Module Catalogue
for the Subject

Space Science and Technology
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2009
Responsible: Institute of Computer Science
Contents

The subject is divided into 3

Content and Objectives of the Programme 4

Abbreviations used, Conventions, Notes, In accordance with 5

Compulsory Courses 6

Space Science 7

 Introduction To Space Physics 8

Space Technology 9

 The object-oriented Approach and Java Programming 10
 CanSat Design Lab 11
 Internet Technologies 12
 Advanced Databases 13
 Space Dynamics 14
 Spacecraft System Design 15

Space Science 16

 Introduction To Space Physics 17

Space Technology 18

 The object-oriented Approach and Java Programming 19
 CanSat Design Lab 20
 Internet Technologies 21
 Advanced Databases 22
 Space Dynamics 23
 Spacecraft System Design 24

Focus 25

Engineering Track 26

Scientific Track 27

Nicht zugeordnet 28

The Dynamics and Regulation of Systems and Structures 29

Space Robotics 30

Space Robotics and Control 31

Space Science and Instrumentation 32

Space Automation and Regulation 33

An Introduction to Physical Space Research in Astrophysics, Space Science and Plan- 34
tology

Physical Space Advanced Studies in Astrophysics, Space Science and Instrumentati- 35
on

Atmospheric and Space Physics 36
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Space Science</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Space Technology</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Space Science</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>Space Technology</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Focus</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Engineering Track</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Scientific Track</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>Nicht zugeordnet</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>The Dynamics and Regulation of Systems and Structures</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Space Robotics</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Space Robotics and Control</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Space Science and Instrumentation</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Space Automation and Regulation</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>An Introduction to Physical Space Research in Astrophysics,</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Space Science and Planetology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Space Advanced Studies in Astrophysics, Space</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Science and Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric and Space Physics</td>
<td>30</td>
<td>36</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

No translation available.
Abbreviations used

Course types: \(E\) = field trip, \(K\) = colloquium, \(O\) = conversatorium, \(P\) = placement/lab course, \(R\) = project, \(S\) = seminar, \(T\) = tutorial, \(Ü\) = exercise, \(V\) = lecture

Term: \(SS\) = summer semester, \(WS\) = winter semester

Methods of grading: \(NUM\) = numerical grade, \(B/NB\) = (not) successfully completed

Regulations: \((L)ASPO\) = general academic and examination regulations (for teaching-degree programmes), \(FSB\) = subject-specific provisions, \(SFB\) = list of modules

Other: \(A\) = thesis, \(LV\) = course(s), \(PL\) = assessment(s), \(TN\) = participants, \(VL\) = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

frei

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

21-Jul-2010 (2010-27) examination regulations without modules (sections/sub-sections only)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses

(60 ECTS credits)
Space Science
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction To Space Physics</td>
<td>10-I-SP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Overview
2. Dynamics of charged particles in magnetic and electric fields
3. Elements of space plasma physics
4. Sun and heliosphere
5. Acceleration and transport of energetic particles in the heliosphere
6. Instruments for measuring energetic particles in space.

Intended learning outcomes

The students possess a fundamental knowledge about space physics and, in particular, the description of the dynamics of charged particles in the heliosphere and in space. They are familiar with the relevant parameters, their theoretical formulation and the methods to measure them.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

Space Technology
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The object-oriented Approach and Java Programming</td>
<td>10-I-OOA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish partner university in Master's degree programme</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the object-oriented programming language Java - not from a theoretical point of view but in a practice-oriented manner with the help of numerous examples and training exercises. The module includes detailed presentations of all parts of the programming language Java as well as the respective ways to use these.

Intended learning outcomes

The students are familiar with the basics of the programming language Java and are able to independently develop small applications.

Courses (type, number of weekly contact hours, language — if other than German)

Ü + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CanSat Design Lab</td>
<td>10-I-CSD-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VIII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

CanSat (now known as FloatSat) is an interdisciplinary project designed - not only - for SpaceMaster students. It is designed for students with different backgrounds, e. g. in computer science, electronics, mechanical engineering, aerospace technology, physics, mathematics. A satellite project is an interdisciplinary project that requires knowledge and skills in this as well as in numerous other fields. CanSat is thus an ideal platform to combine all available skills in a single project. It covers the design and development of the space segment control software and the ground segment control software: telemetry and telecommanding in wireless communication: space segment - ground segment, electrical subsystem (energy, batteries), mechanical construction.

Intended learning outcomes

The students are able to build and integrate into the inside of the sphere the power unit, a control computer, a payload (camera) and attitude control devices: Gyros and reaction wheel of a pico satellite. The software of a CanSat "satellite" includes a real-time operating system (provided by us), commanding (immediate and time-tagged commands), telemetry (real time and history data), attitude control, power control, payload control, image processing and radio links communication. The ground segment ought to be able to generate and send telecommands and to get and (graphically) display the telemetry.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Internet Technologies

Abbreviation

10-I-IT-092-m01

Module coordinator

holder of the Chair of Computer Science III

Module offered by

Institute of Computer Science

ECTS

3.50

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Structure and basic mechanisms of TCP/IP, internet routing, IP network management, wireless access, e.g. 3rd generation mobile networks, GSM technologies.

