Module Catalogue
for the Subject
Computational Mathematics
as a Bachelor’s with 1 major
with the degree "Bachelor of Science"
(180 ECTS credits)

Examination regulations version: 2015
Responsible: Institute of Mathematics
Contents

The subject is divided into 6
Learning Outcomes 7
Abbreviations used, Conventions, Notes, In accordance with 9
Compulsory Courses 10
 Overview Analysis for Computational Mathematics 11
 Overview Linear Algebra for Computational Mathematics 12
 Seminar Mathematics 13
 Advanced Analysis 14
 Numerical Mathematics 1 15
 Modelling and Computational Science 16
Compulsory Electives Computational Mathematics 17
Subfield Basics of Analysis 18
 Analysis 1 19
 Analysis 2 20
Subfield Basics of Linear Algebra 21
 Linear Algebra 1 22
 Linear Algebra 2 23
Subfield Overview Numerical Mathematics and Modelling 24
 Overview Numerical Mathematics 1 and 2 for Computational Mathematics 25
 Overview Numerical Mathematics 2 and Modelling for Computational Mathematics 26
Subfield Basics Specialization of Computational Mathematics 27
 Stochastics 1 28
 Stochastics 2 29
 Operations Research 30
 Introduction to Algebra 31
 Introduction to Differential Geometry 32
 Ordinary Differential Equations 33
 Introduction to Complex Analysis 34
 Geometric Analysis 35
 Introduction to Discrete Mathematics 36
 Introduction to Functional Analysis 37
 Introduction to Partial Differential Equations 38
 Introduction to Projective Geometry 39
 Introduction to Number Theory 40
Subfield Overview Specialization Computational Mathematics 41
 Overview Algebra and Ordinary Differential Equations 42
 Overview Differential Geometry and Ordinary Differential Equations 43
 Overview Algebra and Complex Analysis 44
 Overview Complex Analysis and Differential Geometry 45
 Overview Complex Analysis and Ordinary Differential Equations 46
 Overview Geometric Analysis and Differential Geometry 47
 Overview Geometric Analysis and Ordinary Differential Equations 48
 Overview Geometric Analysis and Complex Analysis 49
 Overview Algebra and Projective Geometry 50
 Overview Algebra and Discrete Mathematics 51
 Overview Discrete Mathematics and Projective Geometry 52
 Overview Functional Analysis and Differential Geometry 53
 Overview Functional Analysis and Ordinary Differential Equations 54
 Overview Functional Analysis and Complex Analysis 55
 Overview Functional Analysis and Geometric Analysis 56
 Overview Algebra and Number Theory 57
 Overview Differential Geometry and Number Theory 58
Overview

- Ordinary Differential Equations and Number Theory
- Complex Analysis and Number Theory
- Geometric Analysis and Number Theory
- Projective Geometry and Number Theory
- Discrete Mathematics and Number Theory
- Functional Analysis and Number Theory
- Differential Geometry and Partial Differential Equations
- Ordinary Differential Equations and Partial Differential Equations
- Complex Analysis and Partial Differential Equations
- Geometric Analysis and Partial Differential Equations
- Functional Analysis and Partial Differential Equations
- Partial Differential Equations and Number Theory
- Stochastics 1 and Stochastics 2
- Operations Research and Functional Analysis
- Operations Research and Partial Differential Equations

Compulsory Electives Application-oriented Subject

Focus Biology

- General Biology I
 - The Plant Kingdom
 - Evolution and the Animal Kingdom
- General Biology II
 - Plant Physiology
 - Animal Physiology
 - Genetics, Neurobiology, Behaviour
- General Biology III
 - Developmental Biology of Animals
 - Developmental Biology of Plants
 - Plant and Animal Ecology
 - Genes, Molecules, Technologies
 - Basic Biochemistry
- Mathematics/Quantitative Biology
 - Mathematical Biology and Biostatistics
- General Biology IV
 - The Flora of Germany
 - The Fauna of Germany
- Special Biosciences I
 - Neurobiology 1
 - Integrative Behavioral Biology 1
 - Functional Morphology of Arthropods
 - Biology and Ecology of Arthropods
 - Basics in Light- and Electron-Microscopy
 - Analysis of Chromosomes
 - Methods in Biotechnology
 - Aspects of molecular Biotechnology
 - Special Bioinformatics 1
 - Molecular modelling - From DNA to Protein
 - Methods in Plant Ecophysiology
 - Pharmaceutical Drugs in Plants
 - Laboratory Practical Course I
 - Excursion I
- Special Biosciences II
 - External Practical Course
 - Excursion II
Focus Chemistry

Compulsory Courses

- Experimental Chemistry
- Organic Chemistry 1
- Principles of quantum mechanics and spectroscopy for engineering students
- Quantum Chemistry

Compulsory Electives

- Organic Chemistry 2 and analytical methods in organic chemistry
- Thermodynamics, Kinetics, Electrochemistry
- Symmetry, chemical bonding and light
- Inorganic Chemistry of the Elements

Focus Computer Science

Compulsory Courses

- Introduction to Programming
- Algorithms and data structures
- Software Technology
- Practical Course in Programming
- Practical course in software
- Digital computer systems
- Information Transmission
- Practical course in hardware
- Theoretical Informatics
- Tutorial Theoretical Informatics
- Logic for informatics
- Algorithmic Graph Theory
- Interactive Computer Graphics
- Data Bases
- Knowledge-based Systems
- Data Mining
- Object oriented Programming
- Computational Complexity
- Cryptography and Data Security
- 3D Point Cloud Processing
- Operating Systems
- Computer Architecture
- Computer Networks and Communication Systems
- Automation and Control Technology

Focus Physics

Compulsory Courses

- Classical Physics 1 for Students of Physics related Disciplines
- Classical Physics 2 for Students of Physics related Disciplines

Compulsory Electives 1

- Laboratory Course Physics for Students of Physics Related Disciplines
- Laboratory Course Physics A(Mechanics, Heat, Electromagnetism)
- Data and Error Analysis
- Laboratory Course Physics B for Students of other Disciplines

Compulsory Electives 2

- Optics and Waves
- Atoms and Quanta
- Introduction to Solid State Physics
- Nuclear and Elementary Particle Physics
- Theoretical Mechanics
- Quantum Mechanics
- Statistical Physics
Key Skills Area

<table>
<thead>
<tr>
<th>Key Skills Area</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodynamics</td>
<td>187</td>
</tr>
</tbody>
</table>

General Key Skills

<table>
<thead>
<tr>
<th>General Key Skills</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Key Skills (subject-specific)</td>
<td>190</td>
</tr>
<tr>
<td>Exercise tutor or proof-reading in Mathematics</td>
<td>191</td>
</tr>
<tr>
<td>E-Learning and Blended Learning Mathematics 1</td>
<td>192</td>
</tr>
<tr>
<td>E-Learning und Blended Learning Mathematik 2</td>
<td>193</td>
</tr>
</tbody>
</table>

Subject-specific Key Skills

<table>
<thead>
<tr>
<th>Subject-specific Key Skills, Compulsory Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Mathematics</td>
<td>195</td>
</tr>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>197</td>
</tr>
<tr>
<td>Basic Notions and Methods of Mathematical Reasoning</td>
<td>198</td>
</tr>
<tr>
<td>Reasoning and Writing in Mathematics</td>
<td>199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject-specific Key Skills, Compulsory Electives</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Seminar Mathematics</td>
<td>201</td>
</tr>
<tr>
<td>Introduction to Stochastic Financial Mathematics</td>
<td>202</td>
</tr>
<tr>
<td>Introduction to Topology</td>
<td>203</td>
</tr>
<tr>
<td>Selected Topics in History of Mathematics</td>
<td>204</td>
</tr>
<tr>
<td>Mathematical Writing</td>
<td>205</td>
</tr>
<tr>
<td>School Mathematics from a Higher Perspective</td>
<td>206</td>
</tr>
<tr>
<td>Proseminar Mathematics</td>
<td>207</td>
</tr>
</tbody>
</table>

Thesis

<table>
<thead>
<tr>
<th>Thesis</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis Computational Mathematics</td>
<td>209</td>
</tr>
</tbody>
</table>
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>Compulsory Electives Computational Mathematics</td>
<td>49</td>
<td>17</td>
</tr>
<tr>
<td>Subfield Basics of Analysis</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Subfield Basics of Linear Algebra</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Subfield Overview Numerical Mathematics and Modelling</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Subfield Basics Specialization of Computational Mathematics</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Subfield Overview Specialization Computational Mathematics</td>
<td>12</td>
<td>41</td>
</tr>
<tr>
<td>Compulsory Electives Application-oriented Subject</td>
<td>45</td>
<td>74</td>
</tr>
<tr>
<td>Focus Biology</td>
<td>0 or 45</td>
<td>75</td>
</tr>
<tr>
<td>Modules General Biology I</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Modules General Biology II</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Modules General Biology III</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Modules Mathematics/Quantitative Biology</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Modules General Biology IV</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Modules Special Biosciences I</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Modules Special Biosciences II</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Focus Chemistry</td>
<td>0 or 45</td>
<td>128</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>21</td>
<td>129</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>24</td>
<td>134</td>
</tr>
<tr>
<td>Focus Computer Science</td>
<td>0 or 45</td>
<td>139</td>
</tr>
<tr>
<td>Focus Physics</td>
<td>0 or 45</td>
<td>164</td>
</tr>
<tr>
<td>Compulsory Courses</td>
<td>14</td>
<td>165</td>
</tr>
<tr>
<td>Compulsory Electives 1</td>
<td>3-9</td>
<td>170</td>
</tr>
<tr>
<td>Compulsory Electives 2</td>
<td>22-28</td>
<td>175</td>
</tr>
<tr>
<td>Key Skills Area</td>
<td>20</td>
<td>188</td>
</tr>
<tr>
<td>General Key Skills</td>
<td>5</td>
<td>189</td>
</tr>
<tr>
<td>General Key Skills (subject-specific)</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Subject-specific Key Skills</td>
<td>15</td>
<td>194</td>
</tr>
<tr>
<td>Subject-specific Key Skills, Compulsory Courses</td>
<td>11</td>
<td>195</td>
</tr>
<tr>
<td>Subject-specific Key Skills, Compulsory Electives</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>Thesis</td>
<td>11</td>
<td>208</td>
</tr>
</tbody>
</table>
Learning Outcomes

German contents and learning outcome available but not translated yet.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen sind vertraut mit den Arbeitsweisen und der zugehörigen Fachsprache der Mathematik und beherrschen die Methoden mathematischen Denkens und Beweisens.
- Die Absolventinnen und Absolventen besitzen grundlegende Kenntnisse der Numerischen Mathematik, der mathematischen Modellierung und des Wissenschaftlichen Rechnens und können sicher mit den Methoden umgehen.
- Die Absolventinnen und Absolventen besitzen grundlegende Kenntnisse weiterer Gebiete der Mathematik und sind vertraut mit den grundlegenden Beweismethoden dieser Gebiete.
- Die Absolventinnen und Absolventen kennen die grundlegenden Denkweisen und Arbeitstechniken eines weiteren Fachs aus dem Bereich der Naturwissenschaften und der Informatik.
- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, sich selbständig mithilfe von Fachliteratur in weitere Gebiete der Mathematik einzuarbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen verständlich zu präsentieren.
- Die Absolventinnen und Absolventen besitzen eine breite Einstellung zu anderen Mathematischen Disziplinen und sind vertraut mit mindestens einer modernen Programmiersprache und können sicher mit mathematischer Software umgehen.
- Die Absolventinnen und Absolventen besitzen eine starke Fähigkeit, in interdisziplinär zusammengefassten Teams im Bereich der Informatik und Naturwissenschaften gestaltend mitzuwirken.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen verständlich zu formulieren und zu präsentieren.
- Die Absolventinnen und Absolventen sind in der Lage, konkrete Probleme aus anderen Gebieten zu erkennen, zu strukturieren, zu modellieren und mit mathematischen Methoden Lösungswege zu entwickeln.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in Teams zu arbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, sich weitere Wissensgebiete selbständig, effizient und systematisch zu erschließen.
- Die Absolventinnen und Absolventen sind vertraut mit mindestens einer modernen Programmiersprache und können sicher mit mathematischer Software umgehen.
- Die Absolventinnen und Absolventen besitzen die Fähigkeit, in interdisziplinär zusammengesetzten Teams im Bereich der Informatik und Naturwissenschaften gestaltend mitzuwirken.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
• Die Absolventinnen und Absolventen sind in der Lage, gesellschaftliche, wirtschaftliche und historische Entwicklungen und Prozesse kritisch zu reflektieren und zu bewerten.
• Die Absolventinnen und Absolventen sind in der Lage, in partizipativen Prozessen gestaltend mitzuwirken.
• Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
• Die Absolventinnen und Absolventen sind in der Lage, Ideen und Lösungsvorschläge allgemeinverständlich zu formulieren und präsentieren.
Abbreviations used

