

Module Catalogue for the Subject

Tor the Subject

Mathematics

as a Bachelor's with 1 major with the degree "Bachelor of Science" (180 ECTS credits)

Examination regulations version: 2023 Responsible: Faculty of Mathematics and Computer Science Responsible: Institute of Mathematics

The subject is divided into	8
Learning Outcomes	9
Abbreviations used, Conventions, Notes, In accordance with	11
Compulsory Courses	12
Overview Analysis	13
Overview Linear Algebra	-9 14
Advanced Analysis	15
Seminar Mathematics	16
Compulsory Electives Mathematics	17
Subfield Basics of Analysis	18
Analysis 1	19
Analysis 2	20
Subfield Basics of Linear Algebra	21
Linear Algebra 1	22
Linear Algebra 2	23
Subfield Basics of Applied Mathematics	24
Numerical Mathematics 1	25
Numerical Mathematics 2	26
Stochastics 1	27
Stochastics 2	28
Subfield Pure Mathematics	29
Introduction to Algebra	30
Introduction to Differential Geometry	31
Ordinary Differential Equations	32
Introduction to Complex Analysis Geometric Analysis	33
Introduction to Projective Geometry	34
Applied Algebra	35 36
Subfield Basics Specialization of Mathematics	37
Numerical Mathematics 1	38
Numerical Mathematics 2	39
Stochastics 1	40
Stochastics 2	41
Optimization for Machine Learning	42
Introduction to Algebra	43
Introduction to Differential Geometry	44
Ordinary Differential Equations	45
Introduction to Complex Analysis Geometric Analysis	46
Introduction to Discrete Mathematics	47 48
Introduction to Functional Analysis	49
Introduction to Partial Differential Equations	50
Introduction to Projective Geometry	51
Introduction to Number Theory	52
Applied Algebra	53
Introduction to Mathematical Logic	54
Subfield Overview Applied Mathematics	55
Overview Stochastics 1 and Stochastics 2	56
Overview Numerical Mathematics 1 and Numerical Mathematics 2	57
Overview Numerical Mathematics 1 and Stochastics 1	58
Subfield Overview Pure Mathematics	59

Overview Algebra and Ordinary Differential Equations	60
Overview Differential Geometry and Ordinary Differential Equations	61
Overview Algebra and Complex Analysis	62
Overview Complex Analysis and Differential Geometry	63
Overview Complex Analysis and Ordinary Differential Equations	64
Overview Geometric Analysis and Differential Geometry	65
Overview Geometric Analysis and Ordinary Differential Equations	66
Overview Geometric Analysis and Complex Analysis	67
Overview Algebra and Projective Geometry	68
Overview Algebra and Applied Algebra	69
Subfield Overview Advanced Mathematics	70
Overview Algebra and Ordinary Differential Equations	71
Overview Differential Geometry and Ordinary Differential Equations	72
Overview Algebra and Complex Analysis	73
Overview Complex Analysis and Differential Geometry	74
Overview Complex Analysis and Ordinary Differential Equations	75
Overview Geometric Analysis and Differential Geometry	76
Overview Geometric Analysis and Ordinary Differential Equations	77
Overview Geometric Analysis and Complex Analysis	78
Overview Algebra and Projective Geometry	79
Overview Algebra and Discrete Mathematics	80
Overview Discrete Mathematics and Projective Geometry	81
Overview Functional Analysis and Differential Geometry	82
Overview Functional Analysis and Ordinary Differential Equations	83
Overview Functional Analysis and Complex Analysis	84
Overview Functional Analysis and Geometric Analysis	85
Overview Algebra and Number Theory	86
Overview Differential Geometry and Number Theory	87
Overview Ordinary Differential Equations and Number Theory	88
Overview Complex Analysis and Number Theory Overview Geometric Analysis and Number Theory	89
Overview Projective Geometry and Number Theory	90
Overview Discrete Mathematics and Number Theory	91
Overview Functional Analysis and Number Theory	92 93
Overview Differential Geometry and Partial Differential Equations	94
Overview Ordinary Differential Equations and Partial Differential Equations	94
Overview Complex Analysis and Partial Differential Equations	96
Overview Geometric Analysis and Partial Differential Equations	97
Overview Functional Analysis and Partial Differential Equations	98
Overview Partial Differential Equations and Number Theory	99
Overview Stochastics 1 and Stochastics 2	100
Overview Numerical Mathematics 1 and Numerical Mathematics 2	101
Overview Ordinary Differential Equations and Numerical Mathematics 1	102
Overview Ordinary Differential Equations and Numerical Mathematics 2	103
Overview Functional Analysis and Numerical Mathematics 1	104
Overview Functional Analysis and Numerical Mathematics 2	105
Overview Optimization for Machine Learning and Numerical Mathematics 1	106
Overview Optimization for Machine Learning and Numerical Mathematics 2	107
Overview Partial Differential Equations and Numerical Mathematics 1	108
Overview Partial Differential Equations and Numerical Mathematics 2	109
Overview Optimization for Machine Learning and Functional Analysis	110
Overview Optimization for Machine Learning and Partial Differential Equations	111
Overview Algebra and Applied Algebra	112
Overview Applied Algebra and Number Theory	113
Overview Applied Algebra and Discrete Mathematics	114
Overview Algebra and Logic	115
Overview Applied Algebra and Logic	116

General Physical Geography: Climate System	212
General Human Geography: Introduction to the Geography of Cities, Towns and Villages	214
General Human Geography: Introduction to Economic Geography	219
General Human Geography: Introduction to Social and Population Geography	224
Cartography and Geoinformation	229
Introduction to Geographical Remote Sensing	231
Applications of Remote Sensing in Geography	233
Regional Geography - Lecture course 1	235
Regional Geography - Lecture course 2	240
Focus Computer Science	245
Fundamentals of Programming	246
Algorithms and data structures	248
Software Technology	250
Practical Course in Programming	252
Practical course in software	253
Digital computer systems	254
Computer Networks and Information Transmission	256
Practical course in hardware	258
Theoretical Informatics	260
Tutorial Theoretical Informatics	262
Logic for informatics	263
Algorithmic Graph Theory	265
Interactive Computer Graphics	267
Databases	269
Knowledge-based Systems	271
Data Mining	273
Computational Complexity	275
Cryptography and Data Security	277
3D Point Cloud Processing	279
Operating Systems	281
Computer Architecture	283
Control Principles of Modern Communication Systems	285
Automation and Control Technology	287
Introduction into Human-Computer Interaction	288
IT Security	290
Selected Basics of Computer Science	292
Focus Philosophy	293
Introduction to Philosophy	294
Historical epochs, main works, authors	295
Philosophical principles of sciences I	296
Philosophical principles of sciences II	301
Theoretical Philosophy I	302
Practical Philosophy I	307
History of Philosophy I	312
Issues of research in philosophy I	317
Text Analysis: Ancient Philosophy	318
Text Analysis: Medieval Philosophy	319
Text Analysis: Modern Philosophy	320
Text Analysis: Contemporary Philosophy	321
Basic disciplines of theoretical philosophy: Metaphysics and Epistemology	322
Specific disciplines of theoretical philosophy	323
Basic disciplines of practical philosophy	324
Specific disciplines of practical philosophy	325
Problems of Theoretical Philosophy	326
Problems of Practical Philosophy	327
Problems of Practical Philosophy	328

Focus Physics		329
Compulsory Courses		330
Classical Physics 1 for Students	of Physics related Disciplines	331
Classical Physics 2 for Students		333
Compulsory Electives 1		335
Laboratory Course Physics for S	tudents of Physics Related Disciplines	336
Laboratory Course Physics A (Me	echanics, Heat, Electromagnetism)	337
Data and Error Analysis		339
Laboratory Course Physics B for	Students of other Disciplines	341
Compulsory Electives 2		342
Optics and Waves		343
Atoms and Quanta		345
Introduction to Solid State Phys		347
Nuclear and Elementary Particle	Physics	349
Theoretical Mechanics		351
Quantum Mechanics		353
Statistical Physics Electrodynamics		355
•		357
Focus Economics		359
Organization		360
Accounting		362
Managerial Accounting Microeconomics 1		364 366
Microeconomics 2		368
Macroeconomics 1		370
Macroeconomics 2		372
Supply, Production and Operatio	ns Management	374
Investment and Finance	•	376
Marketing		378
Public Policy		380
Business Informatics		382
E-Business		384
Key Skills Area		386
General Key Skills		387
General Key Skills (subje	ct-specific)	388
Exercise tutor or proof-reading i		389
E-Learning and Blended Learnin	g Mathematics 1	391
E-Learning and Blended Learnin	g Mathematics 2	392
Subject-specific Key Skills		393
Subject-specific Key Skills	s, Compulsory Courses	394
Computational Mathematics	•	395
Programming course for student	s of Mathematics and other subjects	397
Basic Notions and Methods of M	Nathematical Reasoning	399
Reasoning and Writing in Mathe	ematics	401
Subject-specific Key Skills	s, Compulsory Electives	403
Supplementary Seminar Mather	natics	404
Introduction to Stochastic Finan	cial Mathematics	405
Introduction to Topology		406
Selected Topics in History of Ma	thematics	407
Mathematical Writing	hay Dayanastiya	409
School Mathematics from a Hig Proseminar Mathematics	nei reispective	411
Mathematical Aspects of Moder	n Cryptography	413 414
Thesis	ii ciyptogiapiiy	414 415
Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	415 page 6 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	page 0 / 410

