Module Catalogue
for the Subject
Chemistry
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2010
Responsible: Faculty of Chemistry and Pharmacy
Contents
The subject is divided into 5
Content and Objectives of the Programme 6
Abbreviations used, Conventions, Notes, In accordance with 7
Compulsory Electives 8
 Inorganic Chemistry 9
 Compulsory Courses 10
 Advanced Inorganic Chemistry 11
 Compulsory Electives 12
 Bioinorganic Chemistry 13
 Solid state chemistry and inorganic materials 14
 Advanced organometallic chemistry and its application in homogeneous catalysis 15
 Organic Chemistry 16
 Compulsory Courses 17
 Modern Synthetic Method 18
 Advanced NMR- and Mass Spectrometry 19
 Advanced Research Project 1 20
 Compulsory Electives 21
 Modern Aspects of Natural Product Chemistry and Biological Chemistry 22
 Organic Functional Materials 23
 Organo- and Biocatalysis 24
 Supramolecular Chemistry (Basics) 25
 Bioorganic Chemistry 26
 Computational Chemistry 27
 Physical Chemistry 28
 Compulsory Courses 29
 Advanced Physical Chemistry 30
 Compulsory Electives 31
 Computational Chemistry 32
 Chemical Dynamics 33
 Nanoscale Materials 34
 Ultrafast spectroscopy and quantum-control 35
 Physical chemistry of supramolecular assemblies 36
 Physical Chemistry (Advanced Lab) 37
 Theoretical Chemistry 38
 Biochemistry 39
 Compulsory Courses 40
 Molecular Biology 41
 Molecular Biology Practical Course 42
 Compulsory Electives 43
 Biochemistry 44
 Biochemistry Lab 45
 Bioinorganic Chemistry 46
 Modern Aspects of Natural Product Chemistry and Biological Chemistry 47
 Organo- and Biocatalysis 48
 Practical course "Molecular Machines" for advanced students 49
 Practical course "Protein Degradation in Eukaryotes" for advanced students 50
 Practical course "RNA Biochemistry" for advanced students 51
 Practical course "Structural Biology" for advanced students 52
 Principles of drug design 53
 Clinical and Analytical Chemistry 54
Module Catalogue for the Subject Chemistry

Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Course Area</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Analytical Chemistry (practical course)</td>
<td>55</td>
</tr>
<tr>
<td>Functional Materials</td>
<td>56</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td></td>
</tr>
<tr>
<td>Materials Science 1 (Basic Introduction)</td>
<td>57</td>
</tr>
<tr>
<td>Organic Functional Materials</td>
<td>58</td>
</tr>
<tr>
<td>Lab Course Materials Science</td>
<td>59</td>
</tr>
<tr>
<td>Project Work</td>
<td>60</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>61</td>
</tr>
<tr>
<td>Chemically and biologically inspired Nanotechnology for Materials Synthesis</td>
<td>62</td>
</tr>
<tr>
<td>Materials Science 2 (The Major Material Groups)</td>
<td>63</td>
</tr>
<tr>
<td>Solid state chemistry and inorganic materials</td>
<td>64</td>
</tr>
<tr>
<td>Supramolecular Chemistry (Basics)</td>
<td>65</td>
</tr>
<tr>
<td>Nanoscale Materials</td>
<td>66</td>
</tr>
<tr>
<td>Molecular Materials (Lecture)</td>
<td>67</td>
</tr>
<tr>
<td>Homogeneous Catalysis</td>
<td>68</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>69</td>
</tr>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
<td>70</td>
</tr>
<tr>
<td>Organo- and Biocatalysis</td>
<td>71</td>
</tr>
<tr>
<td>Practical course "Homogeneous catalysis"</td>
<td>72</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>73</td>
</tr>
<tr>
<td>Modern Synthetic Method</td>
<td>74</td>
</tr>
<tr>
<td>Computational Chemistry</td>
<td>75</td>
</tr>
<tr>
<td>Advanced transition metal chemistry</td>
<td>76</td>
</tr>
<tr>
<td>Medicinal Chemistry</td>
<td>77</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>78</td>
</tr>
<tr>
<td>Principles of drug design</td>
<td>79</td>
</tr>
<tr>
<td>Practical course medicinal chemistry</td>
<td>80</td>
</tr>
<tr>
<td>Pharmaceutical/Medicinal Chemistry</td>
<td>81</td>
</tr>
<tr>
<td>Supramolecular Chemistry</td>
<td>82</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>83</td>
</tr>
<tr>
<td>Supramolecular Chemistry (Basics)</td>
<td>84</td>
</tr>
<tr>
<td>Supramolecular Chemistry (Practical Course)</td>
<td>85</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>86</td>
</tr>
<tr>
<td>Bioinorganic Chemistry</td>
<td>87</td>
</tr>
<tr>
<td>Organic Functional Materials</td>
<td>88</td>
</tr>
<tr>
<td>Bioorganic Chemistry</td>
<td>89</td>
</tr>
<tr>
<td>Computational Chemistry</td>
<td>90</td>
</tr>
<tr>
<td>Nanoscale Materials</td>
<td>91</td>
</tr>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>92</td>
</tr>
<tr>
<td>Principles of drug design</td>
<td>93</td>
</tr>
<tr>
<td>Theoretical Chemistry</td>
<td>94</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>95</td>
</tr>
<tr>
<td>Theoretical Chemistry</td>
<td>96</td>
</tr>
<tr>
<td>Programming in Theoretical Chemistry</td>
<td>97</td>
</tr>
<tr>
<td>Theoretical Chemistry - Project work</td>
<td>98</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>99</td>
</tr>
<tr>
<td>Computational Chemistry</td>
<td>100</td>
</tr>
<tr>
<td>Principles of drug design</td>
<td>101</td>
</tr>
<tr>
<td>Compulsory Electives Additional Qualifications</td>
<td>102</td>
</tr>
<tr>
<td>Chemically and biologically inspired Nanotechnology for Materials Synthesis</td>
<td>103</td>
</tr>
<tr>
<td>Materials Science 1 (Basic Introduction)</td>
<td>104</td>
</tr>
<tr>
<td>Materials Science 2 (The Major Material Groups)</td>
<td>105</td>
</tr>
<tr>
<td>Toxicology and legal studies</td>
<td>106</td>
</tr>
<tr>
<td>Theoretical and legal studies</td>
<td>107</td>
</tr>
<tr>
<td>Module</td>
<td>ECTS</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>108</td>
</tr>
<tr>
<td>Biochemistry Lab</td>
<td>109</td>
</tr>
<tr>
<td>Advanced Inorganic Chemistry</td>
<td>110</td>
</tr>
<tr>
<td>Bioinorganic Chemistry</td>
<td>111</td>
</tr>
<tr>
<td>Solid state chemistry and inorganic materials</td>
<td>112</td>
</tr>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
<td>113</td>
</tr>
<tr>
<td>Modern Synthetic Method</td>
<td>114</td>
</tr>
<tr>
<td>Advanced NMR- and Mass Spectrometry</td>
<td>115</td>
</tr>
<tr>
<td>Advanced Research Project 1</td>
<td>116</td>
</tr>
<tr>
<td>Modern Aspects of Natural Product Chemistry and Biological Chemistry</td>
<td>117</td>
</tr>
<tr>
<td>Organic Functional Materials</td>
<td>118</td>
</tr>
<tr>
<td>Organo- and Biocatalysis</td>
<td>119</td>
</tr>
<tr>
<td>Supramolecular Chemistry (Basics)</td>
<td>120</td>
</tr>
<tr>
<td>Bioorganic Chemistry</td>
<td>121</td>
</tr>
<tr>
<td>Computational Chemistry</td>
<td>122</td>
</tr>
<tr>
<td>Advanced Physical Chemistry</td>
<td>123</td>
</tr>
<tr>
<td>Chemical Dynamics</td>
<td>124</td>
</tr>
<tr>
<td>Nanoscale Materials</td>
<td>125</td>
</tr>
<tr>
<td>Ultrafast spectroscopy and quantum-control</td>
<td>126</td>
</tr>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>127</td>
</tr>
<tr>
<td>Physical Chemistry (Advanced Lab)</td>
<td>128</td>
</tr>
<tr>
<td>Theoretical Chemistry</td>
<td>129</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>130</td>
</tr>
<tr>
<td>Molecular Biology Practical Course</td>
<td>131</td>
</tr>
<tr>
<td>Practical course "Molecular Machines" for advanced students</td>
<td>132</td>
</tr>
<tr>
<td>Practical course "Protein Degradation in Eukaryotes" for advanced students</td>
<td>133</td>
</tr>
<tr>
<td>Practical course "RNA Biochemistry" for advanced students</td>
<td>134</td>
</tr>
<tr>
<td>Practical course "Structural Biology" for advanced</td>
<td>135</td>
</tr>
<tr>
<td>Principles of drug design</td>
<td>136</td>
</tr>
<tr>
<td>Clinical and Analytical Chemistry</td>
<td>137</td>
</tr>
<tr>
<td>Clinical and Analytical Chemistry (practical course)</td>
<td>138</td>
</tr>
<tr>
<td>Lab Course Materials Science</td>
<td>139</td>
</tr>
<tr>
<td>Project Work</td>
<td>140</td>
</tr>
<tr>
<td>Molecular Materials (Lecture)</td>
<td>141</td>
</tr>
<tr>
<td>Practical course "Homogeneous catalysis"</td>
<td>142</td>
</tr>
<tr>
<td>Advanced transition metal chemistry</td>
<td>143</td>
</tr>
<tr>
<td>Practical course medicinal chemistry</td>
<td>144</td>
</tr>
<tr>
<td>Pharmaceutical/Medicinal Chemistry</td>
<td>145</td>
</tr>
<tr>
<td>Supramolecular Chemistry (Practical Course)</td>
<td>146</td>
</tr>
<tr>
<td>Programming in Theoretical Chemistry</td>
<td>147</td>
</tr>
<tr>
<td>Theoretical Chemistry - Project work</td>
<td>148</td>
</tr>
<tr>
<td>Tutoring 1 (practical course)</td>
<td>149</td>
</tr>
<tr>
<td>Tutoring 2 (practical course)</td>
<td>150</td>
</tr>
<tr>
<td>Foreign Studies (short)</td>
<td>151</td>
</tr>
<tr>
<td>Foreign Studies (long)</td>
<td>152</td>
</tr>
</tbody>
</table>