Course types: **E** = field trip, **K** = colloquium, **O** = conversatorium, **P** = placement/lab course, **R** = project, **S** = seminar, **T** = tutorial, **Ü** = exercise, **V** = lecture

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: **A** = thesis, **LV** = course(s), **PL** = assessment(s), **TN** = participants, **VL** = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

3-Aug-2015 (2015-75)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses
(55 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Overview Analysis for Computational Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>Module offered by</td>
</tr>
<tr>
<td></td>
<td>10-M-ANC-Ü-152-m01</td>
</tr>
<tr>
<td></td>
<td>Institute of Mathematics</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Dean of Studies Mathematik (Mathematics)</td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td></td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td>13</td>
<td>numerical grade</td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
</tr>
<tr>
<td>1 semester</td>
<td>Other prerequisites</td>
</tr>
<tr>
<td></td>
<td>undergraduate</td>
</tr>
<tr>
<td>Contents</td>
<td>Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, differential and integral calculus in one variable, further topological considerations, differential calculus with a focus on functions in several variables.</td>
</tr>
<tr>
<td>Intended learning outcomes</td>
<td>The student knows and masters the essential methods and proof techniques of analysis and is able to apply them independently, He/She has an overview over the fundamental notions and concepts of analysis, their analytic background and geometric interpretation, and can interconnect them and express them adequately in written and oral form.</td>
</tr>
<tr>
<td>Courses</td>
<td>(type, number of weekly contact hours, language — if other than German)</td>
</tr>
<tr>
<td>V (4) + Ü (2)</td>
<td></td>
</tr>
<tr>
<td>Method of assessment</td>
<td>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</td>
</tr>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
<td>Assessment will have reference to the contents of modules 10-M-ANA1 and 10-M-ANA2. Language of assessment: German and/or English</td>
</tr>
<tr>
<td>Allocation of places</td>
<td>--</td>
</tr>
<tr>
<td>Additional information</td>
<td>--</td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Overview Linear Algebra for Computational Mathematics</td>
<td>10-M-LNC-Ü-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basic notions and structures; vector spaces, linear maps and systems of linear equations; theory of matrices and determinants; eigenvalue theory; bilinear forms and Euclidean/unitary vector spaces; diagonalisability and Jordan normal form.

Intended learning outcomes
The student knows and masters the essential methods and proof techniques of linear algebra and is able to apply them independently. He/She has an overview over the fundamental notions and methods of linear algebra, knows about their algebraic and geometric background, is able to relate them to each other and can present them adequately in written and oral form.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to the contents of modules 10-M-LNA1 and 10-M-LNA2.
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Mathematics</td>
<td>10-M-SEM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

A selected topic in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (60 to 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Analysis</td>
<td>10-M-VAN-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Continuation of analysis in several variables, integration theorems.

Intended learning outcomes
The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)
Language of assessment: German and/or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 1</td>
<td>10-M-NUM1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling and Computational Science</td>
<td>10-M-MWR-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student masters the fundamental mathematical methods and techniques to simulate processes from natural and engineering sciences on a computer.

<table>
<thead>
<tr>
<th>Courses</th>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)
- Language of assessment: German and/or English
- Creditable for bonus

Allocation of places

-

Additional information

-

Referred to in LPO I (examination regulations for teaching-degree programmes)

-

Compulsory Electives Computational Mathematics
(49 ECTS credits)
Subfield Basics of Analysis
(8 ECTS credits)
Module title	Abbreviation
Analysis 1 | 10-M-ANA1-152-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS | Method of grading | Only after succ. compl. of module(s)
8 | (not) successfully completed | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Real numbers and completeness; basic topological notions; convergence and divergence of sequences and series; power series and Taylor series; basics in differential calculus in one variable; basics of integral calculus in one variable (Riemann integral and improper integral).

Intended learning outcomes
The student knows and masters the essential methods and notions of analysis. He/She is acquainted with the central proof methods in analysis and can employ them to solve easy problems. He/she is able to perform easy mathematical arguments independently and to express mathematical arguments precisely and clearly in written form.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis 2</td>
<td>10-M-ANA2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Further topological considerations, basics in differential calculus in several variables, inverse function theorem, implicit function theorem.

Intended learning outcomes

The student knows and masters the essential methods and notions of analysis. He/She is acquainted with the central proof methods in analysis and can employ them to solve easy problems. He/she is able to perform easy mathematical arguments independently and to express mathematical arguments precisely and clearly in written form.

Courses

(4) + Ü (2)

Method of assessment

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subfield Basics of Linear Algebra
(8 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Algebra 1</td>
<td>10-M-LNA1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basic notions and structures; vector spaces, linear maps, systems of linear equations; theory of matrices and determinants.

Intended learning outcomes

The student knows and masters the basic notions and essential methods of linear algebra. He/She is acquainted with the central proof methods in linear algebra and can apply them to solve easy problems. He/She is able to perform simple mathematical arguments independently, and can present them adequately in written form.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Algebra 2</td>
<td>10-M-LNA2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Eigenvalue theory, bilinear forms, Euclidean and unitary vector spaces, diagonalisation and Jordan normal form.

Intended learning outcomes

The student knows and masters the basic notions and essential methods of linear algebra. He/She is acquainted with the central proof methods in linear algebra and can apply them to solve easy problems. He/She is able to perform simple mathematical arguments independently, and can present them adequately in written form.

Courses

V (4) + Ü (2)

Method of assessment

- written examination (approx. 90 to 180 minutes)
- written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subfield Overview Numerical Mathematics and Modelling
(12 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Numerical Mathematics 1 and 2 for Computational Mathematics</td>
<td>10-M-NUC-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with fundamental and advanced concepts and methods in numerical mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

| V (4) + Ü (2) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to the contents of modules 10-M-NUC-Ü and 10-M-NUM1.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Overview Numerical Mathematics 2 and Modelling for Computational Mathematics

Abbreviation
10-M-NMC-Ü-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
12

Method of grading
numerical grade

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in modeling, scientific computing and numerical mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to the contents of modules 10-M-NMC-Ü and 10-M-MWR.
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Subfield Basics Specialization of Computational Mathematics
(9 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastics 1</td>
<td>10-M-STO1-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastics 2</td>
<td>10-M-STO2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in statistics, applies these methods to practical problems and knows about the typical fields of application.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research</td>
<td>10-M-ORS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Algebra</td>
<td>10-M-ALG-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Fundamental algebraic structures (groups, rings, fields), Galois theory.

Intended learning outcomes
The student knows and masters the essential methods and basic notions in algebra. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Differential Geometry</td>
<td>10-M-DGE-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student knows and masters the essential methods and basic notions in differential geometry. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Differential Equations</td>
<td>10-M-DGL-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Complex Analysis</td>
<td>10-M-FTH-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in complex analysis. He/she is able to apply these methods to practical problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Geometric Analysis

Abbreviation

10-M-GAN-152-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke’s theorem and applications in vector analysis and topology.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in geometric analysis. He/she is able to apply these methods to practical problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Discrete Mathematics</td>
<td>10-M-DIM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

Courses

(type, number of weekly contact hours, language — if other than German)

- V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Introduction to Functional Analysis | 10-M-FAN-152-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis.

Intended learning outcomes

The student knows the fundamental concepts and methods of functional analysis as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to functional analysis, and realises the broad applicability of the theory to other branches of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Partial Differential Equations</td>
<td>10-M-PAR-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in the theory of partial differential equations. He/she is able to apply these methods to practical problems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Projective Geometry</td>
<td>10-M-PGE-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
- Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of projective geometry. He/she is able to apply these methods to practical problems.

Courses
- **V (4) + Ü (2)**

Method of assessment
- **a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)**

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
- --

Additional information
- --

Referred to in LPO I
(examination regulations for teaching-degree programmes)
- --
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Number Theory</td>
<td>10-M-ZTH-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>1 semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only after succ. compl. of module(s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of number theory. He/she is able to employ the basic methods and proof techniques independently.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4)</td>
<td>+ Ü (2)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes) --
Subfield Overview Specialization Computational Mathematics

(12 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Algebra and Ordinary Differential Equations</td>
<td>10-M-ALGD-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental algebraic structures (groups, rings, fields), Galois theory; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student is acquainted with fundamental concepts and methods in algebra and in the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
<td></td>
</tr>
<tr>
<td>Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s with 1 major Computational Mathematics
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Differential Geometry and Ordinary Differential Equations</td>
<td>10-M-DGGD-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student is acquainted with fundamental concepts and methods in differential geometry and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
</tr>
<tr>
<td>Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).</td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module Title

Overview Algebra and Complex Analysis

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of Grading</th>
<th>Other Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>Undergraduate</td>
</tr>
</tbody>
</table>

Contents

- Fundamental algebraic structures (groups, rings, fields), Galois theory
- Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems
- Isolated singularities, meromorphic functions and Laurent series
- Residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler
- Conformal maps.

Intended Learning Outcomes

The student is acquainted with fundamental concepts and methods in algebra and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

* (type, number of weekly contact hours, language — if other than German)

- V (4) + Ü (2)

Method of Assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- Oral examination of one candidate each (20 to 40 minutes)
- Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
- Language of assessment: German and/or English

Allocation of Places

--

Additional Information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
Overview Complex Analysis and Differential Geometry

Module coordinator
Dean of Studies Mathematik (Mathematics)

ECTS
12

Module offered by
Institute of Mathematics

Duration
1 semester

Method of grading
numerical grade

Only after succ. compl. of module(s)

Module level
undergraduate

Other prerequisites
--

Contents
Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in complex analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
V (4) + Ü (2)

Method of assessment
oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Complex Analysis and Ordinary Differential Equations</td>
<td>10-M-FTGD-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Overview Geometric Analysis and Differential Geometry
Abbreviation | 10-M-GADG-Ü-152-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics

ECTS | 12
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents
Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in geometric analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Geometric Analysis and Ordinary Differential Equations</td>
<td>10-M-GAGD-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stokes' theorem and applications in vector analysis and topology; existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Geometric Analysis and Complex Analysis</td>
<td>10-M-GAFT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Algebra and Projective Geometry</td>
<td>10-M-ALPG-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Fundamental algebraic structures (groups, rings, fields), Galois theory; projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and projective geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
</tr>
</tbody>
</table>

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Algebra and Discrete Math.</td>
<td>10-M-ALDI-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Math.)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Fundamental algebraic structures (groups, rings, fields), Galois theory; techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in algebra and discrete mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Discrete Mathematics and Projective Geometry</td>
<td>10-M-DIPG-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes; projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in projective geometry and discrete mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

\((\text{type, number of weekly contact hours, language — if other than German}) \)

\(V(4) + Ü(2) \)

Method of assessment

\((\text{type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus}) \)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Differential Geometry</td>
<td>10-M-FADG-Ü-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in differential geometry and functional analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Ordinary Differential Equations</td>
<td>10-M-FAGD-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Complex Analysis</td>
<td>10-M-FAFT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Geometric Analysis</td>
<td>10-M-FAGA-Ü-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stokes's theorem and applications in vector analysis and topology.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in functional analysis and geometric analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Algebra and Number Theory</td>
<td>10-M-ALZT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Fundamental algebraic structures (groups, rings, fields), Galois theory; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in algebra and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- oral examination of one candidate each (20 to 40 minutes)
- Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
- Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Overview Differential Geometry and Number Theory

Module title: Overview Differential Geometry and Number Theory
Abbreviation: 10-M-DGZT-Ü-152-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 12
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes:
The student is acquainted with fundamental concepts and methods in differential geometry and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment:
type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Bachelor's with 1 major Computational Mathematics (2015)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Ordinary Differential Equations and Number Theory</td>
<td>10-M-GDZE-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

- Existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

Oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Overview Complex Analysis and Number Theory | 10-M-FTZT-Ü-152-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
12 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in complex analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject: Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Geometric Analysis and Number Theory</td>
<td>10-M-GAZT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
</tr>
<tr>
<td>Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Module title
Overview Projective Geometry and Number Theory

Abbreviation
10-M-PGZT-Ü-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
12