Bachelor Thesis Mathematics

416

The subject is divided into

section / sub-section	ECTS credits	starting page	
Compulsory Courses	40	12	
Compulsory Electives Mathematics	79	17	
Subfield Basics of Analysis	8	18	
Subfield Basics of Linear Algebra	8	21	
Subfield Basics of Applied Mathematics	9	24	
Subfield Pure Mathematics	9	29	
Subfield Basics Specialization of Mathematics	9	37	
Subfield Overview Applied Mathematics	12	55	
Subfield Overview Pure Mathematics	12	59	
Subfield Overview Advanced Mathematics	12	70	
Compulsory Electives Application-oriented Subject	30	119	
Focus Biology	30	120	
Modules General Biology I		121	
Modules General Biology II		126	
Modules General Biology III		132	
Modules Mathematics/Quantitative Biology		143	
Modules General Biology IV		146	
Modules Special Biosciences I		151	
Modules Special Biosciences II		174	
Focus Chemistry	30	183	
Compulsory	21	184	
Compulsory Electives	9	199	
Focus Geography	30	207	
Focus Computer Science	30	245	
Focus Philosophy	30	293	
Focus Physics	30	329	
Compulsory Courses	14	330	
Compulsory Electives 1	3	335	
Compulsory Electives 2	7	342	
Focus Economics	30	359	
Key Skills Area	20	386	
General Key Skills	5	387	
General Key Skills (subject-specific)		388	
Subject-specific Key Skills	15	393	
Subject-specific Key Skills, Compulsory Courses	11	394	
Subject-specific Key Skills, Compulsory Electives	4	403	
Thesis	11	415	

Learning Outcomes

German contents and learning outcome available but not translated yet.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen sind vertraut mit den Arbeitsweisen und der zugehörigen Fachsprache der Mathematik und beherrschen die Methoden mathematischen Denkens und Beweisens.
- Die Absolventinnen und Absolventen besitzen grundlegende Kenntnisse mindestens eines Gebiets der Angewandten Mathematik (Numerische Mathematik und/oder Stochastik) und können sicher mit den Methoden dieser Gebiete umgehen.
- Die Absolventinnen und Absolventen besitzen grundlegende Kenntnisse ausgewählter Gebiete der Reinen Mathematik und sind vertraut mit den grundlegenden Beweismethoden dieser Gebiete.
- Die Absolventinnen und Absolventen kennen die grundlegenden Denkweisen und Arbeitstechniken eines weiteren Fachs, in dem mathematische Methoden zum Einsatz kommen.
- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, sich selbständig mithilfe von Fachliteratur in weitere Gebiete der Mathematik einzuarbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen verständlich zu präsentieren.
- Die Absolventinnen und Absolventen besitzen die für ein weiterführendes, insbesondere Master-Studium, erforderlichen Grundkenntnisse, Denk- und Arbeitsweisen und Methodenkenntnisse.
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und sind in der Lage, sie in ihrer eigenen Arbeit zu beachten.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen zielgruppenorientiert verständlich zu formulieren und zu präsentieren.
- Die Absolventinnen und Absolventen sind in der Lage, konkrete Probleme aus anderen Gebieten zu erkennen, zu strukturieren, zu modellieren und mit mathematischen Methoden Lösungswege zu entwickeln.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in Teams zu arbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, sich weitere Wissensgebiete selbständig, effizient und systematisch zu erschließen.
- Die Absolventinnen und Absolventen sind vertraut mit mindestens einer modernen Programmiersprache und können sicher mit mathematischer Software umgehen.
- Die Absolventinnen und Absolventen besitzen die F\u00e4higkeit, in interdisziplin\u00e4r zusammengesetzten Teams im Bereich der Informatik, Natur-, Ingenieurs- und Wirtschaftswissenschaften gestaltend mitzuwirken.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein hohes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, gesellschaftliche, wirtschaftliche und historische Entwicklungen und Prozesse kritisch zu reflektieren und zu bewerten.
- Die Absolventinnen und Absolventen sind in der Lage, in partizipativen Prozessen gestaltend mitzuwirken.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, Ideen und Lösungsvorschläge allgemeinverständlich zu formulieren und präsentieren.

Abbreviations used

Course types: $\mathbf{E} = \text{field trip}$, $\mathbf{K} = \text{colloquium}$, $\mathbf{O} = \text{conversatorium}$, $\mathbf{P} = \text{placement/lab course}$, $\mathbf{R} = \text{project}$, $\mathbf{S} = \text{seminar}$, $\mathbf{T} = \text{tutorial}$, $\ddot{\mathbf{U}} = \text{exercise}$, $\mathbf{V} = \text{lecture}$

Term: **SS** = summer semester, **WS** = winter semester

Methods of grading: **NUM** = numerical grade, **B/NB** = (not) successfully completed

Regulations: **(L)ASPO** = general academic and examination regulations (for teaching-degree programmes), **FSB** = subject-specific provisions, **SFB** = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASP02015

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

31-Jan-2023 (2022-81)

22-Nov-2023 (2023-102)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.

Compulsory Courses

(40 ECTS credits)

Module title					Abbreviation
Overview Analysis			10-M-ANA-Ü-152-m01		
Module	e coord	linator		Module offered by	
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Mathem	atics
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
14	nume	rical grade			
Duratio	n	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Conten	ts				
Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, differential and integral calculus in one variable, further topological considerations, differential calculus with a focus on functions in several variables.					
	Intended learning outcomes				

The student knows and masters the essential methods and proof techniques of analysis and is able to apply them independently, He/She has an overview over the fundamental notions and concepts of analysis, their analytic background and geometric interpretation, and can interconnect them and express them adequately in written and oral form.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to the contents of modules 10-M-ANA1 and 10-M-ANA2.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

420 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module title			Abbreviation		
Overview Linear Algebra			10-M-LNA-Ü-152-m01		
Modul	e coord	inator		Module offered by	
Dean of Studies Mathematik (Mathema		atics) Institute of Mathematics			
ECTS Method of grading		Only after succ. compl. of module(s)			
14	nume	rical grade			
Duratio	on	Module level	Other prerequisites	;	
1 seme	ster	undergraduate			
Contents					
Basic notions and structures; vector spaces, linear maps and systems of linear equations; theory of matrices and determinants; eigenvalue theory; bilinear forms and Euclidean/unitary vector spaces; diagonalisability and Jordan normal form.					

Intended learning outcomes

The student knows and masters the essential methods and proof techniques of linear algebra and is able to apply them independently. He/She has an overview over the fundamental notions and methods of linear algebra, knows about their algebraic and geometric background, is able to relate them to each other and can present them adequately in written and oral form.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to the contents of modules 10-M-LNA1 and 10-M-LNA2.

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

420 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Modul	e title				Abbreviation	
Advanced Analysis		Advanced Analysis			10-M-VAN-152-m01	
Module coordinator Module offe			Module offered by			
Dean of Studies Mathematik (Mathematics)		ematics)	natics) Institute of Mathematics			
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
7	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ester	undergraduate				
Control						

Continuation of analysis in several variables, integration theorems.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

210 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Master's degree (1 major) Quantum Technology (2021)

Module title			Abbreviation			
Seminar Mathematics			10-M-SEM-152-m01			
Module coordinator			Module offered by			
Dean of Studies Mathematik (Mathematics)		ematics) Institute of Mathematics		natics		
ECTS	Meth	od of grading	Only after succ. compl. of module(s)			
5	nume	rical grade				
Duratio	ition Module level Other prerequisites					
1 semester undergraduate						
Contents						

A selected topic in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Compulsory Electives Mathematics

(79 ECTS credits)

Subfield Basics of Analysis

(8 ECTS credits)

Module	e title				Abbreviation
Analysis 1		Analysis 1			10-M-ANA1-152-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)		natics) Institute of Mathematics		natics	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
8	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate					
Conter	nte				

Real numbers and completeness; basic topological notions; convergence and divergence of sequences and series; power series and Taylor series; basics in differential calculus in one variable; basics of integral calculus in one variable (Riemann integral and improper integral).

Intended learning outcomes

The student knows and masters the essential methods and notions of analysis. He/She is acquainted with the central proof methods in analysis and can employ them to solve easy problems. He/she is able to perform easy mathematical arguments independently and to express mathematical arguments precisely and clearly in written

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Economathematics (2021)

exchange program Mathematics (2023)

Modul	e title				Abbreviation
Analysis 2		Analysis 2 10-M-ANA2-152-		10-M-ANA2-152-m01	
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathemat		natics) Institute of Mathematics		natics	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
8	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate					
Conter	ntc.				

Further topological considerations, basics in differential calculus in several variables, inverse function theorem, implicit function theorem.

Intended learning outcomes

The student knows and masters the essential methods and notions of analysis. He/She is acquainted with the central proof methods in analysis and can employ them to solve easy problems. He/she is able to perform easy mathematical arguments independently and to express mathematical arguments precisely and clearly in written form.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

exchange program Mathematics (2023)

Subfield Basics of Linear Algebra

(8 ECTS credits)

Module title					Abbreviation
Linear Algebra 1					10-M-LNA1-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
8	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
<u> </u>					

Basic notions and structures; vector spaces, linear maps, systems of linear equations; theory of matrices and determinants.

Intended learning outcomes

The student knows and masters the basic notions and essential methods of linear algebra. He/She is acquainted with the central proof methods in linear algebra and can apply them to solve easy problems. He/She is able to perform simple mathematical arguments independently, and can present them adequately in written form.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Economathematics (2021)

exchange program Mathematics (2023)

Module title					Abbreviation
Linear Algebra 2					10-M-LNA2-152-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
8	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 semester undergraduate					
Conter	Contents				

Eigenvalue theory, bilinear forms, Euclidean and unitary vector spaces, diagonalisation and Jordan normal form.

Intended learning outcomes

The student knows and masters the basic notions and essential methods of linear algebra. He/She is acquainted with the central proof methods in linear algebra and can apply them to solve easy problems. He/She is able to perform simple mathematical arguments independently, and can present them adequately in written form.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes) and written exercises (approx. 12 exercise sheets with approx. 4 exercises each)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

exchange program Mathematics (2023)

Subfield Basics of Applied Mathematics

(9 ECTS credits)

Module title					Abbreviation
Numerical Mathematics 1					10-M-NUM1-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	undergraduate			
Conten	Contents				

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Numeri	Numerical Mathematics 2				10-M-NUM2-152-m01
Module	Module coordinator			Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 seme	1 semester undergraduate				
Conten	Contents				

Eigenvalue problems, linear programming, methods for initial value problems for ordinary differential equations, boundary value problems.

Intended learning outcomes

The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module title					Abbreviation
Stochastics 1					10-M-STO1-152-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
Conter	Contents				

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Stochastics 2					10-M-STO2-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
Conter	Contents				

Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in statistics, applies these methods to practical problems and knows about the typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Subfield Pure Mathematics

(9 ECTS credits)

Module title					Abbreviation
Introduction to Algebra					10-M-ALG-152-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	undergraduate			
Conten	Contents				

Fundamental algebraic structures (groups, rings, fields), Galois theory.