Thesis

Master's Thesis 153

Master's Thesis 154
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Electives</td>
<td>90</td>
<td>8</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Physical Chemistry</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>15</td>
<td>43</td>
</tr>
<tr>
<td>Functional Materials</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>Homogeneous Catalysis</td>
<td>25</td>
<td>69</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>5</td>
<td>74</td>
</tr>
<tr>
<td>Medicinal Chemistry</td>
<td>25</td>
<td>78</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>25</td>
<td>79</td>
</tr>
<tr>
<td>Supramolecular Chemistry</td>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>10</td>
<td>84</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>15</td>
<td>87</td>
</tr>
<tr>
<td>Theoretical Chemistry</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Compulsory Electives Additional Qualifications</td>
<td>15</td>
<td>103</td>
</tr>
<tr>
<td>Thesis</td>
<td>30</td>
<td>153</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

The Master's program in Chemistry is offered by the Faculty of Chemistry and Pharmacy of the JMU as a fundamentally-oriented course with the degree of "Master of Science" (M.Sc.), in the context of a consecutive Bachelor's and Master's degree program.

The Master's course prepares students for scientific as well as doctoral work in chemistry and the eventual award of the degree Dr. rer. nat. The aim of the training is to provide students with in-depth knowledge of scientific work in the research and application of chemistry and the associated basic concepts. Through the education and training of analytical thinking, students should acquire the ability to independently apply the basic knowledge obtained earlier in their Bachelor studies and to transfer it to, and later familiarize themselves with, a wide variety of new tasks.

Through the thesis, students should show that they are able to deal with an experimental or theoretical task in a thematically-limited extent using known methods and from a scientific point of view. The Master's examination intends to determine whether the candidate or the candidate has an overview of the relationships in chemistry, and has the ability to apply the learned scientific methods. It allows the acquisition of an internationally comparable degree in the field of chemistry and provides a professional qualification to prepare for future work in research and development.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

14-Jul-2010 (2010-31)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Electives
(90 ECTS credits)

Divided up into 3 focus subjects (25 ECTS credits each) + additional qualifications (15 ECTS credits).
Inorganic Chemistry
(25 ECTS credits)
Compulsory Courses
(20 ECTS credits)
Advanced Inorganic Chemistry

Abbreviation: 08-ACM1-102-m01

Module coordinator: Director of the Institute of Inorganic Chemistry
Module offered by: Institute of Inorganic Chemistry

ECTS: 20
Method of grading: Only after successful completion of module(s)

Duration: 2 semester
Module level: Graduate
Other prerequisites: --

Contents
This module discusses advanced topics in main group chemistry and transition metal chemistry. It focuses on special compounds of the main group elements (MGEs), bonding situations of MGEs and MGE compounds, the chemistry of transition metals and coordination chemistry. The course gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in inorganic chemistry. The focus will be on working under inert atmospheres, purification methods, spectral analysis and crystallography. Students are expected to conduct their work independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes
Students are able to characterise and explain special compounds of the main group elements. They can describe the chemical properties of transition metals and analyse the structure as well as chemical and physical aspects of coordination compounds. Students are able to use advanced synthesis and analytical methods in inorganic chemistry in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 08-ACM1-1-102: S + S (no information on SWS (weekly contact hours) and course language available)
- 08-ACM1-2-102: P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-ACM1-1-102: Inorganic Chemistry for advanced students
- 10 ECTS, Method of grading: numerical grade
- a) 1 to 3 written examinations (90 to 120 minutes each) or b) oral examination of one candidate each (30 minutes) or c) oral examination in groups (groups of 2, 45 minutes)
- Language of assessment: German or English

Assessment in module component 08-ACM1-2-102: Inorganic Chemistry practical course for advanced
- 10 ECTS, Method of grading: not successfully completed
- practical work with lab report (20 pages) and talk (15 minutes)
- Language of assessment: German or English

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Compulsory Electives
(5 ECTS credits)
Module title

Bioinorganic Chemistry

Abbreviation

08-ACM2-102-m01

Module coordinator

lecturer of seminar "Anorganische Aspekte der Biochemie und Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry)

Module offered by

Institute of Inorganic Chemistry

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes

Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Courses

<table>
<thead>
<tr>
<th>type</th>
<th>number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>type</th>
<th>scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.</td>
</tr>
<tr>
<td>Language of assessment: German or English</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid state chemistry and inorganic materials</td>
<td>08-ACM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture of seminar "Festkörperchemie and Anorganische Materialien" (Solid State Chemistry and Inorganic Materials)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides an introduction to solid-state chemistry. It focuses on the structure, chemical and physical properties, synthesis methods and selected materials of solids.

Intended learning outcomes

Students are able to describe the structure and properties of solids. They can explain methods for solid-state synthesis. They can describe important aspects of selected materials regarding the corresponding solids.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
<td>08-HKM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lecturer of the seminar "Spezielle Metallorganische Chemie und deren Anwendung in der Homogenkatalyse"

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This module examines elementary organic compounds of transition metals with homogeneous catalytic applications.

Intended learning outcomes

Students can describe and analyse the structure, reactivity and analysis of elementary organic compounds. They are able to characterise special substance classes. They can formulate homogeneous catalysis reactions.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course. Language of assessment: German or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Organic Chemistry

(25 ECTS credits)
Compulsory Courses
(15 ECTS credits)
Module title: Modern Synthetic Method
Abbreviation: 08-OCM-SYNT-102-m01
Module coordinator: Lecturer of the seminar
Module offered by: Institute of Organic Chemistry
ECTS: 5
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: Graduate
Other prerequisites: Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents:
This module discusses modern stereoselective synthesis methods. It focuses on selected total syntheses, organometallic chemistry and catalysis.

Intended learning outcomes:
Students are able to stereoselectively plan complex chemical syntheses and to stereochemically analyse them. They can explain total syntheses. They can describe aspects of organometallic chemistry and catalysis in synthesis chemistry.

Courses:
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.
Language of assessment: German or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced NMR- and Mass Spectrometry</td>
<td>08-OCM-NMRMS-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lab course supervisor

Module offered by

Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This module equips students with an advanced knowledge of NMR and mass spectrometry. It offers deeper insights into the theoretical principles of the two measuring techniques and includes exercises that give students the opportunity to learn how to evaluate complicated spectra and use a spectrometer.

Intended learning outcomes

Students are able to discuss NMR and mass spectroscopy demonstrating a high degree of expertise in the field. They are able to experiment with both spectrometers and analyse complicated spectra.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Research Project 1</td>
<td>08-OCM-AKP1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Organic Chemistry and learn some advanced synthesis and analytical methods.

Intended learning outcomes

Students are able to describe and use some of the synthesis and analytical methods typically used by the research group as well as to describe theoretical aspects.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (approx. 15 minutes) and log (approx. 15 to 20 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives

(10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Aspects of Natural Product Chemistry and Biological Chemistry</td>
<td>08-OCM-NAT-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Method of grading

- Only after succ. compl. of module(s)

Duration

1 semester

Other prerequisites

--

Contents

This module discusses advanced topics in natural product chemistry and biological chemistry.

Intended learning outcomes

Students are able to discuss advanced topics in natural product chemistry and biological chemistry.

Courses

- S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

- Chemistry Master's: no restrictions. Biochemistry Master's: 20 places. Places will be allocated by lot.

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Functional Materials</td>
<td>08-OCM-FM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organische Funktionsmaterialien"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in organic functional materials. It focuses on basic physical effects, organic solids, the application of organic functional materials as well as organic and metal-organic polymer chemistry.

Intended learning outcomes

Students are able to explain the basic physical properties of organic functional materials. They are able to name and characterise organic solids and their applications in modern chemistry. Students are able to outline the fundamental principles of organic and metal-organic polymer chemistry and to name polymers of technological importance.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Lecturer of the seminar "Organo- and Biokatalyse"
Institute of Organic Chemistry

ECTS | **Method of grading** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration | **Module level** |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Supramolecular Chemistry (Basics)
Abbreviation | 08-SCM1-102-m01

Module coordinator | Module offered by
Lecturer of lecture "Organischen Chemie" | Faculty of Chemistry and Pharmacy

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
This module introduces students to the fundamental principles of supramolecular chemistry. It focuses on interactions between molecules, molecular recognition by receptors, complexes, supramolecular polymers, coordination polymers and networks, liquid crystals, self-assembly in aqueous media, synthetic ion channels and modern applications of supramolecular chemistry.

Intended learning outcomes
Students are able to explain interactions between molecules demonstrating a high degree of expertise in the field as well as to describe the formation, structure and polymers of coordination compounds. They are able to describe the self-assembly of polymers in aqueous media as well as to identify the characteristics of synthetic ion channels. They can name modern applications of supramolecular chemistry.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes) or oral examination of one candidate each (approx. 20 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioorganic Chemistry</td>
<td>08-SCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Bioorganische Chemie" (Bioorganic Chemistry)</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

This module discusses topics at the interface of organic chemistry, biology and medicine. It focuses on molecular interactions and recognition, molecular diversity, active agent development, new aspects of DNA, RNA, proteins and carbohydrates.

Intended learning outcomes

Students are able to describe molecular interactions and detection mechanisms of bioorganic chemistry. They can explain the molecular diversity of biological systems. They can characterise the fabrication of agents. They can describe modern aspects of DNA, RNA, proteins and carbohydrates.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Chemistry</td>
<td>08-TCM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Computational Chemistry"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

The module introduces students to computational chemistry.

