Module studies (Master) Computer Science (2019)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module	e title		Abbreviation			
Teleco	mmunio	cation Systems			10-I=TSD-232-m01	
Module	e coord	inator		Module offered by		
Dean o	of Studie	es Informatik (Computer	Science)	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	compl. of module(s)		
10	nume	merical grade				
Duration		Module level	Other prerequisites			
1 semester		graduate				

- Introduction
- Signals and Linear Systems
- Digital Representation of Analog Signals
- Binary Baseband Modulation
- Detection of Binary Baseband Signals in Noise
- Digital Modulation
- Multicarrier Modulation
- Channel Coding
- Networks and Protocols
- Further Topics

Intended learning outcomes

Students will

- grasp the concepts and techniques of sampling, quantisation and pulse shaping for signal transmission and reception,
- learn how to detect and decode signals in the presence of noise,
- gain knowledge of higher order modulation schemes and their applications, including Quadrature Amplitude Modulation (QAM) and Frequency Shift Keying (FSK),
- understand the basics of error control coding, such as forward error correction (FEC) codes and convolutional codes, and their role in enhancing data reliability and
- become acquainted with network protocols, including the OSI model, TCP/IP protocols, and those used in wireless networks, understanding their functions and operation.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR

Workload

300 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Module title					Abbreviation	
Remot	e Sensi	ng			10-l=RRS-232-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scie	ence VIII	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conter	Contents					

Remote sensing refers to the use of satellite- or aircraft-based sensor technologies to detect and classify objects on Earth, including on the surface and in the atmosphere and oceans, based on propagated signals (e.g. electromagnetic radiation). It may be split into "active" remote sensing (i.e., when a signal is emitted by a satellite or aircraft and its reflection by the object is detected by the sensor) and "passive" remote sensing (i.e., when the reflection of sunlight is detected by the sensor).

Intended learning outcomes

The students learn the basics of earth observation. They outline and explain the radiation path through the atmosphere to the object under investigation and back to the sensor. They emphasize essential characteristics of remote sensing data, sensors and platforms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

possible majors for MA 120 Computer Science: LR,IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Module	e title	-	Abbreviation			
Quantı	Quantum Communications				10-I=QC-221-m01	
Module	Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science VII			Institute	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ.	compl. of mo	odule(s)	
5	nume	rical grade				
Duratio	Duration Module level		Other prerequis	Other prerequisites		
1 semester graduate						

- Introduction
- Hilbert Spaces and Operators
- Quantum Mechanics
- · Quantum States
- Quantum Circuit Elements
- Entanglement and Its Applications
- Quantum Key Distribution
- Quantum Channel
- · Quantum Error Correction Coding
- Continuous-Variable Quantum Communications
- Further Topics

Intended learning outcomes

Students will

- develop a solid foundation in quantum information technology, including qubits, quantum gates, entanglement, and quantum measurements,
- learn about secure communications using quantum mechanics, including protocols like Quantum Key Distribution (QKD),
- gain familiarity with protocols such as quantum teleportation, superdense coding and error correction, and
- understand the effects of noise and decoherence in quantum communications and learn strategies to mitigate their impact.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + V(2)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR

Workload

150 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Master's degree (1 major) Computational Mathematics (2024)

Modul	e title	,			Abbreviation
Deep R	Reinford	ement Learning for Opti	mal Control		10-I=DRLOC-221-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				

- Key Concepts in Reinforcement Learning
- Exact Methods for Finite Markov Decision Processes
- Tabular Reinforcement Learning
- Planning and Learning with Tabular Methods
- Approximation Methods and Deep Reinforcement Learning
- Policy Optimization
- Value-Based Methods
- Applying Reinforcement Learning and Practical Tips and Tricks
- Aerospace Applications
- Model-Based Reinforcement Learning
- Challenges
- Frontiers and Future of Deep Reinforcement Learning

Intended learning outcomes

Students understand the basics of reinforcement learning & deep reinforcement learning (model-free & model-based). They understand current challenges and unsolved problems. They are able to use standard algorithms for (continuous) control tasks and have learned about aerospace applications.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

-

Module appears in

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 113 / 176
	data record Master (120 ECTS) Informatik - 2023	

Master's degree (1 major) eXtended Artificial Intelligence (xtAl) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Module title					Abbreviation	
Compu	ıter Vis	ion			10-xtAl=CV-202-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scie	nce IV	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conte	Contents					

The lecture provides knowledge about current methods and algorithms in the field of computer vision. Important basics as well as the most recent approaches to image representation, image processing and image analysis are taught. Actual models and methods of machine learning as well as their technical backgrounds are presented and their respective applications in image processing are shown.

Intended learning outcomes

Students have fundamental knowledge of problems and techniques in the field of computer vision and are able to independently identify and apply suitable methods for concrete problems.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) eXtended Artificial Intelligence (xtAI) (2020)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Module title Abbreviation						
Modeling and Simulation of Smart Energy Systems 10-I=MSIE-232-m01						
Module co	ordinator		Module off	ered by		
holder of t	he Chair of Computer S	cience III	Institute of	f Computer Science		
ECTS M	ethod of grading	Only after suc	cc. compl. of modu	ıle(s)		
5 nu	ımerical grade					
Duration	Module level	Other prerequ	uisites			
1 semeste	r graduate					
Contents	•	•				
Intended l	earning outcomes					
		,				
Courses (ty	ype, number of weekly contact	hours, language — if other	than German)			
V (2) + Ü (2						
	assessment (type, scope, ditable for bonus)	language — if other than G	German, examination off	ered — if not every semester, information on whether		
If annound examination prox. 15 m		e beginning of the c		examination may be replaced by an oral mination in groups of 2 candidates (ap-		
Allocation	of places					
Additional	linformation					
Focuses a	vailable for students of	the Master's progra	mme Informatik (C	Computer Science, 120 ECTS credits): IN		
Workload						
150 h						
Teaching o	cycle					
	-					
Referred to in LPO I (examination regulations for teaching-degree programmes)						
			-			
Module ap	nears in					

Module title Abbreviation						
Sustainable Mobility 10-I=NAMO-23					10-I=NAM0-232-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer Scienc	e III	Institute of Compu	ter Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ster	graduate				
Conter	ıts					
Intend	ed lear	ning outcomes				
Course	S (type, i	number of weekly contact hours,	language — if other than Gei	man)		
V (2) +	Ü (2)					
		sessment (type, scope, langua ole for bonus)	ge — if other than German,	examination offered — if no	ot every semester, information on whether	
If anno examir prox. 1	unced nation o	of one candidate each (ap tes per candidate).	inning of the course,		ation may be replaced by an oral n in groups of 2 candidates (ap-	
Allocat	tion of	places				
	_					
Additio	onal inf	ormation				
Focuse	s avail	able for students of the N	Master's programme l	nformatik (Compute	r Science, 120 ECTS credits): IN	
Workload						
150 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
§ 22	§ 22 II Nr. 3 b)					
Module appears in						

Master's degree (1 major) Computer Science (2023) Master's degree (1 major) Computer Science (2025)

Module title					Abbreviation	
Machine Learning for Networks 1					10-l=MLN1-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science XV			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. c	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisit	Other prerequisites		
1 semester graduate						
Contents						

Networks matter! This holds for technical infrastructures like communication or transportation networks, for information systems and social media in the World Wide Web, but also for various social, economic and biological systems. What can we learn from data that capture the interaction topology of such complex systems? What is the role of individual nodes and how can we discover significant patterns in the structure of networks? How do these structures influence dynamical process like diffusion or the spreading of epidemics? Which are the most influential actors in a social network? And how can we analyze time series data on systems with dynamic network topologies?