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in number theory and projective geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td>German</td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td>German</td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Overview Discrete Mathematics and Number Theory
Abbreviation | 10-M-DIZT-Ü-152-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics
ECTS | 12
Method of grading | numerical grade
Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents
Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in number theory and discrete mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Number Theory</td>
<td>10-M-FAZT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in functional analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)

| V (4) + Ü (2) |

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Differential Geometry and Partial Differential Equations</td>
<td>10-M-DGPA-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Ordinary Differential Equations and Partial Differential Equations</td>
<td>10-M-GDPA-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student is acquainted with fundamental concepts and methods in the theory of ordinary and partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
</tr>
<tr>
<td>Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Overview Complex Analysis and Partial Differential Equations

Abbreviation
10-M-FTPA-Ü-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
12

Method of grading
Only after succ. compl. of module(s)

numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in complex analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title | Overview Geometric Analysis and Partial Differential Equations
Abbreviation | 10-M-GAPA-Ü-152-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics

ECTS | Method of grading | Only after succ. compl. of module(s)
12 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Basics in analysis on manifolds, e.g. submanifolds and calculus of differential forms, Stoke's theorem and its applications in vector calculus and topology, examples of first order partial differential equations, existence and uniqueness theorems, basic equations in mathematical physics, boundary value theorems, maximum principle and Dirichlet problem.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in geometric analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Functional Analysis and Partial Differential Equations</td>
<td>10-M-FAPA-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses

<table>
<thead>
<tr>
<th>type, number of weekly contact hours, language (if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>type, scope, language (if other than German, examination offered (if not every semester, information on whether module is creditable for bonus))</th>
</tr>
</thead>
<tbody>
<tr>
<td>oral examination of one candidate each (20 to 40 minutes)</td>
</tr>
<tr>
<td>Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).</td>
</tr>
<tr>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Partial Differential Equations and Number Theory</td>
<td>10-M-PAZT-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title | Overview Stochastics 1 and Stochastics 2
Abbreviation | 10-M-STO-Ü-152-m01

Module coordinator | Dean of Studies Mathematik (Mathematics)
Module offered by | Institute of Mathematics

ECTS | 12
Method of grading | numerical grade
Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents
Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem; elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes
The student is acquainted with fundamental and advanced concepts and methods in stochastics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Overview Operations Research and Functional Analysis

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Operations Research and Functional Analysis</td>
<td>10-M-ORFA-Ü-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
12

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in functional analysis and operations research. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td>oral examination of one candidate each (20 to 40 minutes) Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview Operations Research and Partial Differential Equations</td>
<td>10-M-ORPA-Ü-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in operations research and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives Application-oriented Subject
(45 ECTS credits)

Students must successfully complete modules worth 45 ECTS credits in a single one of the focuses listed below. In addition, students must successfully complete, in the area of mandatory electives application-oriented subject, modules with numerical grading worth no less than 23 ECTS credits, cf. Section 3 Subsection 2 Sentences 2 through 4 FSB (subject-specific provisions).
Focus Biology

(0 or 45 ECTS credits)
Modules General Biology I

(ECTS credits)
Module title	Abbreviation
The Plant Kingdom | 07-1A1ZPF-152-m01

Module coordinator | Module offered by
Dean of Studies Biologie (Biology) | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: exercises. Regular attendance of exercises (minimum 80%) and successful completion of the respective exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
Using the example of plants, students will be introduced to the phylogenetic diversity of eukaryotes in particular. At the level of groups in the plant kingdom, students will acquire the fundamental knowledge necessary to understand the forms and functions of plant organisms, with morphology and cytology being discussed in an evolutionary and ecological context. The contents of the module are relevant for biological disciplines at all levels of biological organisation. Students will also acquire and practise some of the fundamental preparation skills bioscientists are often required to possess.

Intended learning outcomes
- Knowledge of the specific characteristics of the intracellular and extracellular structures of plant cells and fungi.
- Ability to recognise evolution as the driving force behind the phylogeny of species.
- Familiarity with the concepts of phylogenetic relationships between plants/fungi.
- Familiarity with the distinguishing characteristics and major representatives of fungi as well as groups in the plant kingdom.
- Ability to select those plant and fungal organisms that are most suitable for particular scientific issues.
- Familiarity with the components and functioning of microscopes.
- Fundamental skills in the interpretation of macroscopic and histologic preparations by light microscopy.
- Fundamental preparation skills.

Courses (type, number of weekly contact hours, language — if other than German)
V (1.5) + Ü (2.5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes) creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Computational Mathematics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution and the Animal Kingdom</td>
<td>07-1A1TI-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Zoology at the Department of Electronmicroscopy</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.</td>
</tr>
</tbody>
</table>

Contents

The lecture *Evolution* will acquaint students with fundamental concepts and mechanisms of evolutionary biology: the origins of diversity; natural and sexual selection; speciation; population genetics. It will provide students with an introduction to phylogenetic reconstruction and will thus enable them to develop an understanding of the system of plants and animals. During the exercise, students will complete exercises on mechanistic evolution and evolutionary history. The lecture *Tierreich (Animal Kingdom)* will discuss the diversity of animal organisms on the basis of the phyla of the animal kingdom focusing on phylogenetic criteria. It will address the ecological constraints that led to the development of different types of body plans with their different structures and functions. In this context, the lecture will also develop an awareness in students of how important a knowledge of the fundamental principles of zoology is for research and applications not only but in particular in biology and medicine. In the exercise, students will prepare and/or examine selected species and histological preparations and will thus become familiar with the functional and morphological characteristics of the major multicellular animal phyla. In this context, students will practise working with light microscopes and stereo microscopes and will acquire fundamental preparation skills. They will prepare drawings, documenting and interpreting what they have seen.

Intended learning outcomes

Students will be familiar with the fundamental concepts and mechanisms of evolutionary biology and will know that these are key to understanding biological processes. They will have gained an overview of the diversity of animals on the basis of different types of body plans and will understand important structures in both a functional and an ecological context.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (3)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 I Nr. 1 (4 ECTS credits) and § 61 I Nr. 4 (1 ECTS credits)
§ 41 I Nr. 1 (4 ECTS credits) and § 41 I Nr. 4 (1 ECTS credits)
Modules General Biology II

(ECTS credits)
Module title	Plant Physiology
Abbreviation | 07-2A2PHYPF-152-m01

Module coordinator | Dean of Studies Biologie (Biology)
Module offered by | Faculty of Biology

ECTS | 4
Method of grading | numerical grade
Only after succ. compl. of module(s) | --

Duration | 1 semester
Module level | undergraduate
Other prerequisites | Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
This module will acquaint students with the principles of general plant physiology and will provide them with an opportunity to develop the fundamental skills for working in a biological laboratory. The module will first address the biochemistry of the cell and will then move on to discuss the physiological processes that regulate the internal environment of plants in particular. Using the example of plants, the module will introduce students to the general principles of physiology. The module will also elaborate on the characteristic peculiarities of plants in comparison with animals and prokaryotes.

Intended learning outcomes
- Familiarity with general physiological processes in plants and the regulation of these.
- Familiarity with the factors that distinguish plant physiology from animal and prokaryotic physiology.
- Fundamental knowledge and skills on how to perform, analyse and present scientific experiments.
- Essential lab skills.
- Familiarity with methods for the investigation of fundamental physiological processes in plants.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 2
Animal Physiology

Module coordinator: Dean of Studies Biologie (Biology)
Module offered by: Faculty of Biology

ECTS: 4
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
This module will acquaint students with the principles of general and comparative animal physiology and will provide them with an opportunity to develop the fundamental skills for working in a physiological laboratory. The module will focus on neurophysiology and sensory physiology as well as aspects of metabolic physiology (respiration and excretion).

Intended learning outcomes
Students have developed an understanding of the physiological functions and regulation of organisms. They have acquired fundamental knowledge on planning, setup, interpretation and presentation of scientific results.

Courses
V (1) + Ü (2)

Method of assessment:
Written examination (approx. 60 minutes)
Creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 2
§ 41 I Nr. 2
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics, Neurobiology, Behaviour</td>
<td>07-2A2GENV-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.</td>
</tr>
</tbody>
</table>

Contents
Fundamental principles of genetics, neurobiology and behavioural biology.

Intended learning outcomes
Students will understand that there are molecular, cellular and system biological mechanisms and processes involved in animal behaviour and will be able to relate animal behaviour to the molecular and formal bases of inheritance.

Courses (type, number of weekly contact hours, language — if other than German)
V (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 90 minutes) creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 2 (2 ECTS credits)
§ 61 I Nr. 3 (1 ECTS credits)
§ 61 I Nr. 4 (1 ECTS credits)
Modules General Biology III
(ECTS credits)
Module title
Developmental Biology of Animals

Abbreviation
07-3A3EBIOTI-152-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
4

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
In this module, students will acquire theoretical and practical background knowledge on animal developmental biology. The following topics will be covered: early embryonic development of various model organisms (amphibians, nematodes, Drosophila, mouse) and relevance for the systematics of animals, gametogenesis (production of spermatozoa and ova), differential gene expression, cell growth and molecular regulation of cell development, organogenesis, pattern formation, carcinogenesis, stem cell research and cloning, metamorphosis (amphibians, insects), eco-devo, evo-devo.

Intended learning outcomes

Courses
\(V (1) + Ü (3) \)

Method of assessment
Written examination (approx. 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

\(§ 61 \text{ I Nr. 5} \)
Module title
Developmental Biology of Plants

Abbreviation
07·3A3EBIOPF-152-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
4

Method of grading
Only after succ. compl. of module(s)

numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
In this module, students will acquire an insight into the fundamental processes of plant developmental biology over a plant’s entire life cycle from germination to reproduction. The module will discuss the molecular determination and regulation of different developmental biological processes in plants as well as their plasticity.

Intended learning outcomes
1. Fundamental concepts in plant developmental biology. 2. Developmental biology of selected plant model organisms. 3. Developmental biological processes at specific stages in the life cycle of plants. 4. Molecular mechanisms underlying pattern formation, morphogenesis and organogenesis in plants. 5. Establishment of plant embryonic axes. 6. Physiological aspects of the developmental processes in plants that were discussed. 7. Plasticity of developmental biological processes: regulation by endogenous and environmental factors.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + Ü (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 61 I Nr. 5
Module title	Abbreviation
Plant and Animal Ecology | 07-3A3OEKO-152-m01

Module coordinator | Module offered by
Dean of Studies Biologie (Biology) | Faculty of Biology

ECTS | Method of grading | Only after succ. compl. of module(s)
6 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

This module will provide students with an overview of the interactions of plants and animals with their abiotic and biotic environments. The module will focus on the functional adaptation to environmental conditions as well as on the structure and dynamics of populations, communities and ecosystems. Students will be introduced to fundamental model concepts of ecology, will become familiar with examples of research findings and will acquire the fundamental knowledge necessary to develop an understanding of current ecological problems.

Intended learning outcomes

Students are familiar with the fundamental principles of research in the field of ecology and with the most important abiotic and biotic factors that influence the distribution and frequency of occurrence of organisms in their environment. In addition, they understand the scientific relevance ecology has to the assessment of environmental issues.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes)
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 I Nr. 4
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes, Molecules, Technologies</td>
<td>07-3A3GEMT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents
The module *Gene, Moleküle, Technologien* (*Genes, Molecules, Technologies*) will include lectures on the following topics: The section *Spezielle Genetik* (*Special Genetics*) will build on *Einführung in die Genetik* (*Introduction to Genetics*) and will deepen the students' knowledge of topics from the following areas: structure and evolution of the eukaryotic genome, regulatory RNA, epigenetically and evolutionarily significant genetic mechanisms. The section will also focus on methods of gene expression profiling, reverse genetics and modern methods of gene function and gene sequence analysis. In the lecture *Einführung in die Bioinformatik* (*Introduction to Bioinformatics*), students will acquire an overview of major areas in the field of bioinformatics: protein sequence and protein domain analysis, phylogeny and evolution of sequences, protein structure, RNA/DNA sequences and structures, cellular networks (regulation, metabolism) and systems biology. During the section *Einführung in die Biotechnologie* (*Introduction to Biotechnology*), students will acquire an overview of the following topics: history of biotechnology, DNA and RNA technologies, recombinant antibodies, molecular diagnostics, nanobiotechnology, biomaterials, bioprocess engineering, microbial biotechnology, transgenic animals and plants, microfluidics. The lecture *Einführung in die Pharmakokinetik* (*Introduction to Pharmacokinetics*) will provide students with an overview of the rational development of drugs and active agents. The module component will discuss an important aspect for biologists in more detail: the optimisation of the pharmacokinetics of small molecules and proteins. Pharmacokinetics describes the uptake, distribution, metabolism and elimination of a drug or xenobiotic in an organism.

