Module Catalogue
for the Subject
Biology
as a Master’s with 1 major
with the degree "Master of Science"
(120 ECTS credits)

Examination regulations version: 2010
Responsible: Faculty of Biology
Contents

The subject is divided into 6
Content and Objectives of the Programme 7
Abbreviations used, Conventions, Notes, In accordance with 8
Thesis 9
Compulsory Electives 11
Compulsory Electives

Focus 1

Neurosciences
- Neurobiology, Behavior and Animal Ecology (Lecture) 15
- Molecular and Clinical Neurobiology (Lecture and Seminar) 16
- Neurobiology (Practical Course and Seminar 1) 17
- Neurobiology (Practical Course and Seminar 2) 18

Animal Ecology and Tropical Biology
- Neurobiology, Behavior and Animal Ecology (Lecture) 19
- Animal Ecology and Tropical Biology (Lecture and Seminar) 20
- Animal Ecology F1 (Practical Course and Seminar 1) 21
- Animal Ecology and Tropical Biology F2 (Practical Course and Seminar 2) 22

Behavioral Physiology and Sociobiology
- Neurobiology, Behavior and Animal Ecology (Lecture) 23
- Communication Biology (Lecture) 24
- Behavioral Biology (Practical Course and Seminar 1) 25
- Behavioral Biology (Practical Course and Seminar 2) 26

Focus 2

Molecular Cell- and Developmental Biology
- Molecular Biology (Lecture) 27
- Cell- and Developmental Biology Master 1 (Lecture and Seminar 1) 28
- Cell- and Developmental Biology Master 2 (Lecture and Seminar 2) 29
- Cell- and Developmental Biology Practical Course and Seminar 1 30
- Cell- and Developmental Biology Practical Course and Seminar 2 31

Microbiology
- Molecular Biology (Lecture) 32
- Microbiology (Lecture and Seminar) 33
- Microbiology (Practical Course and Seminar 1) 34
- Microbiology (Practical Course and Seminar 2) 35

Cellular and Molecular Biotechnology
- Molecular Biology (Lecture) 36
- Biophysics and Molecular Biotechnology (Lecture and Seminar) 37
- Biophysics and Molecular Biotechnology (Practical Course and Seminar 1) 38
- Biophysics and Molecular Biotechnology (Practical Course and Seminar 2) 39

Bioinformatics
- Neurobiology, Behavior and Animal Ecology (Lecture) 40
- Molecular and Clinical Neurobiology (Lecture and Seminar) 41
- Animal Ecology and Tropical Biology (Lecture and Seminar) 42
- Communication Biology (Lecture) 43
- Molecular Biology (Lecture) 44
- Cell- and Developmental Biology Master 1 (Lecture and Seminar 1) 45
- Cell- and Developmental Biology Master 2 (Lecture and Seminar 2) 46
- Microbiology (Lecture and Seminar) 47
- Bioinformatics (Lecture and Seminar) 48
<table>
<thead>
<tr>
<th>Immunology 1 (Lecture and Seminar)</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>57</td>
</tr>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>58</td>
</tr>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>59</td>
</tr>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>60</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>61</td>
</tr>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>62</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>63</td>
</tr>
<tr>
<td>Response towards Biotic and Abiotic Factors</td>
<td>64</td>
</tr>
<tr>
<td>System Biology (Lecture and Seminar)</td>
<td>65</td>
</tr>
<tr>
<td>Bioinformatics (Practical Course and Seminar 1)</td>
<td>66</td>
</tr>
<tr>
<td>Bioinformatics (Practical Course and Seminar 2)</td>
<td>67</td>
</tr>
<tr>
<td>Immunology</td>
<td>68</td>
</tr>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>69</td>
</tr>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>70</td>
</tr>
<tr>
<td>Immunology (Practical Course and Seminar 1)</td>
<td>71</td>
</tr>
<tr>
<td>Immunology (Practical Course and Seminar 2)</td>
<td>72</td>
</tr>
<tr>
<td>Virology</td>
<td>73</td>
</tr>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>74</td>
</tr>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>75</td>
</tr>
<tr>
<td>Virology (Practical Course and Seminar 1)</td>
<td>76</td>
</tr>
<tr>
<td>Virology (Practical Course and Seminar 2)</td>
<td>77</td>
</tr>
<tr>
<td>Human Genetics</td>
<td>78</td>
</tr>
<tr>
<td>Molecular Biology (Lecture)</td>
<td>79</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)</td>
<td>80</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)</td>
<td>81</td>
</tr>
<tr>
<td>Microbiology (Lecture and Seminar)</td>
<td>82</td>
</tr>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>83</td>
</tr>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>84</td>
</tr>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>85</td>
</tr>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>86</td>
</tr>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>87</td>
</tr>
<tr>
<td>Human Genetics (Practical Course and Seminar 1)</td>
<td>88</td>
</tr>
<tr>
<td>Human Genetics (Practical Course and Seminar 2)</td>
<td>89</td>
</tr>
<tr>
<td>Physiological Chemistry</td>
<td>90</td>
</tr>
<tr>
<td>Molecular Biology (Lecture)</td>
<td>91</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)</td>
<td>92</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)</td>
<td>93</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Practical Course and Seminar 1</td>
<td>94</td>
</tr>
<tr>
<td>Physiological Chemistry (Practical Course and Seminar 2)</td>
<td>95</td>
</tr>
<tr>
<td>Laboratory practical course 2</td>
<td>96</td>
</tr>
<tr>
<td>Focus 3</td>
<td>97</td>
</tr>
<tr>
<td>Molecular Cell- and Developmental Biology of Plants</td>
<td>98</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>99</td>
</tr>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>100</td>
</tr>
<tr>
<td>Molecular Biology of Plants (Practical Course and Seminar 1)</td>
<td>101</td>
</tr>
<tr>
<td>Specific Molecular-, Cell- and Developmental Biology of Plants (Practical Course and Seminar 1)</td>
<td>102</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology</td>
<td>103</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>104</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>105</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology (Practical Course and Seminar 1)</td>
<td>106</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology (Practical Course and Seminar 2)</td>
<td>107</td>
</tr>
<tr>
<td>Biophysics</td>
<td>108</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>109</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>110</td>
</tr>
<tr>
<td>Module Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Specific Molecular-, Cell- and Developmental Biology of Plants (Practical Course and Seminar 1)</td>
<td>111</td>
</tr>
<tr>
<td>Biophysics of Membrane Proteins of Plants (Practical Course and Seminar 1)</td>
<td>112</td>
</tr>
<tr>
<td>Pharmaceutical Biology</td>
<td></td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>113</td>
</tr>
<tr>
<td>Response towards Biotic and Abiotic Factors</td>
<td>114</td>
</tr>
<tr>
<td>Pharmaceutical Biology (Practical Course and Seminar 1)</td>
<td>115</td>
</tr>
<tr>
<td>Pharmaceutical Biology (Practical Course and Seminar 2)</td>
<td>116</td>
</tr>
<tr>
<td>Ecology and Ecophysiology of Plants</td>
<td>117</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>118</td>
</tr>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>119</td>
</tr>
<tr>
<td>Specific Ecology and Ecophysiology of Plants (Practical Course and Seminar 1)</td>
<td>120</td>
</tr>
<tr>
<td>Specific Ecology and Ecophysiology of Plants (Practical Course and Seminar 2)</td>
<td>121</td>
</tr>
<tr>
<td>Microbial and Chemical Ecology</td>
<td>122</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>123</td>
</tr>
<tr>
<td>Response towards Biotic and Abiotic Factors</td>
<td>124</td>
</tr>
<tr>
<td>Microbial and Chemical Ecology (Practical Course and Seminar 1)</td>
<td>125</td>
</tr>
<tr>
<td>Microbial and Chemical Ecology (Practical Course and Seminar 2)</td>
<td>126</td>
</tr>
<tr>
<td>System Biology</td>
<td>127</td>
</tr>
<tr>
<td>Neurobiology, Behavior and Animal Ecology (Lecture)</td>
<td>128</td>
</tr>
<tr>
<td>Molecular and Clinical Neurobiology (Lecture and Seminar)</td>
<td>129</td>
</tr>
<tr>
<td>Animal Ecology and Tropical Biology (Lecture and Seminar)</td>
<td>130</td>
</tr>
<tr>
<td>Communication Biology (Lecture)</td>
<td>131</td>
</tr>
<tr>
<td>Molecular Biology (Lecture)</td>
<td>132</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 1 (Lecture and Seminar)</td>
<td>133</td>
</tr>
<tr>
<td>Cell- and Developmental Biology Master 2 (Lecture and Seminar)</td>
<td>134</td>
</tr>
<tr>
<td>Microbiology (Lecture and Seminar)</td>
<td>135</td>
</tr>
<tr>
<td>Bioinformatics (Lecture and Seminar)</td>
<td>136</td>
</tr>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>137</td>
</tr>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>138</td>
</tr>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>139</td>
</tr>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>140</td>
</tr>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>141</td>
</tr>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>142</td>
</tr>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>143</td>
</tr>
<tr>
<td>Biophysics and Biochemistry</td>
<td>144</td>
</tr>
<tr>
<td>Response towards Biotic and Abiotic Factors</td>
<td>145</td>
</tr>
<tr>
<td>System Biology (Lecture and Seminar)</td>
<td>146</td>
</tr>
<tr>
<td>System Biology (Practical Course and Seminar 1)</td>
<td>147</td>
</tr>
<tr>
<td>System Biology (Practical Course and Seminar 2)</td>
<td>148</td>
</tr>
<tr>
<td>Non-focus Lab Course</td>
<td>149</td>
</tr>
<tr>
<td>Laboratory practical course 1</td>
<td>150</td>
</tr>
<tr>
<td>Laboratory practical course 2</td>
<td></td>
</tr>
<tr>
<td>Laboratory practical course 3</td>
<td></td>
</tr>
<tr>
<td>Practical Course as exchange student 1</td>
<td>151</td>
</tr>
<tr>
<td>Practical Course as exchange student 2</td>
<td>152</td>
</tr>
<tr>
<td>Practical Course as exchange student 3</td>
<td>153</td>
</tr>
<tr>
<td>Compulsory Electives 2</td>
<td>154</td>
</tr>
<tr>
<td>Presentation of Scientific Data</td>
<td>155</td>
</tr>
<tr>
<td>Good Practice, Biosafety and Nature Conservation</td>
<td>156</td>
</tr>
<tr>
<td>Epistemology, Biopsychology</td>
<td>157</td>
</tr>
<tr>
<td>Entrepreneurial Spirit in Biosciences</td>
<td></td>
</tr>
<tr>
<td>Specific Curricular Activities in Biological Sciences 1</td>
<td>158</td>
</tr>
<tr>
<td>Specific Curricular Activities in Biological Sciences 2</td>
<td></td>
</tr>
<tr>
<td>Specific Curricular Activities in Biological Sciences 3</td>
<td></td>
</tr>
<tr>
<td>Specific Curricular Activities in Biological Sciences 4</td>
<td></td>
</tr>
</tbody>
</table>
Extracurricular Activities Outside of Natural Sciences 1 169
Extracurricular Activities Outside of Natural Sciences 2 170
Extracurricular Activities Outside of Natural Sciences 3 171
Extracurricular Activities Outside of Natural Sciences 4 172
Entrepreneurial Management in Biosciences 173
Scientific Teaching 1 175
Scientific Teaching 2 176
Scientific Teaching 3 177
Scientific Teaching 4 178
Supervising Tutorial Master 1 179
Supervising Tutorial Master 2 180
Supervising Tutorial Master 3 181
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>Compulsory Electives 1</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>Focus 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurosciences</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>Animal Ecology and Tropical Biology</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>Behavioral Physiology and Sociobiology</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Focus 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Cell- and Developmental Biology</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Microbiology</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Cellular and Molecular Biotechnology</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>Immunology</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>Virology</td>
<td>30</td>
<td>73</td>
</tr>
<tr>
<td>Human Genetics</td>
<td>30</td>
<td>78</td>
</tr>
<tr>
<td>Physiological Chemistry</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Focus 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Cell- and Developmental Biology of Plants</td>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td>Biochemistry and Structural Biology</td>
<td>30</td>
<td>103</td>
</tr>
<tr>
<td>Biophysics</td>
<td>30</td>
<td>108</td>
</tr>
<tr>
<td>Pharmaceutical Biology</td>
<td>30</td>
<td>113</td>
</tr>
<tr>
<td>Ecology and Ecophysiology of Plants</td>
<td>30</td>
<td>118</td>
</tr>
<tr>
<td>Microbial and Chemical Ecology</td>
<td>30</td>
<td>123</td>
</tr>
<tr>
<td>System Biology</td>
<td>30</td>
<td>128</td>
</tr>
<tr>
<td>Non-focus Lab Course</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Compulsory Electives 2</td>
<td>15</td>
<td>157</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