Addressing those questions, the course combines a series of lectures -- which introduce fundamental concepts for the statistical modelling of complex networks -- with weekly exercises that show how we can apply them to practical network analysis tasks. Topics covered include foundations of graph theory, centrality and modularity measures, aggregate statistical characteristics of large networks, random graphs and statistical ensembles of complex networks, generating function analysis of expected graph properties, scale-free networks, stochastic dynamics in networks, spectral analysis, as well as the modelling of time-varying networks. The course material consists of annotated slides for lectures as well as a accompanying git-Repository of jupyter notebooks, which implement and validate the theoretical concepts covered in the lectures. Students can test and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Intended learning outcomes

The course will equip participants with statistical network analysis techniques that are needed for the data-driven modelling of complex technical, social, and biological systems. Students will understand how we can quantitatively model the topology of networked systems and how we can detect and characterize topological patterns. Participants will learn how to use analytical methods to make statements about the expected properties of very large networks that are generated based on different stochastic models. They further gain an analytical understanding of how the structure of networks shapes dynamical processes, how statistical fluctuations in degree distributions influence the robustness of systems, and how emergent network features emerge from simple random processes.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,SE,KI,HCI,IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation
Machi	ne Lear	ning for Networks 2			10-I=MLN2-232-m01
Modul	e coord	inator		Module offered by	
holder	of the	Chair of Computer Science	ce XV	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Contor	Contonte				

Graph representations of relational data have become an important foundation to address data science and machine learning tasks across the sciences. Graph mining and learning techniques help us to detect functional modules in biological networks and communities in social networks, to find missing links in social networks, or to address node-, link-, or graph-level classification tasks. But how can we apply frequentist and Bayesian statistical learning techniques to data on complex networks? And how we can use the topology of relationships to infer similarity scores between objects that can, e.g., be used for the design of recommender systems? How can we use matrix factorization techniques to generate low-dimensional vector-space representations of nodes that retain a maximum amount of information about the topology of links? And how can we apply the latest deep learning techniques to address node-, link-, or graph-level learning tasks in data with relation structures?

Addressing these questions, this course combines a series of lectures - which introduce theoretical concepts in statistical learning, representation learning, and graph neural networks -- with practice sessions that show how we can apply them in practical graph learning tasks. The course material consists of annotated slides for lectures and a series of accompanying jupyter notebooks.

Intended learning outcomes

The course will equip students with techniques to address supervised and unsupervised learning tasks in data on complex networks. Students will learn how statistical learning and data compression techniques can be used to infer cluster pattern and how topological similarity scores can be used to address unsupervised link prediction and graph reconstruction. Participants will further study both algebraic and deep learning based methods to learn low-dimensional vector-space representations of graph-structured data, and learn how graph neural networks help us to apply deep learning to node- and graph-level learning tasks in large complex networks. Students can apply and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,IT,SE,KI,HCI,IN

Workload

150 h

Teaching cycle

Teaching cycle: if announced

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Modul	e title				Abbreviation
Statist	tical Ne	twork Analysis			10-l=SNA-232-m01
Modul	e coord	inator		Module offered by	
holder	of the	Chair of Computer Scien	nce XV	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisites		
1 seme	1 semester graduate				
Contents					

Networks matter! This holds for technical infrastructures like communication or transportation networks, for information systems and social media in the World Wide Web, but also for various social, economic and biological systems. What can we learn from data that capture the interaction topology of such complex systems? What is the role of individual nodes and how can we discover significant patterns in the structure of networks? How do these structures influence dynamical process like diffusion or the spreading of epidemics? Which are the most influential actors in a social network? And how can we analyze time series data on systems with dynamic network topologies?

Addressing those questions, the course combines a series of lectures -- which introduce fundamental concepts for the statistical modelling of complex networks -- with weekly exercises that show how we can apply them to practical network analysis tasks. Topics covered include foundations of graph theory, centrality and modularity measures, aggregate statistical characteristics of large networks, random graphs and statistical ensembles of complex networks, generating function analysis of expected graph properties, scale-free networks, stochastic dynamics in networks, spectral analysis, as well as the modelling of time-varying networks. The course material consists of annotated slides for lectures as well as a accompanying git-Repository of jupyter notebooks, which implement and validate the theoretical concepts covered in the lectures. Students can test and deepen their knowledge through weekly exercise sheets. The successful completion of the course requires to pass a final written exam.

Intended learning outcomes

The course will equip participants with statistical network analysis techniques that are needed for the data-driven modelling of complex technical, social, and biological systems. Students will understand how we can quantitatively model the topology of networked systems and how we can detect and characterize topological patterns. Participants will learn how to use analytical methods to make statements about the expected properties of very large networks that are generated based on different stochastic models. They further gain an analytical understanding of how the structure of networks shapes dynamical processes, how statistical fluctuations in degree distributions influence the robustness of systems, and how emergent network features emerge from simple random processes.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation	
Image	Proces	sing and Computation	al Photography		10-l=IP-222-m01	
Modul	e coord	linator		Module offered by		
holder	of the	Chair of Computer Scie	ence IV	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contents					

This course aims at offering a self-contained account of image processing and computational photography and its underlying concepts, including the recent use of deep learning. The topics that will be covered are:

- introduction to image processing and computational photography
- sampling and quantization
- light and color
- image acquisition
- deep learning
- generative methods
- image signal processing
- image restoration
- sensor and image quality assessment
- image compression
- applications

Intended learning outcomes

Students have fundamental knowledge of problems and techniques in the field of image processing and computational photography and are able to independently identify and apply suitable methods for concrete problems.

- · Overview of the most important concepts of image formation, perception and analysis, and Computational Photography
- Gaining experience through home assignments, practical computer and programming exercises
- Providing a sound solid background knowledge for the Computer Vision courses

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ \\$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) eXtended Artificial Intelligence (xtAl) (2020)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module	e title		Abbreviation			
Reinforcement Learning and Computational Decision Making				ng	10-l=RLCDM-232-m01	
Module	e coord	inator		Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					
Conten	Contents					

This course will provide the essential notions about reinforcement learning and further related approaches for computational decision-making (e.g., multi-armed bandits, recommender systems). The topics will be covered under a both theoretical and empirical lens, providing the rigorous mathematical foundations of reinforcement learning and decision-making, complementing them with concrete examples of real-world applications.

Intended learning outcomes

The students will gain fundamental knowledge of Reinforcement Learning spanning from classical methods to modern algorithms based on deep learning techniques, and Decision-Making approaches such as multi-armed bandits and recommender systems. Students will know about the theoretical treatment of the methods explained in the course, and will have a deep understanding of the importance of Reinforcement Learning and Decision-Making in solving real-world problems. They will be able to design, implement, and conduct Reinforcement Learning experiments for solving problems from simulated basic tasks to advanced real-world applications, e.g., games, autonomous driving, finance, robotics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Module title					Abbreviation	
Music Information Retrieval						10-I=MIR-232-m01
Module coordinator					Module offered by	
Dean	Dean of Studies Informatik (Computer Science)				Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ	. com	pl. of module(s)	
5	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 semester graduate						
Contents						

This lecture introduces the research field of Music Information Retrieval (MIR), focussing on the following topics: Music representations (graphical, symbolic, audio), basic music theory concepts, audio signal processing (esp. time-frequency transformations, variants of the Fourier transform), selected machine learning techniques, overview and in-depth study of individual MIR tasks (e.g., harmony analysis/chord recognition, beat tracking/tempo, structure analysis, genre/style classification), data preparation/annotation and corpus analysis for digital humanities/musicology

Intended learning outcomes

The students have a fundamental understanding of music representations and audio data as well as theoretical and practical knowledge in the field of audio signal processing and specialized machine learning techniques. They have gained experience with typical MIR tasks and are able to understand, develop, and apply MIR algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Modul	e title				Abbreviation
Operat	ions Re	esearch			10-l=0R-232-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Scie	nce I	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					
Contents					

Production plans, railway timetables, the assignment of radio frequencies, planning of delivery tours, or the construction of an 'optimal' university timetable: these problems – and many more – can be modeled as (mixed-) integer linear optimization problems and solved with integer programming methods.