Intended learning outcomes

The student knows and masters the essential methods and basic notions in algebra. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Introdu	Introduction to Differential Geometry				10-M-DGE-152-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	cs) Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Conten	Contents				

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student knows and masters the essential methods and basic notions in differential geometry. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Ordinary Differential Equations					10-M-DGL-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
Contor	Contents				

Existence and uniqueness theorem; continuous dependence of solutions on initial values; systems of linear differential equations; matrix exponential series; linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Introd	Introduction to Complex Analysis				10-M-FTH-152-m01
Module coordinator				Module offered by	I.
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
<i>~</i> .	Combando				

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in complex analysis. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Geometric Analysis					10-M-GAN-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 seme	ester	undergraduate			

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in geometric analysis. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Introduction to Projective Geometry				10-M-PGE-152-m01	
Module coordinator				Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	undergraduate			
Conten	Contents				

Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of projective geometry. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title				Abbreviation
Applied Algebra					10-M-AALG-232-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)				Institute of Mathematics	
ECTS	TS Method of grading		Only after succ. compl. of module(s)		
9	(not)	successfully completed			
Duration		Module level	Other prerequisites		
1 semester		undergraduate			
Contents					
Topics in field theory (particularly algebraic field extensions, ruler and compass constructions, basics in Galois theory, solvability of equations, cyclotomic fields, finite fields). Applications of algebra and number theory (e.g., coding theory, cryptography, computer algebra).					
Intended learning outcomes					
	uainted				ebra and its applications. He/She ndamental proof methods inde-
Courses (type, number of weekly contact hours, language — if other than German)					
V (4) + Ü (2)					
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)					
b) oral c) oral Langua	examir examir	mination (approx. 90 to 1 nation of one candidate e nation in groups (groups of ussessment: German and bonus	each (15 to 30 minutes of 2, 10 to 15 minutes	s) or	
Allocat	tion of	places			
Additional information					
Worklo	ad				
270 h					
Teaching cycle					

Module appears in

 $\textbf{Referred to in LPO I} \ \ (\text{exa} \underline{\text{mination regulations for teaching-degree programmes}})$

Subfield Basics Specialization of Mathematics

(9 ECTS credits)

Module title					Abbreviation
Numerical Mathematics 1					10-M-NUM1-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 seme	ester	undergraduate			
Contor	Contents				

Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Numerical Mathematics 2					10-M-NUM2-152-m01
Module	e coord	inator		Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate					
Contents					
Eigenvalue problems, linear programming, methods for initial value problems for ordinary differential equations,					

boundary value problems. Intended learning outcomes

The student is able to draw a distinction between the different concepts of numerical mathematics and knows about their advantages and limitations concerning the possibilities of application in different fields of natural and engineering sciences and economics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module title					Abbreviation
Stochastics 1					10-M-STO1-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 seme	ester	undergraduate			
Conter	Contents				

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Stochastics 2					10-M-STO2-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 seme	ester	undergraduate			
Conter	Contents				

Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in statistics, applies these methods to practical problems and knows about the typical fields of application.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Optimi	Optimization for Machine Learning				10-M-OML-232-m01
Module	e coord	inator		Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Conten	nts				

Linear programming, quadratic programming, convex optimization, first order methods, application to machine learning problems such as support vector machines.

Intended learning outcomes

The student is acquainted with the relevant methods in optimization and is able to apply these methods to practical machine learning problems, both theoretically and numerically.

Courses (type, number of weekly contact hours, language - if other than German)

V (4) + Ü (2)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Module title					Abbreviation
Introduction to Algebra					10-M-ALG-152-m01
Module coordinator				Module offered by	l .
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
<i>c</i> .	Containt				

Fundamental algebraic structures (groups, rings, fields), Galois theory.

Intended learning outcomes

The student knows and masters the essential methods and basic notions in algebra. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Introdu	Introduction to Differential Geometry				10-M-DGE-152-m01
Module	e coord	inator		Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	undergraduate			
Conten	nts				

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student knows and masters the essential methods and basic notions in differential geometry. He/She is acquainted with the central concepts in this field, and is able to apply the fundamental proof methods independently.

Courses (type, number of weekly contact hours, language - if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Modul	Module title				Abbreviation
Ordinary Differential Equations					10-M-DGL-152-m01
Modul	e coord	inator		Module offered by	l .
Dean c	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 seme	ster	undergraduate			
Contor	Contonts				

Existence and uniqueness theorem; continuous dependence of solutions on initial values; systems of linear differential equations; matrix exponential series; linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Introduction to Complex Analysis					10-M-FTH-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 semester undergraduate					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in complex analysis. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Geometric Analysis					10-M-GAN-152-m01
Module coordinator				Module offered by	
Dean c	f Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					
_					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in geometric analysis. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Introd	Introduction to Discrete Mathematics				10-M-DIM-152-m01
Module coordinator				Module offered by	l .
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
<i>c</i> .	C				

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Introduction to Functional Analysis					10-M-FAN-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duration Module level			Other prerequisites		
1 seme	ester	undergraduate			

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis.

Intended learning outcomes

The student knows the fundamental concepts and methods of functional analysis as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to functional analysis, and realises the broad applicability of the theory to other branches of mathematics.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

First state examination for the teaching degree Gymnasium Mathematics (2019)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Module title					Abbreviation
Introd	uction t	o Partial Differential Equ	ations		10-M-PAR-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathem	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			

Examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods in the theory of partial differential equations. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Module title					Abbreviation
Introduction to Projective Geometry					10-M-PGE-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
9	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	ester	undergraduate			
Contor	Contents				

Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of projective geometry. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Introduction to Number Theory					10-M-ZTH-152-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Mathema	tics) Institute of Mathematics		natics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
9	(not)	successfully completed				
Duration Module level		Other prerequisites				
1 semester undergraduate						

Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of number theory. He/she is able to employ the basic methods and proof techniques independently.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation		
Applie	d Algeb	ora			10-M-AALG-232-m01		
Modul	e coord	inator		Module offered by			
Dean c	of Studi	es Mathematik (Mathema	atics)	Institute of Mathen	natics		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)			
9	(not)	successfully completed					
Durati	on	Module level	Other prerequisites				
1 seme	ester	undergraduate					
Conte	nts						
theory	, solvab		omic fields, finite fiel		s constructions, basics in Galois algebra and number theory (e.g.,		
Intend	ed lear	ning outcomes					
	uainted				ebra and its applications. He/She ndamental proof methods inde-		
Course	es (type, r	number of weekly contact hours, I	anguage — if other than Ger	rman)			
V (4) +	Ü (2)						
			ge — if other than German, o	examination offered — if no	ot every semester, information on whether		
b) oral c) oral Langua	a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate) Language of assessment: German and/or English creditable for bonus						
Alloca	Allocation of places						
Additio	Additional information						
Workle	oad						

270 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{exa}\underline{\text{mination regulations for teaching-degree programmes})}$

--

Module appears in

Module	Module title Abbreviation						
Introdu	ıction t	o Mathematical Logic			10-M-LOG-232-m01		
Module	Module coordinator			Module offered by			
				Institute of Mathem	natics		
ECTS	Meth	od of grading	Only after succ. com	pl. of module(s)			
9	(not)	successfully completed					
Duratio	on	Module level	Other prerequisites				
1 seme	ster						
Conten	its						
Intend	ed lear	ning outcomes					
Course	S (type,	number of weekly contact hours, l	anguage — if other than Ger	man)			
V (4) +							
		t in: German and/or Engl					
			ge $-$ if other than German, ϵ	examination offered — if no	t every semester, information on whether		
		ple for bonus)	On minutes usually	shasan) ar			
		mination (approx. 90 to 1 nation of one candidate e					
c) oral	examir	nation in groups (groups o	of 2, 10 to 15 minutes				
		ssessment: German and		cc			
Assess		ffered: In the semester in	which the course is	offered and in the su	ibsequent semester		
Allocat							
Additio	nal inf	ormation					
Worklo	ad						
270 h							
,	ng cvcl	<u> </u>					
	Teaching cycle						
	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	Module appears in						
	Bachelor's degree (1 major) Mathematics (2015)						
	Bachelor's degree (1 major) Mathematics (2023)						

Subfield Overview Applied Mathematics

(12 ECTS credits)

Module title					Abbreviation	
Overview Stochastics 1 and Stochastics 2					10-M-STO-Ü-152-m01	
Module coordinator				Module offered by	e offered by	
Dean	of Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 semester undergraduate						
Conte	Contents					

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem; elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental and advanced concepts and methods in stochastics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overvi	ew Num	nerical Mathematics 1 ar	natics 2	10-M-NUM-Ü-152-m01		
Modul	e coord	inator		Module offered b	у	
Dean	of Studio	es Mathematik (Mathem	atics)	Institute of Mathe	ematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
12	nume	rical grade				
Durati	on	Module level	Other prerequisites	5		
1 seme	ester	undergraduate				
Conte	nts					
		stems of linear equation tion with polynomials, s			equations and systems of equati- nerical integration.	
Intend	ed lear	ning outcomes				
border	rs of diff es (type, r	e to relate these concept ferent branches in mathe number of weekly contact hours,	ematics.		vantages of thinking across the	
		Sessment (type, scope, langualle for bonus)	age — if other than German,	examination offered — if	not every semester, information on whether	
Assess pic ma	sment w ay only b		topics in applied ma ct of one examination		ed upon with the examiner. Each to Gesamtüberblick (Overview).	
Alloca	tion of p	olaces				
			_,			
Additio	onal inf	ormation				
Workload						
360 h	360 h					
Teachi	Teaching cycle					