The study program requires the intensive theoretical and practical training in scientific topics in Biology and Life Sciences. The graduate is able to use appropriate methods to answer scientific questions and to conduct research projects.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

22-Jul-2010 (2010-37)
12-Jan-2011 (2011-5)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Thesis
(30 ECTS credits)
Module title	Abbreviation
Final Examination in Biology | 07-MT-102-m01

Module coordinator | Module offered by
chairperson of examination committee Biologie (Biology) | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Applying adequate techniques, students address a defined scientific question. They plan and perform experiments to solve problems or summarise and interpret existing data. Students have to develop a research plan and apply advanced and novel techniques in the context of a given research project, adhering to the principles of good scientific practice. The results are summarised in a written thesis and defended in a colloquium. The project is to be completed within a time frame of six months.

Intended learning outcomes

Students are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. Students are able to discuss and defend their work in the scientific community, drawing on their knowledge of similar or related topics.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 07-MT-1-102: no courses assigned
- 07-MK-1-102: no courses assigned

Assessment in module component 07-MT-1-102: Thesis

- 25 ECTS, Method of grading: numerical grade
- written thesis
- Language of assessment: German or English
- Other prerequisites: F2 lab course on topic of thesis

Assessment in module component 07-MK-1-102: Final Colloquium Biology

- 5 ECTS, Method of grading: numerical grade
- final colloquium (approx. 45 minutes)
- Only after successful completion of module components: 07-MT-1

Allocation of places

--

Additional information

Additional information will be listed separately for each module component.

- 07-MT-1-102: Additional information on module duration: 6 months.
- 07-MK-1-102: --

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives
(90 ECTS credits)
Compulsory Electives 1
(75 ECTS credits)
Focus 1
(ECTS credits)
Neurosciences
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology, Behavior and Animal Ecology (Lecture)</td>
<td>07-MS1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture series is a joint activity of the Chairs of Neurobiology, Behavioural Physiology and Animal Ecology. It will provide students with insights into these fields, helping them select their F1 and F2 practical courses and providing them with the fundamental knowledge and skills required for the advanced modules of this focus.

Intended learning outcomes

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses

| (type, number of weekly contact hours, language — if other than German) |
|-----------------------------|-----------------|
| V | (no information on SWS and course language available) |

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Molecular and Clinical Neurobiology (Lecture and Seminar)

Module title	Abbreviation
Molecular and Clinical Neurobiology (Lecture and Seminar) | 07-MS1N-102-m01

Module coordinator	Module offered by
Prof. Dr. M. Sendtner | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channe-lopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a. m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

Intended learning outcomes
Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal diseases.

Courses (type, number of weekly contact hours, language — if other than German)
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Neurobiology (Practical Course and Seminar 1)
Abbreviation: 07-MS1NF1-102-m01

Module coordinator: holder of the Chair of Neurobiology and Genetics
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
A current topic in the field of neurobiology will be investigated. The practical course will be offered in different specialisations: molecular, clinical, cellular, developmental or behavioural neurobiology or in neurogenetics. In addition to a literature search, a variety of neurobiological methods (for example: electrophysiology, immunohistochemistry, molecular biological techniques, clinical and neurogenetic techniques) and different model systems are offered. The experimental results will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

Intended learning outcomes:
The participants are able to conduct scientific research within the field of neurobiology. They have acquired the knowledge and skills (e.g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to carry out and document neurobiological experiments according to best practice.

Courses (type, number of weekly contact hours, language — if other than German):
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology (Practical Course and Seminar 2)</td>
<td>07-MS1NF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

The students will independently work on a smaller project within a current line of research at the Chair. Neurobiological, genetic or molecular techniques will be tested and adapted according to the research aim. The progress of the experiments and the current line of research will be documented and presented in the form of a scientific talk, a publication or a seminar paper.

Intended learning outcomes

The participants are able to independently conduct scientific research within the field of neurobiology and to adapt a research plan according to the experimental progress. They have acquired the knowledge and skills (e.g. basic and advanced knowledge, special knowledge, advanced methodological background, general and specific methods) to independently carry out, document and interpret neurobiological experiments according to best practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Animal Ecology and Tropical Biology
(30 ECTS credits)
Module title
Neurobiology, Behavior and Animal Ecology (Lecture)

Abbreviation
07-MS1-102-m01

Module coordinator
holder of the Chair of Neurobiology and Genetics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture series is a joint activity of the Chairs of Neurobiology, Behavioural Physiology and Animal Ecology. It will provide students with insights into these fields, helping them select their F1 and F2 practical courses and providing them with the fundamental knowledge and skills required for the advanced modules of this focus.

Intended learning outcomes
Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)

--
Module title: Animal Ecology and Tropical Biology (Lecture and Seminar)
Abbreviation: 07-MS1TÖ-102-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

Intended learning outcomes:
The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

Courses:
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title	Abbreviation
Animal Ecology F1 (Practical Course and Seminar 1) | 07-MS1TÖF1-102-m01

Module coordinator
holder of the Chair of Animal Ecology and Tropical Biology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents
This module consists of several exercises and a seminar series over the course of the entire semester. The exercises can be chosen from the following electives: 1. Wild and honeybee ecology (over the course of the semester): fundamentals and techniques of beekeeping, resource utilisation, behaviour experiments, pollinator diversity and plant-pollinator-interactions. 2. Ecology and taxonomy of insects (block, 2 weeks): observation and recording in the habitat, identification and characteristics of different arthropod groups, field experiments. 3. Ecological modelling (block, 2 weeks): current methods of ecological processes modelling, simulation models, the students’ own modelling project on current issues in ecology. 4. Agroecology (block, 1 week): insect communities in agroecosystems, biological pest control in landscape context, evaluation of agri-environment schemes. 5. Forest ecology (block, 1 week): arthropod communities in forest ecosystems, methods of detection, influence of management on diversity patterns and functional groups. 6. Tropical ecology (block): small projects ecological or nature conservation-related issues to be implemented in a tropical ecosystem in East Africa. In the seminar, recent scientific publications on the topics covered in the modules listed above will be presented and discussed.

Intended learning outcomes
Students will have expanded their knowledge on ecological theories and current research issues in animal ecology. They will be able to design, perform, statistically analyse and interpret scientific research. They will be familiar with animal ecological methods and possible sources of error in data interpretation. They will have deepened their knowledge of the biology and ecology of important functional taxa of arthropods. Students will have acquired the knowledge and skills necessary to perform scientific activities in the context of an F2 practical course or a Master’s thesis.

Courses
(S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title | Animal Ecology and Tropical Biology F2 (Practical Course and Seminar 2)
Abbreviation | 07-MS1TÖF2-102-m01

Module coordinator | holder of the Chair of Animal Ecology and Tropical Biology
Module offered by | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | graduate | Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents

In the F2 practical course, students will explore a scientific question as independently as possible. They will develop hypotheses, prepare a work schedule, collect data, perform experiments in the field, greenhouse or laboratory and will statistically analyse data. Students will document the results of their work in a log similar to a short scientific paper, including an introduction, material and methods, findings and a discussion of these. Students will also be required to present their findings during a wrap-up seminar. The various research groups at the Chair of Animal Ecology and Tropical Biology offer a wide variety of opportunities for students to complete an F2 practical course in Germany, another country in Europe or in the tropics. F2 practical courses may be completed in the context of an ongoing research project of the Institute or in cooperation with other institutions. For more detailed information on the F2 practical course as well as current topics or appointments for consultations, please refer to WueCampus, check out the notice board of the Chair or contact the research groups directly.

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the fields of animal ecology and tropical ecology. They are qualified to design scientific research and are able to collect data and interpret them statistically. They have developed knowledge and skills that allow them to set up a scientific project for their Master’s thesis.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Behavioral Physiology and Sociobiology
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology, Behavior and Animal Ecology (Lecture)</td>
<td>07-MS1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture series is a joint activity of the Chairs of Neurobiology, Behavioural Physiology and Animal Ecology. It will provide students with insights into these fields, helping them select their F1 and F2 practical courses and providing them with the fundamental knowledge and skills required for the advanced modules of this focus.

Intended learning outcomes

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses

(V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Communication Biology (Lecture)

Abbreviation
07-MS1K-102-m01

Module coordinator
holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by
Faculty of Biology

ECTS
| 10 |

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

Intended learning outcomes
Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses
S + V

(type, number of weekly contact hours, language — if other than German)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title: Behavioral Biology (Practical Course and Seminar 1)
Abbreviation: 07-MS1VF1-102-m01

Module coordinator: holder of the Chair of Behavioral Physiology and Sociobiology
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade

Duration: 1 semester
Module level: graduate
Other prerequisites: Admission prerequisite to assessment: regular attendance of lab course as well as successful completion of the respective exercises.

Contents:

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will gain an insight into the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

Intended learning outcomes:

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they are able to process and document the results obtained and to present them to a scientific audience.

Courses (type, number of weekly contact hours, language — if other than German):

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places:

Additional information:

Referred to in LPO I (examination regulations for teaching-degree programmes):
Module title

Behavioral Biology (Practical Course and Seminar 2)

Abbreviation

07-MS1VF2-102-m01

Module coordinator

holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by

Faculty of Biology

ECTS

15

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Admission prerequisite to assessment: regular attendance of lab course as well as successful completion of the respective exercises.

Contents

Students will be integrated into one of the research groups at the Chair and will independently work on one of the current topics in the field of behavioural physiology and sociobiology. They will learn to plan experimental series and to apply the latest physiological, neurobiological and behavioural methods. The results obtained will be graphically and statistically analysed, summarised in a scientific report and presented in a talk. Please contact the research groups at the Chair for available topics and opportunities.

Intended learning outcomes

The students are able to independently perform scientific experiments in the field of behavioural physiology and sociobiology. In addition, they have learned to interpret the results obtained, taking into account current literature, and to place them in the context of other research in the field.

Courses

(type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Focus 2

(ECTS credits)
Molecular Cell- and Developmental Biology
(30 ECTS credits)
Module title: Molecular Biology (Lecture)

Abbreviation: 07-MS2-102-m01

Module coordinator: holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer

Module offered by: Faculty of Biology

ECTS: 10

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes:
Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title
Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)

Abbreviation
07-MS2ZE1-102-m01

Module coordinator
holder of the Chair of Cell Biology and Developmental Biology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes
Participants possess scientific background knowledge on cytopathology and are able to put this into the broader context of cell biology research.