This course teaches integer programming methods like branch-and-bound, cutting plane, and decomposition methods. Furthermore, we practice our modeling skills by studying a variety of application examples.

Intended learning outcomes

After completing the course

- The students are able to model optimization problems as mathematical program (in particular: mixed-integer linear programs).
- The students are able to apply integer programming methods and understand how and why these work.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Modul	e title			Abbreviation		
Select	ed Topi	cs in Computer Science	and Sustainability		10-I=AKNA-232-m01	
Modul	e coord	inator		Module offered by		
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 semester graduate -		-				

Selected topics in computer science and sustainability

Intended learning outcomes

The students understand the basic approach of topics in sustainability and IT. They are able to understand the solutions to complex problems in this area and to apply them to similar questions.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes) or
- b) project work (report (approx. 20 pages) with presentation (30 to 45 minutes) and subsequent discussion on the topic) or
- c) oral examination of one candidate each (approx. 20 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Multili	ngual N	ILP			10-I=MNLP-232-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science XII			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 semester graduate						
Conton	Contonts					

Languages of the world: language families, typology, etymology. Linguistic universals: words, morphology, parts-of-speech, syntax. Alphabets (scripts), encoding, and language identification. Multilingual word representation spaces (aka cross-lingual word embeddings). Transformer architecture and Pretrained (multilingual) Language Models. Machine translation. Multilingual resources: unlabeled corpora, lexico-semantic networks and word translations, parallel corpora. Cross-lingual transfer: from word alignment and label projection, over MT-based transfer to zero-shot and few-shot transfer with multilingual Transformer-based language models. Advanced topics: curse of multilinguality, modularization and language adaptation, multilingual sentence encoders, contextual parameter generation, multi-source transfer, gradient manipulations.

Intended learning outcomes

Students will acquire theoretical and practical knowledge on modern multilingual natural language processing and also get an insight into cutting edge research in (multilingual) NLP. They will learn how to represent texts from different languages in shared representation spaces that enable semantic comparison and cross-lingual transfer for various NLP tasks. Upon successful completion of the course, the students will be well-equipped to solve practical NLP problems regardless of the language of the text data, and to determine the optimal strategy to obtain best performance for any concrete target language.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Information Systems (2019)

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 131 / 176
	data record Master (120 ECTS) Informatik - 2023	

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Management (2024)

Master's degree (1 major) Mathematics (2024)

Master's degree (1 major) Information Systems (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) Information Systems (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) Computer Science (2025)

Master's degree (1 major) Mathematical Data Science (2025)

Module title					Abbreviation
Embedded Systems					10-I=ES-231-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					

Models of embedded systems, implementation methods (ASIC, AISIP, micro controller), verification of embedded systems, implementation planning static, periodic and dynamic, binding problems, hardware synthesis, software synthesis.

Intended learning outcomes

The students are familiar with the technical possibilities for the design of embedded systems and master the most important techniques for the modelling, verification and optimisation of such systems in hardware and software.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): AT,SE,ES,LR,GE

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Computational Mathematics (2024)

Master's degree (1 major) Mathematics (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Virtual	Protot	yping of Embedded Syst	ems		10-I=VPES-232-m01	
Modul	e coord	inator		Module offered by		
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	ester	graduate				
Contor	Contonte					

Today's companies have to deal with complex hardware architectures such as heterogeneous multi-core systems. Therefore, new development tools and approaches such as virtual prototyping are needed for efficient and fast design on electronic system level. In our research, we use SystemC and gem5 based virtual platforms for a thorough design space exploration on software and hardware level.

- Introduction to virtual prototyping and virtual product development methodology for embedded systems
- •
- System models and specification
- Hardware/Software co-development with virtual prototyping
- Modelling with cycle accurate SystemC
- Modelling on higher level of abstraction with Transaction Level Modeling (TLM)
- Modelling of embedded processors with gem5
- Design space exploration for embedded systems with virtual prototypes

Intended learning outcomes

- · Understanding advantages of novel virtual product development
- Finding the right level of abstraction for a specific problem
- Develop a feeling for the tradeoff between accuracy and simulation speed

•

- Hardware/Software co-development
- Design space exploration

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Master's degree (1 major) Computer Science (2023)

Projects and Tarining

(ECTS credits)

Module title					Abbreviation	
Space	System	ns Design			10-I=RSE-182-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science VIII			Institute of Compu	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisi	Other prerequisites		
1 semester graduate						
Contents						

In the course of a semesterproject, a spacecraft system will be designed in a team. The selection of the spacecraftsystem is done anew each semester and draws inspiration from current trends and concrete research, often from the area of microsatellites, like "design of a nanosatellitemission for detection and observation of transient lunar phenomenons (TLP)".

Intended learning outcomes

The students gain fundamental knowledge about the design of spacecraft systems. They are able to analyse the elementary design aspects, create requirements accordingly and consider them in their system design. With the help of the acquired knowledge of methods they are able to create dedicated tools and methods to support the design in the area of spacecraft systems. Also projectmanagement for the development of spacecraft systems will be trained.

Courses (type, number of weekly contact hours, language — if other than German)

R (6)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered (The project will not be repeated; there will not be another project with the same topic. Assessment can, therefore, only be offered for the project offered in the respective semester.)

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation	
Design	of Pla	netary Bases and Orbi	tal Stations		10-l=EPB-182-m01	
Modul	e coord	linator		Module offered by		
holder	holder of the Chair of Computer Science VIII			Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
10	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester graduate					
Conto	Contonts					

In light of future human settlements across the solar system, this lecture will focus on the special aspects of planning of planetary bases. This will train the planning of a very complex spacecraft apart from its individual components like satellites. The content will be decided upon each semester (for example lunar base, mars base etc) The most important aspects like motivation, goals, prerequisites, constraints, environment, localization, construction and operation scenarios, planning of modules and structures, lifesupport, energy, communication, production, transport between earth and moon as well as mobility on the surface of the moon will be conceptually layed out and analyzed.

Intended learning outcomes

The students gain fundamental knowledge about the planning of planetary bases and orbital bases. They are able to analyse the elementary aspects of planning, pose requirements and consider the system design. With the support of the acquired knowledge of methods they are able to create dedicated tools and processes to support the planning in the area of planetary bases and orbital stations. Also projectmanagement for the development of planetary bases and orbital stations will be trained.

Courses (type, number of weekly contact hours, language — if other than German)

R (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes)

Each project is offered one time only. The project will not be repeated; there will not be another project with the same topic. Assessment can, therefore, only be offered for the project offered in the respective semester. Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation
Practio	cal cour	se - Space Technology			10-I=PRT-232-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					

In this internship, students are supposed to acquire practical experience in the design, building, execution and analysis of rocket experiments (including their payload). The goal is the design, building and testing of rocket experiments and their payloads.

Intended learning outcomes

The students gain fundamental knowledge about the design of spacecraft experiments, fundamental knowledge about rocket science, including launch preparations as well as the execution. They are able to analyse the elementary design aspects of rocket payloads, pose according requirements and respects those in the design. With the aid of the acquired methodic knowledge, they are able to apply dedicated tools and method in bigger projects.