Intended learning outcomes

The students master the fundamentals of the structure, architecture and technology of the internet.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module: Advanced Databases

Abbreviation: 10-I-AD-092-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Module coordinator:
Dean of Studies Informatik (Computer Science)

Module offered by:
Institute of Computer Science

Duration: 1 semester

Module level: undergraduate

Contents:
Data warehouses and data mining; XML databases; web databases; introduction to Datalog.

Intended learning outcomes:
The students have an advanced knowledge about relational databases, XML and data mining.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places:
--

Additional information:
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Dynamics</td>
<td>10-I-SD-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Fundamental principles of astrodynamics, orientation control of satellites, sensors, actuators, control software, example realisations, spin-stabilised satellites, 3-axis stabilised satellites.

Intended learning outcomes
The students master the fundamentals of dynamic aspects of the design of spacecraft and are familiar with the essential sensors and actuators as well as their areas of use in spaceflight.

Courses *(type, number of weekly contact hours, language — if other than German)*
V + Ü *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)*
--

Allocation of places
--

Additional information
--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*
--
Module title	Abbreviation
Spacecraft System Design | 10-l-SSD-092-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science VII | Institute of Computer Science

ECTS | Method of grading | Only after succ. compl. of module(s)
7.50 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

Intended learning outcomes
The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses
(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Space Science
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction To Space Physics</td>
<td>10-I-SP-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
1. Overview
2. Dynamics of charged particles in magnetic and electric fields
3. Elements of space plasma physics
4. Sun and heliosphere
5. Acceleration and transport of energetic particles in the heliosphere
6. Instruments for measuring energetic particles in space.

Intended learning outcomes
The students possess a fundamental knowledge about space physics and, in particular, the description of the dynamics of charged particles in the heliosphere and in space. They are familiar with the relevant parameters, their theoretical formulation and the methods to measure them.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Space Technology
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The object-oriented Approach and Java Programming</td>
<td>10-I-0OA-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish partner university in Master's degree programme</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the object-oriented programming language Java - not from a theoretical point of view but in a practice-oriented manner with the help of numerous examples and training exercises. The module includes detailed presentations of all parts of the programming language Java as well as the respective ways to use these.

Intended learning outcomes

The students are familiar with the basics of the programming language Java and are able to independently develop small applications.

Courses (type, number of weekly contact hours, language — if other than German)

Ü + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
CanSat Design Lab | 10-I-CSD-072-m01

Module coordinator
holder of the Chair of Computer Science VIII

Module offered by
Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
4 | (not) successfully completed | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
CanSat (now known as FloatSat) is an interdisciplinary project designed - not only - for SpaceMaster students. It is designed for students with different backgrounds, e.g. in computer science, electronics, mechanical engineering, aerospace technology, physics, mathematics. A satellite project is an interdisciplinary project that requires knowledge and skills in this as well as in numerous other fields. CanSat is thus an ideal platform to combine all available skills in a single project. It covers the design and development of the space segment control software and the ground segment control software: telemetry and telecommanding in wireless communication: space segment - ground segment, electrical subsystem (energy, batteries), mechanical construction.

Intended learning outcomes
The students are able to build and integrate into the inside of the sphere the power unit, a control computer, a payload (camera) and attitude control devices: Gyros and reaction wheel of a pico satellite. The software of a CanSat "satellite" includes a real-time operating system (provided by us), commanding (immediate and time-tagged commands), telemetry (real time and history data), attitude control, power control, payload control, image processing and radio links communication. The ground segment ought to be able to generate and send telecommands and to get and (graphically) display the telemetry.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
--

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Technologies</td>
<td>10-I-IT-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Computer Science III

Module offered by

Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Structure and basic mechanisms of TCP/IP, internet routing, IP network management, wireless access, e.g. 3rd generation mobile networks, GSM technologies.

Intended learning outcomes

The students master the fundamentals of the structure, architecture and technology of the internet.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Databases</td>
<td>10-I-AD-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,50</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Data warehouses and data mining; XML databases; web databases; introduction to Datalog.

Intended learning outcomes

The students have an advanced knowledge about relational databases, XML and data mining.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Dynamics</td>
<td>10-I-SD-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of astrodynamics, orientation control of satellites, sensors, actuators, control software, example realisations, spin-stabilised satellites, 3-axis stabilised satellites.

Intended learning outcomes

The students master the fundamentals of dynamic aspects of the design of spacecraft and are familiar with the essential sensors and actuators as well as their areas of use in spaceflight.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Spacecraft System Design

Abbreviation
10-I-SSD-092-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS
7.50

Method of grading
umerical grade

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Intended learning outcomes

The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses
(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

--

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Focus
(30 ECTS credits)
Engineering Track
(30 ECTS credits)
Scientific Track
(30 ECTS credits)
Nicht zugeordnet
(60 ECTS credits)
The Dynamics and Regulation of Systems and Structures
(30 ECTS credits)
Space Robotics
(30 ECTS credits)
Space Robotics and Control
(30 ECTS credits)
Space Science and Instrumentation
(30 ECTS credits)
Space Automation and Regulation
(30 ECTS credits)
An Introduction to Physical Space Research in Astrophysics, Space Science and Planetology

(30 ECTS credits)
Physical Space Advanced Studies in Astrophysics, Space Science and Instrumentation

(30 ECTS credits)
Atmospheric and Space Physics

(30 ECTS credits)