Intended learning outcomes

Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Physical Chemistry
(25 ECTS credits)
Compulsory Courses

(10 ECTS credits)
Module title: Advanced Physical Chemistry
Abbreviation: 08-PCM1-102-m01

Module coordinator: Lecturer of seminar "Laserspektroskopie" (Laser Spectroscopy)
Module offered by: Institute of Physical and Theoretical Chemistry

ECTS: 10
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: Graduate
Other prerequisites: --

Contents: This module introduces students to the fundamental principles of laser spectroscopy. It discusses absorption and emission spectroscopy. In addition, the module gives students the opportunity to use modern experimental methods in physical chemistry in the laboratory. After a safety briefing, the students autonomously conduct experiments in the laboratory. Students will be expected to take tests and write lab reports to demonstrate their knowledge.

Intended learning outcomes: Students are able to explain the components and operating principles of lasers as well as the optical principles of laser technology. They are able to describe the principles of absorption and emission spectroscopy. Students have developed a high level of proficiency in modern experimental methods in physical chemistry. They are able to analyse the resulting measurements and write a lab report.

Courses: This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 08-PCM1-1-102: S + Ü (no information on SWS (weekly contact hours) and course language available)
- 08-PCM1-2-102: P (no information on SWS (weekly contact hours) and course language available)

Method of assessment: Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

- Assessment in module component 08-PCM1-1-102: Laser Spectroscopy Laser Spectroscopy
 - 5 ECTS, Method of grading: numerical grade
 - Written examination (90 minutes) or oral examination (20 minutes)
 - Language of assessment: German or English

- Assessment in module component 08-PCM1-2-102: Advanced Physical Chemistry (Lab)
 - 5 ECTS, Method of grading: (not) successfully completed
 - Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 15 minutes), log (approx. 15 pages)
 - Language of assessment: German or English

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Compulsory Electives

(15 ECTS credits)
Computational Chemistry

Abbreviation

08-TCM2-102-m01

Module coordinator

Lecturer of lecture "Computational Chemistry"

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS

5

Method of grading

Numerical grade

Duration

1 semester

Module level

Graduate

Other prerequisites

Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

The module introduces students to computational chemistry.

Intended learning outcomes

Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses

(S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO

(examination regulations for teaching-degree programmes)
Module title
Chemical Dynamics

Abbreviation
08-PCM2-102-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module gives students the opportunity to explore advanced topics in chemical kinetics and reaction dynamics in more detail. It discusses methods and models for investigating and describing chemical reactions.

Intended learning outcomes
Students are able to discuss advanced topics in chemical kinetics and reaction dynamics. They can describe methods and models for the investigation of chemical reactions.

Courses
<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + Ü (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment
<table>
<thead>
<tr>
<th>type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscale Materials</td>
<td>08-PCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Nanoskalige Materialien"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in nanoscale materials. It focuses on the structure, properties, fabrication, modern characterisation methods and application areas of nanoscale materials.

Intended learning outcomes

Students are able to characterise nanoscale materials. They are able to name analytical methods and application areas of nanoscale materials.

Courses

(type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Ultrafast spectroscopy and quantum-control

Abbreviation
08-PCM4-102-m01

Module coordinator
Lecturer of the seminar "Ultrakurzzeitspektroskopie and Quantenkontrolle"

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes
Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

Courses
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>08-PCM5-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Physikalische Chemie Supramolekularer Strukturen"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module examines the basic interactions between molecules. It discusses the formation and physical-chemical properties of aggregates as well as key applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain the basic interactions between molecules demonstrating a high degree of expertise in the field. They can describe the formation and physical-chemical properties of aggregates. They can name modern applications of supramolecular chemistry.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + Ü</td>
<td>no information on SWS (weekly contact hours) and course language available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

- written examination (90 minutes) and/or oral examination of one candidate each (20 minutes) and/or talk (30 minutes)
- Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry (Advanced Lab)</td>
<td>08-PCM6-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturers</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Physical Chemistry and learn some advanced synthesis and analytical methods.

Intended learning outcomes

Students have become proficient in the research methods typically used by the relevant physical chemistry research group. They are able to analyse their findings and thus help answer topical questions in physical chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation (20 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Theoretical Chemistry | 08-TCM1-102-m01

Module coordinator | Module offered by
lecturer of lecture "Theoretische Chemie" | Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents
The module introduces students to theoretical chemistry.

Intended learning outcomes
Students are able to describe the mathematical and physical principles underlying the quantum chemical and quantum dynamical approaches of theoretical chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (90 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Biochemistry
(25 ECTS credits)
Compulsory Courses

(10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology</td>
<td>08-BC-MOL-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Biochemistry

Module offered by

Chair of Biochemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

The module covers specific topics of molecular physiology and functional biochemistry in lectures and exercises.

Intended learning outcomes

Students have developed a sound knowledge of molecular biology.

Courses

Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

1 written examination (90 minutes) or 2 written examinations (60 to 90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Molecular Biology Practical Course

Abbreviation
08-BC-MOLP-102-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
The module provides practical skills in the fields of recombinant engineering and characterization of macromolecular complexes, current biomolecular techniques, analysis of biochemical processes in vivo, and up-to-date imaging techniques.

Intended learning outcomes
The student has knowledge of molecular biology and is able to apply the contents in practical experiments.

Courses

P
(no information on SWS (weekly contact hours) and course language available)

Method of assessment

pre/post-experiment examination talks (Vor-/Nachtestate, approx. 15 minutes), log (approx. 5 to 10 pages)
Language of assessment: German or English

Allocation of places
Number of places: 12. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas:
Quota 1 (80% of places): grade achieved in module 08-BC; among applicants with the same grade, places will be allocated by lot.
Quota 2 (20% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Additional information

Referred to in LPO 1
(examination regulations for teaching-degree programmes)

Compulsory Electives
(15 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>08-BC-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

The module imparts the basic knowledge of biochemistry by lectures and in-depth tutorials.

Intended learning outcomes

Students have become familiar with the fundamental principles of biochemistry. They are able to describe the key biochemical processes in cellular systems.

Courses (type, number of weekly contact hours, language — if other than German)

- V + Ü + V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

- --

Additional information

- --

Referred to in LPO I (examination regulations for teaching-degree programmes)

- --
Module title
Biochemistry Lab

Abbreviation
08-BCP-092-m01

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
5

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
In this module the basics of scientific biochemical experimentation shall be practiced in practical exercises.

Intended learning outcomes
After participating in the practical exercises the students master basic biochemical methods and are able to purposefully apply them.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
pre/post-experiment examination talks (Vortestate and Nachtestate, approx. 15 minutes each), practical work (log, approx. 5 to 10 pages)
Assessment offered: once a year, summer semester

Allocation of places
Number of places: 24. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (80% of places): grade achieved in module 08-BC; among applicants with the same grade, places will be allocated by lot. Quota 2 (20% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
--
Module title

| Bioinorganic Chemistry | 08-ACM2-102-m01 |

Module coordinator

| Abbreviation | Institute of Inorganic Chemistry |

| Lecturer of seminar "Anorganische Aspekte der Biochemie and Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry) |

ECTS

| 5 | numerical grade |

Method of grading

| Only after succ. compl. of module(s) |

Duration

| 1 semester | graduate |

Other prerequisites

| --- |

Contents

This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes

Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Courses

| (type, number of weekly contact hours, language — if other than German) |

| S (no information on SWS (weekly contact hours) and course language available) |

Method of assessment

| (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus) |

| a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course. Language of assessment: German or English |

Allocation of places

| --- |

Additional information

| --- |

Referred to in LPO I (examination regulations for teaching-degree programmes)

| --- |
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Aspects of Natural Product Chemistry and Biological Chemistry</td>
<td>08-OCM-NAT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in natural product chemistry and biological chemistry.

Intended learning outcomes

Students are able to discuss advanced topics in natural product chemistry and biological chemistry.

Courses

(S type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

Chemistry Master's: no restrictions. Biochemistry Master's: 20 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organo- and Biokatalyse"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses

(type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Molecular Machines" for advanced students</td>
<td>08-BC-VPMM-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to explore a research topic. Selected methods and topics in molecular biology and biochemistry; cloning, mutagenesis, protein expression and purification, RNA-protein and protein-protein interactions, isolation and functional analysis of macromolecular complexes.

Intended learning outcomes
The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Protein Degradation in Eukaryotes" for advanced students</td>
<td>08-BC-VPPD-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic in the field of protein degradation in eukaryotes.

Intended learning outcomes

The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "RNA Biochemistry" for advanced students</td>
<td>08-BC-VPRB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic in the field of RNA biochemistry. Ribosomes as "molecular machines", regulatory mechanisms of eukaryotic protein biosynthesis. Gradient centrifugation, in vitro translation in different cell-free systems.

Intended learning outcomes

Students are able to explore a specific research topic and deliver an oral presentation on the results of their work. They are able to familiarise themselves with different mechanisms of general and specific translation control with the help of different methods as well as to present their findings in an appropriate and understandable manner.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Practical course "Structural Biology" for advanced

| Abbreviation | 08-BC-VPSB-102-m01 |

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module discusses cloning and the expression of protein constructs for crystallisation. It teaches students the fundamental principles and techniques of crystallisation and crystal optimisation as well as crystallographic data collection.

Intended learning outcomes
Students have developed an understanding of the method of selecting protein constructs for crystallisation. They master fundamental skills and techniques for protein crystallisation as well as data collection and processing.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
log (approx. 20 pages) and talk (approx. 15 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of drug design</td>
<td>08-MCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes

The student masters theoretical and experimental methods and aspects of drug design.