Courses (type, number of weekly contact hours, language — if other than German)

P (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

placement report (10 to 15 pages) and presentation of results (15 to 30 minutes) Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Modul	e title				Abbreviation
Aircraf	t Const	ruction			10-l=FZB-182-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science VIII			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites	Other prerequisites	
1 semester graduate					

- Assembly of a RV12 small airplane
- elements of the RV12 (aluminum processing)
- Setting up a project team
- Tasks and allocation of responsibilities
- Quality assurance
- Documentation of the work
- Building some elements of the RV12
- Marketing and PR activities

Intended learning outcomes

Students have the necessary soft skills, project management knowledge and experience for the execution of complex and safety-critical projects. Students have technical, theoretical and practical knowledge concerning aircraft construction. Students practice manual skills in relevant areas of aircraft construction e.g. electrical systems and aluminum processing.

Courses (type, number of weekly contact hours, language — if other than German)

R (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation
Flight Simulator					10-l=FSIM-232-m01
Module coordinator				Module offered by	
holder	of the	Chair of Computer Science	e VIII	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
10	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester graduate					

Layout of A320 cockpit, instruments in a a320 cockpit, flight preparations, cold and dark start of an a320, flight route entry, flight execution, taxing, take-off, flight, landing, taxing, anomalies and emergencies

Intended learning outcomes

The students possess the technical, theoretical and practical knowledge and skills to do a flight with an a320. Important: this is no licence to fly and it's not a pilote training.

Courses (type, number of weekly contact hours, language - if other than German)

R (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes)

Separate written examination for Master's students.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation	
Game Research Lab - Theory					10-I=GRLT-182-m01	
Module coordinator				Module offered by		
holder of the Chair of Computer Science			ce IX	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. compl. of module(s)			
10	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester		graduate				
Contents						

The Game Research Labs are project-oriented, master-level courses. In accordance with the definition of Games Engineering, they concern themselves with the effective provision and the systematic application of principles, methods and tools for the development and application of comprehensive software systems for computer games. There are four different directions of Game Research Labs: Theory, Applications, Design and Architecture. All of them implement a scientific process during which the students develop a project based on preceding works and a novel idea or hypothesis worthwhile exploring. Typical steps in a Game Research Lab include a short literature survey, the development of a concept, its realisation and evaluation. Theoretical foundations of Games Engineering as well as their transfer and application are the focus of the "Game Research Lab - Theory". This comprises the application, extension and innovation of formal representations, mathematics, algorithmics, for instance in the areas of computer graphics, realtime physics computation or artificial intelligence. The application, adaptation and innovation of optimisation approaches, formal process descriptions and verification in the context of interactive simulations also lie in the scope of this Game Research Lab.

Intended learning outcomes

We recommend previous completion of basic courses in Games Engineering such as Interactive Computer Graphics, Asset Development and Interactive Artificial Intelligence. The Game Research Labs empower the students to retrace current scientific works in great detail, to improve their research skills and to deepen their expertise with respect to specific challenges in Games Engineering. Formal systems and their applications to challenges in Games Engineering are the focus of the "Game Research Lab - Theory". Accordingly, the students will deeply immerse themselves into relevant topics in order to learn about, understand and learn to apply existing theoretical approaches. Their application to the respective challenges will foster the students' knowledge and competencies in theory and Games Engineering.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

R (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

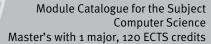
__

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h


Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 142 / 17
	data record Master (120 ECTS) Informatik - 2023	

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation	
Game Research Lab - Architectures					10-I=GRAR-182-m01	
Module coordinator				Module offered by		
holder of the Chair of Computer Science IX			cience IX	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
10	nume	rical grade				
Duration		Module level	Other prerequisites	Other prerequisites		
1 semester		graduate				
Contents						

The Game Research Labs are project-oriented, master-level courses. In accordance with the definition of Games Engineering, they concern themselves with the effective provision and the systematic application of principles, methods and tools for the development and application of comprehensive software systems for computer games. There are four different directions of Game Research Labs: Theory, Applications, Design and Architecture. All of them implement a scientific process during which the students develop a project based on preceding works and a novel idea or hypothesis worthwhile exploring. Typical steps in a Game Research Lab include a short literature survey, the development of a concept, its realisation and evaluation. The "Game Research Lab - Architectures" is about Software Engineering perspectives in Games Engineering. Among those are the integration of different representations, models and calculi, their efficient and - at the same time - modular extensibility, maintenance and multi-facetted application. Accordingly, the subject of study of the course project can be existing design patterns in game engines, or the functional extension or overhaul of existing (sub-)engines. Next to the reflection and discussion of concrete architectures, efficiency can also be shown by means of performance analyses by profiling softwares. The resulting programming interfaces are another important field which is considered in the context of the "Game Research Lab - Architectures" course.

Intended learning outcomes

We recommend previous completion of basic courses in Games Engineering such as Game Labs II and III, complementing courses (e.g. Software Quality, Networked and Concurrent Programming) or advanced courses (e.g. Principles of Realtime Interactive Systems). The Game Research Labs empower the students to retrace current scientific works in great detail, to improve their research skills and to deepen their expertise with respect to specific challenges in Games Engineering. The "Game Research Lab - Architecture" instills knowledge and skills working with and on big software systems, innovating Software Engineering approaches and programming interfaces (e.g. domain-specific languages or visual programming) in Games Engineering contexts, and documenting their effectiveness.

Courses (type, number of weekly contact hours, language — if other than German)

R (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 144 / 176
	data record Master (120 ECTS) Informatik - 2023	

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module title					Abbreviation	
Game F	Researc	ch Lab - Design			10-l=GRDE-182-m01	
Module	coord	inator		Module offered by		
holder	of the (Chair of Computer Scienc	e IX	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duration Module level O			Other prerequisites			
1 seme	1 semester graduate					
Conten	Contents					

The Game Research Labs are project-oriented, master-level courses. In accordance with the definition of Games Engineering, they concern themselves with the effective provision and the systematic application of principles, methods and tools for the development and application of comprehensive software systems for computer games. There are four different directions of Game Research Labs: Theory, Applications, Design and Architecture. All of them implement a scientific process during which the students develop a project based on preceding works and a novel idea or hypothesis worthwhile exploring. Typical steps in a Game Research Lab include a short literature survey, the development of a concept, its realisation and evaluation. The design of virtual worlds and games is the focus of the "Game Research Lab - Design". It especially considers the design, import and presentation of complex and novel representations of computer graphics, haptics and audio, their (partially) automatic generation, the conceptualisation and implementation of virtual environments and levels, their presentation to the user/player as well as the design of user interfaces and innovative game mechanics.

Intended learning outcomes

We recommend previous completion of basic courses in Games Engineering such as Interactive Computer Graphics, Human-Computer Interaction, Asset Development or Game Development (corresponds with GameLab I). The Game Research Labs empower the students to retrace current scientific works in great detail, to improve their research skills and to deepen their expertise with respect to specific challenges in Games Engineering. In terms of contents, the "Game Research Lab - Applications" comprises knowledge and skills in the development life cycle of games, in the interdisciplinary discourse needed for applications in certain domains and in consideration of platform-specific programming requirements. Knowledge and skills regarding the design of virtual worlds and their presentation are the focus of the "Game Research Lab - Design". To this end, the students learn, for example, how to work with a great number of existing software solutions in the field of design, to understand and programmatically work with widely spread and highly specialised data forms, as well as to support the interaction and presentation of contents by means of Computer Science technologies.