Courses
(S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)</td>
<td>07-MS2ZE2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module comprises the lecture *Signale und Differenzierung* (Signals and Differentiation) and the seminar *Entwicklungsbiologie-Meilensteine und Perspektiven* (Milestones and Perspectives of Developmental Biology). The lecture *Signale und Differenzierung* (Signals and Differentiation) is not designed to merely impart textbook knowledge to students. It will rather introduce students to particularly interesting and current topics in developmental biology. Topics covered in the lecture (subject to change): - Cooperation: Development and consequences of multicellularity. - Sex: More than just ? + ? =. - On the move: Morphogenetic migration. - All-rounders?: Opportunities and limitations of stem cell research. - Growing new hearts?: Animals and their ability to regenerate. - Disasters: What do we actually know about metamorphoses? - Always the same?: Plasticity and epigenetics. - Metaorganisms: We are never alone. - Development in changing environments: Ecology and polyphenism. - Developmental biology of behaviour: Everything is learned. Or isn’t it? - Evo-devo: A fad? No, been around for ages. In the seminar *Entwicklungsbiologie-Meilensteine und Perspektiven* (Developmental Biology - Milestones and Outlook), classical ground-breaking scientific articles in the field of developmental biology will be discussed from an unusual point of view.

Intended learning outcomes

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>type, scope, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Cell- and Developmental Biology Practical Course and Seminar 1 | 07-MS2ZEF1-102-m01

Module coordinator | Module offered by
holder of the Chair of Cell Biology and Developmental Biology | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. In addition, the importance of cell and developmental biology for medicine and the economy is highlighted. During the fifth and final week of the course, students acquire sustained insights into current research activities of the Chair and, interacting with Master’s students, doctoral researchers and post-docs, gain first-hand experience of research activities.

Intended learning outcomes

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell- and Developmental Biology Practical Course and Seminar 2</td>
<td>07-MS2ZEF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module offered by</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty of Biology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Well-defined aspects of scientific projects are addressed with independently designed experiments in the context of current research projects in the field of cell and developmental biology. The techniques applied are evaluated on the basis of the results obtained and modified where necessary. The results of all experiments as well as the impact on the research project are presented and discussed in a progress report seminar within the team.

Intended learning outcomes

The participants are able to independently carry out scientific experiments in the fields of cell and developmental biology and to modify them according to the outcome. They are able to independently approach current scientific topics and to perform, interpret and document experiments, adhering to accepted rules of scientific practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Microbiology
(30 ECTS credits)
Module title

Molecular Biology (Lecture)

Abbreviation

07-MS2-102-m01

Module coordinator

holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology (Lecture and Seminar)</td>
<td>07-MS2M-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

Intended learning outcomes

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Microbiology (Practical Course and Seminar 1)

Abbreviation
07-MS2MF1-102-m01

Module coordinator
holder of the Chair of Microbiology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
only after succ. compl. of module(s)

Numerical grade
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Under guidance, participants will work on a current research project dealing with microbial pathogens and their interactions with the host. Participants will employ a variety of state-of-the-art methods within the fields of molecular biology, microbiology, cell biology, and immunology as well as data analysis and literature search techniques. Results will be documented and discussed in a seminar paper or an oral presentation.

Intended learning outcomes
Participants will acquire the skills to experimentally address scientific questions in molecular biology and infection biology, properly document experimental results and adhere to the standards of good scientific practice.

Courses
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology (Practical Course and Seminar 2)</td>
<td>07-MS2MF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Participants will independently work on a current research project dealing with microbiology and infection biology. They will apply advanced experimental techniques in microbiology, cell biology and molecular biology according to the project requirements. Progress of the research project will be reported in a seminar paper, a research paper or an oral presentation.

Intended learning outcomes

The participants will acquire the skills to independently perform basic research on microbiology and infection biology according to the standards of good scientific practice and to properly document, interpret and present experimental results.

Courses (type, number of weekly contact hours, language — if other than German)

| S + P (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Cellular and Molecular Biotechnology
(30 ECTS credits)
Module title
Molecular Biology (Lecture)

Abbreviation
07-MS2-102-m01

Module coordinator
holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes
Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Molecular Biotechnology (Lecture and Seminar)</td>
<td>07-MS2BT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Biotechnology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture provides a broad overview of biophysical techniques and their applications. The first part of the lecture discusses fundamental aspects of thermodynamics, kinetics and molecular interactions. The course then moves on to discuss biophysical methods that facilitate the investigation of individual cells down to the level of single molecules. Focus is on electromanipulation and dielectric spectroscopy of cells, biomembranes, electrophysiology, ion channels, protein folding, single-molecule fluorescence methods and high-resolution as well as dynamic microscopy.

Intended learning outcomes

Students will have acquired a knowledge of fundamental biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with - or, where necessary, will be able to independently acquaint themselves with - biophysical mechanisms.

Courses

(V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

Biochemistry Master's: 4 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Biophysics and Molecular Biotechnology (Practical Course and Seminar 1) | 07-MS2BTF1-102-m01

Module coordinator	Module offered by
holder of the Chair of Biotechnology and Biophysics | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
This practical course provides students with an insight into different biotechnological and biophysical topics and methods. Under expert guidance, students will perform selected experiments on the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells.

Intended learning outcomes
Students will have acquired a knowledge of fundamental biotechnological and biophysical methods and their applications that will enable them to independently review relevant literature. In addition, they will have become acquainted with or, where necessary, will be able to independently acquaint themselves with biophysical mechanisms. Students will have acquired practical experience performing experiments, using a variety of scientific tools. In the seminar, students will have acquired detailed theoretical knowledge on these experiments and will have delivered a short presentation (15 minutes) on one of the experiments they performed.

Courses (type, number of weekly contact hours, language — if other than German)
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Biophysics and Molecular Biotechnology (Practical Course and Seminar 2)

Abbreviation
07-MS2BTF2-102-m01

Module coordinator
holder of the Chair of Biotechnology and Biophysics

Module offered by
Faculty of Biology

ECTS
15

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents
This practical course provides students with an insight into different biotechnological and biophysical topics and is close to laboratory research. Under expert guidance, students will perform selected experiments on one of the following topics: cellular and molecular biotechnology, nano and microsystems biotechnology, biomaterials and biosensors, high-resolution fluorescence microscopy, fluorescence spectroscopy, analysis and electromanipulation of cells. Performing experiments under expert guidance, students will become acquainted with techniques and instruments. Over the duration of the course, students will then be required to work increasingly independently on current research topics. Work on current research topics will spark the students' interest in topics and will help them select a topic for their Bachelor's thesis.

Intended learning outcomes
Students will become acquainted with modern biophysical methods and their applications in biotechnology. They will be able to independently work on scientific problems, to independently study relevant literature and to develop a quantitative understanding of biophysical mechanisms. In the seminar, students will acquire further theoretical knowledge on experiments and will give short presentations on experiments performed.

Courses (type, number of weekly contact hours, language — if other than German)
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Bioinformatics
(30 ECTS credits)
Module title
Neurobiology, Behavior and Animal Ecology (Lecture)

Abbreviation
07-MS1-102-m01

Module coordinator
holder of the Chair of Neurobiology and Genetics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture series is a joint activity of the Chairs of Neurobiology, Behavioural Physiology and Animal Ecology. It will provide students with insights into these fields, helping them select their F1 and F2 practical courses and providing them with the fundamental knowledge and skills required for the advanced modules of this focus.

Intended learning outcomes
Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Clinical Neurobiology (Lecture and Seminar)</td>
<td>07-MS1N-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. M. Sendtner</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channelopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a.m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

Intended learning outcomes

Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal disea-

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Animal Ecology and Tropical Biology (Lecture and Seminar)
Abbreviation: 07-MS1TÖ-102-m01

Module coordinator: holder of the Chair of Animal Ecology and Tropical Biology
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

Intended learning outcomes
The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Communication Biology (Lecture)
Abbreviation: 07-MS1K-102-m01

Module coordinator: holder of the Chair of Behavioral Physiology and Sociobiology
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

Intended learning outcomes:
Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses (type, number of weekly contact hours, language — if other than German):
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title
Molecular Biology (Lecture)

Abbreviation
07-MS2-102-m01

Module coordinator
holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes
Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)</td>
<td>07-MS2ZE1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes

Participants possess scientific background knowledge on cytopathology and are able to put this into the broader context of cell biology research.

Courses

(type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title

Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)

Abbreviation

07-MS2ZE2-102-m01

Module coordinator

holder of the Chair of Cell Biology and Developmental Biology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The module comprises the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie-Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signale und Differenzierung (Signals and Differentiation) is not designed to merely impart textbook knowledge to students. It will rather introduce students to particularly interesting and current topics in developmental biology. Topics covered in the lecture (subject to change): Cooperation: Development and consequences of multicellularity. - Sex: More than just ? + ? =. - On the move: Morphogenetic migration. - All-rounders?: Opportunities and limitations of stem cell research. - Growing new hearts?: Animals and their ability to regenerate. - Disasters: What do we actually know about metamorphoses? - Always the same?: Plasticity and epigenetics. - Metaorganisms: We are never alone. - Development in changing environments: Ecology and polymorphism. - Developmental biology of behaviour: Everything is learned. Or isn't it? - Evo-devo: A fad? No, been around for ages. In the seminar Entwicklungsbiologie-Meilensteine und Perspektiven (Developmental Biology - Milestones and Outlook), classical ground-breaking scientific articles in the field of developmental biology will be discussed from an unusual point of view.

Intended learning outcomes

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology (Lecture and Seminar)</td>
<td>07-MS2M-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Microbiology

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

Intended learning outcomes

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Bioinformatics (Lecture and Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>07-MS2BI-102-m01</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>holder of the Chair of Bioinformatics</td>
</tr>
<tr>
<td>Module offered by</td>
<td>Faculty of Biology</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>10</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
</tr>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e.g. net generation sequences, proteomics data), analysis of different functional RNAs (e.g. miRNAs, lncRNAs).

Intended learning outcomes

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + V</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>07-MS2IM1-102-m01</td>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Virology and Immuno-biology

Module offered by
Faculty of Biology

Contents

Intended learning outcomes
Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>07-MS2IM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

Intended learning outcomes

Students are able to understand current topics in immunology and to discuss these in detail.

Courses (type, number of weekly contact hours, language — if other than German)

| S + V (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>07-MS2V1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

Module title
Virology 2 (Lecture and Seminar)
Abbreviation
07-MS2V2-102-m01

Module coordinator
Managing Director of the Institute of Virology and Immunobiology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester
graduate
--

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>07-MS2HG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Human Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module will discuss current topics in human genetics.

Intended learning outcomes

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>07-MS3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes

The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses

(V no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Title

Developmental Physiology and Adaption of Plants (Lecture and Seminar)

Abbreviation

07-MS3PA-102-m01

Module Coordinator

holder of the Chair of Pharmaceutical Biology

Module Offered by

Faculty of Biology

ECTS

10

Method of Grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module Level

Graduate

Other Prerequisites

--

Contents

Section Developmental Physiology: The lecture will discuss the physiological processes occurring during ontogeny as well as the reaction of plants to various environmental parameters. It will focus on introducing students to the molecular components (ABA, auxin, ethylene etc.) of signalling networks and explaining their biosynthesis, regulation and functioning. Current journal articles on the topics will be presented and discussed in the seminar.