Courses

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation with discussion (approx. 30 minutes)

Language of assessment: German or English

Allocation of places

Chemistry Master’s and Mathematics Master’s: no restrictions. Biochemistry Master’s: 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Analytical Chemistry</td>
<td>08-PH-KAC-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers specific topics of clinical analytical chemistry.

Intended learning outcomes

Students have developed an advanced knowledge of molecular biology.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Analytical Chemistry (practical course)</td>
<td>08-PH-KACP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers practical topics in clinical chemistry and clinical diagnostics as well as the related analytical methods.

Intended learning outcomes

Students have developed a knowledge of clinical analytical chemistry and are able to apply it to practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

examination talks (Testate, approx. 15 minutes each), log (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Functional Materials
(25 ECTS credits)
Compulsory Courses

(20 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 1 (Basic Introduction)</td>
<td>08-FS1-101-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents
This module discusses the fundamental relations between chemical bonding, the structure, the microstructure and the properties of materials.

Intended learning outcomes
Students have become familiar with the fundamental relations between chemical bonding, the structure, the microstructure and the properties of materials. They have developed the ability to apply them to research problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (90 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

Module: Organic Functional Materials

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Functional Materials</td>
<td>08-OCM-FM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organische Funktionsmaterialien"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in organic functional materials. It focuses on basic physical effects, organic solids, the application of organic functional materials as well as organic and metal-organic polymer chemistry.

Intended learning outcomes

Students are able to explain the basic physical properties of organic functional materials. They are able to name and characterise organic solids and their applications in modern chemistry. Students are able to outline the fundamental principles of organic and metal-organic polymer chemistry and to name polymers of technological importance.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours, Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

- a) 1 to 3 written examinations (60 or 90 minutes) or
- b) oral examination of one candidate each (20 minutes) or
- c) oral examination in groups (groups of 2, 30 minutes).

Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Course Materials Science</td>
<td>08-FMM-MP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer specialisation subject Funktionsmaterialien (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Ten selected experiments in materials science.

Intended learning outcomes

Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (15 minutes), assessment of practical performance, log (5 to 10 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Work</td>
<td>08-FMM-PA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic under the guidance of a supervisor and to describe their findings.

Intended learning outcomes

Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Talk (approx. 15 minutes) and log (approx. 15 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Compulsory Electives

(5 ECTS credits)
Module title
Chemically and biologically inspired Nanotechnology for Materials Synthesis

Abbreviation
08-NT-101-m01

Module coordinator
holder of the Chair of Chemical Technology of Material Synthesis

Module offered by
Chair of Chemical Technology of Material Synthesis

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module provides an introduction to the synthesis methods of sol-gel chemistry and discusses the methods of analysis used to characterise the generated materials. It also discusses the fundamental principles of biomineralisation and uses examples to introduce students to bio-inspired material synthesis.

Intended learning outcomes
Students have developed an advanced knowledge of sol-gel chemistry and biomineralisation.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 2 module components. Information on courses will be listed separately for each module component.

• 08-NT-1-101: V (no information on SWS (weekly contact hours) and course language available)
• 08-NT-2-101: V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-NT-1-101: Chemically and biologically inspired Nanotechnology for Materials Synthesis
• 2 ECTS, Method of grading: numerical grade
• oral examination (approx. 15 minutes)

Assessment in module component 08-NT-2-101: From Biomineralisation to biologically inspired Materials Synthesis
• 3 ECTS, Method of grading: numerical grade
• oral examination (approx. 20 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 2 (The Major Material Groups)</td>
<td>08-FS2-101-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module deals with production and properties of the most important materials groups.

Intended learning outcomes

The students possess comprehensive knowledge about fabrication and properties of the major classes of materials and are able to apply this to scientific problems.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 90 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title
Solid state chemistry and inorganic materials

Abbreviation
08-ACM3-102-m01

Module coordinator
lecturer of seminar "Festkörperchemie and Anorganische Materialien" (Solid State Chemistry and Inorganic Materials)

Module offered by
Institute of Inorganic Chemistry

ECTS
<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration
<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents
This module provides an introduction to solid-state chemistry. It focuses on the structure, chemical and physical properties, synthesis methods and selected materials of solids.

Intended learning outcomes
Students are able to describe the structure and properties of solids. They can explain methods for solid-state synthesis. They can describe important aspects of selected materials regarding the corresponding solids.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Supramolecular Chemistry (Basics)

| Abbreviation | 08-SCM1-102-m01 |

Module coordinator
lecturer of lecture "Organischen Chemie"

Module offered by
Faculty of Chemistry and Pharmacy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Method of grading
Only after succ. compl. of module(s)

ECTS
5

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module introduces students to the fundamental principles of supramolecular chemistry. It focuses on interactions between molecules, molecular recognition by receptors, complexes, supramolecular polymers, coordination polymers and networks, liquid crystals, self-assembly in aqueous media, synthetic ion channels and modern applications of supramolecular chemistry.

Intended learning outcomes
Students are able to explain interactions between molecules demonstrating a high degree of expertise in the field as well as to describe the formation, structure and polymers of coordination compounds. They are able to describe the self-assembly of polymers in aqueous media as well as to identify the characteristics of synthetic ion channels. They can name modern applications of supramolecular chemistry.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes) or oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscale Materials</td>
<td>08-PCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer of the seminar "Nanoskalige Materialien"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in nanoscale materials. It focuses on the structure, properties, fabrication, modern characterisation methods and application areas of nanoscale materials.

Intended learning outcomes

Students are able to characterise nanoscale materials. They are able to name analytical methods and application areas of nanoscale materials.

Courses

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Materials (Lecture)</td>
<td>08-FMM-CT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module imparts the theoretical fundamentals of molecular and soft materials.

Intended learning outcomes

Students have developed a knowledge of the principles of molecular and soft materials and are able to apply that knowledge to research problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Presentation (approx. 30 minutes) and a) 1 to 3 written examinations (1 written examination: 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Homogeneous Catalysis

(25 ECTS credits)
Compulsory Courses
(20 ECTS credits)
Module title |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
</tr>
</tbody>
</table>

Abbreviation |
| 08-HKM2-102-m01 |

Module coordinator |
| lecturer of the seminar "Spezielle Metallorganische Chemie und deren Anwendung in der Homogenkatalyse" |

Module offered by |
| Institute of Inorganic Chemistry |

ECTS |
| 5 |

Method of grading |
| Only after succ. compl. of module(s) |

Numerical grade

Duration |
| 1 semester |

Module level |
| graduate |

Other prerequisites

Contents
This module examines elementary organic compounds of transition metals with homogeneous catalytic applications.

Intended learning outcomes
Students can describe and analyse the structure, reactivity and analysis of elementary organic compounds. They are able to characterise special substance classes. They can formulate homogeneous catalysis reactions.

Courses
(type, number of weekly contact hours, language — if other than German)
| S (no information on SWS (weekly contact hours) and course language available) |

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.
Language of assessment: German or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
| -- |
Module title

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>no information on SWS</td>
<td>German or English</td>
</tr>
</tbody>
</table>

Method of assessment

- a) 1 to 3 written examinations (60 or 90 minutes) or
- b) oral examination of one candidate each (20 minutes) or
- c) oral examination in groups (groups of 2, 30 minutes).

Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Practical course "Homogeneous catalysis"

Abbreviation
08-HKM3-102-m01

Module coordinator

Lecturer of the seminar "Spezielle Metallorganische Chemie und deren Anwendung in der Homogenkatalyse"

Module offered by

Faculty of Chemistry and Pharmacy

ECTS

10

Method of grading

Only after succ. compl. of module(s)

Only after succ. compl. of module(s)

10 (not) successfully completed

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

This module gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in homogeneous catalysis. The focus will be on catalyst synthesis and characterisation, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes

Students are able to use advanced synthesis and analytical methods in homogeneous catalysis in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses

P + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Practical work with lab report (approx. 10 pages) and talk (approx. 15 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Compulsory Electives

(5 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Synthetic Method</td>
<td>08-OCM-SYNT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

This module discusses modern stereoselective synthesis methods. It focuses on selected total syntheses, organometallic chemistry and catalysis.

Intended learning outcomes

Students are able to stereoselectively plan complex chemical syntheses and to stereochemically analyse them. They can explain total syntheses. They can describe aspects of organometallic chemistry and catalysis in synthesis chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>S + Ü (no information on SWS (weekly contact hours) and course language available)</th>
</tr>
</thead>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Computational Chemistry

Abbreviation
08-TCM2-102-m01

Module coordinator
lecturer of lecture "Computational Chemistry"

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
The module introduces students to computational chemistry.

Intended learning outcomes
Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses
(S + Ü (no information on SWS (weekly contact hours) and course language available)

Type, number of weekly contact hours, language — if other than German
S + Ü

Method of assessment
written examination (90 minutes)

Language of assessment: German or English
German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced transition metal chemistry</td>
<td>08-HKM4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Spezielle Übergangsmetallchemie"</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in the chemistry of transition metals and coordination chemistry. It also provides an introduction to bioinorganic chemistry and discusses recent developments in transition metal chemistry.

Intended learning outcomes

Students are able to explain transition metals and coordination compounds demonstrating a high degree of expertise in the field. They can explain the fundamental principles of bioinorganic chemistry.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
</tbody>
</table>

Method of assessment

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)
Medicinal Chemistry
(25 ECTS credits)
Compulsory Courses

(25 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of drug design</td>
<td>08-MCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes

The student masters theoretical and experimental methods and aspects of drug design.

Courses

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Presentation with discussion (approx. 30 minutes)
Language of assessment: German or English

Allocation of places

Chemistry Master's and Mathematics Master's: no restrictions. Biochemistry Master's: 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course medicinal chemistry</td>
<td>08-MCM1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Lecturers: Pharmazeutische Chemie (Pharmaceutical Chemistry)

Module offered by

Institute of Pharmacy and Food Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected methods and topics in medicinal chemistry (synthesis, testing, analysis, theory, pharmacokinetics).