Courses (type, number of weekly contact hours, language — if other than German)

R (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h

Teaching cycle

--

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 146 / 176
	data record Master (120 ECTS) Informatik - 2023	

|--|

-

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Modul	e title			Abbreviation		
Game I	Game Research Lab - Applications				10-I=GRAP-182-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scien	ce IX	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	10 numerical grade					
Duration Module level			Other prerequisites			
1 seme	ster	graduate				
Contents						

The Game Research Labs are project-oriented, master-level courses. In accordance with the definition of Games Engineering, they concern themselves with the effective provision and the systematic application of principles, methods and tools for the development and application of comprehensive software systems for computer games. There are four different directions of Game Research Labs: Theory, Applications, Design and Architecture. All of them implement a scientific process during which the students develop a project based on preceding works and a novel idea or hypothesis worthwhile exploring. Typical steps in a Game Research Lab include a short literature survey, the development of a concept, its realisation and evaluation. The "Game Research Lab - Applications" aims at furthering or developing applications. While there are numerous viable application categories, entertainment and serious games are often considered first. Alternative categories of applications could, for in-

stance, be remote control systems or social virtual worlds. These application categories, in turn, open up a vast space of application domains: Consider science, education and engineering. This Game Research Lab also includes developing for specific target platforms such as specialised video consoles.

Intended learning outcomes

We recommend previous completion of basic courses in Games Engineering such as Interactive Computer Graphics, Human-Computer Interaction or Game Development (corresponds with GameLab I). The Game Research Labs empower the students to retrace current scientific works in great detail, to improve their research skills and to deepen their expertise with respect to specific challenges in Games Engineering. In terms of contents, the "Game Research Lab - Applications" comprises knowledge and skills in the development life cycle of games, in the interdisciplinary discourse needed for applications in certain domains and in consideration of platform-specific programming requirements.

Courses (type, number of weekly contact hours, language — if other than German)

R (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project report (10 to 15 pages) and presentation of project (15 to 30 minutes) Language of assessment: German and/or English creditable for bonus

Allocation of places

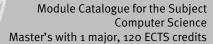
--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): GE. Cf. Section 3 Subsection 3 Sentence 8 FSB (subject-specific provisions).

Workload

300 h


Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Master's with 1 major Computer Science (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 148 / 176
	data record Master (120 ECTS) Informatik - 2023	

Module appears in

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) Computer Science (2021)

Master's degree (1 major) Computer Science (2023)

Module	e title			Abbreviation			
Practic	Practical Course - Algorithms and Theory 1						
Module	e coord	linator	Module offered b	y			
Dean of Studies Informatik (Computer Science)				Institute of Comp	uter Science		
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)			
10 numerical grade							
Duratio	on	Module level	Other prerequisit	es			
1 seme	ster	undergraduate					
Contents							
Comple	etion o	f a practical task.					
Intend	ed lear	ning outcomes					
The pra	actical	allows participants to	o work on a problem in	algorithm and theory	y in teams.		
Course	S (type, i	number of weekly contact h	ours, language — if other than (German)			
R (6)			,				
module is	s creditab (10 to 1 age of a	ole for bonus) 5 pages) and presen essessment: German	tation of results (15 to 3		not every semester, information on whether		
Allocat	ion of	places					
Additio	nal inf	ormation					
Focuse	s avail	able for students of t	he Master's programme	e Informatik (Compu	ter Science, 120 ECTS credits): AT.		
Worklo	ad						
300 h							
Teaching cycle							
<u></u>							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
							
Module	e appe	ars in					
Master	Master's degree (1 major) Computer Science (2018) Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)						

Module	e title			Abbreviation			
Practic	Practical Course - Algorithms and Theory 2						
Module	e coord	inator	Module offered by	1			
Dean of Studies Informatik (Computer Science)				Institute of Compu	uter Science		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)			
10 numerical grade							
Duratio	on	Module level	Other prerequisite	s			
1 seme	ster	undergraduate					
Contents							
Comple	etion of	a practical task.					
Intend	ed lear	ning outcomes					
The pra	actical a	allows participants to	work on a problem in a	lgorithm and theory	in teams.		
Course	S (type, r	number of weekly contact h	ours, language — if other than G	erman)			
R (6)							
module is	s creditab (10 to 1 age of a	le for bonus) 5 pages) and presen ssessment: German	tation of results (15 to 30		not every semester, information on whether		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Focuse	s availa	able for students of t	he Master's programme	Informatik (Compute	er Science, 120 ECTS credits): AT.		
Worklo	ad						
300 h							
Teaching cycle							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
-							
Module	e appea	ars in					
Master	Master's degree (1 major) Computer Science (2018) Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)						

Module	e title			Abbreviation			
Practic	Practical Course - Software Engineering 1 10-I-PSE1-182-mo1						
Module	e coordi	inator	Module offered by	/			
Dean of Studies Informatik (Computer Science)				Institute of Compu	uter Science		
ECTS	Metho	d of grading	Only after succ. co	mpl. of module(s)			
10 numerical grade							
Duratio	on	Module level	Other prerequisite	s			
1 seme	ster	undergraduate					
Contents							
Comple	etion of	a practical task.					
Intend	ed learn	ing outcomes					
The pra	actical a	llows participants to	work on a problem in s	oftware engineering	in teams.		
Course	S (type, n	umber of weekly contact ho	ours, language — if other than G	erman)			
R (6)							
report Langua	s creditabl	e for bonus) 5 pages) and presen ssessment: German	tation of results (15 to 30		not every semester, information on whether		
Allocat	ion of p	laces					
Additio	nal info	ormation					
Focuse	s availa	ıble for students of t	he Master's programme	Informatik (Comput	er Science, 120 ECTS credits): SE.		
Worklo	ad						
300 h							
Teaching cycle							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
							
Module	e appea	rs in					
Master's degree (1 major) Computer Science (2018) Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)							

Module	Nodule title Abbreviation						
Practic	al Coui	se - Software Engineerin	g 2		10-I-PSE2-182-m01		
Module	e coord	inator	Module offered by				
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Comput	ter Science		
ECTS	Meth	od of grading	Only after succ. con	ıpl. of module(s)			
10 numerical grade							
Duratio	n	Module level	Other prerequisites				
1 seme	ster	undergraduate					
Conten	ts						
Comple	etion of	f a practical task.					
Intend	ed lear	ning outcomes					
The pra	actical	allows participants to wo	rk on a problem in so	ftware engineering i	n teams.		
Course	S (type, r	number of weekly contact hours,	language — if other than Gei	man)			
R (6)							
		sessment (type, scope, langua ble for bonus)	ge — if other than German,	examination offered — if no	ot every semester, information on whether		
	ige of a	5 pages) and presentationssessment: German and bonus		minutes)			
Allocat	ion of	places					
Additio	nal inf	ormation					
Focuse	s avail	able for students of the N	- Naster's programme l	nformatik (Compute	r Science, 120 ECTS credits): SE.		
Worklo	ad						
300 h							
Teaching cycle							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Module appears in							
Master's degree (1 major) Computer Science (2018)							
	_	ee (1 major) Computer Sc					
Master's degree (1 major) Computer Science (2023)							

Module	e title			Abbreviation			
Practic	Practical Course - Internet Technology 1 10-I-PIT1-182-mo1						
Module	e coord	inator	Module offered by	1			
Dean of Studies Informatik (Computer Science)				Institute of Compu	iter Science		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)			
10 numerical grade							
Duratio	on	Module level	Other prerequisite	s			
1 seme	ster	undergraduate					
Contents							
Comple	etion of	a practical task.					
Intend	ed lear	ning outcomes					
The pra	actical a	allows participants to	work on a problem in i	nternet technology ir	n teams.		
Course	S (type, r	number of weekly contact ho	ours, language — if other than G	erman)			
R (6)							
module is	s creditab (10 to 1 age of a	le for bonus) 5 pages) and present ssessment: German	tation of results (15 to 30		not every semester, information on whether		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Focuse	s availa	able for students of t	he Master's programme	Informatik (Compute	er Science, 120 ECTS credits): IT.		
Worklo	ad						
300 h							
Teaching cycle							
r							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
-							
Module appears in							
Master	Master's degree (1 major) Computer Science (2018) Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)						