Bachelor's degree (1 major) Mathematics (2015)

	e title				Abbreviation			
Overview Numerical Mathematics 1 and Stochastics 1 10-M-NUST-Ü-152-mo1								
Module	coord	inator		Module offered by				
Dean o	f Studi	es Mathematik (Mathem	natics)	Institute of Mather	natics			
ECTS	Meth	od of grading	Only after succ. con	pl. of module(s)				
12	nume	rical grade						
Duratio	n	Module level	Other prerequisites					
1 seme	ster	undergraduate						
Conten	ts							
ons, in Laplace butions dence,	terpola e mode s: norm eleme	tion with polynomials, sels, selected discrete dis al distribution, random	splines and trigonome stributions, elementary variable, distribution pility, characteristics o	tric functions, nume measure and integ function, product m	quations and systems of equati- erical integration; combinatorics, gration theory, continuous distri- easures and stochastic indepen- ected value and variance, limit			
Intend	ed lear	ning outcomes						
The student is acquainted with fundamental concepts and methods in numerical mathematics and stochastics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.								
He/She	s or air		Courses (type, number of weekly contact hours, language — if other than German)					
He/She borders		number of weekly contact hours	, language — if other than Ger	man)				

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Subfield Overview Pure Mathematics

(12 ECTS credits)

Modul	e title	,	Abbreviation			
Overview Algebra and Ordinary Differential Equations					10-M-ALGD-Ü-152-m01	
Modul	e coord	linator		Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Duratio	on	Module level	Other prerequisite	Other prerequisites		
1 semester undergraduate -						
Conter	Contents					

Fundamental algebraic structures (groups, rings, fields), Galois theory; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order;.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and in the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation			
Overvi	ew Diff	erential Geometry and	10-M-DGGD-Ü-152-m01			
Module coordinator				Module offered by		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Duratio	on	Module level	Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conter	Contents					

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Algebra and Complex Analysis					10-M-ALFT-Ü-152-m01	
Module coordinator				Module offered by	by	
Dean o	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	ester	undergraduate				
<i>~</i> .	Ctt-					

Fundamental algebraic structures (groups, rings, fields), Galois theory; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Complex Analysis and Differential Geometry					10-M-FTDG-Ü-152-m01	
Module coordinator				Module offered by		
Dean	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level Oth		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Conto	Contants					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title	Abbreviation			
Overview Con	10-M-FTGD-Ü-152-m01			
Module coord	linator		Module offer	ed by
Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS Meth	od of grading	Only after succ. co	mpl. of module	(s)
12 nume	erical grade			
Duration	Module level	Other prerequisite	<u>.</u>	
1 semester undergraduate				
-	-	•		

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Geometric Analysis and Differential Geometry				10-M-GADG-Ü-152-m01		
Module coordinator				Module offered by	lodule offered by	
Dean of Studies Mathematik (Mathematics)		Institute of Mathematics				
ECTS	ECTS Method of grading Only after succ. con		mpl. of module(s)			
12 numerical grade						
Duration Module level Other prerequisites		s				
1 seme	1 semester undergraduate					
Contor	Contonts					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Geometric Analysis and Ordinary Differential Equations			10-M-GAGD-Ü-152-m01			
Module coordinator				Module offered by	e offered by	
Dean c	Dean of Studies Mathematik (Mathematics)		Institute of Mathematics			
ECTS	ECTS Method of grading Only after succ. cor		Only after succ. con	npl. of module(s)		
12 numerical grade						
Duration Module level Other prere		Other prerequisites				
1 seme	1 semester undergraduate					
Contonts						

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title				Abbreviation		
Overview Geometric Analysis and Complex Analysis				10-M-GAFT-Ü-152-m01		
Module coordinator				Module offered by	Module offered by	
Dean of Studies Mathematik (Mathematics)		Institute of Mathematics				
ECTS	Method of grading Only after succ. co		ompl. of module(s)			
12	numerical grade					
Duration Module level Other prerequisit		es				
1 semester undergraduate						
C 4	-4-					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title			Abbreviation			
Overview Algebra and Projective Geometry				10-M-ALPG-Ü-152-m01		
Module coordinator				Module offered by	lodule offered by	
Dean of Studies Mathematik (Mathematics)		Institute of Mathematics				
ECTS	Method of grading Only after succ. co		mpl. of module(s)			
12	2 numerical grade					
Duration Module level Other prerequ		Other prerequisite	es			
1 semester undergraduate						
C 4		•	•			

Fundamental algebraic structures (groups, rings, fields), Galois theory; projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and projective geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Algebra and Applied Algebra					10-M-ALAA-Ü-232-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	CTS Method of grading Only after succ. co		Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Duration Module level Other pre		Other prerequisite	S			
1 semester undergraduate						
Contents						

Topics in Group Theory (particularly finite abelian groups, normal subgroups, sub- and factorgroups, isomorphism theorems, solvability, group operations, Sylow theorems; examples: cyclic groups, alternating and symmetric groups, dihedral groups).

Topics in ring theory (particularly ideals, divisibility, polynomial rings, irreducibility of polynomials).

Topics in number theory (particularly Euclidean algorithm, Fermat's little theorem, Euler's theorem, Chinese remainder theorem, residue class rings and their unit groups, quadratic number rings).

Topics in field theory (particularly algebraic field extensions, ruler and compass constructions, basics in Galois theory, solvability of equations, cyclotomic fields, finite fields).

Applications of algebra and number theory (e.g., coding theory, cryptography, computer algebra).

Intended learning outcomes

The student has extensive knowledge of the mathematical ways of thinking and working as well as of proof methods, so that he/she masters the basic notions of algebra and number theory and can apply them to elementary problems in other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Subfield Overview Advanced Mathematics

(12 ECTS credits)

Module title					Abbreviation
Overvi	ew Alge	ebra and Ordinary Differ	10-M-ALGD-Ü-152-m01		
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)		atics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
12 numerical grade					
Duration Module level Other p		Other prerequisites	,		
1 seme	1 semester undergraduate				
Contents					

Fundamental algebraic structures (groups, rings, fields), Galois theory; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order;.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and in the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Differential Geometry and Ordinary Differential Equations			10-M-DGGD-Ü-152-m01			
Module coordinator				Module offere	le offered by	
Dean of Studies Mathematik (Mathematics)			nematics)	Institute of Ma	Institute of Mathematics	
ECTS	Meth	Method of grading Only after succ. co		c. compl. of module(s)	
12	nume	rical grade				
Duration Module level Other pro		Other prerequi	isites			
1 semester undergraduate						
Conto	ntc	•	•			

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	Module title				Abbreviation
Overvi	Overview Algebra and Complex Analysis				10-M-ALFT-Ü-152-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				

Fundamental algebraic structures (groups, rings, fields), Galois theory; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overview Complex Analysis and Differential Geometry					10-M-FTDG-Ü-152-m01
Module coordinator				Module offered by	l.
Dean o	f Studi	es Mathematik (Mathem	natics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 semester undergraduate					
Contents					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title	'	Abbreviation			
Overview Complex Analysis and Ordinary Differential Equations					10-M-FTGD-Ü-152-m01	
Module coordinator				Module offered by		
Dean	of Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level Oth		Other prerequisites	Other prerequisites		
1 semester undergraduate						
Conte	Contents					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ \\$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Geometric Analysis and Differential Geometry					10-M-GADG-Ü-152-m01	
Module coordinator				Module offered by		
Dean c	of Studi	es Mathematik (Math	nematics)	Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. o	compl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level Other prere		Other prerequisit	tes		
1 semester undergraduate						
Contor	Contents					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and differential geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title	·	Abbreviation			
Overview Geometric Analysis and Ordinary Differential Equations					10-M-GAGD-Ü-152-m01	
Module coordinator				Module offer	ed by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ.	compl. of module	(s)	
12	nume	rical grade				
Durati	Duration Module level		Other prerequis	Other prerequisites		
1 seme	1 semester undergraduate					
Conte	Contents					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Geometric Analysis and Complex Analysis					10-M-GAFT-Ü-152-m01	
Module coordinator				Module offered by		
Dean	of Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level C		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Conto	Contents					

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title			Abbreviation	
Overvi	ew Alge	ebra and Projective G	ieometry		10-M-ALPG-Ü-152-m01
Module coordinator				Module offered by	
Dean o	of Studi	es Mathematik (Math	nematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level Other prei		Other prerequisite	es	
1 seme	1 semester undergraduate				
<i>c</i> .					

Fundamental algebraic structures (groups, rings, fields), Galois theory; projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and projective geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation		
Overvi	Overview Algebra and Discrete Mathematics				10-M-ALDI-Ü-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. cor	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level O		Other prerequisites	Other prerequisites	
1 seme	1 semester undergraduate				
Cantar	Contonto				

Fundamental algebraic structures (groups, rings, fields), Galois theory; techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and discrete mathematics. He/ She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overview Discrete Mathematics and Projective Geometry					10-M-DIPG-Ü-152-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	on	Module level	Other prerequisite	Other prerequisites	
1 semester undergraduate					
Contents					

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes; projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in projective geometry and discrete mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overview Functional Analysis and Differential Geometry					10-M-FADG-Ü-152-m01
Module coordinator				Module offered by	
Dean	of Studi	es Mathematik (Math	ematics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate					
C-mt-mt-					

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and functional analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation			
Overvi	ew Fun	ctional Analysis and	10-M-FAGD-Ü-152-m01			
Modul	e coord	inator	Module offered by	1		
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conter	Contents					

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overview Functional Analysis and Complex Analysis					10-M-FAFT-Ü-152-m01	
Module coordinator				Module offered	l by	
Dean	of Studi	es Mathematik (Math	nematics)	Institute of Mat	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s))	
12	nume	rical grade				
Durati	Duration Module level Oth		Other prerequis	ites		
1 semester undergraduate						
Conto	Contents					

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and complex analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overview Functional Analysis and Geometric Analysis					10-M-FAGA-Ü-152-m01
Module coordinator				Module offered by	
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate -				
Contor	Contonto				

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and geometric analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation		
Overvi	Overview Algebra and Number Theory				10-M-ALZT-Ü-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
Conten	Contents				

Fundamental algebraic structures (groups, rings, fields), Galois theory; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in algebra and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation			
Overvi	ew Diff	erential Geometry an	10-M-DGZT-Ü-152-m01			
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conter	Contents					

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation		
Overvi	ew Ord	inary Differential Equa	ory	10-M-GDZT-Ü-152-m01	
Module coordinator Module				Module offered by	
Dean c	of Studi	es Mathematik (Mathe	ematics)	Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
12	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate					
Contents					

Existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module ti	tle	Abbreviation			
Overview	Complex Analysis and N	10-M-FTZT-Ü-152-m01			
Module co	oordinator	Module offered by			
Dean of S	tudies Mathematik (Mat	nematics)	Institute of Mathen	Institute of Mathematics	
ECTS M	ethod of grading	Only after succ. o	ompl. of module(s)		
12 n	umerical grade				
Duration	Module level	Other prerequisit	es		
1 semester undergraduate -					
Contents					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overvi	Overview Geometric Analysis and Number Theory				10-M-GAZT-Ü-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate -				
Contor	Contonto				

Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation		
Overview Projective Geometry and Number Theory					10-M-PGZT-Ü-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level		Other prerequisite	Other prerequisites	
1 seme	1 semester undergraduate				
Conte	Contents				

Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and projective geometry. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, examination of fered} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, examination of fered} \ (\textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if other than German, examination of fered} \ (\textbf{scope}, \textbf{language} - \textbf{language} - \textbf{language} - \textbf{language} \ (\textbf{language} - \textbf{language} - \textbf{language} - \textbf{language} - \textbf{language} - \textbf{language} - \textbf{language} \ (\textbf{language} - \textbf{language} - \textbf{languag$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation			
Overvi	ew Disc	crete Mathematics and		10-M-DIZT-Ü-152-m01		
Module coordinator				Module offered by		
Dean o	of Studi	es Mathematik (Mathe	matics)	Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	ester	undergraduate				
Cantar	Contonto					

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and discrete mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation
Overview Functional Analysis and Number Theory					10-M-FAZT-Ü-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	Duration Module level		Other prerequisites	Other prerequisites	
1 seme	1 semester undergraduate				
Contor	Contents				

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation		
Overview Differential Geometry and Partial Differential Equations 10-M-DGPA-Ü-152-m01					
Module	e coord	inator		Module offered by	l.
Dean of Studies Mathematik (Mathematics)			atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)	
12	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Contents					
Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in					

Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in differential geometry and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation			
Overvi	ew Ord	inary Differential Equat	10-M-GDPA-Ü-152-m01			
Module coordinator Module offere						
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conter	Contents					

Existence and uniqueness theorem, continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in the theory of ordinary and partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation			
Overview Complex Analysis and Partial Differential Equations					10-M-FTPA-Ü-152-m01	
Module coordinator				Module offered by		
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Durati	Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate						
Conte	Contents					

Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in complex analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation			
Overvi	ew Geo	metric Analysis and P	tions	10-M-GAPA-Ü-152-m01		
Modul	e coord	inator		Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	mpl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Conter	Contents					

Basics in analysis on manifolds, e. g. submanifolds and calculus of differential forms, Stoke's theorem and its applications in vector calculus and topology, examples of first order partial differential equations, existence and uniqueness theorems, basic equations in mathematical physics, boundary value theorems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in geometric analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Modul	e title		Abbreviation		
Overview Functional Analysis and Partial Differential Equations					10-M-FAPA-Ü-152-m01
Modul	e coord	linator		Module offered by	
Dean of Studies Mathematik (Mathematics)			ematics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
12	nume	rical grade			
Durati	on	Module level	Other prerequisites	3	
1 semester undergraduate					
Conte	nts				
Ranac	h snace	s and Hilhert snaces	hounded operators pri	nciples of functional	analysis: examples of partial

Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	title		Abbreviation			
Overvi	ew Part	ial Differential Equatio	•	10-M-PAZT-Ü-152-m01		
Module	coord	inator		Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)		
12	nume	rical grade				
Duratio	n	Module level	Other prerequisites	Other prerequisites		
1 semester undergraduate						
Conten	Contents					

Examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in number theory and the theory of partial differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module	e title		Abbreviation		
Overvi	ew Sto	chastics 1 and Stochasti	CS 2		10-M-STO-Ü-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			cs) Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
Conten	Contents				

Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem; elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics.

Intended learning outcomes

The student is acquainted with fundamental and advanced concepts and methods in stochastics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

Additional information

Workload

360 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Module title					Abbreviation	
Overvi	ew Nun	nerical Mathematics 1 an	d Numerical Mathem	atics 2	10-M-NUM-Ü-152-m01	
Modul	e coord	inator		Module offered by		
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mather	natics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
12	nume	rical grade				
Duratio	on	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conter	its					
		stems of linear equations tion with polynomials, sp			quations and systems of equati- erical integration.	
Intend	ed lear	ning outcomes				
He/Sh	e is abl		s with one another, a		ods in numerical mathematics. antages of thinking across the	
Course	S (type, r	number of weekly contact hours,	language — if other than Ger	man)		
V (4) +	Ü (2)					
Metho	d of ass	sessment (type, scope, langua	ige — if other than German, o	examination offered — if n	ot every semester, information on whether	
		le for bonus)				
Assess pic ma	ment w y only b		topics in applied ma t of one examination		d upon with the examiner. Each to- esamtüberblick (Overview).	
Allocat	ion of p	places				
Additio	nal inf	ormation				
Worklo	ad					
360 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Modul	e appea	ars in				

Bachelor's degree (1 major) Mathematics (2015) Bachelor's degree (1 major) Mathematics (2023)

Modul	e title				Abbreviation
Overview Ordinary Differential Equations and Numerical Mathema			ematics 1	10-M-GDNU1-Ü-152-m01	
Modul	e coord	inator	M	odule offered	by
Dean o	f Studi	es Mathematik (Math	ematics) In	stitute of Math	hematics
ECTS	Metho	od of grading	Only after succ. compl	. of module(s)	
12	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Conter	its				
of linea polyno	ar equa mials, s	tions and curve fitting splines and trigonom		tions and syst	of higher order; solution of systems ems of equations, interpolation with
		ning outcomes			
ordina	ry differ	ential equations. He/		concepts with	erical mathematics and the theory of one another, and realises the ads.
Course	S (type, r	number of weekly contact ho	urs, language — if other than Germa	n)	
V (4) +	Ü (2)				
		sessment (type, scope, la le for bonus)	nguage — if other than German, exa	mination offered —	if not every semester, information on whether
oral examination of one candidate each (20 to 40 minutes) Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English					
Allocat	ion of p	olaces			
Additio	nal inf	ormation			

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module title Abbreviation						
Overview Ordinary Differential Equations and Numerical Mathematics 2 10-M-GDNU2-Ü-152-mo1						
Module coordinator Module offered by						
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathen	natics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
12	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conten	ts					
ferentia	al equa	tions, matrix exponentia	l series, linear differe	ntial equations of hi	tial values, systems of linear dif- igher order; eigenvalue problems equations, boundary value pro-	
Intend	ed lear	ning outcomes				
The student is acquainted with fundamental concepts and methods in numerical mathematics and the theory of ordinary differential equations. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.						
Courses (type, number of weekly contact hours, language — if other than German)						
V (4) + Ü (2)						
Metho	d of ass	sessment (type, scope, langua	ge — if other than German,	examination offered — if no	ot every semester, information on whether	

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview)

Language of assessment: German and/or English

Allocation of places

module is creditable for bonus)

--

Additional information

--

Workload

360 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Modul	e title		Abbreviation			
Overview Functional Analysis and Numerical Mathematics 1					10-M-FANU1-Ü-152-m01	
Modul	e coord	inator		Module offer	ed by	
Dean of Studies Mathematik (Mathematics)			matics)	Institute of N	Institute of Mathematics	
ECTS	Method of grading Only after succ. o		c. compl. of module	mpl. of module(s)		
12	nume	rical grade				
Duratio	on	Module level	Other prerequ	Other prerequisites		
1 seme	ster	undergraduate				
Conten	ıts		`			
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.						

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in functional analysis and numerical mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module	Module title Abbreviation							
Overview Functional Analysis and Numerical Mathematics 2 10-M-FANU2-Ü-152-m01								
Module	coord	linator		Module offered by				
Dean o	f Studi	ies Mathematik (Math	nematics)	Institute of Mather	natics			
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)				
12	nume	erical grade						
Duratio	n	Module level	Other prerequisite	es				
1 seme	ster	undergraduate						
Conten	ts	,	,					
					l analysis; eigenvalue problems, equations, boundary value pro-			
Intende	ed lear	ning outcomes						
matics.	. He/SI		ese concepts with one a		al analysis and numerical mathe- the advantages of thinking acros			
Course	S (type,	number of weekly contact h	ours, language — if other than (German)				
V (4) + Ü (2)								
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)								
noaute is	cicuitai	ote for bolius)						

Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Module	e title		Abbreviation			
Overview Optimization for Machine Learning and Numerical Mathematics 1					10-M-OMNU1-Ü-232-m01	
Modul	e coord	linator		Module offered by	у	
Dean o	f Studi	es Mathematik (Mathe	matics)	Institute of Mathe	ematics	
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
12	nume	rical grade				
Duratio	on	Module level	Other prerequisites	uisites		
1 seme	ester	undergraduate				
Conten	nts					
Linear programming, quadratic programming, convex optimization, first order methods, application to machine learning problems such as support vector machines. Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equati-						

ons, interpolation with polynomials, splines and trigonometric functions, numerical integration. **Intended learning outcomes**

The student is acquainted with fundamental concepts and methods in numerical mathematics and optimization. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

ا براء ما دراء	- 4:41 -		_		Abbrariation		
Modul				A4 - 4 h 4 h	Abbreviation		
Overview Optimization for Machine Learning and Numerical Mathematics 2					10-M-OMNU2-Ü-232-m01		
Modul	e coord	inator		Module offered by			
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathen	natics		
ECTS	Metho	od of grading	Only after succ. com	pl. of module(s)			
12	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster	undergraduate					
Conter	ıts						
learnin Eigenv	ig probl alue pro	ems such as support ved	tor machines.		nethods, application to machine or ordinary differential equations,		
Intend	ed learı	ning outcomes					
on. He	/She is		epts with one another		al mathematics and optimizati- advantages of thinking across the		
Course	S (type, r	number of weekly contact hours,	anguage — if other than Gern	nan)			
V (4) +	Ü (2)						
		sessment (type, scope, langua le for bonus)	ge — if other than German, ex	kamination offered — if no	ot every semester, information on whether		
Assess pic ma	ment w y only b		topics in applied matl t of one examination i		l upon with the examiner. Each tosamtüberblick (Overview).		
Allocat	tion of p	olaces					
	_,						
Additio	onal inf	ormation					
Workload							
360 h							
Teachi	Teaching cycle						