Intended learning outcomes

Students have developed a knowledge of medicinal chemistry and are able to apply it to practical experiments.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 20 minutes), assessment of practical performance, written report (approx. 30 to 50 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical/Medicinal Chemistry</td>
<td>08-MCM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemistry of drugs by field of indication; principles of drug development, strategies for active agent discovery; structure-activity relationships; molecular effect mechanisms; pharmacological principles of the drugs discussed in the module; drug analysis; drug synthesis; biotransformation, pharmacokinetics of individual drugs; history of drug development: discussion of specific examples.

Intended learning outcomes

The students acquire knowledge of pharmaceutic/medical chemistry and the according methods of their characterization.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

oral examination of one candidate each (approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Supramolecular Chemistry
(25 ECTS credits)
Compulsory Courses

(10 ECTS credits)
Module title
Supramolecular Chemistry (Basics)

Abbreviation
08-SCM1-102-m01

Module coordinator
Lecturer of lecture "Organischen Chemie"

Module offered by
Faculty of Chemistry and Pharmacy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module introduces students to the fundamental principles of supramolecular chemistry. It focuses on interactions between molecules, molecular recognition by receptors, complexes, supramolecular polymers, coordination polymers and networks, liquid crystals, self-assembly in aqueous media, synthetic ion channels and modern applications of supramolecular chemistry.

Intended learning outcomes
Students are able to explain interactions between molecules demonstrating a high degree of expertise in the field as well as to describe the formation, structure and polymers of coordination compounds. They are able to describe the self-assembly of polymers in aqueous media as well as to identify the characteristics of synthetic ion channels. They can name modern applications of supramolecular chemistry.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes) or oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramolecular Chemistry (Practical Course)</td>
<td>08-SCM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Supramolekularen Chemie (Organische Chemie/Physikalische Chemie)"</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to perform some of the key experiments in supramolecular chemistry. They will perform syntheses of host-guest complexes, dye aggregates and nanoparticles and use advanced analytical methods to characterise them.

Intended learning outcomes

Students are able to perform syntheses of host-guest complexes and use spectroscopic methods to analyse and characterise them. They are able to produce nanoparticles and to characterise them microscopically.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical work, logs (approx. 5 pages each)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Compulsory Electives

(15 ECTS credits)
Bioinorganic Chemistry

Abbreviation
08-ACM2-102-m01

Module coordinator
lecturer of seminar "Anorganische Aspekte der Biochemie and Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry)

Module offered by
Institute of Inorganic Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes
Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Courses
(no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Organic Functional Materials

Abbreviation
08-OCM-FM-102-m01

Module coordinator
Lecturer of the seminar "Organische Funktionsmaterialien"

Module offered by
Institute of Organic Chemistry

ECTS
5

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module discusses advanced topics in organic functional materials. It focuses on basic physical effects, organic solids, the application of organic functional materials as well as organic and metal-organic polymer chemistry.

Intended learning outcomes
Students are able to explain the basic physical properties of organic functional materials. They are able to name and characterise organic solids and their applications in modern chemistry. Students are able to outline the fundamental principles of organic and metal-organic polymer chemistry and to name polymers of technological importance.

Courses
(type, number of weekly contact hours, language — if other than German)
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Bioorganic Chemistry | 08-SCM3-102-m01

Module coordinator | Module offered by
lecturer of lecture "Bioorganische Chemie" (Bioorganic Chemistry) | Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses topics at the interface of organic chemistry, biology and medicine. It focuses on molecular interactions and recognition, molecular diversity, active agent development, new aspects of DNA, RNA, proteins and carbohydrates.

Intended learning outcomes

Students are able to describe molecular interactions and detection mechanisms of bioorganic chemistry. They can explain the molecular diversity of biological systems. They can characterise the fabrication of agents. They can describe modern aspects of DNA, RNA, proteins and carbohydrates.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Chemistry</td>
<td>08-TCM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lecturer of lecture "Computational Chemistry"

Module offered by

Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

The module introduces students to computational chemistry.

Intended learning outcomes

Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscale Materials</td>
<td>08-PCM3-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Lecturer of the seminar "Nanoskalige Materialien"

Module offered by
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in nanoscale materials. It focuses on the structure, properties, fabrication, modern characterisation methods and application areas of nanoscale materials.

Intended learning outcomes
Students are able to characterise nanoscale materials. They are able to name analytical methods and application areas of nanoscale materials.

Courses
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>08-PCM5-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

lecturer of the seminar "Physikalische Chemie Supramolekularer Strukturen" by Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This module examines the basic interactions between molecules. It discusses the formation and physical-chemical properties of aggregates as well as key applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain the basic interactions between molecules demonstrating a high degree of expertise in the field. They can describe the formation and physical-chemical properties of aggregates. They can name modern applications of supramolecular chemistry.

Courses

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (90 minutes) and/or oral examination of one candidate each (20 minutes) and/or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Principles of drug design | 08-MCM3-102-m01

Module coordinator

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

ECTS
Method of grading | Only after succ. compl. of module(s)
numerical grade | -- |

Duration
Module level | Other prerequisites
graduate | -- |

Contents

Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, phar-macophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes

The student masters theoretical and experimental methods and aspects of drug design.

Courses (type, number of weekly contact hours, language — if other than German)
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Presentation with discussion (approx. 30 minutes)

Language of assessment: German or English

Allocation of places

Chemistry Master's and Mathematics Master's: no restrictions. Biochemistry Master's: 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Theoretical Chemistry
(25 ECTS credits)
Compulsory Courses

(20 ECTS credits)
Module title

Theoretical Chemistry

Abbreviation

08-TCM1-102-m01

Module coordinator

- Lecturer of lecture "Theoretische Chemie"

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS

- **5**

Method of grading

- **Numerical grade**

Only after succ. compl. of module(s)

- **--**

Duration

- **1 semester**

Module level

- **Graduate**

Other prerequisites

Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

The module introduces students to theoretical chemistry.

Intended learning outcomes

Students are able to describe the mathematical and physical principles underlying the quantum chemical and quantum dynamical approaches of theoretical chemistry.

Courses

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(Examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming in Theoretical Chemistry</td>
<td>08-TCM3-102-m01</td>
</tr>
<tr>
<td>Module coordinator</td>
<td></td>
</tr>
<tr>
<td>lecturer of lecture "Programmieren in Theoretischer Chemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>5</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
</tr>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
<tr>
<td>Other prerequisites</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>This module provides an introduction to the fundamentals of programming in theoretical chemistry and discusses its application areas.</td>
<td></td>
</tr>
<tr>
<td>Intended learning outcomes</td>
<td></td>
</tr>
<tr>
<td>Students are able to explain and use one of the programming languages typically used in theoretical chemistry as well as to name its application areas.</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>(type, number of weekly contact hours, language — if other than German)</td>
</tr>
<tr>
<td>S + Ü (no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
</tr>
<tr>
<td>Method of assessment</td>
<td>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</td>
</tr>
<tr>
<td>completion and discussion of approx. 5 programming exercises as well as talk (approx. 45 minutes)</td>
<td></td>
</tr>
<tr>
<td>Language of assessment: German or English</td>
<td></td>
</tr>
<tr>
<td>Allocation of places</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
<td></td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Theoretical Chemistry - Project work</td>
<td>08-TCAP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group offering the module</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Theoretical Chemistry and learn some of the methods typically used in the discipline.

Intended learning outcomes

Students have learned some of the methods typically used in theoretical chemistry. They are able to explain issues that are relevant to the fields covered.

Courses

This module has 3 components; information on courses listed separately for each component.

- 08-TCAP-1-102: P (no information on language and number of weekly contact hours available)
- 08-TCAP-2-102: P (no information on language and number of weekly contact hours available)
- 08-TCAP-3-102: P (no information on language and number of weekly contact hours available)

Method of assessment

This module has the following 3 assessment components. To pass the module as a whole students must pass two out of these three assessment components.

Assessment component to module component 08-TCAP-1-102: Theoretische Chemie Arbeitsgruppenpraktikum Wellenpaketdynamik
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Assessment component to module component 08-TCAP-2-102: Theoretische Chemie Arbeitsgruppenpraktikum Wellenfunktionsmethoden
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Assessment component to module component 08-TCAP-3-102: Theoretische Chemie Arbeitsgruppenpraktikum Dichtefunktionaltheorie
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Allocation of places

--

Additional information

Additional information on module duration: 4 weeks..

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives

(5 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Chemistry</td>
<td>08-TCM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
I lecturers of lecture "Computational Chemistry"
Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester
1 semester
Graduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
The module introduces students to computational chemistry.

Intended learning outcomes
Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (90 minutes)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of drug design</td>
<td>08-MCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
</tr>
<tr>
<td></td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes

The student masters theoretical and experimental methods and aspects of drug design.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation with discussion (approx. 30 minutes)

Language of assessment: German or English

Allocation of places

Chemistry Master's and Mathematics Master's: no restrictions. Biochemistry Master's: 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives Additional Qualifications
(15 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemically and biologically inspired Nanotechnology for Materials Synthesis</td>
<td>08-NT-101-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Chemical Technology of Material Synthesis</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides an introduction to the synthesis methods of sol-gel chemistry and discusses the methods of analysis used to characterise the generated materials. It also discusses the fundamental principles of biomineralisation and uses examples to introduce students to bio-inspired material synthesis.