Module	e title	Abbreviation						
Practic	Practical Course - Internet Technology 2 10-I-PIT2-182-mo1							
Module	e coordinator	Module offered b	py .					
Dean o	f Studies Informatik (Comp	uter Science)	Institute of Comp	outer Science				
ECTS	Method of grading	Only after succ. c	ompl. of module(s)					
10 numerical grade								
Duratio	n Module level	Other prerequisit	es					
1 seme	ster undergraduate							
Contents								
Comple	etion of a practical task.							
Intend	ed learning outcomes							
The pra	actical allows participants t	o work on a problem in	internet technology	in teams.				
Course	S (type, number of weekly contact h	ours, language — if other than	German)					
R (6)								
report Langua credita	(10 to 15 pages) and preser age of assessment: German ble for bonus		so minutes)					
Additio	onal information							
		the Master's programm	e Informatik (Compu	ter Science, 120 ECTS credits): IT.				
Worklo								
300 h	,							
Teaching cycle								
Referre	ed to in LPO I (examination regu	llations for teaching-degree pro	grammes)					
Module	e appears in							
Master Master	Master's degree (1 major) Computer Science (2018) Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)							

Modul	odule title Abbreviation						
Practio	Practical Course - Intelligent Systems 1 10-I-PIS1-212-mo1						
Modul	e coord	linator	Module offered by				
Dean of Studies Informatik (Computer Science)			er Science)	Institute of Compu	ter Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites	,			
1 seme	ster	undergraduate					
Conter	Contents						
Compl	etion o	f a practical task.					
Intend	ed lear	ning outcomes					
The pra	actical	allows participants to w	ork on a problem in in	telligent systems in	teams.		
Course	S (type,	number of weekly contact hour	s, language — if other than Ge	rman)			
R (6)							
		sessment (type, scope, lang ble for bonus)	guage — if other than German,	examination offered — if n	ot every semester, information on whether		
	age of a	5 pages) and presentat Issessment: German an bonus		minutes)			
Allocat	tion of	places					
Additio	onal inf	ormation					
Focuse	s avail	able for students of the	Master's programme I	nformatik (Compute	er Science, 120 ECTS credits): KI		
Worklo	ad						
300 h							
Teaching cycle							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Modul	e appe	ars in					
		ee (1 major) Computer :	Science (2021)				
	Master's degree (1 major) Computer Science (2023)						
Mantaula danua (, majay) Cammutau Cajamaa (aaaa)							

C2 242 mo4						
Practical Course - Intelligent Systems 2 10-I-PIS2-212-mo1						
nce						
emester, information on whether						
ce, 120 ECTS credits): KI						
Master's degree (1 major) Computer Science (2021) Master's degree (1 major) Computer Science (2023)						

Module title Abbreviation							
Practic	Practical Course - Embedded Systems 1 10-I-PES1-182-mo1						
Module	e coord	inator		Module offered by			
Dean of Studies Informatik (Computer Science)				Institute of Compu	ter Science		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)			
10	numei	rical grade					
Duratio	n	Module level	Other prerequisites	 S			
1 seme	ster	undergraduate					
Conten	ts						
Comple	etion of	a practical task.					
Intend	ed learr	ning outcomes					
The pra	actical a	allows participants to	o work on a problem in e	mbedded systems ir	n teams.		
Course	S (type, n	umber of weekly contact ho	ours, language — if other than Ge	erman)			
R (6)							
report Langua	creditab (10 to 1	le for bonus) 5 pages) and presen' ssessment: German	tation of results (15 to 30		not every semester, information on whether		
Allocat	ion of p	olaces					
Additio	nal info	ormation					
Focuse	s availa	able for students of t	he Master's programme	Informatik (Compute	er Science, 120 ECTS credits): ES.		
Worklo	ad						
300 h							
Teachi	ng cycl	e					
Referre	d to in	LPO I (examination regul	lations for teaching-degree progr	ammes)			
Module	e appea	rs in					
Master	's degre	ee (1 major) Compute ee (1 major) Compute ee (1 major) Compute	er Science (2021)				

Module title Abbreviation							
Practic	Practical Course - Embedded Systems 2 10-I-PES2-182-mo1						
Module	e coord	inator		Module offered by			
Dean of Studies Informatik (Computer Science)				Institute of Compu	ter Science		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)			
10	nume	rical grade					
Duratio	n	Module level	Other prerequisites	<u> </u>			
1 seme	ster	undergraduate					
Conten	ts						
Comple	etion of	a practical task.					
Intend	ed learı	ning outcomes					
The pra	actical a	allows participants to	work on a problem in e	mbedded systems ir	n teams.		
Course	S (type, n	umber of weekly contact ho	ours, language — if other than Ge	erman)			
R (6)							
report Langua	creditab (10 to 1	le for bonus) 5 pages) and presen ssessment: German	tation of results (15 to 30		ot every semester, information on whether		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Focuse	s availa	able for students of t	he Master's programme	Informatik (Compute	er Science, 120 ECTS credits): ES.		
Worklo	ad						
300 h							
Teachi	ng cycl	e					
Referre	d to in	LPO I (examination regul	lations for teaching-degree progr	rammes)			
Module	e appea	ırs in					
Master	's degr	ee (1 major) Compute ee (1 major) Compute ee (1 major) Compute	er Science (2021)				

Module title Abbreviation							
Practic	Practical Course - Human Computer Interaction 1 10-I-PHCI1-182-mo1						
Module	e coord	inator		Module offered	by		
Dean of Studies Informatik (Computer Science)				Institute of Con	nputer Science		
ECTS	Metho	od of grading	Only after succ. c	ompl. of module(s))		
10	numei	rical grade					
Duratio	on	Module level	Other prerequisit	es			
1 seme	ster	undergraduate					
Conten	ıts						
Comple	etion of	a practical task.					
Intend	ed learr	ning outcomes					
The pra	actical a	allows participants to	work on a problem in	human computer i	nteractions in teams.		
Course	S (type, n	umber of weekly contact h	ours, language — if other than	German)			
R (6)							
report Langua	s creditab (10 to 1	le for bonus) 5 pages) and presen ssessment: German	tation of results (15 to 3		- if not every semester, information on whether		
Allocat	ion of p	olaces					
Additio	nal info	ormation					
Focuse	s availa	able for students of t	he Master's programm	e Informatik (Comp	outer Science, 120 ECTS credits): HCI.		
Worklo	ad						
300 h							
Teachi	ng cycl	е					
Referre	ed to in	LPO I (examination regu	lations for teaching-degree pro	grammes)			
Module	e appea	ırs in					
Master	's degre	ee (1 major) Compute ee (1 major) Compute ee (1 major) Compute	er Science (2021)				

Module title Abbreviation							
Practic	Practical Course - Human Computer Interaction 2 10-I-PHCl2-182-mo1						
Module	e coordinator		Module	offered by			
Dean o	f Studies Informatik (Comp	uter Science)	Institute	e of Computer Science			
ECTS	Method of grading	Only after suc	c. compl. of mo	odule(s)			
10	numerical grade						
Duratio	n Module level	Other prerequ	isites				
1 seme	ster undergraduate						
Conten	ts						
Comple	etion of a practical task.						
Intend	ed learning outcomes						
The pra	actical allows participants t	o work on a problem	in human com	nputer interactions in teams.			
Course	S (type, number of weekly contact h	ours, language — if other t	han German)				
R (6)							
report Langua credita	creditable for bonus) (10 to 15 pages) and presen age of assessment: German ble for bonus ion of places		to 30 minutes)				
Allocal	ion or places						
Additio	nal information						
		the Master's program	nme Informatik	(Computer Science, 120 ECTS credits): HCI.			
Worklo		are master o pregnan		. (00			
300 h							
	ng cycle						
	<u> </u>						
Referre	ed to in LPO I (examination regu	llations for teaching-degree	e programmes)				
	(. 5				
Module	appears in						
Master Master	's degree (1 major) Comput 's degree (1 major) Comput 's degree (1 major) Comput	er Science (2021)					