Section Adaptation: The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e.g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

Intended Learning Outcomes

Students are qualified to recognise ecological and physiological relations and are able to interpret and discuss these relations in the context of the current state of knowledge.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Biochemistry</td>
<td>07-MS3BB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Biology
Master's with 1 major, 120 ECTS credits

Module title
Response towards Biotic and Abiotic Factors

Abbreviation
07-MS3BA-102-m01

Module coordinator
holder of the Chair of Pharmaceutical Biology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
In their natural environment, plants are constantly exposed to a variety of biotic and abiotic (stress) factors. Plant responses to these external factors lead to changes in the regulation of gene expression, the activity of enzymes and the levels of a variety of metabolites. Some of these responses lead to increased stress resistance/tolerance. The lecture and seminar will not only discuss these plant responses and the mechanisms of perception and signal transduction. They will also examine the strategies of microorganisms and herbivores for using plants as a source of nutrients.

Intended learning outcomes
Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Biology (Lecture and Seminar)</td>
<td>07-MS3S-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics (Practical Course and Seminar 1)</td>
<td>07-MS2BIF1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Bioinformatics

Module offered by
Faculty of Biology

ECTS 10
Method of grading numerical grade
Duration 1 semester
Module level graduate

Contents
Detailed insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Students have gained knowledge on experimental setups and methods used in the field of bioinformatics. They are able to design experiments, collect data and interpret them statistically, adhering to the principles of good scientific practice.

Courses
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Bioinformatics (Practical Course and Seminar 2) | 07-MS2BIF2-102-m01

Module coordinator | Module offered by
holder of the Chair of Bioinformatics | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Advanced insight into methods in bioinformatics; depending on the topic selected, fields covered include: genomics (sequence-, domain analysis and annotation), omics data analysis (NGS, transcriptomics, metabolomics, proteomics), topological and structural analysis of biological interactions including statistical methods, phylogenetic analysis, protein structure analysis. The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes

Proficiency in one or more methods in bioinformatics that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Immunology
(30 ECTS credits)
Module title	Abbreviation
Immunology 1 (Lecture and Seminar) | 07-MS2IM1-102-m01

Module coordinator	Module offered by
Managing Director of the Institute of Virology and Immunobiology | Faculty of Biology |

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | graduate | -- |

Contents

Intended learning outcomes

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>07-MS2IM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Virology and Immunobiology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

Intended learning outcomes

Students are able to understand current topics in immunology and to discuss these in detail.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Immunology (Practical Course and Seminar 1)

Abbreviation

07-MS2IMF1-102-m01

Module coordinator

Managing Director of the Institute of Virology and Immunobiology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

Students will complete a 2-week lab course at the Institute of Virology and Immunobiology during which they will become familiar with fundamental methods in cellular and molecular immunology. Afterwards, students will select a laboratory at the Institute or one of the participating institutions (e.g. clinics, Virchow Center, molecular infection immunology and others) and will spend three weeks working on a defined project. Results of the lab course and lab project will be documented in a log and will be presented at the end of the course.

Intended learning outcomes

The students learn to apply experimental procedures and methods in immunology, to independently address scientific questions and to appropriately document their experimental work.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology (Practical Course and Seminar 2)</td>
<td>07-MS2IMF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immuno-biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Critically reading and presenting original research papers (in English language), participants will independently investigate current problems in immunology. They will be involved in the development of a research plan and will independently apply advanced techniques in cellular and/or molecular immunology.

Intended learning outcomes

The participants acquire skills allowing them to work independently in the field of cellular and molecular immunology. This includes competence to address immunological problems on their own and to conduct, document and interpret their research according to good research practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Virology

(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>07-MS2V1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Virology and Immunobiology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes
Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>07-MS2V2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology (Practical Course and Seminar 1)</td>
<td>07-MS2VF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Current research topics in virology - one topic will be discussed in depth.

Intended learning outcomes

Students are able to perform small research projects in a virology lab. They are familiar with the rules of good scientific practice, work independently on a current case study and document their results.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology (Practical Course and Seminar 2)</td>
<td>07-MS2VF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Current research topics in virology - one topic will be discussed in depth.

Intended learning outcomes

Students are able to perform small research projects in a virology lab. They are familiar with the rules of good scientific practice, work independently on a current case study and document their results.

Courses (type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Human Genetics
(30 ECTS credits)
Molecular Biology (Lecture)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology (Lecture)</td>
<td>07-MS2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses

<table>
<thead>
<tr>
<th>V (no information on SWS (weekly contact hours) and course language available)</th>
</tr>
</thead>
</table>

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes).

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)
Abbreviation: 07-MS2ZE1-102-m01

Module coordinator: holder of the Chair of Cell Biology and Developmental Biology
Module offered by: Faculty of Biology

ECTS: 10
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents:
The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes:
Participants possess scientific background knowledge on cytopathology and are able to put this into the broader context of cell biology research.

Courses:
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO 1 (examination regulations for teaching-degree programmes):
--
Module title
Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)

Abbreviation
07-MS2ZE2-102-m01

Module coordinator
holder of the Chair of Cell Biology and Developmental Biology

Module offered by
Faculty of Biology

ECTS

10

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites

Contents
The module comprises the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie-Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signale und Differenzierung (Signals and Differentiation) is not designed to merely impart textbook knowledge to students. It will rather introduce students to particularly interesting and current topics in developmental biology. Topics covered in the lecture (subject to change): - Cooperation: Development and consequences of multicellularity. - Sex: More than just ? + ? =. - On the move: Morphogenetic migration. - All-rounders?: Opportunities and limitations of stem cell research. - Growing new hearts?: Animals and their ability to regenerate. - Disasters: What do we actually know about metamorphoses? - Always the same?: Plasticity and epigenetics. - Metaorganisms: We are never alone. - Development in changing environments: Ecology and polyphenism. - Developmental biology of behaviour: Everything is learned. Or isn’t it? - Evo-devo: A fad? No, been around for ages. In the seminar Entwicklungsbiologie-Meilensteine und Perspektiven (Developmental Biology - Milestones and Outlook), classical ground-breaking scientific articles in the field of developmental biology will be discussed from an unusual point of view.

Intended learning outcomes
Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses (type, number of weekly contact hours, language — if other than German)
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology (Lecture and Seminar)</td>
<td>07-MS2M-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.

Intended learning outcomes

The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.

Courses (type, number of weekly contact hours, language — if other than German)

V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>07-MS2IM1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master’s with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>07-MS2IM2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Virology and Immunobiology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

Intended learning outcomes
Students are able to understand current topics in immunology and to discuss these in detail.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>07-MS2V1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>07-MS2V2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>07-MS2HG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director</td>
<td>Faculty of Biology</td>
</tr>
<tr>
<td>of the Institute</td>
<td></td>
</tr>
<tr>
<td>of Human Genetics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module will discuss current topics in human genetics.

Intended learning outcomes

Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Human Genetics (Practical Course and Seminar 1)

Abbreviation
07-MS2HGF1-102-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module coordinator
Managing Director of the Institute of Human Genetics

Module offered by
Faculty of Biology

Contents

Practical course on a topic in human genetics. Students spend five weeks working on a small, well-defined scientific lab project and learn how to present their data. They learn to discuss their data in a seminar. The students learn to apply experimental procedures and methods of human genetics, to independently address scientific questions and to document their experimental work in an appropriate way.

Intended learning outcomes

Students are able to independently investigate a topic in human genetics as well as to document, interpret and discuss their results, adhering to the principles of good scientific practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genetics (Practical Course and Seminar 2)</td>
<td>07-MS2HGF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Human Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Current problems in the field of human genetics will be addressed by critically reading and presenting original research papers. The participants will be involved in the development of a research plan and will learn to apply advanced techniques to answer a scientific question in human genetics. This practical course will have a duration of 12 weeks (three months).

Intended learning outcomes

Students are able to independently investigate a topic in human genetics as well as to document, interpret and discuss their results, adhering to the principles of good scientific practice.

Courses *(type, number of weekly contact hours, language — if other than German)*

S + P *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)*

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes).

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Physiological Chemistry
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology (Lecture)</td>
<td>07-MS2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes

Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)</td>
<td>07-MS2ZE1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Cell Biology and Developmental Biology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

ECTS
graduate

Other prerequisites

Contents
The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milestone und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes
Participants possess scientific background knowledge on cytopathology and are able to put this into the broader context of cell biology research.

Courses
(type, number of weekly contact hours, language — if other than German)
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes).

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title

Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)

Abbreviation

07-MS2ZE2-102-m01

Module coordinator

holder of the Chair of Cell Biology and Developmental Biology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

The module comprises the lecture Signale und Differenzierung (Signals and Differentiation) and the seminar Entwicklungsbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Developmental Biology). The lecture Signale und Differenzierung (Signals and Differentiation) is not designed to merely impart textbook knowledge to students. It will rather introduce students to particularly interesting and current topics in developmental biology. Topics covered in the lecture (subject to change): - Cooperation: Development and consequences of multicellularity. - Sex: More than just ? + ? =. - On the move: Morphogenetic migration. - All-rounders?: Opportunities and limitations of stem cell research. - Growing new hearts?: Animals and their ability to regenerate. - Disasters: What do we actually know about metamorphoses? - Always the same?: Plasticity and epigenetics. - Metaorganisms: We are never alone. - Development in changing environments: Ecology and polyphenism. - Developmental biology of behaviour: Everything is learned. Or isn’t it? - Evo-devo: A fad? No, been around for ages. In the seminar Entwicklungsbiologie-Milesteine und Perspektiven (Developmental Biology - Milestones and Outlook), classical ground-breaking scientific articles in the field of developmental biology will be discussed from an unusual point of view.

Intended learning outcomes

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell- and Developmental Biology Practical Course and Seminar 1</td>
<td>07-MS2ZEF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Cell Biology and Developmental Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

This 5 week full-time practical course provides an introduction to modern cell and developmental biology-related methods with a focus on bio-imaging techniques. A broad variety of model organisms is covered and the participants are encouraged to independently design and perform their own experiments. Participants use their acquired technological skills to analyse important basic biological processes. In addition, the importance of cell and developmental biology for medicine and the economy is highlighted. During the fifth and final week of the course, students acquire sustained insights into current research activities of the Chair and, interacting with Master's students, doctoral researchers and post-docs, gain first-hand experience of research activities.

Intended learning outcomes

The participants are able to approach complex scientific questions in the fields of cell and developmental biology and to independently implement acquired methodological tools to answer these questions. They are able to perform and document cell and developmental biology-related experiments, adhering to a generally accepted code of scientific practice.

Courses (type, number of weekly contact hours, language — if other than German)
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological Chemistry (Practical Course and Seminar 2)</td>
<td>07-MS2PHF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Critically reading and presenting original research papers (in English language), participants will independently investigate current problems in physiological chemistry. They will be involved in the development of a research plan and will independently apply advanced techniques in molecular cell biology and/or developmental biochemistry.

Intended learning outcomes

Students are able to plan and design research in the fields of molecular cell biology and developmental biochemistry. They are able to work according to good scientific practice and to document, interpret and discuss their results.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title
Laboratory practical course 2

Abbreviation
07-MSL2-102-m01

Module coordinator
Coordinator BioCareers

Module offered by
Faculty of Biology

ECTS
10

Method of grading
Only after succ. compl. of module(s)

(0) successfully completed

Duration
1 semester

Module level
graduate

Other prerequisites
Please consult with course advisory service in advance.