Intended learning outcomes

Students have developed an advanced knowledge of sol-gel chemistry and biomineralisation.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 08-NT-1-101: V (no information on SWS (weekly contact hours) and course language available)
- 08-NT-2-101: V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-NT-1-101: Chemically and biologically inspired Nanotechnology for Materials Synthesis

- 2 ECTS, Method of grading: numerical grade
- oral examination (approx. 15 minutes)

Assessment in module component 08-NT-2-101: From Biomineralisation to biologically inspired Materials Synthesis

- 3 ECTS, Method of grading: numerical grade
- oral examination (approx. 20 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Materials Science 1 (Basic Introduction)

| Abbreviation | 08-FS1:101-m01 |

Module coordinator

Dean of Studies Funktionswerkstoffe (Functional Materials)
Chair of Chemical Technology of Material Synthesis

ECTS

| 5 | numerical grade | Only after succ. compl. of module(s) |

Duration

| 1 semester | undergraduate | Other prerequisites |

Contents

This module discusses the fundamental relations between chemical bonding, the structure, the microstructure and the properties of materials.

Intended learning outcomes

Students have become familiar with the fundamental relations between chemical bonding, the structure, the microstructure and the properties of materials. They have developed the ability to apply them to research problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (90 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 2 (The Major Material Groups)</td>
<td>08-FS2-101-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Funktionswerkstoffe (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module deals with production and properties of the most important materials groups.

Intended learning outcomes

The students possess comprehensive knowledge about fabrication and properties of the major classes of materials and are able to apply this to scientific problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicology and legal studies</td>
<td>03-TR-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Toxikologie und Rechtskunde"</td>
<td>Faculty of Medicine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics of legal regulations for chemists (handling and transportation of hazardous materials), fundamentals of toxicology.

Intended learning outcomes
The students master the basics of legal regulations for chemists (handling and transport of hazardous substances) as well as the fundamentals of toxicology.

Courses
V + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 90 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Biochemistry

Abbreviation
08-BC-092-m01

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Duration
2 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
The module imparts the basic knowledge of biochemistry by lectures and in-depth tutorials.

Intended learning outcomes
Students have become familiar with the fundamental principles of biochemistry. They are able to describe the key biochemical processes in cellular systems.

Courses
\(V + Ü + V + Ü \) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or
- b) oral examination of one candidate each (approx. 20 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Biochemistry Lab | 08-BCP-092-m01

Module coordinator | Module offered by
holder of the Chair of Biochemistry | Chair of Biochemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>08-BC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents
In this module the basics of scientific biochemical experimentation shall be practiced in practical exercises.

Intended learning outcomes
After participating in the practical exercises the students master basic biochemical methods and are able to purposefully apply them.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
pre/post-experiment examination talks (Vortestate and Nachtestate, approx. 15 minutes each), practical work (log, approx. 5 to 10 pages)
Assessment offered: once a year, summer semester

Allocation of places
Number of places: 24. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (80% of places): grade achieved in module 08-BC; among applicants with the same grade, places will be allocated by lot. Quota 2 (20% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Advanced Inorganic Chemistry

Abbreviation
08-ACM1-102-m01

Module coordinator
Managing Director of the Institute of Inorganic Chemistry

Module offered by
Institute of Inorganic Chemistry

ECTS
20

Method of grading
Only after succ. compl. of module(s)

Duration
2 semester

Module level
graduate

Other prerequisites
--

Contents
This module discusses advanced topics in main group chemistry and transition metal chemistry. It focuses on special compounds of the main group elements (MGEs), bonding situations of MGEs and MGE compounds, the chemistry of transition metals and coordination chemistry. The course gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in inorganic chemistry. The focus will be on working under inert atmospheres, purification methods, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes
Students are able to characterise and explain special compounds of the main group elements. They can describe the chemical properties of transition metals and analyse the structure as well as chemical and physical aspects of coordination compounds. Students are able to use advanced synthesis and analytical methods in inorganic chemistry in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 08-ACM1-1-102: S + S (no information on SWS (weekly contact hours) and course language available)
- 08-ACM1-2-102: P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-ACM1-1-102: Inorganic Chemistry for advanced students

- 10 ECTS, Method of grading: numerical grade
- a) 1 to 3 written examinations (90 to 120 minutes each) or b) oral examination of one candidate each (30 minutes) or c) oral examination in groups (groups of 2, 45 minutes)
- Language of assessment: German or English

Assessment in module component 08-ACM1-2-102: Inorganic Chemistry practical course for advanced

- 10 ECTS, Method of grading: (not) successfully completed
- practical work with lab report (20 pages) and talk (15 minutes)
- Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Bioinorganic Chemistry | 08-ACM2-102-m01

Module coordinator	Module offered by
Lecturer of seminar "Anorganische Aspekte der Biochemie and Medizinischen Chemie" (Inorganic Aspects of Biochemistry and Medicinal Chemistry) | Institute of Inorganic Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | -- |

Contents

This module introduces students to the fundamental principles of bioinorganic chemistry (BIC). It discusses the methods of BIC, structures and effects of metalliferous enzymes and applications of BIC in the fields of diagnosis and therapy.

Intended learning outcomes

Students are able to describe the principles of, and methods in, BIC. They can explain the structure and effects of metalliferous enzymes and describe applications of BIC in biochemistry and medicine.

Method of assessment

(a) 1 to 3 written examinations (60 or 90 minutes) or (b) oral examination of one candidate each (20 minutes) or (c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title: Solid state chemistry and inorganic materials
Abbreviation: 08-ACM3-102-m01

Module coordinator: Lecturer of seminar "Festkörperchemie and Anorganische Materialien" (Solid State Chemistry and Inorganic Materials)
Module offered by: Institute of Inorganic Chemistry

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This module provides an introduction to solid-state chemistry. It focuses on the structure, chemical and physical properties, synthesis methods and selected materials of solids.

Intended learning outcomes:
Students are able to describe the structure and properties of solids. They can explain methods for solid-state synthesis. They can describe important aspects of selected materials regarding the corresponding solids.

Courses:
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
(a) 1 to 3 written examinations (60 or 90 minutes) or (b) oral examination of one candidate each (20 minutes) or (c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced organometallic chemistry and its application in homogeneous catalysis</td>
<td>08-HKM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Spezielle Metallorganische Chemie and deren Anwendung in der Homogenkatalyse"</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module examines elementary organic compounds of transition metals with homogeneous catalytic applications.

Intended learning outcomes

Students can describe and analyse the structure, reactivity and analysis of elementary organic compounds. They are able to characterise special substance classes. They can formulate homogeneous catalysis reactions.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Modern Synthetic Method | 08-OCM-SYNT-102-m01

Module coordinator | Module offered by
Lecturer of the seminar | Institute of Organic Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module discusses modern stereoselective synthesis methods. It focuses on selected total syntheses, organometallic chemistry and catalysis.

Intended learning outcomes
Students are able to stereoselectively plan complex chemical syntheses and to stereochemically analyse them. They can explain total syntheses. They can describe aspects of organometallic chemistry and catalysis in synthesis chemistry.

Courses (type, number of weekly contact hours, language — if other than German)
S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Advanced NMR- and Mass Spectrometry | 08-OCM-NMRMS-102-m01

Module coordinator | Module offered by
lab course supervisor | Institute of Organic Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | graduate | --

Contents
This module equips students with an advanced knowledge of NMR and mass spectrometry. It offers deeper insights into the theoretical principles of the two measuring techniques and includes exercises that give students the opportunity to learn how to evaluate complicated spectra and use a spectrometer.

Intended learning outcomes
Students are able to discuss NMR and mass spectroscopy demonstrating a high degree of expertise in the field. They are able to experiment with both spectrometers and analyse complicated spectra.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Research Project 1</td>
<td>08-OCM-AKP1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>head of the research group</td>
<td>Institute of Organic</td>
</tr>
<tr>
<td>offering the module</td>
<td>Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Organic Chemistry and learn some advanced synthesis and analytical methods.

Intended learning outcomes

Students are able to describe and use some of the synthesis and analytical methods typically used by the research group as well as to describe theoretical aspects.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (approx. 15 minutes) and log (approx. 15 to 20 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Aspects of Natural Product Chemistry and Biological Chemistry</td>
<td>08-OCM-NAT-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Lecturer of the seminar

Module offered by
Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents
This module discusses advanced topics in natural product chemistry and biological chemistry.

Intended learning outcomes
Students are able to discuss advanced topics in natural product chemistry and biological chemistry.

Courses
(S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) 1 to 3 written examinations (60 or 90 minutes) or (b) oral examination of one candidate each (20 minutes) or (c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places
Chemistry Master’s: no restrictions. Biochemistry Master’s: 20 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Functional Materials</td>
<td>08-OCM-FM-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organische Funktionsmaterialien"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in organic functional materials. It focuses on basic physical effects, organic solids, the application of organic functional materials as well as organic and metal-organic polymer chemistry.

Intended learning outcomes

Students are able to explain the basic physical properties of organic functional materials. They are able to name and characterise organic solids and their applications in modern chemistry. Students are able to outline the fundamental principles of organic and metal-organic polymer chemistry and to name polymers of technological importance.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organo- and Biocatalysis</td>
<td>08-HKM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Organo- and Biokatalyse"</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in organic compounds and enzymes in catalytic processes. Organocatalysis: enantioselective implementation, principles, green chemistry, substance classes and application areas. Biocatalysis: effects of enzymes in view of different aspects, especially regarding organic synthesis.

Intended learning outcomes

Students are able to categorise organocatalysts and explain their effects and areas of application. They can describe the structure and applications of enzymes in organic synthesis. They are able to mechanistically describe and analyse the effects of enzymes.

Courses (type, number of weekly contact hours, language — if other than German)

| S (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

| a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course. |

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supramolecular Chemistry (Basics)</td>
<td>08-SCM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Organischen Chemie"</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of supramolecular chemistry. It focuses on interactions between molecules, molecular recognition by receptors, complexes, supramolecular polymers, coordination polymers and networks, liquid crystals, self-assembly in aqueous media, synthetic ion channels and modern applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain interactions between molecules demonstrating a high degree of expertise in the field as well as to describe the formation, structure and polymers of coordination compounds. They are able to describe the self-assembly of polymers in aqueous media as well as to identify the characteristics of synthetic ion channels. They can name modern applications of supramolecular chemistry.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 90 minutes) or oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Bioorganic Chemistry

Abbreviation

08-SCM3-102-m01

Module coordinator

Lecturer of lecture "Bioorganische Chemie" (Bioorganic Chemistry)

Module offered by

Institute of Organic Chemistry

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses topics at the interface of organic chemistry, biology and medicine. It focuses on molecular interactions and recognition, molecular diversity, active agent development, new aspects of DNA, RNA, proteins and carbohydrates.