Modul	Module title Abbreviation						
Practio	Practical Course - Ethical Hacking Lab / Software 10-I-EHL1-212-m01						
Module coordinator				Module offered by	· ·		
holder	of the	Chair of Computer Science	ce II	Institute of Comput	ter Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ester	graduate					
Conter	nts						
Intend	ed lear	ning outcomes					
	_		- '				
Course	es (type, r	number of weekly contact hours,	language — if other than Ge	rman)			
R (6)							
Modul	e taugh	t in: English					
			m age-if other than German,	examination offered — if no	ot every semester, information on whether		
	_	le for bonus)		(, , , , , , , , , , , , , , , , , , ,			
		nation (approx. 60 to 120 t has to be passed	minutes) and report	(5 to 8 pages), weig	thted: written examination: 100%;		
	•	•	ginning of the course,	the written examina	ation may be replaced by an oral		
examir	nation o	of one candidate each (a			n in groups of 2 candidates (ap-		
		tes per candidate).					
_	age of a able for	ssessment: English					
	tion of						
Alluca	LIOII OI J	Jiaces					
Vqqiti	onal inf	ormation					
			Aastor's programmo l	nformatik (Computo	r Science, 120 ECTS credits): SEC		
Worklo		able for students of the h	naster's programme i	mormatik (Compute	1 Science, 120 LC13 cledits). SEC		
300 h							
	ng cycl	<u> </u>					
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Module appears in							
		ee (1 major) Computer So	cience (2021)				
Master	r's degr	ee (1 major) Computer So	cience (2023)				
Macta	Martine da mare (a maio) Commutes Caisana (a mar)						

Module title Abbreviation								
Practical Course - Ethical Hacking Lab / Networks					10-I-EHL2-212-m01			
Module coordinator				Module offered by	1			
holder	of the	Chair of Computer Sc	cience II	Institute of Compu	uter Science			
ECTS	· · · · · · · · · · · · · · · · · · ·		Only after succ. co	mpl. of module(s)				
10	nume	rical grade						
Durati	on	Module level	Other prerequisite	es				
1 seme	1 semester graduate							
Conte	Contents							
Intend	ed lear	ning outcomes						
			,					
Course	es (type, r	number of weekly contact h	ours, language — if other than G	erman)				
R (6)								
Modul	e taugh	t in: English						
Metho	d of ass	sessment (type, scope, l	anguage — if other than Germar	, examination offered $-$ if ${\sf r}$	not every semester, information on whether			
		ole for bonus)						
		nation (approx. 6o to t has to be passed	o 120 minutes) and repo	rt (5 to 8 pages), weig	ghted: written examination: 100%			
			beginning of the course	e, the written examin	ation may be replaced by an oral			
					on in groups of 2 candidates (ap-			
		tes per candidate).						
	age of a able for	ssessment: English						
	-							
Alloca	tion of _I	places						
	1 ! 6							
		ormation	de a Maratayla invasivana a	Informatile (Community	or Colored to ECTC and dita) CEC			
		able for Students of t	ne waster's programme	informatik (Compute	er Science, 120 ECTS credits): SEC			
Worklo	oad							
300 h		_						
теаспі	ng cycl	e						
		I DO I						
	ed to in	LPO I (examination regu	lations for teaching-degree prog	rammes)				
		•						
	e appea							
		ee (1 major) Comput						
waste	Master's degree (1 major) Computer Science (2023)							

Module title Abbreviation					Abbreviation	
Practic	Practical Course - Data Science 1				10-l=PDS1-232-m01	
Module	e coord	inator		Module offered by		
holder	of the (Chair of Computer Scienc	e X	Institute of Comput	er Science	
ECTS	Metho	od of grading	Only after succ. com	npl. of module(s)		
10	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ster	graduate				
Conten	ıts					
Comple	etion of	a practical task in Data	Science			
Intend	ed lear	ning outcomes				
The pra	actical a	allows participants to wo	rk on a problem in Da	ita Science in teams.	•	
Course	S (type, r	number of weekly contact hours,	language — if other than Ger	rman)		
R (6)						
module is	s creditab	le for bonus)			t every semester, information on whether	
Langua		5 pages) and presentatic ssessment: German and bonus		minutes)		
Allocat	tion of p	olaces				
	-					
Additio	onal inf	ormation				
Worklo	oad					
300 h						
Teachi	ng cycl	e				
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module appears in						
Master	Master's degree (1 major) Computer Science (2023)					
	Master's degree (1 major) Computer Science (2025)					
Master	Master's degree (1 major) Mathematical Data Science (2025)					

Modul	Module title Abbreviation						
Practic	Practical Course - Data Science 2 10-I=PDS2-232-mo1						
Modul	e coord	inator	Module offered by				
holder	of the (Chair of Computer Scienc	e X	Institute of Comput	er Science		
ECTS	Metho	od of grading	Only after succ. com	ıpl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate					
Conter	its						
Comple	etion of	a practical task in Data S	Science				
Intend	ed learı	ning outcomes					
The pra	actical a	allows participants to wo	rk on a problem in Da	ta Science in teams			
Course	S (type, r	number of weekly contact hours, l	anguage — if other than Ger	man)			
R (6)							
		sessment (type, scope, langua le for bonus)	ge — if other than German, e	examination offered — if no	ot every semester, information on whether		
Langua		5 pages) and presentatio ssessment: German and, bonus		minutes)			
Allocat	ion of p	olaces					
	-						
Additio	nal inf	ormation					
Worklo	ad						
300 h	1						
Teachi	ng cycl	e					
Referred to in LPO I (examination regulations for teaching-degree programmes)							
Module appears in							
	Master's degree (1 major) Computer Science (2023)						
Master	Master's degree (1 major) Computer Science (2025)						

Modul	Abbreviation Abbreviation						
Practio	Practical Course - Computer Science and Sustainability 1 10-I=PIN1-232-m01						
Module coordinator Module offered I							
holder of the Chair of Computer Science III				Institute of Compu	ter Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate					
Conter	ıts						
Compl	etion of	f a practical task in Comp	uter Science and Sus	stainability			
Intend	ed lear	ning outcomes					
The pra	actical a	allows participants to wo	rk on a problem in Co	mputer Science and	d Sustainability in teams.		
Course	S (type, r	number of weekly contact hours,	language — if other than Ge	rman)			
R (6)							
		sessment (type, scope, langua ole for bonus)	${\sf rge}-{\sf if}$ other than German,	examination offered — if n	ot every semester, information on whether		
Langua		5 pages) and presentationssessment: German and bonus		minutes)			
Allocat	tion of	places					
Additio	onal inf	ormation					
Focuse	s avail	able for students of the N	Master's programme l	nformatik (Compute	r Science, 120 ECTS credits): IN		
Worklo	ad						
300 h							
Teachi	ng cycl	e					
Referre	ed to in	LPO I (examination regulation	s for teaching-degree progra	immes)			
Modul	e appea	ars in					
Master	Master's degree (1 major) Computer Science (2023)						
		/					