Intended learning outcomes
Students possess an advanced knowledge on genome evolution and the regulation of gene expression and are familiar with current methods in genetics as well as methods for the analysis of DNA and protein databases. They have acquired an overview of both traditional and modern methods in biotechnology and are familiar with fundamental topics in biotechnology. Students have acquired an overview of the fundamental principles of the development and review of active agents in research, clinical practice and the pharmaceutical industry. They are familiar with methods and technologies in biology and are able to evaluate potential applications of these in research and industry.

Courses (type, number of weekly contact hours, language — if other than German)
<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(4)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- written examination (approx. 90 minutes)
- creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Basic Biochemistry | 07-3A3BC-152-m01

Module coordinator | Module offered by
Dean of Studies Biologie (Biology) | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
4 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: exercises. Regular attendance of exercises (minimum 80%) and successful completion of the respective exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.

Contents
With the module component *Makromoleküle* (*Macromolecules*) as a starting point, the lecture will provide students with deeper insights into the molecular biology and biochemistry of prokaryotes and eukaryotes. Students will become familiar with fundamental principles of molecular biology (replication, transcription, splicing and translation) and the biochemistry of carbohydrates, lipids, proteins and nucleic acids. Experiments will be performed on selected topics that were discussed in the lecture. The exercise will cover practical aspects of lab work (PCR, DNA and protein gel electrophoresis, blot, enzyme kinetics and detection, protein isolation).

Intended learning outcomes
Students are familiar with the fundamental principles of biochemistry.

Courses (type, number of weekly contact hours, language — if other than German)
V (1) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Modules Mathematics/Quantitative Biology
(ECTS credits)
Module title	Abbreviation
Mathematical Biology and Biostatistics | 07-M-BST-152-m01

Module coordinator
holder of the Chair of Bioinformatics

Module offered by
Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
4 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Fundamental principles of the most important mathematical and statistical methods in biology.

Intended learning outcomes
Students will have acquired fundamental skills in the evaluation of experiments, the interpretation of readings and numbers as well as the mathematical description of biological processes.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)
credible for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Modules General Biology IV
(ECTS credits)
Module title: The Flora of Germany
Abbreviation: 07-4A4FLO-152-m01

Module coordinator: holder of the Chair of Ecophysiology and Vegetation Ecology
Module offered by: Faculty of Biology

ECTS: 7
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Modules 12-NW-EBWL and 12-NW-EVWL are not open for students of the following subjects: Wirtschaftswissenschaft (Business Management and Economics) Bachelor’s (BSc with 180 ECTS credits), Wirtschaftsinformatik (Business Information Systems) Bachelor's (BSc with 180 ECTS credits) and Wirtschaftsmathematik (Mathematics for Economics) Bachelor's (BSc with 180 ECTS credits).

Contents
The module will discuss the fundamental principles of the systematics and ecology of indigenous flowering plants. Students will acquire an overview of major indigenous plant families as well as their ecological and economic importance. Using a field guide, the course will demonstrate how dichotomous keys are used, and students will practise identifying freshly-gathered plants using dichotomous keys. Identifying plants, students will learn how to identify major morphological plant characteristics and will become familiar with the respective terminology. The module will also include field trips to typical habitats in the Botanical Garden and the vicinity of Würzburg. Students will become familiar with the common as well as scientific names of the plants found and will be introduced to the family- as well as species-specific characteristics of these plants. Students will practise using field guides and identification keys on site. Habitat ecological, geobotanical, climatic as well as conservation-relevant characteristics will also be discussed. The module will also include sessions at the Botanical Garden of the University of Würzburg with its outdoor facilities and greenhouses to help students acquire species identification skills.

Intended learning outcomes
Students have acquired knowledge and skills related to the ecology, systematics and taxonomy of indigenous flowering plants. They are familiar with the terminology of plant morphology and know how to use Floras and set up scientific herbaria.

Courses
(type, number of weekly contact hours, language — if other than German)
V (1) + Ü (2) + E (2.5)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted 1:1
Assessment offered: Once a year, summer semester
creditable for bonus

Allocation of places
180 places. Students applying after not having successfully completed assessment in the past two semesters will be given preferential consideration. The remaining places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available. Places on all courses of the module with a restricted number of places will be allocated in the same procedure.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Fauna of Germany</td>
<td>07:4A4FAU-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Animal Ecology and Tropical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of field trips (minimum 80%) and completion of exercises. Regular attendance of exercises (minimum 80%) and successful completion of the respective exercises (approx. 25 to 30 hours) is a prerequisite for admission to assessment.</td>
</tr>
</tbody>
</table>

Contents

In this module, students will acquire an overview of selected groups of animals to be found in Central Europe. They will acquire a fundamental knowledge of the systematics and taxonomy of these animals and will practise identifying species, using specimens of animals. Selection of specimens will be taxon-specific and will represent specific habitats or lifestyles. Exercises in a variety of habitats will provide students with an opportunity to consolidate the knowledge and skills they acquired in the lab by identifying living specimens including their ecology and behavioural biology.

Intended learning outcomes

Students possess species identification skills. They know how to taxonomically classify selected representatives of the indigenous fauna (vertebrates, invertebrates) and use identification keys. They are familiar with selected Central European habitats as well as their faunas and phenology. On the basis of the morphology and habitats of species, students are able to predict the biology and ecology of these species as well as, where applicable, to predict whether they function as indicators and are of conservation concern.

Courses

(type, number of weekly contact hours, language — if other than German)

V (1) + Ü (2) + E (2.5)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted 1:1

Assessment offered: Once a year, summer semester creditable for bonus

Allocation of places

180 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.
Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Modules Special Biosciences I
(ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobiology 1</td>
<td>07-4S1NVO1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Neurobiology and Genetics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Neurobiology and methods in molecular neurobiology (neurogenetic model system Drosophila and humans) -- focus: sleep behaviour and endogenous clock.

Intended learning outcomes

Students have acquired an advanced knowledge of the neurobiology of a model organism and are able to apply the relevant methods in neurobiology.

Courses

(type, number of weekly contact hours, language — if other than German)

Ü (4) + S (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Allocation of places

20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: first, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.

Bachelor’s with 1 major Computational Mathematics (2015) JMU Würzburg • generated 03-Apr-2021 • exam. reg. data record Bachelor (180 ECTS) Computational Mathematics - 2015 page 96 / 209
Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title: Integrative Behavioral Biology 1
Abbreviation: 07-4S1NVO2-152-m01

Module coordinator: holder of the Chair of Behavioral Physiology and Sociobiology
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents
Communication in the animal kingdom, neuroethology and behavioural development, perception and processing of olfactory signals, temporal organisation of behaviour, adaptive feeding behaviour, reproductive behaviour, social behaviour, orientation mechanisms.

Intended learning outcomes
Students have acquired an advanced knowledge in the area of behavioural biology and are able to deliver presentations on current studies on relevant topics.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).
Students will be informed about the method and length of the assessment prior to the course.

Allocation of places
20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.
A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking...
will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery.

Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Referred to in LPO I</td>
</tr>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Functional Morphology of Arthropods</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Animal Ecology and Tropical Biology

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Contents

Morphology, anatomy, phylogeny and ecology of arthropods.

Intended learning outcomes

Students are able to explain arthropod radiations in a functional context as well as to explain the importance of arthropods to ecosystems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (1) + Ü (5)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (approx. 5 to 10 pages)

creditable for bonus

Allocation of places

20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 %
of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Biology and Ecology of Arthropods

Abbreviation: 07-4S1NVO5-152-m01

Module coordinator: holder of the Chair of Animal Ecology and Tropical Biology

Module offered by: Faculty of Biology

ECTS: 5

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:

More in-depth discussion of the structure and dynamics of human and animal populations; regulation of population density; management.

Intended learning outcomes:

Students are able to interpret the structure and dynamics of populations and metapopulations on the basis of model concepts in population ecology and to apply more advanced methods of quantitative analysis to these.

Courses:

(type, number of weekly contact hours, language — if other than German)

Ü (4) + S (1)

Method of assessment:

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

creditable for bonus

Allocation of places:

15 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: first, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.
Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.
Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title: Basics in Light- and Electron-Microscopy
Abbreviation: 07-4S1MZ1-152-m01

Module coordinator: head of the Department of Electronmicroscopy
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
Fundamental principles of confocal laser scanning microscopy and electron microscopy.

Intended learning outcomes:
Students have acquired theoretical knowledge and practical skills in the area of light and electron microscopy.

Courses:
V (1) + Ü (5)

Method of assessment:
Written examination (approx. 30 to 60 minutes)
Creditable for bonus

Allocation of places:
18 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery.
Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

Referred to in LPO I (examination regulations for teaching-degree programmes)

| -- |
Module Catalogue for the Subject
Computational Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Chromosomes</td>
<td>07-4S1MZ2-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

head of the Department of Electronmicroscopy

Module offered by

Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Overview of the structure of chromosomes of somatic and meiotic cells.

Intended learning outcomes

Students are able to analyse chromosomal structures.

Courses

(type, number of weekly contact hours, language — if other than German)

V (1) + Ü (5)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 30 to 60 minutes)

creditable for bonus

Allocation of places

18 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.
Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Methods in Biotechnology
Abbreviation: 07-4S1AMB-152-m01

Module coordinator: holder of the Chair of Biotechnology and Biophysics
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: numerical grade
Method of assessment: Only after succ. compl. of module(s)

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
This module (lecture and seminar) will provide students with an overview of instrument-based methods in biotechnology and biomedicine and the underlying physical principles. It will discuss modern methods for the analysis of biological matter on the molecular and cellular level. These methods include light microscopy, fluorescence spectroscopy, electron microscopy, atomic force microscopy, flow cytometry and microfluidics.

Intended learning outcomes:
Students will gain an overview of key methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue.

Courses:
(type, number of weekly contact hours, language — if other than German)
V (2) + S (2)

Method of assessment:
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 30 to 60 minutes)
creditable for bonus

Allocation of places:
25 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.
A waiting list will be maintained and places re-allocated as they become available.
Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title	Abbreviation
Aspects of molecular Biotechnology | 07-4S1MOLB-152-m01

Module coordinator | Module offered by
holder of the Chair of Biotechnology and Biophysics | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of "white" biotechnology, bioreactors, biocatalysis, immobilisation of cells and enzymes, production of biomolecules, molecular biology, recombinant DNA technology, protein engineering, biosensor design, drug design, drug targeting, molecular diagnostics, recombinant antibodies, hybridoma technology, electromanipulation of cells.

Intended learning outcomes

Students will gain an overview of traditional and modern methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue. Students will acquire a knowledge of fundamental methods in biotechnology that will enable them to independently review relevant literature. In addition, they will become acquainted with - or, where necessary, will be able to independently acquaint themselves with - relevant mechanisms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 30 to 60 minutes)

creditable for bonus

Allocation of places

25 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.
Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery.

Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Bioinformatics 1</td>
<td>07-4S1MZ6-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>-</td>
</tr>
</tbody>
</table>

Contents

- Fundamental principles of the tree of life, fundamental principles of phylogenetics (methods and markers), fundamental principles of evolutionary biology (concepts), sequence analysis, RNA structure prediction, phylogenetic reconstruction.

Intended learning outcomes

Students are able to use software and databases for sequence analysis, RNA structure prediction and phylogenetic reconstruction.

Courses

V (1) + Ü (5)

Method of assessment

Log (approx. 10 to 20 pages)

Language of assessment: German or English
creditable for bonus

Allocation of places

20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%)

Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.
Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): lottery.
Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Molecular modelling - From DNA to Protein

Abbreviation

07-4S1PS1-152-m01

Module coordinator

holder of the Chair of Plant Physiology and Biophysics

Module offered by

Faculty of Biology

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

This module will equip students with advanced knowledge on the structure and function of nucleic acids and proteins as well as on the search for and analysis and modelling of plant macromolecules using databases and specific software.

Intended learning outcomes

Students have acquired a specialist knowledge of the structure-function relationships of macromolecules and are able to work with relevant databases and software.

Courses

<table>
<thead>
<tr>
<th>type</th>
<th>number of weekly contact hours</th>
<th>language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

computerised practical examination (approx. 6 hours)

creditable for bonus

Allocation of places

18 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (Biology) with potentially to students of other 'importing' subjects. Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology;
among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Reflected in LPO I (examination regulations for teaching-degree programmes)
Module title
Methods in Plant Ecophysiology

Abbreviation
07-4S1PS2-152-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Complex experiments to introduce students to the current state of research in plant ecophysiology as well as discussion of experimental findings in a comprehensive scientific context.