Intended learning outcomes

Students are able to describe molecular interactions and detection mechanisms of bioorganic chemistry. They can explain the molecular diversity of biological systems. They can characterise the fabrication of agents. They can describe modern aspects of DNA, RNA, proteins and carbohydrates.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>no information on SWS</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

- a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course.

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Computational Chemistry

Module title: Computational Chemistry
Abbreviation: 08-TCM2-102-m01

Module coordinator: lecturer of lecture "Computational Chemistry"
Module offered by: Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

The module introduces students to computational chemistry.

Intended learning outcomes

Students are able to explain the theoretical principles of computational chemistry and to apply methods in computational chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Physical Chemistry</td>
<td>08-PCM1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

- **Module coordinator:** Lecturer of seminar "Laserspektroskopie" (Laser Spectroscopy)
- **Module offered by:** Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module introduces students to the fundamental principles of laser spectroscopy. It discusses absorption and emission spectroscopy. In addition, the module gives students the opportunity to use modern experimental methods in physical chemistry in the laboratory. After a safety briefing, the students autonomously conduct experiments in the laboratory. Students will be expected to take tests and write lab reports to demonstrate their knowledge.

Intended learning outcomes

Students are able to explain the components and operating principles of lasers as well as the optical principles of laser technology. They are able to describe the principles of absorption and emission spectroscopy. Students have developed a high level of proficiency in modern experimental methods in physical chemistry. They are able to analyse the resulting measurements and write a lab report.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **08-PCM1-1-102:** S + Ü (no information on SWS (weekly contact hours) and course language available)
- **08-PCM1-2-102:** P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 08-PCM1-1-102: Laser Spectroscopy Laser Spectroscopy

- 5 ECTS, Method of grading: numerical grade
- written examination (90 minutes) or oral examination (20 minutes)
- Language of assessment: German or English

Assessment in module component 08-PCM1-2-102: Advanced Physical Chemistry (Lab)

- 5 ECTS, Method of grading: (not) successfully completed
- Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 15 minutes), log (approx. 15 pages)
- Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Dynamics</td>
<td>08-PCM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of seminar "Chemische Dynamik" (Chemical Dynamics)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore advanced topics in chemical kinetics and reaction dynamics in more detail. It discusses methods and models for investigating and describing chemical reactions.

Intended learning outcomes

Students are able to discuss advanced topics in chemical kinetics and reaction dynamics. They can describe methods and models for investigating and describing chemical reactions.

Courses

(type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes) Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscale Materials</td>
<td>08-PCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Nanoskalige Materialien"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in nanoscale materials. It focuses on the structure, properties, fabrication, modern characterisation methods and application areas of nanoscale materials.

Intended learning outcomes

Students are able to characterise nanoscale materials. They are able to name analytical methods and application areas of nanoscale materials.

Courses

(type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast spectroscopy and quantum-control</td>
<td>08-PCM4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Ultrakurzzeitspektroskopie und Quantenkontrolle"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses advanced topics in ultrafast spectroscopy and quantum control. It focuses on ultrashort laser pulses, time-resolved laser spectroscopy and coherent control.

Intended learning outcomes

Students are able to describe the generation of ultrashort laser pulses and to characterise them. They can explain the theory of time-resolved laser spectroscopy and name experimental methods. They can describe the principles and applications of quantum control.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes) or oral examination of one candidate each (20 minutes) or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical chemistry of supramolecular assemblies</td>
<td>08-PCM5-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Physikalische Chemie Supramolekularer Strukturen"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module examines the basic interactions between molecules. It discusses the formation and physical-chemical properties of aggregates as well as key applications of supramolecular chemistry.

Intended learning outcomes

Students are able to explain the basic interactions between molecules demonstrating a high degree of expertise in the field. They can describe the formation and physical-chemical properties of aggregates. They can name modern applications of supramolecular chemistry.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes) and/or oral examination of one candidate each (20 minutes) and/or talk (30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry (Advanced Lab)</td>
<td>08-PCM6-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers Physikalische Chemie (Physical Chemistry)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Physical Chemistry and learn some advanced synthesis and analytical methods.

Intended learning outcomes

Students have become proficient in the research methods typically used by the relevant physical chemistry research group. They are able to analyse their findings and thus help answer topical questions in physical chemistry.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

presentation (20 minutes)
Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Theoretical Chemistry

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>08-TCM1-102-m01</th>
</tr>
</thead>
</table>

Module coordinator

Lecturer of lecture "Theoretische Chemie"

Module offered by

Institute of Physical and Theoretical Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

The module introduces students to theoretical chemistry.

Intended learning outcomes

Students are able to describe the mathematical and physical principles underlying the quantum chemical and quantum dynamical approaches of theoretical chemistry.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + Ü</td>
<td>(no information on SWS)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language — if other than German</th>
<th>Examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>90 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology</td>
<td>08-BC-MOL-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module covers specific topics of molecular physiology and functional biochemistry in lectures and exercises.

Intended learning outcomes

Students have developed a sound knowledge of molecular biology.

Courses

(\(\dddot{U} + V\) (no information on SWS (weekly contact hours) and course language available))

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

1 written examination (90 minutes) or 2 written examinations (60 to 90 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Molecular Biology Practical Course | 08-BC-MOLP-102-m01

Module coordinator | Module offered by
holder of the Chair of Biochemistry | Chair of Biochemistry

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
The module provides practical skills in the fields of recombinant engineering and characterization of macromolecular complexes, current biomolecular techniques, analysis of biochemical processes in vivo, and up-to-date imaging techniques.

Intended learning outcomes
The student has knowledge of molecular biology and is able to apply the contents in practical experiments.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

pre/post-experiment examination talks (Vor-/Nachtestate, approx. 15 minutes), log (approx. 5 to 10 pages)
Language of assessment: German or English

Allocation of places
Number of places: 12. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (80% of places): grade achieved in module 08-BC; among applicants with the same grade, places will be allocated by lot. Quota 2 (20% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Practical course "Molecular Machines" for advanced students

Abbreviation
08-BC-VPMM-102-m01

Module coordinator
holder of the Chair of Biochemistry

Module offered by
Chair of Biochemistry

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to explore a research topic. Selected methods and topics in molecular biology and biochemistry; cloning, mutagenesis, protein expression and purification, RNA-protein and protein-protein interactions, isolation and functional analysis of macromolecular complexes.

Intended learning outcomes
The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses
(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Protein Degradation in Eukaryotes" for advanced students</td>
<td>08-BC-VPPD-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to explore a research topic in the field of protein degradation in eukaryotes.

Intended learning outcomes

The student is able to deeply acquaint himself/herself with a specific research topic, and to present the results in a talk.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Practical course "RNA Biochemistry" for advanced students

Abbreviation

08-BC-VPRB-102-m01

Module coordinator

holder of the Chair of Biochemistry

Module offered by

Chair of Biochemistry

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

This module gives students the opportunity to explore a research topic in the field of RNA biochemistry. Ribosomes as "molecular machines", regulatory mechanisms of eukaryotic protein biosynthesis. Gradient centrifugation, in vitro translation in different cell-free systems.

Intended learning outcomes

Students are able to explore a specific research topic and deliver an oral presentation on the results of their work. They are able to familiarise themselves with different mechanisms of general and specific translation control with the help of different methods as well as to present their findings in an appropriate and understandable manner.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

log (approx. 20 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course "Structural Biology" for advanced</td>
<td>08-BC-VPSB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biochemistry</td>
<td>Chair of Biochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module discusses cloning and the expression of protein constructs for crystallisation. It teaches students the fundamental principles and techniques of crystallisation and crystal optimisation as well as crystallographic data collection.

Intended learning outcomes

Students have developed an understanding of the method of selecting protein constructs for crystallisation. They master fundamental skills and techniques for protein crystallisation as well as data collection and processing.

Courses

(P no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

<table>
<thead>
<tr>
<th>type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>log (approx. 20 pages) and talk (approx. 15 minutes) Language of assessment: German or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title
- **Principles of drug design**

Abbreviation
- 08-MCM3-102-m01

Module coordinator
- Lecturers: Pharmazeutische Chemie (Pharmaceutical Chemistry)

Module offered by
- Institute of Pharmacy and Food Chemistry

### ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

### Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
- Fundamentals: drug targets (types and classification), target validation, effect mechanisms, protein-ligand interactions, lead finding; lead optimisation. Experimental methods: bioassays, HTS, combinatorial chemistry, naturally occurring substances. Theoretical methods: molecular modelling, structure-based drug design, pharmacophore models, docking, virtual screening, simulation methods, de novo design. Ligand-based drug design. QSAR. Predictions of pharmacokinetic and toxicological components (ADME). Case examples, prodrug strategies, bioisosterism, SAR.

Intended learning outcomes
- The student masters theoretical and experimental methods and aspects of drug design.

Courses
- **S + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

- presentation with discussion (approx. 30 minutes)
- Language of assessment: German or English

Allocation of places
- Chemistry Master's and Mathematics Master's: no restrictions. Biochemistry Master's: 10 places. Places will be allocated by lot.

Additional information
- --

Referred to in LPO I
- (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Analytical Chemistry</td>
<td>08-PH-KAC-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers specific topics of clinical analytical chemistry.