Module appears in

 $\textbf{Referred to in LPO I} \ \ (\text{exa} \underline{\text{mination regulations for teaching-degree programmes}})$

Module title					Abbreviation	
Overview Partial Differential Equations and Numerical Math				hematics 1	10-M-PANU1-Ü-152-m01	
Module coordinator				Module offere	ed by	
Dean o	f Studi	es Mathematik (Mathem	natics)	Institute of Ma	athematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade				
Duratio	on	Module level	Other prerequisites	;		
1 seme	ster	undergraduate				
Conter	its					
ess the	eorems, probler	basic equations of mat m; solution of systems o	hematical physics, bo If linear equations and	oundary value p d curve fitting p	s of first order, existence and uniquen- oroblems, maximum principle and Di- roblems, nonlinear equations and sy- etric functions, numerical integration.	
Intend	ed learı	ning outcomes				
partial	differe		is able to relate these	concepts with	nerical mathematics and the theory of one another, and realises the advan-	
Course	!S (type, r	number of weekly contact hours,	language — if other than Ge	rman)		
V (4) +	Ü (2)					
		sessment (type, scope, langule for bonus)	age — if other than German,	examination offered	- if not every semester, information on whether	
Assess ner. Ea view).	ment w ch topi		o topics in pure and ap as the subject of one ϵ		atics as agreed upon with the exami- the sub-fields Gesamtüberblick (Over-	
Allocat	ion of p	olaces				
Additio	nal inf	ormation				
Workload						
360 h						
Teaching cycle						
Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module appears in						

Bachelor's degree (1 major) Mathematics (2015) Bachelor's degree (1 major) Mathematics (2023)

Module	e title				Abbreviation
Overvi	ew Part	ial Differential Equations	and Numerical Math	nematics 2	10-M-PANU2-Ü-152-m01
Module	e coord	inator		Module offere	d by
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Ma	athematics
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)
12	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Conten	its				
ess the	eorems, probler	basic equations of math	ematical physics, bo linear programming,	undary value p	s of first order, existence and uniquen- roblems, maximum principle and Di- itial value problems for ordinary diffe-
Intend	ed lear	ning outcomes			
partial tages c	differer of think	ntial equations. He/She i ing across the borders of	s able to relate these different branches ir	concepts with mathematics.	nerical mathematics and the theory of one another, and realises the advan-
		number of weekly contact hours, l	anguage — if other than Ge	rman)	
V (4) +					
		sessment (type, scope, langua le for bonus)	ge — if other than German,	examination offered	— if not every semester, information on whether
Assess ner. Ea view).	ment w ch topi		topics in pure and aps the subject of one ϵ		atics as agreed upon with the exami- the sub-fields Gesamtüberblick (Over-
Allocat	ion of p	olaces			
Additio	nal inf	ormation			
Worklo	ad				
360 h					
Teachi	ng cycl	e			
Referre	ed to in	LPO I (examination regulation	s for teaching-degree progra	ımmes)	
Module	e appea	nrs in			

Bachelor's degree (1 major) Mathematics (2015) Bachelor's degree (1 major) Mathematics (2023)

W	ÜRZBI	JRG V	5	Ba	Mathematics achelor's with 1 major, 180 ECTS credits		
Module	e title				Abbreviation		
Overvi	ew Opt	imization for Machine Le	arning and Functiona	ıl Analysis	10-M-OMFA-Ü-232-mo1		
Module	coord	inator		Module offered	by		
Dean o	f Studi	es Mathematik (Mathem	atics)	Institute of Matl	hematics		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)			
12	nume	rical grade					
Duratio	n	Module level	Other prerequisites				
1 seme	ster	undergraduate					
Conten	ts						
learnin	g probl	nming, quadratic programens such as support vectors and Hilbert spaces, bo	ctor machines.		er methods, application to machine nal analysis.		
Intende	ed lear	ning outcomes					
She is a	able to		th one another, and i		ional analysis and optimization. He/ ntages of thinking across the bor-		
Course	S (type, r	number of weekly contact hours,	anguage — if other than Ge	rman)			
V (4) +	Ü (2)						
		sessment (type, scope, langua ble for bonus)	ge — if other than German,	examination offered —	if not every semester, information on whether		
Assess ner. Eaview).	oral examination of one candidate each (20 to 40 minutes) Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Over-						
	Allocation of places						

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{exa}\underline{\text{mination regulations for teaching-degree programmes})}$

--

Module appears in

Module	Module title Abbreviation						
Overvi	ew Opt	imization for Machin	e Learning and Partial D	ifferential Equations	10-M-OMPA-Ü-232-m01		
Module coordinator Module offered by							
Dean o	f Studi	es Mathematik (Math	ematics)	Institute of Mathem	atics		
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)			
12	nume	rical grade					
Duratio	n	Module level	Other prerequisites	5			
1 seme	ster	undergraduate					
Conten	ts						
learnin Examp	g prob les of p orems	lems such as support partial differential equ , basic equations of n	vector machines. Jations and partial differ	ential equations of fi	ethods, application to machine rst order, existence and uniquen ms, maximum principle and Di-		
Intend	ed lear	ning outcomes					
ferentia	al equa	itions. He/She is able		s with one another, a	tion and the theory of partial dif- nd realises the advantages of		
Course	S (type, i	number of weekly contact ho	ours, language — if other than Ge	rman)			
V (4) +	Ü (2)						
		sessment (type, scope, la ble for bonus)	nguage — if other than German,	examination offered — if no	t every semester, information on whether		
aral ev:	examination of one candidate each (20 to 40 minutes)						

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure and applied mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module title					Abbreviation	
Overview Algebra and Applied Algebra					10-M-ALAA-Ü-232-m01	
Module coordinator				Module offered by		
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)		
12	nume	rical grade				
Duratio	Duration Module level		Other prerequisite	Other prerequisites		
1 semester undergraduate						
Conten	its		,			

Topics in Group Theory (particularly finite abelian groups, normal subgroups, sub- and factorgroups, isomorphism theorems, solvability, group operations, Sylow theorems; examples: cyclic groups, alternating and symmetric groups, dihedral groups).

Topics in ring theory (particularly ideals, divisibility, polynomial rings, irreducibility of polynomials).

Topics in number theory (particularly Euclidean algorithm, Fermat's little theorem, Euler's theorem, Chinese remainder theorem, residue class rings and their unit groups, quadratic number rings).

Topics in field theory (particularly algebraic field extensions, ruler and compass constructions, basics in Galois theory, solvability of equations, cyclotomic fields, finite fields).

Applications of algebra and number theory (e.g., coding theory, cryptography, computer algebra).

Intended learning outcomes

The student has extensive knowledge of the mathematical ways of thinking and working as well as of proof methods, so that he/she masters the basic notions of algebra and number theory and can apply them to elementary problems in other fields of mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview). Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module	e title				Abbreviation
Overvi	ew App	lied Algebra and Number	Theory		10-M-AAZT-Ü-232-m01
Module	e coord	inator		Module offered by	
Dean o	f Studi	es Mathematik (Mathema	atics)	Institute of Mathem	natics
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
12	nume	rical grade			
Duratio	n	Module level	Other prerequisites	i	
1 seme	ster	undergraduate			
Conten	ts		,		
Intender The stuthods,	ed lear dent h so that		of the mathematical vic notions of algebra	ways of thinking and	I working as well as of proof meand can apply them to elementa
•		number of weekly contact hours, l		rman)	
V (4) +	Ü (2)				
		sessment (type, scope, langua	ge — if other than German,	examination offered — if no	ot every semester, information on whether
Assess may on	ment w ıly be s	ion of one candidate eac will have reference to two elected as the subject of essessment: German and	topics in pure mathe one examination in t		oon with the examiner. Each topi ntüberblick (Overview).
Allocat	ion of p	places			

--

Additional information

--

Workload

360 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Modul	e title				Abbreviation
Overvi	ew App	lied Algebra and Discre	ete Mathematics		10-M-AADI-Ü-232-m01
Modul	e coord	inator		Module offered by	
Dean o	of Studi	es Mathematik (Mather	matics)	Institute of Mather	natics
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
12	nume	rical grade			
Durati	on	Module level	Other prerequisites	;	
1 seme	ester	undergraduate			
Conter	ıts		•		
Topics theory	in field , solvab		otomic fields, finite fiel		s constructions, basics in Galois algebra and number theory (e.g.,
Intend	ed lear	ning outcomes			
thods, menta	so that ry probl		asic notions of algebra nathematics.	and discrete mathe	d working as well as of proof me- matics and can apply them to ele-
V (4) +	_	iumber of weekly contact flours	s, language — il other than de	illially	
		sessment (type scope lang	uage — if other than German	examination offered — if n	ot every semester, information on whether
		ole for bonus)	auge in outlet than octimus,	onammadon enerea in n	
Assess may or	sment w		o topics in pure mathe of one examination in t		pon with the examiner. Each topic ntüberblick (Overview).
Alloca	tion of _I	places			
Addition	onal inf	ormation			
Workle	oad				
360 h					
Teachi	ng cycl	е			
Referre	ed to in	LPO I (examination regulation	ons for teaching-degree progra	ammes)	

Bachelor's degree (1 major) Mathematics (2023)

Module appears in

Module	title				Abbreviation	
Overview Algebra and Logic					10-M-ALLO-Ü-232-m01	
Module coordinator Module offered I			Module offered by			
				Institute of Mathem	natics	
ECTS	Metho	od of grading	Only after succ. com	ıpl. of module(s)		
12	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 seme	ster					
Conten	ts					
Intende	ed learı	ning outcomes				
Course	S (type, n	umber of weekly contact hours, l	anguage — if other than Ger	man)		
V (4) +	Ü (2)					
		eessment (type, scope, langua le for bonus)	ge — if other than German, e	examination offered — if no	t every semester, information on whether	
Assess may on	ment w ly be s	ion of one candidate eacl vill have reference to two elected as the subject of ssessment: German and,	topics in pure mathe one examination in t		on with the examiner. Each topic tüberblick (Overview).	
Allocat	ion of p	olaces				
Additio	nal inf	ormation				
Worklo	ad					
360 h						
Teachi	ng cycl	e				
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)					
Module	appea	rs in				
Bachelor's degree (1 major) Mathematics (2015)						
Bachelor's degree (1 major) Mathematics (2023)						