Intended learning outcomes
Students are able to use current methods in plant ecophysiology as well as to document experimental findings and put these in a scientific context.

Courses (type, number of weekly contact hours, language — if other than German)
Ü (4) + S (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Log (approx. 10 to 20 pages) creditable for bonus

Allocation of places
15 places. Should the number of applications exceed the number of available places, places will be allocated as follows:
Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.
A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 %...
of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module Catalogue for the Subject Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Drugs in Plants</td>
<td>07-4S1PS3-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Pharmaceutical Biology</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module will introduce students to the major active agent groups in medicinal plants and phytopharmaceuticals as well as to their application in pharmacy. Microscopic and phytochemical analyses will be performed and the requirements and analytical methods of the pharmacopoeia will be explained.

Intended learning outcomes
Students have acquired a specialist knowledge on active agents from medicinal plants and phytopharmaceuticals as well as on the requirements and analytical methods of the pharmacopoeia.

Courses
(type, number of weekly contact hours, language — if other than German)

- Ü (4) + S (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours). Students will be informed about the method and length of the assessment prior to the course.

Allocation of places
15 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: first, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.
Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module Catalogue for the Subject
Computational Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Practical Course I</td>
<td>07-S1-LP1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator: BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

This practical course is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>P (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours). Students will be informed about the method and length of the assessment prior to the course. Creditable for bonus.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excursion I</td>
<td>07-S1-Ex1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Contents of the field trip to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>E (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module taught in: German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours). Students will be informed about the method and length of the assessment prior to the course. Creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Interdisciplinary Project I

Abbreviation
07-S1-IP1-152-m01

Module coordinator
Coordinator BioCareers

Module offered by
Faculty of Biology

ECTS
5

Method of grading
Only after succ. compl. of module(s)

numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Please consult with course advisory service in advance.

Contents
Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes
Students have developed skills which qualify them to work in their profession.

Courses
(type, number of weekly contact hours, language — if other than German)

R (5)
Module taught in: German and/or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)

--
Modules Special Biosciences II

(ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Practical Course</td>
<td>07-5EP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Students will complete a placement at an authority, a non-university research institution or a business. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of external institutions and businesses and have developed skills which qualify them to work in their profession.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (1)</td>
</tr>
</tbody>
</table>

Module taught in: German and/or English

Method of assessment

- a) written examination (approx. 45 to 60 minutes)
- b) log (approx. 10 to 20 pages)
- c) oral examination of one candidate each (approx. 30 minutes)
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate)
- e) presentation (approx. 20 to 30 minutes)
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours)

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

Credential for bonus:

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excursion II</td>
<td>07-S2-EX2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Contents of the field trip to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

E (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Project II</td>
<td>07-S2-IP2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>(8)</td>
<td>German and/or English</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Practical Course II</td>
<td>07-S2-LP2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Please consult with course advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

This practical course is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of internal institutions and have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

P (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes) or f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Focus Chemistry
(0 or 45 ECTS credits)
Compulsory Courses

(21 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Chemistry</td>
<td>08-AC-ExChem-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

<table>
<thead>
<tr>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Experimentalchemie" (Experimental Chemistry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The module provides an overview of the fundamental knowledge of chemistry. Emphasis is placed on the material and particle level, metals, acid-base reactions, the periodic table, chemical equilibrium and complexometry.

Intended learning outcomes

The student understands the principles of the periodic table and can obtain information from it. He/she is proficient in basic models of the structure of matter and can describe them properly. He/she can depict chemical reactions using typical chemical formula language and interpret them by identifying the type of reaction.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Organic Chemistry 1

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
German contents available but not translated yet.

Das Modul bietet einen Überblick über die elementaren Grundkenntnisse der organischen Chemie. Dazu wird die Bindungssituation am Kohlenstoff betrachtet und in die Nomenklatur einfacher und mäßig komplexer organischer Verbindungen eingeführt. Es werden Grundlagen der Stereochemie, Substitutions-, Additions- und Eliminierungsreaktionen sowie der Syntheseplanung vermittelt.

Intended learning outcomes
German intended learning outcomes available but not translated yet.

Courses
(type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 62 I Nr. 2
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of quantum mechanics and spectroscopy for engineering students</td>
<td>08-PC-QMS-FU-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Grundlagen der Quantenmechanik and Spektroskopie" (Principles of Quantum Mechanics and Spectroscopy)</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Die Studierenden sind in der Lage, grundlegende Modelle der Quantenmechanik zu erklären und bei Molekülen anzuwenden. Er/Sie kann unterschiedliche spektroskopische Methoden darstellen. Die Studierenden können die mathematischen Grundlagen der elementaren der Quantenmechanik anwenden.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Chemistry</td>
<td>08-TC-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Quantenchemie"</td>
<td>Institute of Physical and Theoretical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Die Studierenden sind in der Lage, mit Hilfe grundlegender Konzepte und Modelle angeregte Zustände von Molekülen zu beschreiben.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
Compulsory Electives
(24 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry 2 and analytical methods in organic chemistry</td>
<td>08-OC2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physically Organic Chemistry</td>
<td>Institute of Organic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

German contents available but not translated yet.

Intended learning outcomes

German intended learning outcomes available but not translated yet.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + Ü (1) + V (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Thermodynamics, Kinetics, Electrochemistry

Abbreviation
08-PC-TKE-152-m01

Module coordinator
lecturer of lecture "Thermodynamik, Kinetik, Elektrochemie"

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
9 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --

Contents
German content available but not translated yet.

Intended learning outcomes
German intended learning outcomes available but not translated yet.

Die Studierenden sind in der Lage, die Hauptsätze der Thermodynamik zu erklären. Er/Sie kann thermodynamische Aspekte von Lösungen, Gasen, Mischphasen sowie elektrochemischen Reaktionen darstellen. Die Studierenden können chemische Reaktionen auf kinetischer Ebene interpretieren.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 62 I Nr. 1
Module title	Abbreviation
Symmetry, chemical bonding and light | 08-PC-SBL-152-m01

Module coordinator

Module offered by

lecturer of lecture "Symmetrie, chemische Bindung und Licht" | Institute of Physical and Theoretical Chemistry

ECTS	Method of grading	Only after succ. compl. of module(s)	Duration	Module level	Other prerequisites
9 | numerical grade | 2 semester | undergraduate | -- | --

Contents

The module provides an introduction to the symmetry of molecules. It focuses on group theory, symmetry operations, point groups, character tables, and selection rules. The module deals with the chemical bond based on the qualitative MO theory and gives an introduction into the basics of computational chemistry. The module provides the opportunity to analyze the interactions between symmetry, chemical bonding and light in detail.

Intended learning outcomes

The student is able to analyze the symmetry of molecules. He/She can imply on the spectroscopic properties of a molecule by its symmetry.

Courses (type, number of weekly contact hours, language — if other than German)

V (3) + Ü (2) + V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject
Computational Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemistry of the Elements</td>
<td>08-AS1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Chemie der Hauptgruppenelemente" (Chemistry of Main-group Elements)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
German contents available but not translated yet.

Intended learning outcomes
German intended learning outcomes available but not translated yet.

Der/Die Studierende kann Hauptgruppenelemente und Übergangsmetall-Elemente hinsichtlich Struktur, Reaktivität und Herstellung charakterisieren. Er/Sie ist in der Lage, die Koordination der Atome zu erkennen und zu benennen. Zudem kann er/sie das Periodensystem als grundlegendes Werkzeug in der Chemie verwenden.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + V (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes) or b) oral examination of one candidate each (20 to 30 minutes) or c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or d) log (approx. 20 pages) or e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 62 I Nr. 1
Focus Computer Science
(0 or 45 ECTS credits)
Module title |
Introduction to Programming

Abbreviation |
10-I-EinP-152-m01

Module coordinator |
holder of the Chair of Computer Science II

Module offered by |
Institute of Computer Science

ECTS |
5

Method of grading |
umerical grade

Only after succ. compl. of module(s)

Duration |
1 semester

Module level |
undergraduate

Other prerequisites

Contents

Data types, control structures, foundations of procedural programming, selected topics of C, introduction to object orientation in Java, selected topics of C++, further Java concepts, digression: scripting languages.

Intended learning outcomes

The students possess a fundamental knowledge about programming languages (in particular Java, C and C++) and are able to independently develop average to high level Java programs.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 I Nr. 1b
§ 69 I Nr. 1b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms and data structures</td>
<td>10-I-ADS-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Design and analysis of algorithms, recursion vs. iteration, sort and search methods, data structures, abstract data types, lists, trees, graphs, basic graph algorithms, programming in Java.

Intended learning outcomes
The students are able to independently design algorithms as well as to precisely describe and analyse them. The students are familiar with the basic paradigms of the design of algorithms and are able to apply them in practical programs. The students are able to estimate the run-time behaviour of algorithms and to prove their correctness.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 I Nr. 1a
§ 69 I Nr. 1a
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Technology</td>
<td>10-I-ST-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Object-oriented software development with UML, development of graphical user interfaces, foundations of databases and object-relational mapping, foundations of web programming (HTML, XML), software development processes, unified process, agile software development, project management, quality assurance.

Intended learning outcomes
The students possess a fundamental theoretical and practical knowledge on the design and development of software systems.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate). creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 49 I Nr. 1b
§ 69 I Nr. 1b
Module Catalogue for the Subject
Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course in Programming</td>
<td>10-I-PP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

ECTS | **Method of grading** | **Only after succ. compl. of module(s)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
The programming language Java. Independent creation of small to middle-sized, high-quality Java programs.

Intended learning outcomes
The students are able to independently develop small to middle-sized, high-quality Java programs.

Courses (type, number of weekly contact hours, language — if other than German)
P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes). If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 I Nr. 1c
§ 69 I Nr. 1d
Module title	**Abbreviation**
Practical course in software | 10-I-SWP-152-m01

Module coordinator	**Module offered by**
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
10 | (not) successfully completed | 10-I-PP, 10-I-ST

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | In addition, the knowledge and skills acquired in module 10-I-ADS are required. Prior attendance of this module is therefore highly recommended.

Contents
Completion of a project assignment in groups, problem analysis, creation of requirements specifications, specification of solution components (e.g. UML) and milestones, user manual, programming documentation, presentation and delivery of the runnable software product in a colloquium.

Intended learning outcomes
The students possess the practical skills for the design, development and execution of a software project in small teams.

Courses (type, number of weekly contact hours, language — if other than German)
P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Practical project (Completion of a larger software project in groups (approx. 300 hours per person) and final presentation (approx. 10 minutes per group)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 69 I Nr. 1d
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital computer systems</td>
<td>10-I-RAL-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes

The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Information Transmission | 10-I-IÜ-152-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science III | Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to probability calculus, coding theory, coding for fault detection and fault correction, information theory, spectrum and Fourier transform, modulation technique, structure of digital transmission systems, introduction to the structure of computer networks, communication protocols.

Intended learning outcomes

The students possess a technical, theoretical and practical knowledge of the structure of systems for information transmission, a knowledge that is necessary to understand these systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module Catalogue for the Subject Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course in hardware</td>
<td>10-I-HWP-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
- Dean of Studies Informatik (Computer Science)

Module offered by
- Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
- 1 semester

Module level
- undergraduate

Other prerequisites
- --

Contents

Practical experiments on hardware aspects, for example in communication technology, robots or the structure of a complete microprocessor.

Intended learning outcomes

The students are able to independently review, prepare and perform experiments with the help of experiment descriptions, to independently search for additional information as well as to document and evaluate experiment results.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (6)</td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

portfolio: completion of approx. 3 to 10 project assignments (approx. 250 hours total) and presentation of results (approx. 10 minutes per project)

Allocation of places

- --

Additional information

- --

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Informatics</td>
<td>10-I-TIV-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes
The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

Courses
(type, number of weekly contact hours, language — if other than German)

| V (4) |

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 I Nr. 1a
§ 69 I Nr. 1a
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Theoretical Informatics</td>
<td>10-I-TIT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Courses (type, number of weekly contact hours, language — if other than German)

| Ü (2) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) completion of approx. 31 exercises with approx. 4 components each (50% to be completed correctly) or b) written examination (approx. 180 to 240 minutes). Method of assessment to be selected by the candidate.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 I Nr. 1a
§ 69 I Nr. 1a
Module title	Abbreviation
Logic for informatics | 10-I-LOG-152-m01

Module coordinator | Module offered by
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes
The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic Graph Theory</td>
<td>10-I-AGT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science I</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes

The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module title
Interactive Computer Graphics

Abbreviation
10-I=ICG-152-m01

Module coordinator
holder of the Chair of Computer Science IX

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Computer graphics studies methods for digitally synthesising and manipulating visual content. This course specifically concentrates on interactive graphics with an additional focus on 3D graphics as a requirement for many contemporary as well as for novel human-computer interfaces and computer games. The course will cover topics about light and images, lighting models, data representations, mathematical formulations of movements, projection as well as texturing methods. Theoretical aspects of the steps involved in ray-tracing and the raster pipeline will be complemented by algorithmical approaches for interactive image syntheses using computer systems. Accompanying software solutions will utilise modern graphics packages and languages like OpenGL, GLSL and/or DirectX.