Intended learning outcomes

Students have developed an advanced knowledge of molecular biology.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Analytical Chemistry (practical course)</td>
<td>08-PH-KACP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Klinisch-analytische Chemie" (Clinical and Analytical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers practical topics in clinical chemistry and clinical diagnostics as well as the related analytical methods.

Intended learning outcomes

Students have developed a knowledge of clinical analytical chemistry and are able to apply it to practical experiments.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

examination talks (Testate, approx. 15 minutes each), log (approx. 5 to 10 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry
Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Course Materials Science</td>
<td>08-FMM-MP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers specialisation subject Funktionsmaterialien (Functional Materials)</td>
<td>Chair of Chemical Technology of Material Synthesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Ten selected experiments in materials science.

Intended learning outcomes
Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (15 minutes), assessment of practical performance, log (5 to 10 pages)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module title	**Abbreviation**
Project Work | 08-FMM-PA-102-m01

| **Module coordinator** | **Module offered by**
head of the research group offering the module | Chair of Chemical Technology of Material Synthesis

| **ECTS** | **Method of grading** | **Only after succ. compl. of module(s)**
5 | (not) successfully completed | --

| **Duration** | **Module level** | **Other prerequisites**
1 semester | graduate | --

Contents
This module gives students the opportunity to explore a research topic under the guidance of a supervisor and to describe their findings.

Intended learning outcomes
Students have developed an advanced proficiency in the performance of experiments in materials science.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk (approx. 15 minutes) and log (approx. 15 pages)
Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Molecular Materials (Lecture) | 08-FMM-CT-102-m01

Module coordinator	Module offered by
Dean of Studies Funktionswerkstoffe (Functional Materials) | Chair of Chemical Technology of Material Synthesis

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
The module imparts the theoretical fundamentals of molecular and soft materials.

Intended learning outcomes
Students have developed a knowledge of the principles of molecular and soft materials and are able to apply that knowledge to research problems.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
presentation (approx. 30 minutes) and a) 1 to 3 written examinations (1 written examination: 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Practical course "Homogeneous catalysis"

Abbreviation

08-HKM3-102-m01

Module coordinator

Lecturer of the seminar "Spezielle Metallorganische Chemie und deren Anwendung in der Homogenkatalyse"

Module offered by

Faculty of Chemistry and Pharmacy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module gives students the opportunity to enhance their skills in advanced synthesis and analytical methods in homogeneous catalysis. The focus will be on catalyst synthesis and characterisation, spectral analysis and crystallography. Students will be expected to conduct their work in the lab independently, write a lab report documenting their findings and deliver a presentation.

Intended learning outcomes

Students are able to use advanced synthesis and analytical methods in homogeneous catalysis in the lab and to interpret their findings. They are able to write a lab report documenting their findings and deliver a presentation.

Courses

P + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Practical work with lab report (approx. 10 pages) and talk (approx. 15 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced transition metal chemistry</td>
<td>08-HKM4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of the seminar "Spezielle Übergangsmetallchemie"</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides students with deeper insights into topics in the chemistry of transition metals and coordination chemistry. It also provides an introduction to bioinorganic chemistry and discusses recent developments in transition metal chemistry.

Intended learning outcomes

Students are able to explain transition metals and coordination compounds demonstrating a high degree of expertise in the field. They can explain the fundamental principles of bioinorganic chemistry.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1 to 3 written examinations (60 or 90 minutes) or b) oral examination of one candidate each (20 minutes) or c) oral examination in groups (groups of 2, 30 minutes). Should there be the option to choose between several methods of assessment, the module coordinator will choose the method to be used for the module component in the current semester at the beginning of the course. Language of assessment: German or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Chemistry

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course medicinal chemistry</td>
<td>08-MCM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected methods and topics in medicinal chemistry (synthesis, testing, analysis, theory, pharmacokinetics).

Intended learning outcomes

Students have developed a knowledge of medicinal chemistry and are able to apply it to practical experiments.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Vortestate (pre-experiment exams) and Nachtestate (post-experiment exams) (approx. 20 minutes), assessment of practical performance, written report (approx. 30 to 50 pages)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical/Medicinal Chemistry</td>
<td>08-MCM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturers Pharmazeutische Chemie (Pharmaceutical Chemistry)</td>
<td>Institute of Pharmacy and Food Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Chemistry of drugs by field of indication; principles of drug development, strategies for active agent discovery; structure-activity relationships; molecular effect mechanisms; pharmacological principles of the drugs discussed in the module; drug analysis; drug synthesis; biotransformation, pharmacokinetics of individual drugs; history of drug development: discussion of specific examples.

Intended learning outcomes

The students acquire knowledge of pharmaceutic/medical chemistry and the according methods of their characterization.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (approx. 30 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Supramolecular Chemistry (Practical Course)

Abbreviation
08-SCM2-102-m01

Module coordinator
lecturer of lecture "Supramolekularen Chemie (Organische Chemie/Physikalische Chemie)"

Module offered by
Faculty of Chemistry and Pharmacy

ECTS
5

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to perform some of the key experiments in supramolecular chemistry. They will perform syntheses of host-guest complexes, dye aggregates and nanoparticles and use advanced analytical methods to characterise them.

Intended learning outcomes
Students are able to perform syntheses of host-guest complexes and use spectroscopic methods to analyse and characterise them. They are able to produce nanoparticles and to characterise them microscopically.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
practical work, logs (approx. 5 pages each)

Language of assessment: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming in Theoretical Chemistry</td>
<td>08-TCM3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Programmieren in Theoretischer Chemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module provides an introduction to the fundamentals of programming in theoretical chemistry and discusses its application areas.

Intended learning outcomes

Students are able to explain and use one of the programming languages typically used in theoretical chemistry as well as to name its application areas.

Courses (type, number of weekly contact hours, language — if other than German)

S + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Completion and discussion of approx. 5 programming exercises as well as talk (approx. 45 minutes)

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Theoretical Chemistry - Project work

Abbreviation
08-TCAP-102-m01

Module coordinator
head of the research group offering the module

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS
10

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This module gives students the opportunity to get involved in the work of one of the research groups based at the Institute of Theoretical Chemistry and learn some of the methods typically used in the discipline.

Intended learning outcomes
Students have learned some of the methods typically used in theoretical chemistry. They are able to explain issues that are relevant to the fields covered.

Courses
This module has 3 components; information on courses listed separately for each component.
- **08-TCAP-1-102**: P (no information on language and number of weekly contact hours available)
- **08-TCAP-2-102**: P (no information on language and number of weekly contact hours available)
- **08-TCAP-3-102**: P (no information on language and number of weekly contact hours available)

Method of assessment
This module has the following 3 assessment components. To pass the module as a whole students must pass two out of these three assessment components.

Assessment component to module component 08-TCAP-1-102: Theoretische Chemie Arbeitsgruppenpraktikum Wellenpaketdynamik
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Assessment component to module component 08-TCAP-2-102: Theoretische Chemie Arbeitsgruppenpraktikum Wellenfunktionsmethoden
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Assessment component to module component 08-TCAP-3-102: Theoretische Chemie Arbeitsgruppenpraktikum Dichtefunktionaltheorie
- 5 ECTS credits, method of grading: (not) successfully completed
- presentation (approx. 30 minutes)
- Language of assessment: German or English

Allocation of places
--

Additional information
Additional information on module duration: 4 weeks...

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutoring 1 (practical course)</td>
<td>08-WRM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Chemie (Chemistry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module offers the opportunity to learn correct presenting and mediating scientific questions by giving a tutorial attendant to a lecture at the faculty of chemistry and pharmacy.

Intended learning outcomes

The students are able to adequately prepare and present scientific questions, and to guide students in lower semesters.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>preparation of materials for demonstrations and exercises</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutoring 2 (practical course)</td>
<td>08-WRM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Chemie (Chemistry)</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module offers the opportunity to learn correct presenting and mediating scientific questions by giving a tutorial attendant to a lecture at the faculty of chemistry and pharmacy.

Intended learning outcomes

The students are able to adequately prepare and present scientific questions, and to guide students in lower semesters.

Courses (type, number of weekly contact hours, language — if other than German)

Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

preparation of materials for demonstrations and exercises

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Studies (short)</td>
<td>08-APM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erasmus programme coordinator Chemie (Chemistry)</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of placement.</td>
</tr>
</tbody>
</table>

Contents

The internship is carried out at universities abroad and can be embedded within offered study programs (e.g. Erasmus). The content requirements should comply with those of the electives of the Chemistry Master program at the University of Würzburg (what has to be ascertained in advance under discussion with the module coordinator).

Intended learning outcomes

The students are familiar with working methods at universities abroad. Besides professional competences they have also acquired language and social skills.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- report (2 pages); proof of having completed lab course
- Language of assessment: German or English; language of the respective placement country where required

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign Studies (long)</td>
<td>08-APM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Erasmus programme coordinator Chemie (Chemistry)
Faculty of Chemistry and Pharmacy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>Admission prerequisite to assessment: regular attendance of placement.</td>
</tr>
</tbody>
</table>

Duration
2 semester
Module level
graduate

Contents

The internship is carried out at universities abroad and can be embedded within offered study programs (eg Erasmus). The content requirements should comply with those of the electives of the Chemistry Master program at the University of Würzburg (what has to be ascertained in advance under discussion with the module coordinator).

Intended learning outcomes

The students are familiar with working methods at universities abroad. Besides professional competences they have also acquired language and social skills.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

report (2 pages); proof of having completed lab course
Language of assessment: German or English; language of the respective placement country where required

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Thesis
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
<td>08-MA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Chemie (Chemistry)</td>
<td>Faculty of Chemistry and Pharmacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Where applicable, specific modules as specified by supervisor.</td>
</tr>
</tbody>
</table>

Contents

The module enables the processing of a defined problem within a specified period by applying the scientific methods learned in the course of study.

Intended learning outcomes

The student has the ability to deal with a defined problem/issue using scientific methods and to document the results.

Courses (type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written thesis

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--