Contents
Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

Intended learning outcomes
Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses
(P no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Focus 3

(ECTS credits)
Molecular Cell- and Developmental Biology of Plants
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodologies of Quantitative Biology (Lecture)</td>
<td>07-MS3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organisic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes

The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses

(V no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>07-MS3PA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>graduate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Section Developmental Physiology: The lecture will discuss the physiological processes occurring during ontogeny as well as the reaction of plants to various environmental parameters. It will focus on introducing students to the molecular components (ABA, auxin, ethylene etc.) of signalling networks and explaining their biosynthesis, regulation and functioning. Current journal articles on the topics will be presented and discussed in the seminar.

Section Adaptation: The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e.g., plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

Intended learning outcomes

Students are qualified to recognise ecological and physiological relations and are able to interpret and discuss these relations in the context of the current state of knowledge.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes).

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology of Plants (Practical Course and Seminar 1)</td>
<td>07-MS3MF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides an in-depth insight into molecular biological strategies and methods applied in plant physiology.

Intended learning outcomes

The students have knowledge about basic molecular biological strategies and methods focusing on plant physiology. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses

(type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Specific Molecular-, Cell- and Developmental Biology of Plants (Practical Course and Seminar 1)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Molecular-, Cell- and Developmental Biology of Plants (Practical Course and Seminar 1)</td>
<td>07-MS3ZE-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

The students perform their research work within the context of a current research project on molecular plant and developmental physiology in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes

Students are able to work on a scientific question, to design an experimental setup as well as to interpret, document and present their results.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Biochemistry and Structural Biology
(30 ECTS credits)
Module title: Methodologies of Quantitative Biology (Lecture)

Abbreviation: 07-MS3-102-m01

Module coordinator: holder of the Chair of Plant Physiology and Biophysics

Module offered by: Faculty of Biology

ECTS: 10

Method of grading: numerical grade

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and orga-
nomic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: in-
teractions between plants and pathogens comprise evolutionary dynamic and complex systems. Different stra-
tegies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be
discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expres-
sion and activation of local and systemic defence responses are in the focus of this lecture. Differences and si-
milarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-inter-
actions and molecular mechanisms determining susceptibility and defence is fundamental for the development
of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metaboli-
tes: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores
and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well
as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of
important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs ha-
ve been developed from plant secondary metabolites that have been used as lead structures to generate potent
drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals
(evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be
discussed.

Intended learning outcomes:
The students are qualified to perform and organize their scientific laboratory work independently and document
the obtained results. They are able to design a research project and are prepared to work on a scientific question
for their thesis.

Courses:
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Students will be informed about the method, length and scope of the assessment prior to the course. Usually,
one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice
questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of
up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics and Biochemistry</td>
<td>07-MS3BB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes

Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry and Structural Biology (Practical Course and Seminar 1)</td>
<td>07-MS3BSF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides an in-depth insight into strategies and methods of protein biochemistry and structural biology.

Intended learning outcomes

The students have knowledge about general strategies and methods of protein biochemistry and structural biology with a focus on membrane proteins. They are able to perform and organise their scientific laboratory work independently and document the results obtained.

Courses (type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title | Biochemistry and Structural Biology (Practical Course and Seminar 2)
Abbreviation | 07-MS3BSF2-102-m01

Module coordinator | holder of the Chair of Plant Physiology and Biophysics

Module offered by | Faculty of Biology

ECTS | 15
Method of grading | Only after succ. compl. of module(s)

(Not) successfully completed | --

Duration | 1 semester
Module level | graduate

Other prerequisites | Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents

The students perform their research work within a current research project on the topic of biochemistry and structural biology in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes

The students are able to independently perform and organise their scientific laboratory work in the fields of biochemistry and structural biology and to document the results obtained. They are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses

(type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO | (examination regulations for teaching-degree programmes)

--
Biophysics
(30 ECTS credits)
Module title
Module methodologies of Quantitative Biology (Lecture)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>07-MS3-102-m01</th>
</tr>
</thead>
</table>

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td></td>
</tr>
</tbody>
</table>

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapiest with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses
(V no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>V</th>
<th></th>
</tr>
</thead>
</table>

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title: Biophysics and Biochemistry

Module coordinator: holder of the Chair of Plant Physiology and Biophysics

Module offered by: Faculty of Biology

ECTS: 10

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes:
Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses:
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes):
--
Module title
Specific Molecular-, Cell- and Developmental Biology of Plants (Practical Course and Seminar 1)

Abbreviation
07-MS3ZE-102-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
15

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
graduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents
The students perform their research work within the context of a current research project on molecular plant and developmental physiology in a largely independent manner under supervision of a principal investigator.

Intended learning outcomes
Students are able to work on a scientific question, to design an experimental setup as well as to interpret, document and present their results.

Courses
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysics of Membrane Proteins of Plants (Practical Course and Seminar 1)</td>
<td>07-MS3BPF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. I. Marten, holder of the Chair of Plant Physiology and Biophysics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides an in-depth insight into biophysical strategies and methods which are used for the functional characterisation of plant membrane proteins. The students will be integrated into research projects on current topics in molecular plant membrane biology.

Intended learning outcomes

The students have knowledge of general biophysical strategies and methods with a focus on plant membrane proteins, they are able to independently work on related scientific issues and to document the results obtained.

Courses

(type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Pharmaceutical Biology
(30 ECTS credits)
Module title	Abbreviation
Methodologies of Quantitative Biology (Lecture) | 07-MS3-102-m01

Module coordinator | Module offered by
holder of the Chair of Plant Physiology and Biophysics | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defense and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defense mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defense responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defense is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defense strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defense strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language — if other than German)
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Response towards Biotic and Abiotic Factors

Module coordinator
holder of the Chair of Pharmaceutical Biology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites

Contents
In their natural environment, plants are constantly exposed to a variety of biotic and abiotic (stress) factors. Plant responses to these external factors lead to changes in the regulation of gene expression, the activity of enzymes and the levels of a variety of metabolites. Some of these responses lead to increased stress resistance/tolerance. The lecture and seminar will not only discuss these plant responses and the mechanisms of perception and signal transduction. They will also examine the strategies of microorganisms and herbivores for using plants as a source of nutrients.

Intended learning outcomes
Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Pharmaceutical Biology (Practical Course and Seminar 1)

Abbreviation
07-MS3PBF1-102-m01

Module coordinator
holder of the Chair of Pharmaceutical Biology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Other prerequisites
--

Duration
1 semester

Contents
All organisms are able to reprogram their metabolism in response to various endogenous or exogenous perturbations. Reprogramming of metabolism is often correlated to phenotypic changes e.g. in disease development, physiology or behaviour. At the Chair of Pharmaceutical Biology, we apply metabolomics for gene function- or stress response analysis. Students can choose a topic from the variety of ongoing projects. Depending on the scientific question addressed by the research team at the Chair, the methodological approach involves techniques in the field of metabolomics/bioanalytics and/or molecular biology. In this module, students will be trained to use quantitative metabolite analysis methods (chromatography, mass spectrometry) and apply advanced molecular biology techniques. Depending on the project, different model organisms are studied. Prior knowledge in metabolite analysis or mass spectrometry is not required. Current scientific questions in the life sciences form the basis to impart scientific concepts and to train students in the laboratory. The module involves the experimental design, realisation and critical evaluation of scientific experiments as well as the documentation and presentation of the progress. More information is available on request or can be found at http://www.pbio.biocentrum.uni-wuerzburg.de/.

Intended learning outcomes
Students will be trained in using specific molecular biology methods and/or metabolomics approaches to address scientific questions, in the documentation of experimental procedures and results, and in the interpretation of data.

Courses (type, number of weekly contact hours, language — if other than German)
P + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Biology (Practical Course and Seminar 2)</td>
<td>07-MS3PBF2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>Admission prerequisite to assessment: regular attendance of lab course as well as successful completion of the respective exercises.</td>
</tr>
</tbody>
</table>

Contents

Students will be involved in current research projects in pharmaceutical biology or in collaborative research projects that focus on the regulation of metabolism and analysis of metabolic pathways (e.g. in the context of reactions towards biotic or abiotic stress, functional and phenotypic analysis of mutants, or drug metabolism). Aspects of the scientific question will be independently addressed by the students. Molecular biology methods and/or metabolomic approaches will be optimised for and adapted to the specific problem. Experimental results and progress in the understanding of biological problems will be documented in the form of a log and presented in a seminar. More information is available on request or can be found at http://www.pbio.biozentrum.uni-wuerzburg.de/.

Intended learning outcomes

The participants are able to independently carry out scientific experiments and to modify them according to the outcome. They are able to independently approach scientific topics in pharmaceutical biology and to perform, interpret and document experiments, adhering to accepted rules of scientific practice. They are able to apply specific techniques required to answer scientific questions.

Courses (type, number of weekly contact hours, language — if other than German)

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Ecology and Ecophysiology of Plants
(30 ECTS credits)
Module title
Methodologies of Quantitative Biology (Lecture)

Abbreviation
07-MS3-102-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module: Developmental Physiology and Adaption of Plants (Lecture and Seminar)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Physiology and Adaption of Plants</td>
<td>07-MS3PA-102-m01</td>
</tr>
<tr>
<td>(Lecture and Seminar)</td>
<td></td>
</tr>
</tbody>
</table>

Module Coordinator
- holder of the Chair of Pharmaceutical Biology

Module offered by
- Faculty of Biology

ECTS
- 10

Method of grading
- numerical grade

Only after succ. compl. of module(s)
- --

Duration
- 1 semester

Module level
- graduate

Other prerequisites
- --

Contents

Section Developmental Physiology: The lecture will discuss the physiological processes occurring during ontogeny as well as the reaction of plants to various environmental parameters. It will focus on introducing students to the molecular components (ABA, auxin, ethylene etc.) of signalling networks and explaining their biosynthesis, regulation and functioning. Current journal articles on the topics will be presented and discussed in the seminar.

Section Adaptation: The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e.g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection).

Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

Intended learning outcomes

Students are qualified to recognise ecological and physiological relations and are able to interpret and discuss these relations in the context of the current state of knowledge.

Courses

- (type, number of weekly contact hours, language — if other than German)
- S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
- --

Additional information
- --

Referred to in LPO I
- (examination regulations for teaching-degree programmes)
- --
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Ecology and Ecophysiology of Plants (Practical Course and Seminar)</td>
<td>07-MS3PÖF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Ecophysiology and Vegetation Ecology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Under guidance, students will investigate a current problem in ecology/ecophysiology (e.g. plant-insect and plant-fungus interactions, biogeography, characterisation of plant surfaces, cuticular barrier properties). Working concepts and complex experiments will be designed, and the results will be documented and presented in the form of presentations, publications or logs. Students will be involved in ongoing research and will consolidate their skills in the application of advanced methods in ecophysiology, analytical chemistry or molecular biology.

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the field of plant ecophysiology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Specific Ecology and Ecophysiology of Plants (Practical Course and Seminar 2)

Abbreviation
07-MS3PÖF2-102-m01

Module coordinator
holder of the Chair of Ecophysiology and Vegetation Ecology

Module offered by
Faculty of Biology

ECTS
15

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents
Students will work on projects taken from ongoing research in plant ecology and ecophysiology (e.g. plant-insect-, plant-fungus interactions; biogeography; characterisation of plant surfaces, cuticular barrier properties). They will do this work to a large extent on their own responsibility. Based on the results obtained, the ecophysiological, analytical, molecular biological and/or microbiological methods applied (e.g. measurement of transpiration, chromatography, mass spectrometry, fluorescence microscopy, PCR, cloning strategies) will be critically assessed and, where necessary, modified. Students will document and discuss the progress of their work and of the project as a whole in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Students are able to scientifically work on a topic in plant ecophysiology. They are able to answer and to discuss questions asked in the field of chemical ecology. They are able to work according to good practice and to document, interpret and to discuss their results. They have developed the ability to apply specific techniques required to answer scientific questions.