Intended learning outcomes
At the end of the course, the students will have a broad understanding of the underlying theoretical models of computer graphics. They will be able to implement a prominent variety of these models, to build their own interactive graphics applications and to choose the right software tool for this task.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Data Bases
Abbreviation | 10-I-DB-152-m01

Module coordinator | Module offered by
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes
The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses (type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 I Nr. 1b
§ 69 I Nr. 1b
Module Catalogue for the Subject
Computational Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge-based Systems</td>
<td>10-I-WBS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes
The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses
(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>10-I-DM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: definition of data mining and knowledge, discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e.g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object oriented Programming</td>
<td>10-I-OOP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Polymorphism, generic programming, meta programming, web programming, templates, document management.

Intended learning outcomes
The students are proficient in the different paradigms of object-oriented programming and have experience in their practical use.

Courses
(type, number of weekly contact hours, language — if other than German)
V (2) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Complexity</td>
<td>10-I-KT-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
Module Catalogue for the Subject Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

Module title
Cryptography and Data Security

Abbreviation
10-I-KD-152-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes
The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Courses
(type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).
If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Point Cloud Processing</td>
<td>10-I-3D-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Laser scanning, Kinect and camera models, basic data structures (lists, arrays, octrees), calculating normals, k-d trees, registration, features, segmentation, tracking, applications for airborne mapping, applications to mobile mapping.

Intended learning outcomes

Students understand the fundamental principles of all aspects of 3D point cloud processing and are able to communicate with engineers / surveyors / CV people / etc. Students are able to solve problems of modern sensor data processing and have experienced that real application scenarios are challenging in terms of computational requirements, in terms of memory requirements and in terms of implementation issues.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Systems</td>
<td>10-I-BS-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science II</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>numerical grade</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Computational Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English
creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 69 I Nr. 1c: Rechnerarchitektur
§ 22 II Nr. 3b
Computer Networks and Communication Systems

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Networks and Communication Systems</td>
<td>10-I-RK-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students possess an intricate knowledge of the structure of computer networks and communication systems as well as fundamental principles to rate these systems.

Courses

Type, number of weekly contact hours, language — if other than German

V (4) + Ü (2)

Method of assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

Written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3b
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation and Control Technology</td>
<td>10-I-AR-152-M01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Overview of automation systems, foundations of control technology, simple design methods, model creation, differential equations, nomenclature, transfer function, step response and realising of easy linear controllers, structure images and structure image reduction, locus curves and Bode diagrams, frequency characteristic, persistent control deviation, controller design through parameter optimisation, basics of fuzzy control, scanning systems, eigenvalue based system analysis, classification of automation and control systems, examples.

Intended learning outcomes

The students master the fundamentals of automation and control.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language</th>
<th>if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

- **written examination (approx. 60 to 120 minutes).**
 - If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).
 - Language of assessment: German and/or English creditable for bonus

Allocation of places

- --

Additional information

- --

Referred to in LPO I

(examination regulations for teaching-degree programmes)

- --
Focus Physics
(0 or 45 ECTS credits)
Compulsory Courses

(14 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Physics 1 for Students of Physics related Disciplines</td>
<td>11-ENNF1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.</td>
</tr>
</tbody>
</table>

Contents

1. Principles: Physical quantities, prefactors, derived quantities, dimensional analysis, time / length / mass (definition, measurement procedures, SI), importance of metrology;
2. Point Mechanics: Kinematics, motion in 2D and 3D / vectors, special cases: Uniform and constant accelerated motion, free fall, slate litter; circular motion in polar coordinates;
3. Newton's laws: Forces and momentum definition, weight vs. mass forces on the pendulum, forces on an atomic scale, isotropic and anisotropic friction. Preparation of the equations of motion and solutions;
4. Work and energy: (Kinetic) performance, examples;
5. Elastic, inelastic and super-elastic collision: Energy and momentum conservation, surges in centre of mass and balance system, rocket equation;
6. Conservative and non-conservative force fields: Potential, potential energy; law, weight scale, field strength and potential of gravity (general relations);
7. Rotational motion: Angular momentum, angular velocity, torque, rotational energy, moment of inertia, analogies to linear translation, applications, satellites (geostationary and interstellar), escape velocities, trajectories in the central potential;
8. Tidal forces: Inertial system, reference systems, apparent forces, Foucault pendulum, Coriolis force, centrifugal force;
9. Galilean transformation: Brief digression to Maxwell’s equations, ether, Michelson interferometer, Einstein’s postulates, problem of simultaneity, Lorentz transformation, time dilation and length contraction, relativistic impulse;
10. Rigid body and gyroscope: Determining the centre of mass, inertia tensor and -ellipsoid, principal axes and their stability, tensor on the example of the elasticity tensor, physics of the bike; gyroscope: Precession and nutation, the Earth as a spinning top;
11. Friction: Static and dynamic friction, stick-slip motion, rolling friction, viscous friction, laminar flow, eddy formation;
12. Vibration: Representation by means of complex e-function, equation of motion (DGL) on forces, torque and power approach, Taylor expansion, harmonic approximation; spring and pendulum, physical pendulum, damped vibration (resonant case, Kriechfall, aperiodic limit), forced vibration, Fourier analysis;
13. Waves: Wave equation, transverse and longitudinal waves, polarisation, principle of superposition, reflection at the open and closed end, speed of sound; interference, Doppler effect; phase and group velocity, dispersion relation;
14. Elastic deformation of solid bodies: Elastic modulus, general Hooke’s law, elastic waves;
15. Fluids: Hydrostatic pressure and buoyancy, surface tension and contact angle, capillary forces, steady flows, Bernoulli equation; Boyle-Mariotte, gas laws, barometric height formula, air pressure, compressibility and compressive modulus;
16. Kinetic theory of gases: ideal and real gas, averages, distribution functions, equipartition theorem, Brownian motion, collision cross section, mean free path, diffusion and osmosis, degrees of freedom, specific heat
Intended learning outcomes

The students understand the basic contexts and principles of mechanics, vibration, waves and kinetic theory of gases. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language</th>
<th>Information on Creditability</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>approx. 120 minutes</td>
<td>German and/or English</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Classical Physics 2 for Students of Physics related Disciplines | 11-ENNF2-152-m01

Module coordinator	Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Other prerequisites
7 | numerical grade | Only after succ. compl. of module(s) |

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents

1. Thermodynamics (linked to 11-E-M); temperature and quantity of heat, thermometer, Kelvin scale;
2. Heat conduction, heat transfer, diffusion, convection, radiant heat;
3. Fundamental theorems of thermodynamics, entropy, irreversibility, Maxwell’s demon;
4. Heat engines, working diagrams, efficiency, example: Stirling engine;
5. Real gases and liquids, states of matter (also solids), van der Waals, critical point, phase transitions, critical phenomena (opalescence), coexistence region, Joule-Thomson;
6. Electrostatics, basic concepts: Electrical charge, forces; electric field, reps. field concept, field lines, field of a point charge;
7. Gaussian sentence, related to Coulomb’s law, definition of ”river”; Gaussian surface, divergence theorem; special symmetries; divergence and GS in differential form;
8. Electrical potential, working in the E-box, electric. potential, potential difference, voltage; potential equation, equipotential surfaces; several important examples: Sphere, hollow sphere, capacitor plates, electric dipole; lase effects, Segner wheel;
9. Matter in the E-field, charge in a homogeneous field, Millikan experiment, Braun tube; electron: Field emission, thermionic emission, dipole in homogeneous and inhomogeneous field; induction, Faraday cage;
10. Capacitor, mirror charge, definition, capacity; plate and spherical capacitor; combination of capacitors; media in the capacitor; electrical polarisation, displacement and orientation polarisation, microscopic image; dielectric displacement; electrolytic capacitor; Piezoelectric effect;
11. Electricity, introduction, current density, drift velocity, conduction mechanisms;
12. Resistance and conductivity, resistivity, temperature dependence; Ohm’s law; realisations (resistive and non-ohmic, NTC, PTC);
13. Circuits, electrical networks, Kirchhoff’s rules (meshes, nodes); internal resistance of a voltage source, measuring instruments; Wheatstone bridge;
14. Power and energy in the circuit; Capacitor charge; galvanic element; thermovoltage;
15. Transfer mechanisms, conduction in solids: Band model, semiconductor; line in liquids and gases;
16. Magnetostatics, fundamental laws; permanent magnet, field properties, definitions and units; Earth’s magnetic field; Amper’s Law, analogous to e-box, magn. river, swirl;
17. Vector potential, formal derivation, analogous to electric scalar potential; calculation of fields, examples, Helmholtz coils;
18. Moving charge in the static magnetic field, current balance, Lorentz force, right-hand rule, electric motor; dipole field; movement paths, mass spectrometer, Wien filters, Hall effect; electron: e / m determination; magnet in the magnetic field, effects of the field on matter, relative permeability, susceptibility; para-, dia-, ferromagnetism; magn. moment of the electron, behaviour at interfaces;
19. Matter in the magnetic field, effects of the field on matter, relative permeability, susceptibility; para-, dia-, ferromagnetism; magn. moment of the electron, behaviour at interfaces;
20. Induction, Faraday’s law of induction, Lenz’s rule, flux change, eddy electric field, Waltenhofen’s pendulum; inductance, self-induction; applications: Transformer, generator;
21. Maxwell’s displacement current, choice of integration area, displacement current; Maxwell’s extension, wave equation; Maxwell equations;
22. AC: Fundamentals, sinusoidal vibrations, amplitude, period and phase; power and RMS value, ohmic resistance; Capacitive & inductive resistor, capacitor and coil, phase shift and frequency dependence; impedance: Complex resistance; performance of the AC;
Resonant circuits, combinations of RLC; series and parallel resonant circuit; forced vibration, damped harmonic oscillator (related to 11-E-M);
24: Hertz dipole, characteristics of irradiation, near field, far field; Rayleigh scattering; accelerated charge, synchrotron radiation, X-rays; 25. Electromagnetic waves: Principles, Maxwell’s determination to electromagnetism, radiation pressure (Poynting vector, radiation pressure).

Intended learning outcomes
The students understand the basic principles and contexts of thermodynamics, science of electricity and magnetism. They know relevant experiments to observe and measure these principles and contexts. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Compulsory Electives 1
(3-9 ECTS credits)

Students must take either module 11-PNNF or the two modules 11-P-PA and 11-P-FR1. Other combinations are not permitted.
Module Catalogue for the Subject
Computational Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physics for Students of Physics Related Disciplines</td>
<td>11-PNNF-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Simple experiments in the fields of mechanics, vibration theory, thermodynamics, optics, X-rays, nuclear magnetic resonance, Atomic and Nuclear Physics, imaging methods.

Intended learning outcomes
The students have detected and understood physical contexts on the basis of the implementation of own experiments. They have a basic understanding of physical phenomena and know the basic ideas and ways of functioning of different measuring and imaging methods as well as their applications, especially in the field of Biomedicine.

Courses (type, number of weekly contact hours, language — if other than German)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) practical assignment with oral test (approx. 15 minutes, during experiments) and b) written examination (90 minutes).

Each experiment comprises preparation, performance and evaluation. Test as well as performance of experiments can each be repeated once.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Course Physics A (Mechanics, Heat, Electromagnetism)</td>
<td>11-P-PA-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Only after succ. compl. of module(s)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

Measurement tasks in mechanics, thermodynamics and electricity theory, e.g. measurement of voltages and currents, heat capacity, calorimetry, density of bodies, dynamic viscosity, elasticity, surface tension, spring constant, drafting of graphics and drafting of measurement protocols.

Intended learning outcomes

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol.

Courses

(type, number of weekly contact hours, language — if other than German)

P (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Data and Error Analysis

Abbreviation
11-P-FR1-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
2

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
Types of errors, error approximation and propagation, graphic representations, linear regression, mean values and standard deviation.