Module	e title				Abbreviation		
Overview Applied Algebra and Logic 10-M-AALO-Ü-232-mos					10-M-AALO-Ü-232-m01		
Module	e coord	inator		Module offered by			
				Institute of Mathem	natics		
ECTS	Metho	od of grading	Only after succ. com	npl. of module(s)			
12	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster						
Conten	its						
Intend	ed learı	ning outcomes					
Course	S (type, n	number of weekly contact hours, l	anguage — if other than Ger	man)			
V (4) +	Ü (2)						
		sessment (type, scope, langua le for bonus)	ge — if other than German, e	examination offered — if no	ot every semester, information on whether		
Assess may or	ment w	ion of one candidate eac vill have reference to two elected as the subject of ssessment: German and	topics in pure mathe one examination in t		on with the examiner. Each topic stüberblick (Overview).		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Worklo	ad						
360 h							
Teachi	ng cycl	e					
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	e appea	ars in					
	Bachelor's degree (1 major) Mathematics (2015)						
Bachel	Bachelor's degree (1 major) Mathematics (2023)						

Module	e title				Abbreviation		
Overview Discrete Mathematics and Logic 10-M-DILO-Ü-232-mo1					10-M-DILO-Ü-232-m01		
Module	e coord	inator		Module offered by			
				Institute of Mathem	natics		
ECTS	Metho	od of grading	Only after succ. com	npl. of module(s)			
12	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster						
Conten	its						
Intend	ed learı	ning outcomes					
Course	S (type, n	umber of weekly contact hours, l	anguage — if other than Ger	man)			
V (4) +	Ü (2)						
		sessment (type, scope, langua le for bonus)	ge — if other than German, e	examination offered — if no	ot every semester, information on whether		
Assess may or	ment w	ion of one candidate eac vill have reference to two elected as the subject of ssessment: German and	topics in pure mathe one examination in t		on with the examiner. Each topic stüberblick (Overview).		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Worklo	ad						
360 h							
Teachi	ng cycl	e					
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	e appea	ars in					
	Bachelor's degree (1 major) Mathematics (2015)						
Bachel	Bachelor's degree (1 major) Mathematics (2023)						

Module	e title				Abbreviation		
Overview Logic and Number Theory 10-M-LOZT-Ü-232-mo1					10-M-LOZT-Ü-232-m01		
Module	e coord	inator		Module offered by			
				Institute of Mathem	natics		
ECTS	Metho	od of grading	Only after succ. com	pl. of module(s)			
12	nume	rical grade					
Duratio	on	Module level	Other prerequisites				
1 seme	ster						
Conten	its						
Intend	ed learı	ning outcomes					
Course	S (type, r	number of weekly contact hours, l	anguage — if other than Ger	man)			
V (4) +	Ü (2)						
		sessment (type, scope, langua le for bonus)	ge — if other than German, e	examination offered — if no	ot every semester, information on whether		
Assess may or	ment w	ion of one candidate eac vill have reference to two elected as the subject of ssessment: German and	topics in pure mathe one examination in t		on with the examiner. Each topic tüberblick (Overview).		
Allocat	ion of p	olaces					
Additio	nal inf	ormation					
Worklo	ad						
360 h							
Teachi	ng cycl	e					
Referre	Referred to in LPO I (examination regulations for teaching-degree programmes)						
Module	e appea	ars in					
	Bachelor's degree (1 major) Mathematics (2015)						
Bachel	Bachelor's degree (1 major) Mathematics (2023)						

Compulsory Electives Application-oriented Subject

(30 ECTS credits)

Students must successfully complete modules worth 30 ECTS credits in a single one of the focuses listed below. In addition, students must successfully complete, in the area of mandatory electives application-oriented subject, modules with numerical grading worth no less than 15 ECTS credits, cf. Section 3 Subsection 2 Sentences 2 through 4 FSB (subject-specific provisions).

Focus Biology

(30 ECTS credits)

Modules General Biology I

(ECTS credits)

Module	e title				Abbreviation
The Pla	nt King	gdom			07-1A1ZPF-152-m01
Module coordinator				Module offered by	
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	n	Module level	Other prerequisites		
1 semester undergraduate		Admission prerequisite to assessment: exercises. Regular attendance of exercises (minimum 80%) and successful completion of the respective exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.			

Using the example of plants, students will be introduced to the phylogenetic diversity of eukaryotes in particular. At the level of groups in the plant kingdom, students will acquire the fundamental knowledge necessary to understand the forms and functions of plant organisms, with morphology and cytology being discussed in an evolutionary and ecological context. The contents of the module are relevant for biological disciplines at all levels of biological organisation. Students will also acquire and practise some of the fundamental preparation skills bioscientists are often required to possess.

Intended learning outcomes

- Knowledge of the specific characteristics of the intracellular and extracellular structures of plant cells and fungi.
- Ability to recognise evolution as the driving force behind the phylogeny of species.
- Familiarity with the concepts of phylogenetic relationships between plants/fungi.
- Familiarity with the distinguishing characteristics and major representatives of fungi as well as groups in the plant kingdom.
- Ability to select those plant and fungal organisms that are most suitable for particular scientific issues.
- Familiarity with the components and functioning of microscopes.
- Fundamental skills in the interpretation of macroscopic and histologic preparations by light microscopy.
- Fundamental preparation skills.

Courses (type, number of weekly contact hours, language — if other than German)

V (1.5) + Ü (2.5)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

Worklo<u>ad</u>

150 h

Teaching cycle

_

Referred to in LPO I (examination regulations for teaching-degree programmes)

. . .

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 122 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Evolution and the Animal Kingdom Module coordinator holder of the Professorship of Zoology at the Department of Electronmicroscopy ECTS Method of grading numerical grade 1 semester Undergraduate Only after succ. compl. of module(s) Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to	Module title Abbreviation					Abbreviation
holder of the Professorship of Zoology at the Department of Electronmicroscopy ECTS Method of grading Only after succ. compl. of module(s) 5 numerical grade Duration Module level Other prerequisites 1 semester undergraduate Admission prerequisite to assessment: exercises. Regular attendance	Evoluti	on and	the Animal Kingdom			07-1A1TI-152-m01
Electronmicroscopy ECTS Method of grading Only after succ. compl. of module(s) 5 numerical grade Duration Module level Other prerequisites 1 semester undergraduate Admission prerequisite to assessment: exercises. Regular attendance	Module	coord	inator		Module offered by	
5 numerical grade Duration Module level Other prerequisites 1 semester undergraduate Admission prerequisite to assessment: exercises. Regular attendance			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	at the Department of	Faculty of Biology	
Duration Module level Other prerequisites 1 semester undergraduate Admission prerequisite to assessment: exercises. Regular attendance	ECTS	Meth	od of grading	Only after succ. com	npl. of module(s)	
1 semester undergraduate Admission prerequisite to assessment: exercises. Regular attendance	5	nume	rical grade			
	Duratio	Duration Module level Other prerequis		Other prerequisites		
30 hours) are prerequisites for admission to assessment.	1 semester		undergraduate	(minimum 80%) and	d successful comple	tion of exercises (approx. 25 to

The lecture *Evolution* will acquaint students with fundamental concepts and mechanisms of evolutionary biology: the origins of diversity; natural and sexual selection; speciation; population genetics. It will provide students with an introduction to phylogenetic reconstruction and will thus enable them to develop an understanding of the system of plants and animals. During the exercise, students will complete exercises on mechanistic evolution and evolutionary history. The lecture *Tierreich* (*Animal Kingdom*) will discuss the diversity of animal organisms on the basis of the phyla of the animal kingdom focusing on phylogenetic criteria. It will address the ecological constraints that led to the development of different types of body plans with their different structures and functions. In this context, the lecture will also develop an awareness in students of how important a knowledge of the fundamental principles of zoology is for research and applications not only but in particular in biology and medicine. In the exercise, students will prepare and/or examine selected species and histological preparations and will thus become familiar with the functional and morphological characteristics of the major multicellular animal phyla. In this context, students will practise working with light microscopes and stereo microscopes and will acquire fundamental preparation skills. They will prepare drawings, documenting and interpreting what they have seen.

Intended learning outcomes

Students will be familiar with the fundamental concepts and mechanisms of evolutionary biology and will know that these are key to understanding biological processes. They will have gained an overview of the diversity of animals on the basis of different types of body plans and will understand important structures in both a functional and an ecological context.

Courses (type, number of weekly contact hours, language - if other than German)

V (2) + Ü (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 41 | Nr. 1 (4 ECTS credits) and § 41 | Nr. 4 (1 ECTS credits)

§ 61 I Nr. 1 (4 ECTS credits) and §	61 Nr. 2	4 (1 ECTS credits
-------------------------------------	------------	-------------------

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modules General Biology II

(ECTS credits)

Module	title				Abbreviation
Plant Physiology					07-2A2PHYPF-152-m01
Module coordinator Module offered to					
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
4	nume	rical grade			
Duration Module level Other prerequisite		Other prerequisites			
1 semester		undergraduate	Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.		tion of exercises (approx. 25 to

This module will acquaint students with the principles of general plant physiology and will provide them with an opportunity to develop the fundamental skills for working in a biological laboratory. The module will first address the biochemistry of the cell and will then move on to discuss the physiological processes that regulate the internal environment of plants in particular. Using the example of plants, the module will introduce students to the general principles of physiology. The module will also elaborate on the characteristic peculiarities of plants in comparison with animals and prokaryotes.

Intended learning outcomes

- Familiarity with general physiological processes in plants and the regulation of these. - Familiarity with the factors that distinguish plant physiology from animal and prokaryotic physiology. - Fundamental knowledge and skills on how to perform, analyse and present scientific experiments. - Essential lab skills. - Familiarity with methods for the investigation of fundamental physiological processes in plants.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 61 | Nr. 2

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Mathematics (2023)

Module	e title		Abbreviation		
Animal Physiology					07-2A2PHYTI-152-m01
Module coordinator Module offered by					
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)	
4	nume	rical grade			
Duration Module level Other prere		Other prerequisites	3		
1 semester		undergraduate	Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.		tion of exercises (approx. 25 to

This module will acquaint students with the principles of general and comparative animal physiology and will provide them with an opportunity to develop the fundamental skills for working in a physiological laboratory. The module will focus on neurophysiology and sensory physiology as well as aspects of metabolic physiology (respiration and excretion).