Courses
(type, number of weekly contact hours, language — if other than German)
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Microbial and Chemical Ecology
(30 ECTS credits)
Module title
Methodologies of Quantitative Biology (Lecture)

Abbreviation
07-MS3-102-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response towards Biotic and Abiotic Factors</td>
<td>07-MS3BA-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

In their natural environment, plants are constantly exposed to a variety of biotic and abiotic (stress) factors. Plant responses to these external factors lead to changes in the regulation of gene expression, the activity of enzymes and the levels of a variety of metabolites. Some of these responses lead to increased stress resistance/tolerance. The lecture and seminar will not only discuss these plant responses and the mechanisms of perception and signal transduction. They will also examine the strategies of microorganisms and herbivores for using plants as a source of nutrients.

Intended learning outcomes

Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial and Chemical Ecology (Practical Course and Seminar 1)</td>
<td>07-MS3MCÖF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Under guidance, students will investigate a current topic in microbial and chemical ecology, e.g. mutualistic, commensal or pathogenic interactions between animal and plant hosts and microorganisms. Students will become familiar with a variety of methods within the fields of molecular ecology, microbial ecology and analytical chemistry as well as literature search techniques. They will document and discuss the results of their work in a presentation, publication or term paper.

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the field of chemical ecology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

Courses

S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Microbial and Chemical Ecology (Practical Course and Seminar 2)
Abbreviation: 07-MS3MÖF2-102-m01

Module coordinator:
holder of the Chair of Pharmaceutical Biology

Module offered by:
Faculty of Biology

ECTS: 15
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate

Other prerequisites:
Admission prerequisite to assessment: regular attendance of lab course as well as successful completion of the respective exercises.

Contents:
With the help of literature published in English language, students will independently acquaint themselves with topics in contemporary research on microbial and chemical ecology. They will be involved in the development of a research plan and will apply advanced

Intended learning outcomes:
Students are able to scientifically work on a topic in chemical ecology. They are able to answer and to discuss questions asked in the field of chemical ecology. They are able to work according to good practice and to document, interpret and to discuss their results. They have developed the ability to apply specific techniques required to answer scientific questions.

Courses:
S + P (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
System Biology
(30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology, Behavior and Animal Ecology (Lecture)</td>
<td>07-MS1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This lecture series is a joint activity of the Chairs of Neurobiology, Behavioural Physiology and Animal Ecology. It will provide students with insights into these fields, helping them select their F1 and F2 practical courses and providing them with the fundamental knowledge and skills required for the advanced modules of this focus.

Intended learning outcomes

Students get to know the advantages of an integrative approach when analysing complex biological systems. They learn to relate and integrate different fields within biology.

Courses

(type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Molecular and Clinical Neurobiology (Lecture and Seminar)

Abbreviation

07-MS1N-102-m01

Module coordinator

Prof. Dr. M. Sendtner

Module offered by

Faculty of Biology

ECTS

10

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Graduate

Other prerequisites

--

Contents

Content of the lecture Molekulare und klinische Neurobiologie (Molecular and Clinical Neurobiology) - cells of the nervous system, properties of neurons and glial cells - ion channels and excitability of membranes, channelopathies - synapses, transmitter release, neuromuscular end plate, Myasthenia gravis - motor activity, anatomy of the human motor system, spinal reflexes, motor neuron diseases - cerebellum, ataxia and basal ganglia, Morbus Parkinson - muscles and muscle diseases - somatosensory system and pain - hippocampus, learning and memory, anterograde amnesia, visual agnosia - cortex, Morbus Alzheimer - sleep, EEG, epilepsy - sensory physiology, vision, diseases of the visual system; Reading: Kandel, Principles of Neural Science, 4th Edition: A detailed description of this course is also available at http://neurobiologie.uk-wuerzburg.de/lehrveranstaltungen.html. The lecture Molecular and Clinical Neurobiology (incl. seminar) and Neuroentwicklungsbiologie (Neurodevelopment; Fridays 8-9 a. m.) together form one theoretical module (10 ECTS). However, you may also complete these two modules separately and have them credited within the area of mandatory electives 2.

Intended learning outcomes

Theoretical foundations of molecular and clinical neurobiology, developmental mechanisms of neuronal diseases.

Courses

(type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Ecology and Tropical Biology (Lecture and Seminar)</td>
<td>07-MS1TÖ-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Animal Ecology and Tropical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

This module consists of a lecture and a seminar. The lecture gives an overview of the theoretical foundations and current issues in animal ecology. Focus will be on biodiversity and ecosystem functions, multi-trophic interactions and food nets, evolutionary ecology, chemical ecology, tropical ecology, agricultural ecology, and global change. In the seminar, recent scientific publications within the topics mentioned above will be presented and discussed.

Intended learning outcomes

The students will acquire an advanced knowledge of ecological theories and current research issues in the field of animal ecology. They will be able to interpret scientific publications and apply the acquired knowledge to the solution of current environmental risks.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S + V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Biology (Lecture)</td>
<td>07-MS1K-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Behavioral Physiology and Sociobiology

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The lectures deal with physiological and neurobiological principles of the different communication channels used by animals, but also highlight adaptive values and evolutionary aspects of animal signalling. In a follow-up seminar session, students will deepen their knowledge by presenting and discussing current papers related to the topic of the lecture.

Intended learning outcomes

Students understand the value of an integrative approach when looking at complex issues in biology. They have learned to connect findings from different research areas, such as physiology, neurobiology, behaviour and ecological conditions, in order to gain a more complete picture of a topic. In addition, students have learned to present and discuss current scientific publications within a broader theoretical framework.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Molecular Biology (Lecture)

Abbreviation
07-MS2-102-m01

Module coordinator
holder of the Chair of Microbiology, holder of the Chair of Bioinformatics, holder of the Chair of Cell Biology and Developmental Biology, Prof. Dr. M. Sauer

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Molecular biology of the eukaryotic and prokaryotic cell. The lecture is a joint activity of the Chairs of Cell- and Developmental Biology, Microbiology, Biophysics and Bioinformatics and deals with concepts of modern molecular biology from the point of view of these different disciplines. Participants are recommended to read the textbook "Essential Cell Biology". The section on cell biology (app. a quarter of the lecture) mainly discusses the eukaryotic cell and intends to elucidate the vast diversity in structure and function of molecules, organelles and cells in addition to fundamental principles of modern molecular cell biology. The bioinformatics section (app. a quarter of the lecture) contains a large amount of examples for applications which allow the investigation of the molecular biology of a cell with bioinformatic tools. We closely adhere to the contents of the book "Essential Cell Biology" and present many clear and useful examples for the application of our tools when working on the topics of the other three Chairs. Our vision: bioinformatics essentially is molecular biology based on computing technology (time consuming "wet" experiments can be planned more easily and thus bioinformatics saves precious time). The microbiological section (app. a quarter of the lecture) deals with fundamental molecular aspects of prokaryotic cells. Key aspects include the organisation of the bacterial genome, the transcription and translation machinery, mechanisms of regulation of gene expression, transport of small molecules and macromolecules, cell division and differentiation, bacterial motility and chemotaxis, signal transduction and bacterial communication mechanisms. Recommended reading: (a) Allgemeine Mikrobiologie (Fuchs) and (b) Biology of Microorganisms (Brock).

Intended learning outcomes
Master level knowledge about the molecular biology of the eukaryotic and prokaryotic cell.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language — if other than German</th>
<th>Examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title

Cell- and Developmental Biology Master 1 (Lecture and Seminar 1)

Abbreviation

07-MS2ZE1-102-m01

Module coordinator

holder of the Chair of Cell Biology and Developmental Biology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

1 semester

Module level

graduate

Other prerequisites

--

Contents

The module consists of the lecture Zellpathologie (Cytopathology) and the seminar Zellbiologie-Milesteine und Perspektiven (Milestones and Perspectives of Cell Biology). The lecture describes pathological states of the cell and unravels their biological causes and consequences, such as infection, apoptosis, senescence, metabolic disorders and cancer. In the seminar Milestones and Perspectives of Cell Biology, classic ground-breaking publications in the field of cell biology are discussed from an unusual point of view.

Intended learning outcomes

Participants possess scientific background knowledge on cytopathology and are able to put this into the broader context of cell biology research.

Courses (type, number of weekly contact hours, language — if other than German)

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Cell- and Developmental Biology Master 2 (Lecture and Seminar 2)

Abbreviation

07-MS2ZE2-102-m01

Module coordinator

holder of the Chair of Cell Biology and Developmental Biology

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

The module comprises the lecture "Signale und Differenzierung (Signals and Differentiation)" and the seminar "Entwicklungsbiologie-Meilensteine und Perspektiven (Milestones and Perspectives of Developmental Biology)." The lecture "Signale und Differenzierung (Signals and Differentiation)" is not designed to merely impart textbook knowledge to students. It will rather introduce students to particularly interesting and current topics in developmental biology. Topics covered in the lecture (subject to change): Cooperation: Development and consequences of multicellularity. Sex: More than just ? + ? =. On the move: Morphogenetic migration. All-rounders?: Opportunities and limitations of stem cell research. Growing new hearts?: Animals and their ability to regenerate. Disasters: What do we actually know about metamorphoses? Always the same?: Plasticity and epigenetics. Metaorganisms: We are never alone. Development in changing environments: Ecology and polymorphism. Developmental biology of behaviour: Everything is learned. Or isn’t it? Evo-devo: A fad? No, been around for ages. In the seminar "Entwicklungsbiologie-Meilensteine und Perspektiven (Developmental Biology - Milestones and Outlook)," classical ground-breaking scientific articles in the field of developmental biology will be discussed from an unusual point of view.

Intended learning outcomes

Participants possess a knowledge of the theoretical and molecular biological principles underlying developmental biology and are able to put this into the broader context of cell and developmental biology research.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Microbiology (Lecture and Seminar)</th>
<th>07-MS2M-102-m01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module coordinator</td>
<td>holder of the Chair of Microbiology</td>
<td>Faculty of Biology</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
<td>Other prerequisites</td>
</tr>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
<tr>
<td>Contents</td>
<td>Fundamentals of molecular microbiology and infection biology, mechanisms of adherence and invasion, bacterial pathogenicity factors, regulation of virulence, mechanisms of host defence and pathogen interference, current methods in infection biology.</td>
<td></td>
</tr>
<tr>
<td>Intended learning outcomes</td>
<td>The students are able to understand fundamental theories of molecular microbiology and infection biology, emergence of infectious diseases.</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>V + S (no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
</tr>
<tr>
<td>Method of assessment</td>
<td>Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)</td>
<td></td>
</tr>
<tr>
<td>Allocation of places</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Bioinformatics (Lecture and Seminar)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics (Lecture and Seminar)</td>
<td>07-MS2BI-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Bioinformatics

Module offered by

Faculty of Biology

ECTS | **Method of grading** | **Duration** | **Module level** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Advances and current results of bioinformatics are explained and discussed, this includes results from genome and sequence analysis, protein domains and protein families, large-scale data analysis (e.g. net generation sequences, proteomics data), analysis of different functional RNAs (e.g. miRNAs, lncRNAs).