Intended learning outcomes
The students are able to evaluate measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses
V (1) + Ü (1)

Module taught in:
Ü: German or English

Method of assessment
written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I
(examination regulations for teaching-degree programmes)

§ 53 I Nr. 1 c)
§ 77 I Nr. 1 d)
Module title
Laboratory Course Physics B for Students of other Disciplines

Abbreviation
11-P-NFB-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
Only after succ. compl. of module(s)

(not) successfully completed
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Students are highly recommended to complete modules 11-P-PA and 11-P-FR1 prior to completing module 11-P-NFB.

Contents
Physical laws of optics, vibrations and waves, science of electricity and circuits with electric components.

Intended learning outcomes
The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)
P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
practical assignment with talk (approx. 30 minutes)
Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Compulsory Electives 2
(22-28 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optics and Waves</td>
<td>11-E-O-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

1. Light (linked to 11-E-E): basic concepts, the speed of light, Huygens-Fresnel principle: reflection, refraction.
2. Light in matter: propagation velocity in the medium; dispersion, complex and frequency-dependent dielectric constant; absorption, Kramers-Kronig relation, interfaces, Fresnel equations, polarization, generation by absorption, birefringence, optical activity (dipole).
3. Geometrical optics: basic concepts, Fermat’s principle, optical path, planar interfaces, Snell’s law, total reflection, optical tunneling, evanescent waves, prism; normal and anomalous dispersion, curved interfaces, thin and thick lenses, lens systems, lens grinder formula, aberrations, imaging errors (spherical & chromatic aberration, astigmatism, coma, distortion, correction approaches).
4. Optical instruments: characteristics; camera, eye, magnifying glass, microscope, telescope types, bundle beam vs. image construction (electron lenses, electron microscope), confocal microscopy.
5. Wave optics: spatial and temporal coherence, Young’s double slit experiment, interference pattern (intensity profile), thin films, parallel layers, wedge-shaped layers, phase shift, Newton rings, interferometer (Michelson, Mach-Zender, Fabry-Perot).
6. Diffraction in the far field: Fraunhofer diffraction, single slit, intensity distribution, apertures, resolving power, Rayleigh & Abbé criterion, Fourier optics, optical grating, n-fold slit, intensity distribution, grating spectrometer and resolution, diffraction off atomic lattices, convolution theorem.
7. Diffraction in the near field: Fresnel, near-field diffraction at circular apertures/disks, Fresnel zone plate, near-field microscopy, holography, Huygens-Fresnel concept; white light hologram.
8. Failure of classical physics I - from light wave to photon: black body radiation and Planck’s quantum hypothesis; photoelectric effect and Einstein’s explanation, Compton effect, light as a particle, wave-particle duality, quantum structure of nature.
9. Failure of classical physics II - particles as waves: de Broglie’s matter wave concept; diffraction of particle waves (Davisson-Germer-experiment, double slit interference).
10. Wave mechanics: wave packets, phase and group velocity (recap of 11-EM), uncertainty principle, Nyquist-Shannon theorem, wave function as probability amplitude, probability of residence, measurement process in quantum mechanics (double-slit experiment & which-way information, collapse of the wave function, Schrödinger’s cat).
11. Mathematical concepts of quantum mechanics: Schrödinger equation as wave equation, conceptual comparison to wave optics, free particle and particles in a potential, time-independent Schrödinger equation as eigenvalue equation, simple examples in 1D (potential step, potential barrier and tunnel effect, box potential and energy quantization, harmonic oscillator), box potential in higher dimensions and degeneracy, formal theory of QM (states, operators, observables).

Intended learning outcomes

The students understand the basic principles and contexts of radiation, wave and quantum optics. They understand the theoretical concepts and know the structure and application of important optical instruments and measuring methods. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English
<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 120 minutes)</td>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor's with 1 major Computational Mathematics (2015)
Module title	Abbreviation
Atoms and Quanta | 11-E-A-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Applied Physics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents

1. Structure of atoms: Experimental evidence for the existence of atoms, size of the atom, charges and masses in the atom, isotopes, internal structure, Rutherford experiment, instability of the "classical" Rutherford atom.

5. Fine and hyperfine structure: Electron spin and magnetic spin moment, Stern-Gerlach experiment, Einstein-de Haas effect, glimpse of the Dirac equation (spin as a relativistic phenomenon and existence of antimatter), electron spin resonance (ESR), spin-orbit interaction, relativistic fine structure, Lamb shift (quantum electrodynamics), nuclear spin and hyperfine structure.

6. Multi-electron atoms: Helium atom as simplest example, indistinguishability of identical particles, (anti)symmetry with respect to particle exchange, fermions and bosons, relation to spin, Pauli principle, orbital and spin wave function of two-particle systems (spin singlets and triplets), LS- and jj-coupling, Periodic Table of the Elements, Aufbau principles and Hund’s rules.

7. Light-matter interaction: Time-dependent perturbation theory (Fermi’s Golden Rule) and optical transitions, matrix elements and dipole approximation, selection rules and symmetry, line broadening (lifespan, Doppler effect, collision broadening), atomic spectroscopy.

8. Laser: Elementary optical processes (absorption, spontaneous and stimulated emission), stimulated emission as light amplification, Einstein’s rate equations, thermal equilibrium, non-equilibrium character of a laser: Rate equations, population inversion and laser condition, basic structure of a laser, optical pumping, 2-, 3- and 4-level lasers, examples (ruby laser, He-Ne laser, semiconductor laser).

10. Molecules and chemical bonding: Molecular hydrogen ion (H_2^+) as simplest example: Rigid molecule approximation and LCAO approach, bonding and anti-bonding molecular orbitals, hydrogen molecule (H_2): Molecular orbital vs. Heitler-London approximation, diatomic heteronuclear molecules: covalent vs. ionic bonding, van der Waals bonds and Lennard-Jones potential, (time allowing: conjugated molecules).

11. Molecular rotations and vibrations: Born-Oppenheimer approximation, energy levels of the rigid rotator (symmetric and asymmetrical molecules), centrifugal expansion, molecule as (an)harmonic oscillator, Morse potential, normal modes, vibrational-rotational interaction.

Intended learning outcomes

The students understand the basic principles and contexts of quantum phenomena as well as Atomic and Molecular Physics. They understand the ideas and concepts of quantum theory and Astrophysics and the relevant experiments to observe and measure quantum phenomena. They are able to apply mathematical methods to the
formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

<table>
<thead>
<tr>
<th>Courses</th>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (4) + Ü (2)</td>
<td>Module taught in: Ü: German or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 120 minutes)</td>
<td>Language of assessment: German and/or English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
<th>--</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>--</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Introduction to Solid State Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Solid State Physics</td>
<td>11-E-F-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Contents

1. The free-electron gas (FEG), free electrons; density of states; Pauli principle; Fermi-Dirac statistics; spec. heat, Sommerfeld coefficient; electrons in fields: Drude-Lorentz-Sommerfeld; electrical and thermal conductivity, Wiedemann-Franz law; Hall effect; limitations of the model
2. Crystal structure, periodic lattice; types of lattices; Bravais lattice; Miller indices; simple crystal structures; lattice defects; polycrystals; amorphous solids; group theoretical approaches, the importance of symmetry for electronic properties
3. The reciprocal lattice (RG), motivation: Diffraction; Bragg condition; definition; Brillouin zones; diffraction theory: Scattering; Ewald construction; Bragg equation; Laue’s equation; structure and form factor
4. Structure determination, probes: X-ray, electron, neutron; methods: Laue, Debye-Scherrer, rotating crystal; electron diffraction, LEED
5. Lattice vibrations (phonons), equations of motion; dispersion; group velocity; diatomic base: optical, acoustic branch; quantisation: Phonon momentum; optical properties in the infrared; dielectric function (Lorentz model); examples of dispersion curves (occ. Kramers-Kronig), measurement methods
6. Thermal properties of insulators, Einstein and Debye model; phonon density of states; anharmonicity and thermal expansion; thermal conductivity; Umklapp processes; crystal defects
7. Electrons in a periodic potential, Bloch theorem; band structure; approximation of nearly free electrons (NFE); strongly bound electrons (tight binding, LCAO); examples of band structures, Fermi surfaces, spin-orbit interaction
8. Superconductivity, BCS theory, pairing, coupling of bosonic and fermionic modes, band structure, many-particle aspects (quasiparticle concept)

Intended learning outcomes

The students understand the basic contexts and principles of Solid-State Physics (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)). They understand the structure of solids and know the experimental methods and theoretical models for the description of phenomena of Solid-State Physics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Nuclear and Elementary Particle Physics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear and Elementary Particle Physics</td>
<td>11-E-T-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
1. Overview, historical introduction, history and significance of Nuclear and Particle Physics
2. Methods of Nuclear Physics, scattering and spectroscopy, nuclear radius, composition of matter, mass and charge distribution in the nucleus, the discovery of the proton and neutron
3. Nuclear models, the mass of the atomic nuclei, droplet model, bonding energy, nuclear shell model
4. Structure of cores, angular momentum, spin, parity, mag. and electr. moments, collective excitation forms, spin-orbit interaction
5. Radioactivity and spectroscopy, radioactive decay, natural and civilisation sources of ionising radiation
6. Nuclear energy, nuclear fission, nuclear reactors, nuclear fusion, star power, star development, formation of the chemical elements of hydrogen
7. Radiation and matter, interaction of radiation and matter, Bethe-Bloch formula, photoelectric effect, pair production
8. Instruments, accelerators and detectors
9. Electromagnetic interaction, differential cross section, virtual photons, Feynman graphs, exchange interaction
10. Strong interaction, quarks, gluons, colour and degree of freedom, deep-inelastic electron-proton scattering, confinement, asymptotic freedom, particle zoo, isospin, strangeness, SU(3) symmetry, antiprotons
11. Weak interaction, cracked mirror symmetries, Wu experiment, charge conjugation, time reversal, CP invariance, exchange particles, W and Z, neutrinos, neutrino vibrations
12. Standard model, three families of leptons and quarks, quark-lepton symmetry, Higgs boson, free parameters

Intended learning outcomes
The students understand the basic connections between fundamental Nuclear and Elementary Particle Physics. They have an overview of the experimental observations of Particle Physics and the theoretical models which describe them.

Courses
<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (3) + Ü (1)</td>
<td></td>
<td>German or English</td>
</tr>
</tbody>
</table>

Method of assessment
- Written examination (approx. 120 minutes)
- Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Theoretical Mechanics | 11-T-M-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents
1. Newton’s formulation: Inertial systems, Newton’s laws of motion, equations of motion; one-dimensional motion, energy conservation; Harmonic oscillator; Movement in space of intuition, conservative forces;
2. Lagrangian formulation: Variational principles, Euler-Lagrange equation; constraints; coordinate transformations, mechanical gauge transformation; symmetries, Noether theorem, cyclic coordinates; accelerated reference systems and apparent forces;
3. Hamiltonian formulation: Legendre transformation, phase space; Hamilton function, canonical equations; Poisson brackets, canonical transformations; generator of symmetries, conservation laws; minimal coupling; Liouville theorem; Hamilton-Jacobi formulation [optional];
4. Applications: Central-force problems; mechanical similarity, Virial theorem; minor vibrations; particles in an electromagnetic field; rigid bodies, torque and inertia tensor, centrifugal and Euler equations [optional]; scattering, cross section [optional];
5. Relativistic dynamics: Lorentz Transformation; Minkowski space; equations of motion; 6. Non-linear dynamics: Stability theory; KAM theory [optional]; deterministic chaos [optional]

Intended learning outcomes
The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations. They are able to independently apply the acquired mathematical methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student’s registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.
<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
</table>

Module title	Abbreviation
Quantum Mechanics | 11-T-Q-152-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.