Modul	Module title Abbreviation						
Practio	Practical Course - Computer Science and Sustainability 2 10-I=PIN2-232-m01						
Module coordinator Modul				Module offered by			
holder of the Chair of Computer Science III				Institute of Compu	ter Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
10	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	graduate					
Conter	ıts						
Compl	etion of	f a practical task in Comp	uter Science and Sus	stainability			
Intend	ed lear	ning outcomes					
The pra	actical	allows participants to wo	rk on a problem in Co	mputer Science and	d Sustainability in teams.		
Course	S (type, r	number of weekly contact hours,	language — if other than Ge	rman)			
R (6)							
		sessment (type, scope, langua ole for bonus)	${\sf rge}-{\sf if}$ other than German,	examination offered — if n	ot every semester, information on whether		
Langua		5 pages) and presentationssessment: German and bonus		minutes)			
Allocat	tion of	places					
Additio	onal inf	ormation					
Focuse	s avail	able for students of the N	Master's programme l	nformatik (Compute	r Science, 120 ECTS credits): IN		
Worklo	ad						
300 h							
Teachi	ng cycl	e					
Referre	ed to in	LPO I (examination regulation	s for teaching-degree progra	immes)			
Modul	e appea	ars in					
Master	's degr	ee (1 major) Computer So	ience (2023)				

Module title					Abbreviation	
Teleco	mmunio	cation Systems Lab			10-I=TEL-232-m01	
Module	e coord	inator		Module offered by		
Dean o	of Studie	es Informatik (Computer	Science)	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester graduate					

Contents

The students realise projects in popular research areas of telecommunications like, e.g.,

- satellite communications,
- non-terrestrial and highly dynamic networks,
- · joint communications and sensing,
- free-space optical communications and
- quantum communications.

Intended learning outcomes

Students will

- gain experience in project planning, organising tasks, setting goals, and managing project timelines,
- apply problem-solving strategies and critical thinking skills to overcome project challenges and find innovative solutions,
- develop effective teamworking skills, including communication, coordination and cooperation within a project team,
- acquire and enhance technical skills and knowledge relevant to the project's subject matter and requirements and
- effectively communicate project progress, findings and outcomes to team members and wider audiences.

Courses (type, number of weekly contact hours, language — if other than German)

R (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) oral examination of one candidate each (approx. 20 minutes) or
- b) oral examination in groups (max. 3 candidates, approx. 15 minutes each) or
- c) report (4 to 8 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): LR

Workload

300 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Module title					Abbreviation
Radar Signal Processing					10-LURI=RSP-232-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science VII			ce VII	Institute of Computer Science	
ECTS	Metho	Method of grading Only after succ. co		npl. of module(s)	
5	nume	nerical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		graduate			

Contents

- Introduction
- Fundamentals
- Wireless Propagation
- Digital Signal Processing
- Pulsed RADAR
- Continuous-Wave RADAR
- MIMO RADAR
- Further Topics

Intended learning outcomes

Students will

- understand the fundamental principles of RADAR systems, including waveform generation, propagation and target detection,
- apply statistical signal processing techniques for detection and estimation in RADAR systems,
- analyse and apply pulse-Doppler RADAR signal processing methods, including matched filtering and pulse compression,
- apply signal processing techniques specific to Continuous-Wave (CW) RADAR, such as Frequency Modulated CW (FMCW) RADAR, for range and velocity measurements, and
- analyse and optimise Multiple-Input Multiple-Output (MIMO) RADAR systems, including waveform design, transmit/receive beamforming and target localisation.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

_

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

-

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Module title					Abbreviation
Practical Computer Vision					10-I=PCV-232-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science IV			Institute of Computer Science	
ECTS	Meth	Method of grading Only after succ. cor		npl. of module(s)	
10	nume	numerical grade			
Duration M		Module level	Other prerequisites		
1 semester		graduate			
C					

Contents

Completion of a practical task in Computer Vision

Intended learning outcomes

The practical allows participants to work on a problem in Computer Vision in teams.

Courses (type, number of weekly contact hours, language — if other than German)

R (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) placement report (10 to 15 pages) and presentation of results (15 to 30 minutes) or
- b) written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): KI,L-R;HCI

Workload

300 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

					T .	
Module	odule title			Abbreviation		
Image Processing and Computational Photography Lab			10-I=PIP-232-m01			
Module coordinator Module offered by						
holder	nolder of the Chair of Computer Science IV Institute of		Institute of Comput	of Computer Science		
ECTS	CTS Method of grading C		Only after succ. compl. of module(s)			
10	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 seme	1 semester graduate					
Conten	ts					
Comple	etion of	f a practical task in Image	Processing and Com	nputational Photogra	iphy	
Intende	ed lear	ning outcomes				
The pra		allows participants to wo	rk on a problem in Im	age Processing and	Computational Photography in	
Course	S (type, r	number of weekly contact hours,	language — if other than Ger	rman)		
R (8) Module	R (8) Module taught in: German and/or English					
	Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)					
a) placement report (10 to 15 pages) and presentation of results (15 to 30 minutes) or b) written examination (approx. 60 to 120 minutes) If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate). Language of assessment: German and/or English creditable for bonus						

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Thesis

(30 ECTS credits)

Module title				Abbreviation		
Concluding Colloquium Computer Science					10-l-MA-MK-212-m01	
Module	e coord	inator		Module offered by		
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Comput	er Science	
ECTS	ECTS Method of grading Only after succ. c			ıpl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level Other prerequisite			;		
1 seme	ster	graduate				
Conten	ts					
Presen	tation a	and defence of the results	s of the Master's thes	is in an open discus	sion.	
Intend	ed learı	ning outcomes				
The stu	dents a	are able to present the re	sults of their Master's	s theses and defend	them in a discussion.	
Course	S (type, n	umber of weekly contact hours, l	anguage — if other than Ger	man)		
K (o)						
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)						
	final colloquium (approx. 60 minutes) Language of assessment: German and/or English					
Allocat	ion of p	olaces				
Additio	Additional information					
Workload						
150 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module appears in						
	Master's degree (1 major) Computer Science (2021)					
	Master's degree (1 major) Computer Science (2023)					
Master	Master's degree (1 major) Computer Science (2025)					

Module title Abbreviation Master's Thesis Computer Science 10-I-MA-161-m01					Abbreviation		
					10-I-MA-161-m01		
Module coordinator				Module offered by			
Dean o	of Studi	es Informatik (Comp	uter Science)	Institute of Compu	ter Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)			
25	nume	rical grade					
	Duration Module level Other prerequisites						
1 semester graduate			, ,				
Conter	nts	10					
Indepe	endent	research and work or	n a topic of computer scie	ence that was agreed	d upon with a lecturer.		
		ning outcomes	- p	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		
	ds that				nce and use the knowledge and result of their work in an accepta		
Course	es (type, i	number of weekly contact h	ours, language — if other than Ge	rman)			
Νο coι	ırses as	ssigned to module					
		sessment (type, scope, la ble for bonus)	anguage — if other than German,	examination offered — if n	ot every semester, information on whether		
		is (50 to 100 pages) assessment: German	and/or English				
Alloca	tion of	places					
Additio	onal inf	ormation					
Time to	o comp	lete: 6 months					
Worklo	oad						
750 h							
Teaching cycle							
Referre	ed to in	LPO I (examination regu	lations for teaching-degree progra	ammes)			
	,						
Modul	e appe	ars in					
		ee (1 major) Compute	er Science (2016)				
Master's degree (1 major) Computer Science (2017)							
Master's degree (1 major) Computer Science (2018)							
Maste	r's degr	ee (1 major) Compute	er Science (2021)				
	Anatonia de mare (a maio) Comunitar Caisman (a mai						

Master's degree (1 major) Computer Science (2023) Master's degree (1 major) Computer Science (2025)