Intended learning outcomes

Understand recent results in bioinformatics. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions in bioinformatics.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 1 (Lecture and Seminar)</td>
<td>07-MS2IM1-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Virology and Immunobiology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes
Students will gain knowledge about, and will be able to present and discuss basic concepts and methods in molecular and cellular immunology.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology 2 (Lecture and Seminar)</td>
<td>07-MS2IM2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Recent progress in molecular and cellular immunology. Deeper insights into selected immunology chapters, such as autoimmunity and immunomodulation, development of the immune system, immunogenetics, evolution of the immune system, infection immunology, and more.

Intended learning outcomes

Students are able to understand current topics in immunology and to discuss these in detail.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 1 (Lecture and Seminar)</td>
<td>07-MS2V1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology 2 (Lecture and Seminar)</td>
<td>07-MS2V2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Virology and Immunobiology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

This course offers an introduction to virology and current research in the field of virology.

Intended learning outcomes

Students will have gained the ability to understand current issues in virology and to discuss these in depth.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(Examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genetics (Lecture and Seminar)</td>
<td>07-MS2HG-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Human Genetics

Module offered by
Faculty of Biology

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
10 | numerical grade | -- |

Duration	**Module level**	**Other prerequisites**
2 semester | graduate | -- |

Contents
This module will discuss current topics in human genetics.

Intended learning outcomes
Students will have gained the ability to understand current issues in human genetics and to discuss these in depth.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
Module title
Methodologies of Quantitative Biology (Lecture)

Abbreviation
07-MS3-102-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
This lecture addresses topics of pathogen recognition and signal transduction in plants, molecular and organismic defence and the pharmaceutical relevance of plant-derived bioactive compounds. Plant immunobiology: interactions between plants and pathogens comprise evolutionary dynamic and complex systems. Different strategies of the pathogens - bacteria, fungi and viruses - as well as defence mechanisms of the host plants will be discussed. The molecular mechanisms of pathogen recognition, signal transduction, regulation of gene expression and activation of local and systemic defence responses are in the focus of this lecture. Differences and similarities between plant and human immune systems will be pointed out. Understanding plant-pathogen-interactions and molecular mechanisms determining susceptibility and defence is fundamental for the development of strategies in plant protection. Evolution, function and pharmaceutical relevance of plant secondary metabolites: Secondary metabolites are part of effective plant defence strategies against microorganisms and herbivores and are often essential for survival. The evolution of secondary metabolism will be discussed and general as well as specific defence strategies will be explained. Pharmacological mechanisms of action and molecular targets of important classes of plant bioactive compounds will be presented. A high proportion of currently used drugs have been developed from plant secondary metabolites that have been used as lead structures to generate potent drugs with improved pharmaceutical properties. Examples of therapies with very potent plant pharmaceuticals (evidence-based medicine) as well as possibilities and limitations of phytotherapy (traditional medicine) will be discussed.

Intended learning outcomes
The students are qualified to perform and organize their scientific laboratory work independently and document the obtained results. They are able to design a research project and are prepared to work on a scientific question for their thesis.

Courses
(V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Physiology and Adaption of Plants (Lecture and Seminar)</td>
<td>07-MS3PA-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Pharmaceutical Biology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents

Section Developmental Physiology: The lecture will discuss the physiological processes occurring during ontogeny as well as the reaction of plants to various environmental parameters. It will focus on introducing students to the molecular components (ABA, auxin, ethylene etc.) of signalling networks and explaining their biosynthesis, regulation and functioning. Current journal articles on the topics will be presented and discussed in the seminar.

Section Adaptation: The lecture will deal with the ecological and environmental constraints under which plants grow and develop (biogeography, biodiversity) and with the interactions of plants with abiotic and biotic environmental factors (e.g. plant-insect, plant-fungus interactions). The evolutionary adaptations on the physiological and organismic level will be emphasised in particular (stress and defence reactions, carnivory, plant protection). Based on selected examples from current research, the seminar will address the topics covered in the lecture in more detail. It will be complemented by topic-related guided tours in the Botanical Garden of the University of Würzburg.

Intended learning outcomes

Students are qualified to recognise ecological and physiological relations and are able to interpret and discuss these relations in the context of the current state of knowledge.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Biophysics and Biochemistry | 07-MS3BB-102-m01

Module coordinator | Module offered by
holder of the Chair of Plant Physiology and Biophysics | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | graduate | --

Contents
The module imparts theoretical and methodological knowledge of plant membrane transport, structural biology and biochemistry which is illustrated with specific examples from current research. Depending on the number of participants and their interests, practical demonstrations of methods that are currently used give students an opportunity to experience the practical aspects of biophysical and biochemical research.

Intended learning outcomes
Students are able to use methods dealing with soluble proteins or membrane proteins in the fields of biophysics, structural biology and biochemistry. They are able to interpret the data and to discuss the results within the context of current knowledge.

Courses (type, number of weekly contact hours, language — if other than German)
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Response towards Biotic and Abiotic Factors

Abbreviation
07-MS3BA-102-m01

Module coordinator
holder of the Chair of Pharmaceutical Biology

Module offered by
Faculty of Biology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
In their natural environment, plants are constantly exposed to a variety of biotic and abiotic (stress) factors. Plant responses to these external factors lead to changes in the regulation of gene expression, the activity of enzymes and the levels of a variety of metabolites. Some of these responses lead to increased stress resistance/tolerance. The lecture and seminar will not only discuss these plant responses and the mechanisms of perception and signal transduction. They will also examine the strategies of microorganisms and herbivores for using plants as a source of nutrients.

Intended learning outcomes
Students are able to understand the interaction between plants and the environment on a molecular level and to discuss the topic in the context of the scientific state of the art.

Courses
S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
System Biology (Lecture and Seminar)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Biology (Lecture and Seminar)</td>
<td>07-MS3S-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Bioinformatics

Module offered by

Faculty of Biology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Advances and current results of computational systems biology are explained and discussed, this includes results from functional genomics, dynamics of the transcriptome, of metabolism and metabolic networks as well as regulatory networks.

Intended learning outcomes

Understand recent results in systems biology. Discuss their implications. Have an advanced (Master) level knowledge of typical technologies and research questions of systems biology.

Courses

S + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the method, length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) oral examination of one candidate each (30 to 60 minutes) or c) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
System Biology (Practical Course and Seminar 1)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Biology (Practical Course and Seminar 1)</td>
<td>07-MS3SYF1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling).

Intended learning outcomes

Students have gained knowledge on experimental setups and methods used in the field of systems biology. They are able to design scientific research, to collect data and to interpret them statistically, adhering to the principles of good scientific practice.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P + S (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

| -- |

Additional information

| -- |

Referred to in LPO I

<table>
<thead>
<tr>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title | System Biology (Practical Course and Seminar 2)
---|---
Abbreviation | 07-MS3SYF2-102-m01

Module coordinator | holder of the Chair of Bioinformatics
Module offered by | Faculty of Biology
ECTS | 15
Method of grading | Only after succ. compl. of module(s)
(not) successfully completed | --
Duration | 1 semester
Module level | graduate
Other prerequisites | Admission prerequisite to assessment: regular attendance of lab course and successful completion of the respective exercises as specified at the beginning of the course.

Contents
The practical course will provide students with advanced insights into a field of systems biology and will, in particular, make students proficient in a dynamical method in systems biology (areas that may be selected include protein structure analysis and protein folding, genome analysis and evolution; dynamic network analysis, the dynamics of protein-protein interactions, modelling cellular regulation; modelling metabolism, statistical modelling). The techniques applied are evaluated on the basis of the results obtained and are modified where necessary. Results are documented in the form of a presentation, a publication or a term paper.

Intended learning outcomes
Proficiency in one or more methods in systems biology that allows students to independently perform and organise a scientific project in the field of bioinformatics and to document the results obtained. Students are able to design a research project and are prepared for working on a scientific question for their thesis.

Courses (type, number of weekly contact hours, language — if other than German)
P + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places | --

Additional information | --

Referred to in LPO I (examination regulations for teaching-degree programmes)
| --
Non-focus Lab Course

(ECTS credits)
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory practical course 1</td>
<td>07-MSL1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Practical course, summer school or workshop on specific topics in biology (duration: 2-3 weeks).

Intended learning outcomes

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory practical course 2</td>
<td>07-MSL2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Practical course, summer school or workshop on specific topics in biology (duration: 4-6 weeks).

Intended learning outcomes

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory practical course 3</td>
<td>07-MSL3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Practical course, summer school or workshop on specific topics in biology (duration: 6-9 weeks).

Intended learning outcomes

Proficiency in specific methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

- -

Additional information

- -

Referred to in LPO I

(examination regulations for teaching-degree programmes)

- -
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course as exchange student 1</td>
<td>07-MSA1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Please consult with course advisory service in advance.

Contents

Practical course during stay abroad on a selected topic in biology (duration: 2-3 weeks).

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

Additional information

Referred to in LPO I

(examination regulations for teaching-degree programmes)

Module title

Practical Course as exchange student 2

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>ECTS</th>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-MSA2-102-m01</td>
<td>10</td>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

graduate

Other prerequisites

Please consult with course advisory service in advance.

Contents

External placement on a biological topic. Students spend 4-6 weeks working on a well-defined scientific project and learn how to present their data.

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

(P no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course as exchange student 3</td>
<td>07-MSA3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

External placement on a biological topic. Students spend 6-9 weeks working on a well-defined scientific lab project and learn how to present their data.

Intended learning outcomes

Proficiency in selected methods and lab techniques from selected fields of biology. Ability to apply these methods and techniques later on in a research project.

Courses

(no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Compulsory Electives 2
(15 ECTS credits)
Module title: Presentation of Scientific Data
Abbreviation: 07-MPWD-102-m01

Module coordinator: BioCareers
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: Only after succ. compl. of module(s)
Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents
Principles for the preparation of scientific manuscripts, citations and the presentation of scientific data. Students will write a scientific mini review and present this in a talk (15 minutes). Content, structure, coherence and the logical chain of arguments will be discussed. Students will write and publish (where possible) a scientific paper or review on a selected topic in a scientific journal. The students' work will be based on original papers as well as on reviews and will follow the instructions of a scientific journal of the students' choice. These instructions can be found on the website of the respective journal under "Instructions to Authors" or similar. Both length of chapters and structure of the article should be based on the style of the journal selected. Attendance of no less than 20 scientific talks (e.g. defences of doctoral theses, presentations of research projects, retreats) including presentations by guest speakers. Students are to obtain proof of attendance from the organisers or speakers.

Intended learning outcomes
The students are familiar with the details of publishing scientific data in written and oral form. They have become familiar with the methodology of scientific publishing in oral or written fashion. In addition, they have enhanced their English reading, speaking and writing skills.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 07-MPWD-1-102: S (no information on SWS (weekly contact hours) and course language available)
- 07-MPWD-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-MPWD-1-102: Publication and Presentation
- 4 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Assessment in module component 07-MPWD-2-102: Scientific Talks
- 1 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I (examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Practice, Biosafety and Nature Conservation</td>
<td>07-MGLN-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Coordinator: BioCareers

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents
Political instruments to conserve biodiversity (convention on biodiversity (CBD), German strategy on biodiversity) as well as corporate social responsibility in the private economy, sponsoring and marketing are discussed. These topics are critically analysed with regard to sustainability, credibility and effectiveness. In addition, the students become familiar with strategies to prevent biodiversity loss and actively contribute to these activities. Good practice in the biosciences, quality assurance approaches and quality culture. Structure, idea and fundamental principles of quality management approaches, DIN EN ISO 9001, regulatory documents and framework in the biosciences including biotechnology, biosafety, biosecurity, risk assessment.