Contents

1. History and basics: Limits of classical physics; fundamental historical experiments; from classical physics to quantum mechanics (QM);
2. Wave function and Schrödinger equation (SG): SG for free particles; superposition; probability distribution for pulse measurement; correspondence principles: postulates of QM; Ehrenfest theorem; continuity equation; stationary solutions of SG
3. Formalisation of QM: Eigenvalue equations; Physical significance of the eigenvalues of an operator; state space and Dirac notation; representations in state space; tensor products of state spaces
4. Postulates of QM (and their interpretation): State; measurement; chronological development; energy-time uncertainty;
5. One-Dimensional problems: The harmonic oscillator; potential level; potential barrier; potential well; symmetry properties;
6. Spin-1/2 systems I: Theoretical description in Dirac notation; Spin 1/2 in the homogeneous magnetic field; two-level systems (qubits);
7. Angular momentum: Commutation and rotations; eigenvalues of the angular momentum operators (abstract); solution of the eigenvalue equation in polar coordinates (concrete);
8. Central potential - hydrogen atom: Bonding states in 3D; Coulomb potential;
9. Motion in an electromagnetic field: Hamiltonian; Normal Zeeman effect; canonical and kinetic momentum; Gauge transformation; Aharonov-Bohm effect; Schrödinger, Heisenberg and interaction representation; motion of a free electron in a magnetic field;
10. Spin-1/2 systems II: Formulation using angular momentum algebra;
11. Addition of angular momenta;
12. Approximation methods: Stationary perturbation theory (with examples); variational method; WKB method; time-dependent perturbation theory;
13. Atoms with several electrons: Identical particles; Helium atom; Hartree and Hartree-Fock approximation; atomic structure and Hund’s rules

Intended learning outcomes

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of quantum theory. They are able to apply the acquired mathematical methods and techniques to simple problems of quantum theory and to interpret the results. They have especially acquired knowledge of advanced mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English
Allocation of places

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Referred to in LPO I (examination regulations for teaching-degree programmes)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Physics</td>
<td>11-T-S-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by

Faculty of Physics and Astronomy

ECTS

<table>
<thead>
<tr>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
</tbody>
</table>

Contents

0. Principles of statistics; elements of statistics (central limit theorem and statistics of extremes); Micro- and macro-states; Probability space (conditional probability, statistical independence);
1. Statistical Physics: Entropy and probability theory; entropy in classical physics; thermodynamic equilibrium in closed and open systems (with energy and / or particle exchange);
2. Ideal systems: Spin systems; linear oscillators; ideal gas;
3. Statistical Physics and thermodynamics: The 1st law; quasi-static processes; entropy and temperature; generalised forces; the second and third law; reversibility; transition from Statistical Physics to thermodynamics;
4. Thermodynamics: Thermodynamic fundamentals relationship; thermodynamic potentials; changes of state; thermodynamic machines (Carnot engine and efficiency); chemical potential;
5. Ideal Systems II, quantum statistics: Systems of identical particles; ideal Fermi gas; ideal Bose gas and Bose-Einstein condensation; grids and normal modes: Phonons;
6. Systems of interacting particles: Approximation methods (mean-field theory, Sommerfeld expansion); computer simulation (Monte Carlo method); interacting phonons (Debye approximation); Ising models (particularities in 1 and 2 dimensions); Yang-Lee-theorems; Van der Waals equation for real interacting gases;
7. Critical phenomena: Scaling laws, critical slowing down, fast variable as Bad (electron-phonon interaction and BCS superconductivity); magnetism (quantum criticality at low temperatures, quantum phase transitions at T = 0); problems of the thermodynamic limit

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of statistical mechanics and thermodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

Courses

(type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Electrodynamics | 11-T-E-152-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
8 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents

0. Mathematical tools: Gradient, divergence, curl; curve, surface, volume integrals; Stokes and Gaussian sentence; Delta function; Fourier transform; full functional systems; solving PDEs;

1. Maxwell equations;

2. Electrodynamics: Coulomb’s law; electrostatic potential; charged interface; electrostatic field energy (capacitor); multipole expansion; Boundary value problems; numerical solution; Image charges; Green’s functions; development according to orthogonal functions;

3. Magnetostatics: Current density; continuity equation; vector potential; Biot-Savart law; magnetic moment; analogies to electrostatics;

4. Maxwell equations in matter: Electrical and magnetic susceptibility; interfaces;

5. Dynamics of electromagnetic fields: Faraday induction; RCL-circuits; field energy and pulse; potentials; plane waves; wave packets; plane waves in matter; cavity resonators and wave guides; inhomogeneous wave equation; temporally oscillating sources and dipole radiation; accelerated point charges;

6. Special Theory of Relativity: Lorentz transform; simultaneity; length contraction and time dilation; light cone; effect, energy and momentum; co- and contra-variant tensors; covariant classical mechanics;

7. Covariant electrodynamics: Field strength tensor and Maxwell’s equations; transformation of the fields; Doppl er effect; Lorentz force

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of theoretical electrodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Key Skills Area
(20 ECTS credits)
General Key Skills
(5 ECTS credits)

In addition to the modules listed below, students may also take modules offered by JMU as part of the pool of general transferable skills (ASQ).
General Key Skills (subject-specific) (ECTS credits)
Module title

Exercise tutor or proof-reading in Mathematics

| Abbreviation | 10-M-TuKo-152-m01 |

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

5

Method of grading

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

Please direct application to teaching coordinator Mathematics, he/she will select participants.

Contents

Tutoring or grading homework for one of the basic courses in the Bachelor's or teaching degree programmes under supervision of the respective lecturer or exercise supervisor.

Intended learning outcomes

The student is able to support the acquisition of mathematical skills and knowledge. He/She helps to identify mistakes in mathematical proof exercises and to find possible solutions.

Courses

(T, number of weekly contact hours, language — if other than German)

T (0)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment of tutoring activities or correcting work by supervising lecturers or exercise supervisors (1 to 2 teaching units or approx. 5 pieces of correcting work)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Learning and Blended Learning Mathematics 1</td>
<td>10-M-VHB1-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Becoming familiar with and reflecting techniques in e-learning and blended learning in mathematics.

Intended learning outcomes

The student is able to employ basic methods of e-learning and blended learning in mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

Ü (2)

Course type: eLearning, mostly Virtuelle Hochschule Bayern (vhb)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project (web-based, 15 to 20 hours)

Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Learning und Blended Learning Mathematik 2</td>
<td>10-M-VHB2-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Becoming familiar with and reflecting techniques in e-learning and blended learning in mathematics.

Intended learning outcomes

The student is able to employ advanced methods of e-learning and blended learning in mathematics.

Courses *(type, number of weekly contact hours, language — if other than German)*

<table>
<thead>
<tr>
<th>Ü (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type: eLearning, mostly Virtuelle Hochschule Bayern (vhb)</td>
</tr>
</tbody>
</table>

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)*

- project (web-based, 15 to 20 hours)
- Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Subject-specific Key Skills

(15 ECTS credits)
Subject-specific Key Skills, Compulsory Courses
(11 ECTS credits)
Module Catalogue for the Subject
Computational Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Mathematics</td>
<td>10-M-COM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to modern mathematical software for symbolic computation (e.g. Mathematica or Maple) and numerical computation (e.g. Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA-G and 10-M-LNA-G). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (1) + Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>project in the form of programming exercises (approx. 20 to 25 hours)</td>
</tr>
</tbody>
</table>

Assessment offered: Once a year, winter semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming course for students of Mathematics and other subjects</td>
<td>10-M-PRG-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics of a modern programming language (e. g. C).

Intended learning outcomes

The student is able to work independently on small programming exercises and standard programming problems in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Project in the form of programming exercises (approx. 20 to 25 hours)
Assessment offered: Once a year, summer semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Notions and Methods of Mathematical Reasoning</td>
<td>10-M-GBM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to the basic notions and proof techniques in mathematics: approach to sets, formal logic and maps.

Intended learning outcomes

The student gets acquainted with the basic working techniques which are prerequisites for the further courses in the Bachelor’s degree study programme.

Courses

(type, number of weekly contact hours, language — if other than German)

- V (1) + Ü (1)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- project (10 to 15 pages)
- Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

- § 22 II Nr. 1 h)
- § 22 II Nr. 2 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasoning and Writing in Mathematics</td>
<td>10-M-ASM-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to fundamental methods of thinking and proving, basic techniques in mathematics as well as mathematical writing; insight into examples of abstract concepts in mathematics; approach to axiomatic and deduction.

Intended learning outcomes

The student is acquainted with the basic proof methods and techniques in mathematics. He/She is able to perform easy mathematical arguments independently and present them adequately and reasonably in written and oral form.

Courses (type, number of weekly contact hours, language — if other than German)

V (1) + Ü (1)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project (10 to 20 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--
Subject-specific Key Skills, Compulsory Electives
(4 ECTS credits)
Module: Supplementary Seminar Mathematics

Module title: Supplementary Seminar Mathematics
Abbreviation: 10-M-SEM2-152-m01

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
A selected topic in mathematics.

Intended learning outcomes:
The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses
(type, number of weekly contact hours, language — if other than German)
S (2)

Method of assessment
type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk (60 to 120 minutes)
Language of assessment: German and/or English

Allocation of places:
--

Additional information:
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Introduction to Stochastic Financial Mathematics | 10-M-EFM-152-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS | Method of grading | Only after succ. compl. of module(s)
9 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
Arbitrage and no-arbitrage, annuities and bonds, valuation of deterministic cash flows, actuarial present value, term structures and yield curves, forwards, payout profiles of options and other derivates, fundamental theorem of asset pricing in the stochastic one-period model, risk neutral price measures, replication and completeness, stochastic multi-period models, valuation of European options in the binomial model, Black-Scholes formula.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods of stochastic financial mathematics, can apply them to practical problems and knows about typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Topology</td>
<td>10-M-TOP-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Basics in set-theoretic topology, topological spaces and continuity, separation properties, connectivity, examples and constructions of topological spaces, quotients, convergence of sequences and nets, different notions of compactness, additional topics (optional), e. g. the theorems of Stone-Weierstraß, Arzela-Ascoli and Baire, and introduction to algebraic topology.

Intended learning outcomes

The student knows the fundamental concepts and methods of topology as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to topology, and realises the broad applicability of the theory to other branches of mathematics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

 créditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics in History of Mathematics</td>
<td>10-M-GES-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Historical and cultural development as well as social relevance of mathematics; more in-depth discussion of the fundamentals of mathematics, in particular in its relation to other sciences and humanities as well as to the image of mathematics in modern society.

Intended learning outcomes

Based on selected examples, the student has gained insight into the historical and cultural genesis of mathematical theories and their social relevance. He/she is able to present mathematical ideas and concepts to a general audience.

Courses

V (2) + Ü (2)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) talk (45 to 90 minutes) or
- b) term paper (10 to 15 pages) or
- c) project (15 to 25 hours)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)
Module title: Mathematical Writing

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Writing</td>
<td>10-M-MSC-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>(not) successfully completed</td>
</tr>
</tbody>
</table>

Duration
1 semester

Contents
Discussion of good and bad mathematical writing using practical exercises and case examples. The course covers the whole range of mathematical texts from short proofs and the formulation of theorems and definitions to comprehensive works such as Bachelor's or Master's theses. Important aspects include not only mathematical rigour and efficiency but also didactic questions.

Intended learning outcomes
The student is able to formulate mathematical subject matter precisely and comprehensibly. He/She knows about the structures and conventions of mathematical literature and the requirements of scientific work.

Courses
(V (2) + Ü (2)

<table>
<thead>
<tr>
<th>Methods of assessment (type, scope, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) talk (45 to 90 minutes) or b) term paper (10 to 15 pages) or c) project (15 to 25 hours)</td>
</tr>
</tbody>
</table>

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Mathematics from a Higher Perspective</td>
<td>10-M-SCH-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Discussion of selected topics in school mathematics with respect to their integration into wider theories and their didactic implementation at both school and university levels.

Intended learning outcomes

By means of selected examples, the student gains insight into the interrelation between school mathematics and advanced mathematical theories. He/She is able to discuss these under mathematical, didactical and methodical aspect.

<table>
<thead>
<tr>
<th>Courses (type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (2) + Ü (2)</td>
</tr>
</tbody>
</table>

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) talk (approx. 45 minutes) or b) term paper (10 to 15 pages) or c) project (15 to 25 hours)

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)
§ 22 II Nr. 2 f)
§ 22 II Nr. 3 f)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proseminar Mathematics</td>
<td>10-M-PRO-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Selected basic topics in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (60 to 120 minutes)
Assessment offered: In the semester in which the course is offered
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Thesis
(11 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis Computational Mathematics</td>
<td>10-M-BAC-152-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
undergraduate

Other prerequisites
The supervisor may make the successful completion of certain modules that are relevant for the respective topic a prerequisite for the assignment of the topic.

Contents
Independently researching and writing on a topic in mathematics selected in consultation with the supervisor.

Intended learning outcomes
The student is able to work independently on a given mathematical topic and apply the skills and methods obtained during his/her studies in the bachelor programme. He/She can write down the result of his/her work in a suitable form.

Courses
No courses assigned to module

Method of assessment
Bachelor’s thesis (approx. 275 to 330 hours)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--