Intended learning outcomes
The students know relevant international conventions and German regulations on the conservation of biodiversity. They have become familiar with the regulatory and political framework for the conservation of biodiversity. They are aware of corporate responsibilities in this regard and know how to support cooperative approaches among companies and organisations on environmental protection. The students are familiar with the fundamental principles of "good practice" in research and development, and have understood the fundamental principles of quality management circles. They have developed a distinct sensitivity towards biosafety and biosecurity issues and know how to properly handle biological agents and organisms, including GMOs. In addition, they have developed a sensitivity towards the complex interdependencies in nature and are able to critically discuss socio-ethical issues in the bioscience area. Students possess the knowledge and skills required of a biosafety officer and are qualified for working in CSR or environmental management at major enterprises or mediating between environmental organisations, governments and the private sector.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 07-MGLN-1-102: S (no information on SWS (weekly contact hours) and course language available)
- 07-MGLN-2-102: V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-MGLN-1-102: Biosafety and Bioethics
- 2 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Assessment in module component 07-MGLN-2-102: Quality Management, Good Practice, Biosafety
- 3 ECTS, Method of grading: numerical grade
- written examination (30 to 60 minutes, including multiple choice questions)
<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Epistemology, Biopsychology</td>
<td>07-MEWB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Philosophical foundations and scientific principles, history and theory of mind, human memory, intentional decision making and biochemical principles of cognitive and emotional processes. Fundamental terms and principles in biology are discussed.

Intended learning outcomes

The students are familiar with the hallmarks of the history of natural sciences. They have developed an increased awareness of how to use fundamental terms and definitions as well as of risks and concerns arising with knowledge and technical developments in the biosciences.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 07-MEWB-1-102: V (no information on SWS (weekly contact hours) and course language available)
- 07-MEWB-2-102: S (no information on SWS (weekly contact hours) and course language available)
- 07-MEWB-3-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-MEWB-1-102: Lecture Epistemology, Biopsychology

- 1 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Assessment in module component 07-MEWB-2-102: Brain and Psyche

- 2 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Assessment in module component 07-MEWB-3-102: Epistemology and History

- 2 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)
<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepreneurial Spirit in Biosciences</td>
<td>07-MUDB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>239</td>
</tr>
</tbody>
</table>

Contents

Companies are presented to students opt. together with cooperative workshops. These workshops may also deal with the process of founding start-up companies in the biotech or biomedical sectors. Topics on intellectual property protection are discussed.

Intended learning outcomes

Students gained an insight into the business plans and market of companies. They gained an insight into industrial research and development.

Courses

This module has 2 components; information on courses listed separately for each component.

- **07-MUDB-1-102: S** (no information on language and number of weekly contact hours available)
- **07-MUDB-2-102: S** (no information on language and number of weekly contact hours available)

Method of assessment

This module has the following 2 assessment components. Unless stated otherwise, students must pass all of these assessment components to pass the module as a whole..

Assessment component to module component 07-MUDB-1-102: Unternehmerisches Denken Biowissenschaften

- 5 ECTS credits, method of grading: numerical grade
- Students will be informed about the method, length and scope of the assessment prior to the course. Usually, the following option will be chosen: a) written examination (30-60 minutes, auch Multiple Choice) or b) log (approx. 10-30 pages) or c) oral examination of candidate each (30-60 minutes) or d) oral examination in groups up to three candidates (approx. 30-60 minutes) or e) presentation (20-45 minutes).

Assessment component to module component 07-MUDB-2-102: Interdisziplinäre Projektarbeit

- 5 ECTS credits, method of grading: numerical grade
- Students will be informed about the method, length and scope of the assessment prior to the course. Usually, the following option will be chosen: a) written examination (30-120 minutes) or b) log (ca.10-30 pages) or c) oral examination of candidate each (20-30-60 minutes) or d) oral examination in groups up to three candidates (approx. 30-60 minutes) or e) presentation (20-45 minutes).

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Curricular Activities in Biological Sciences 1</td>
<td>07-MVMINT1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Only after succ. compl. of module(s)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

- Please consult with course advisory service.

Contents

Regular specific lectures or seminars (1 weekly contact hour) in biological or natural sciences; assessment ungraded, pass required.

Intended learning outcomes

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Regular attendance as certified by the lecturer

Allocation of places

- -

Additional information

- -

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title	Abbreviation
Specific Curricular Activities in Biological Sciences 2 | 07-MVMINT2-102-m01

Module coordinator | Module offered by
Coordinator BioCareers | Faculty of Biology

ECTS | Method of grading | Other prerequisites
3 | numerical grade | Only after succ. compl. of module(s)

Duration | Module level | Other prerequisites
1 semester | graduate | Please consult with course advisory service.

Contents
Regular specific lecture, seminar, workshop, retreat or practical course (1 weekly contact hour) in biological or natural sciences with a graded assessment.

Intended learning outcomes
Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses (type, number of weekly contact hours, language — if other than German)
V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Curricular Activities in Biological Sciences 3</td>
<td>07-MVMINT3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences; assessment ungraded, pass required.

Intended learning outcomes

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

regular attendance as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Curricular Activities in Biological Sciences 4</td>
<td>07-MVMINT4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours) in biological or natural sciences with a graded assessment.

Intended learning outcomes

Specific skills and knowledge on an interdisciplinary subject in the biological or natural sciences.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracurricular Activities Outside of Natural Sciences 1</td>
<td>07-MV1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (1 weekly contact hour), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (2 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular attendance as certified by the lecturer</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracurricular Activities Outside of Natural Sciences 2</td>
<td>07-MV2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Only after succ. compl. of module(s)</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (1-2 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (3 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracurricular Activities Outside of Natural Sciences 3</td>
<td>07-MV3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (2 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (4 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

regular attendance as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracurricular Activities Outside of Natural Sciences 4</td>
<td>07-MV4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Only after succ. compl. of module(s)</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

Contents

Regular specific lecture, seminar, workshop, retreat or practical course (3 weekly contact hours), offered by JMU or other institutions, in which students will acquire additional skills in areas other than biology or the natural sciences. Assessment ungraded, pass required (5 ECTS credits); decision on credit transfer to be made by module coordinators. Possible subjects are philosophy, pedagogy, history, languages, social studies, psychology, economics, and law.

Intended learning outcomes

Specific skills and knowledge on a specific subject in an area other than biology or the natural sciences.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title: Entrepreneurial Management in Biosciences

Abbreviation: 07-MEMB-102-m01

Module coordinator: BioCareers

Module offered by: Faculty of Biology

ECTS: 10

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: graduate

Other prerequisites: --

Contents:
Overview of the bioscience sector with a particular focus on research and development, fundamental methods and technologies, recent developments and trends in established as well as up-and-coming high-tech industries, legal framework, financing and business models, best practice examples of start-ups as well as established companies, criteria of project-based work, characteristics and elements of project work, case studies, project work in interdisciplinary teams of students where possible, selected guest lectures giving the course practical relevance.

Intended learning outcomes:
Students have acquired an insight into industries and developments in the natural sciences. They are familiar with the characteristics of industries and established businesses as well as with specific characteristics of start-up companies and up-and-coming technologies. Students are also familiar with the criteria of project-based work and have gained experience working in interdisciplinary teams. They are better qualified to evaluate what approaches or methods from individual disciplines are most suitable for solving a particular problem. The experience of interdisciplinary project work students have acquired will help them enhance their entrepreneurial skills.

Courses:
This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 07-MEMB-1-102: S (no information on SWS (weekly contact hours) and course language available)
- 07-MEMB-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-MEMB-1-102: Basics in the Management of Natural Sciences
- 5 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Assessment in module component 07-MEMB-2-102: Interdisciplinary Project
- 5 ECTS, Method of grading: (not) successfully completed
- Students will be informed about the length and scope of the assessment prior to the course. Usually, one of the following options will be chosen: a) written examination (30 to 60 minutes, including multiple choice questions) or b) log (approx. 10 to 30 pages) or c) oral examination of one candidate each (30 to 60 minutes) or d) oral examination in groups of up to 3 candidates (approx. 30 to 60 minutes) or e) presentation (20 to 45 minutes)

Allocation of places:
--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I</td>
</tr>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Teaching 1</td>
<td>07-DR1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 0.5 weekly contact hours.

Intended learning outcomes

Ability to independently organise, plan and deliver courses.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

successful completion as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Teaching 2</td>
<td>07-DR2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Students contribute to and/or independently organise lectures or seminars for Bachelor’s students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 1 weekly contact hour.

Intended learning outcomes

Ability to independently organise, plan and deliver courses.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

successful completion as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Biology

Master’s with 1 major Biology (2010)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Teaching 3</td>
<td>07-DR3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Students contribute to and/or independently organise courses for Bachelor's students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 1.5 weekly contact hours.

Intended learning outcomes

Ability to independently organise, plan and deliver courses.

Courses

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

successful completion as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Teaching 4</td>
<td>07-DR4-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Students contribute to and/or independently organise courses for Bachelor’s students or pupils. Students organising courses will receive advice on contents and organisation from the degree programme coordinator. The course will comprise 2 weekly contact hours.

Intended learning outcomes

Ability to independently organise, plan and deliver courses.

Courses (type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

successful completion as certified by the lecturer

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Biology

Master's with 1 major, 120 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervising Tutorial Master 1</td>
<td>07-FT1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>Please consult with course advisory service.</td>
</tr>
</tbody>
</table>

Contents

Working as tutors, students will mentor other students during courses in particular and will help organise and design courses, in particular exercises.

Intended learning outcomes

The tutors are able to communicate complex concepts in a clear and structured way. They have gained experience supervising a group and helping students with personal matters. The tutors have thus enhanced their own interpersonal skills and know how to share their expertise in exploring complex topics. In addition, the tutors have learned to plan and organise key elements of their own university education and the university education of the students they mentor.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful completion as certified by the lecturer</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Supervising Tutorial Master 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>07-FT2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree programme coordinator Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working as tutors, students will mentor other students during courses in particular and will help organise and design courses, in particular exercises.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The tutors are able to communicate complex concepts in a clear and structured way. They have gained experience supervising a group and helping students with personal matters. The tutors have thus enhanced their own interpersonal skills and know how to share their expertise in exploring complex topics. In addition, the tutors have learned to plan and organise key elements of their own university education and the university education of the students they mentor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>successful completion as certified by the lecturer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Supervising Tutorial Master 3</td>
</tr>
</tbody>
</table>

Module coordinator
degree programme coordinator Biologie (Biology)

Module offered by
Faculty of Biology

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | (not) successfully completed | -- |

Duration	**Module level**	**Other prerequisites**
1 semester | graduate | Please consult with course advisory service.

Contents
Tutors will support other students on their way towards academic success.

Intended learning outcomes
The tutors are able to communicate complex concepts in a clear and structured way. They have gained experience supervising a group and helping students with personal matters. The tutors have thus enhanced their own interpersonal skills and know how to share their expertise in exploring complex topics. In addition, the tutors have learned to plan and organise key elements of their own university education and the university education of the students they mentor.

Courses
T (no information on SWS (weekly contact hours) and course language available)

Method of assessment
successful completion as certified by the lecturer

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)