Intended learning outcomes

Students have developed an understanding of the physiological functions and regulation of organisms. They have acquired fundamental knowledge on planning, setup, interpretation and presentation of scientific results.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 41 | Nr. 2

§ 61 | Nr. 2

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Modul	e title				Abbreviation
Genetics, Neurobiology, Behaviour					07-2A2GENV-152-m01
Modul	e coord	linator		Module offered by	
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Method of grading Only after succ.			npl. of module(s)	
5	nume	rical grade			
Duratio	on	Module level	Other prerequisites	Other prerequisites	
1 semester		undergraduate	Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.		

Fundamental principles of genetics, neurobiology and behavioural biology.

Intended learning outcomes

Students will understand that there are molecular, cellular and system biological mechanisms and processes involved in animal behaviour and will be able to relate animal behaviour to the molecular and formal bases of inheritance.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (3)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 90 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 61 I Nr. 2 (2 ECTS credits)

§ 61 I Nr. 3 (1 ECTS credits)

§ 61 I Nr. 4 (1 ECTS credits)

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Biology (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modules General Biology III

(ECTS credits)

Modul	e title				Abbreviation
Develo	pment	al Biology of Animals			07-3A3EBIOTI-152-m01
Modul	e coord	linator		Module offered by	
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
4	nume	erical grade			
Duratio	on	Module level	Other prerequisites	tes	
1 semester		undergraduate	Admission prerequisite to assessment: exercises. Regular attendance (minimum 80%) and successful completion of exercises (approx. 25 to 30 hours) are prerequisites for admission to assessment.		

In this module, students will acquire theoretical and practical background knowledge on animal developmental biology. The following topics will be covered: early embryonic development of various model organisms (amphibians, nematodes, Drosophila, mouse) and relevance for the systematics of animals, gametogenesis (production of spermatozoa and ova), differential gene expression, cell growth and molecular regulation of cell development, organogenesis, pattern formation, carcinogenesis, stem cell research and cloning, metamorphosis (amphibians, insects), eco-devo, evo-devo.

Intended learning outcomes

1. Fundamental concepts in developmental biology. 2. Embryonic and postembryonic development of selected model organisms (pattern formation). 3. Molecular mechanisms as well as control of cell development. 4. Interdisciplinary connections between developmental biology and other branches of biology. 5. Cell biology of cotyledon, cancer and stem cells as well as gametes. 6. Interrelations between ontogeny and evolution/environment. 7. Physiological aspects of the developmental processes discussed.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(3)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 61 | Nr. 5

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Biomedicine (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biomedicine (2018)

Bachelor's degree (1 major) Biomedicine (2020)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Module	e title	,			Abbreviation	
Developmental Biology of Plants					07-3A3EBIOPF-152-m01	
Module	e coord	linator		Module offered by		
Dean o	Dean of Studies Biologie (Biology)			Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. cor	mpl. of module(s)		
4	nume	rical grade				
Duratio	on	Module level	Other prerequisites	sites		
1 semester (undergraduate	Admission prerequisite to assessment: exercises. Regular attendar (minimum 80%) and successful completion of exercises (approx. 2930 hours) are prerequisites for admission to assessment.		tion of exercises (approx. 25 to	

In this module, students will acquire an insight into the fundamental processes of plant developmental biology over a plant's entire life cycle from germination to reproduction. The module will discuss the molecular determination and regulation of different developmental biological processes in plants as well as their plasticity.

Intended learning outcomes

1. Fundamental concepts in plant developmental biology. 2. Developmental biology of selected plant model organisms. 3. Developmental biological processes at specific stages in the life cycle of plants. 4. Molecular mechanisms underlying pattern formation, morphogenesis and organogenesis in plants. 5. Establishment of plant embryonic axes. 6. Physiological aspects of the developmental processes in plants that were discussed. 7. Plasticity of developmental biological processes: regulation by endogenous and environmental factors.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(3)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 61 | Nr. 5

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Module title					Abbreviation
Plant and Animal Ecology					07-3A30EKO-152-m01
Module coordinator				Module offered by	
Dean of Studies Biologie (Biology)				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
6	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate -					

This module will provide students with an overview of the interactions of plants and animals with their abiotic and biotic environments. The module will focus on the functional adaptation to environmental conditions as well as on the structure and dynamics of populations, communities and ecosystems. Students will be introduced to fundamental model concepts of ecology, will become familiar with examples of research findings and will acquire the fundamental knowledge necessary to develop an understanding of current ecological problems.

Intended learning outcomes

Students are familiar with the fundamental principles of research in the field of ecology and with the most important abiotic and biotic factors that influence the distribution and frequency of occurrence of organisms in their environment. In addition, they understand the scientific relevance ecology has to the assessment of environmental issues.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 61 | Nr. 4

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

First state examination for the teaching degree Gymnasium Biology (2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Biosciences (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modul	e title		Abbreviation				
Genes, Molecules, Technologies					07-3A3GEMT-152-m01		
Module coordinator				Module offered by			
Dean c	Dean of Studies Biologie (Biology)			Faculty of Biology			
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)			
6	nume	rical grade					
Duration Module level		Other prerequisites					
1 seme	1 semester undergraduate						
Conter	Contents						

The module Gene, Moleküle, Technologien (Genes, Molecules, Technologies) will include lectures on the following topics: The section Spezielle Genetik (Special Genetics) will build on Einführung in die Genetik (Introduction to Genetics) and will deepen the students' knowledge of topics from the following areas: structure and evolution of the eukaryotic genome, regulatory RNA, epigenetically and evolutionarily significant genetic mechanisms. The section will also focus on methods of gene expression profiling, reverse genetics and modern methods of gene function and gene sequence analysis. In the lecture Einführung in die Bioinformatik (Introduction to Bioinformatics), students will acquire an overview of major areas in the field of bioinformatics: protein sequence and protein domain analysis, phylogeny and evolution of sequences, protein structure, RNA/DNA sequences and structures, cellular networks (regulation, metabolism) and systems biology. During the section Einführung in die Biotechnologie (Introduction to Biotechnology), students will acquire an overview of the following topics: history of biotechnology, DNA and RNA technologies, recombinant antibodies, molecular diagnostics, nanobiotechnology, biomaterials, bioprocess engineering, microbial biotechnology, transgenic animals and plants, microfluidics. The lecture Einführung in die Pharmakokinetik (Introduction to Pharmacokinetics) will provide students with an overview of the rational development of drugs and active agents. The module component will discuss an important aspect for biologists in more detail: the optimisation of the pharmacokinetics of small molecules and proteins. Pharmacokinetics describes the uptake, distribution, metabolism and elimination of a drug or xenobiotic in an organism.

Intended learning outcomes

Students possess an advanced knowledge on genome evolution and the regulation of gene expression and are familiar with current methods in genetics as well as methods for the analysis of DNA and protein databases. They have acquired an overview of both traditional and modern methods in biotechnology and are familiar with fundamental topics in biotechnology. Students have acquired an overview of the fundamental principles of the development and review of active agents in research, clinical practice and the pharmaceutical industry. They are familiar with methods and technologies in biology and are able to evaluate potential applications of these in research and industry.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 139 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	ĺ

Referred to in LPO I (examination regulations for teaching-degree programmes)

-

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Biosciences (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module	e title				Abbreviation	
Basic B	Biocher	mistry			07-3A3BC-152-m01	
Module	coord	linator		Module offered by		
Dean o	f Studi	es Biologie (Biology)		Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. compl. of module(s)			
4	nume	rical grade				
Duratio	n	Module level	Other prerequisites	5		
1 semester		undergraduate	exercises (minimun	n 80%) and successf	exercises. Regular attendance of ful completion of the respective rerequisites for admission to as-	
Conten	ts					

With the module component *Makromoleküle* (*Macromolecules*) as a starting point, the lecture will provide students with deeper insights into the molecular biology and biochemistry of prokaryotes and eukaryotes. Students will become familiar with fundamental principles of molecular biology (replication, transcription, splicing and translation) and the biochemistry of carbohydrates, lipids, proteins and nucleic acids. Experiments will be performed on selected topics that were discussed in the lecture. The exercise will cover practical aspects of lab work (PCR, DNA and protein gel electrophoresis, blot, enzyme kinetics and detection, protein isolation).

Intended learning outcomes

Students are familiar with the fundamental principles of biochemistry.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Modules Mathematics/Quantitative Biology

(ECTS credits)

Modul	e title		Abbreviation		
Mathematical Biology and Biostatistics					07-M-BST-152-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Bioinformatics			Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
4	nume	nerical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
C 1	Combonido				

Fundamental principles of the most important mathematical and statistical methods in biology.

Intended learning outcomes

Students will have acquired fundamental skills in the evaluation of experiments, the interpretation of readings and numbers as well as the mathematical description of biological processes.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes) creditable for bonus

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Modules General Biology IV

(ECTS credits)

Module title					Abbreviation	
The Flo	ra of G	ermany			07-4A4FLO-211-m01	
Module	coord	inator		Module offered by	l .	
holder	of the (Chair of Plant Physiolog	y and Biophysics	Faculty of Biology		
ECTS	Metho	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
7	nume	rical grade				
Duratio	n	Module level	Other prerequisites	Other prerequisites		
1 semester undergraduate		sions (at least 80% mission to the exar	attendance) and exe n is regular attendan	Regular participation in the excurercises. The prerequisite for adce at the exercises (at least 80% exercises to the extent of approx.		

The module will discuss the fundamental principles of the systematics and ecology of flowering plants. Students will acquire an overview of the major flowering plants to be found in the temperate zone as well as their ecological and economic importance. Using the field guide *Flora von Deutschland* by Schmeil-Fitschen, the course will demonstrate how dichotomous keys are used, and students will practise identifying freshly-gathered plants using dichotomous keys. Identifying plants, students will learn how to identify major morphological plant characteristics and will become familiar with the respective terminology. The module will also include field trips to typical habitats in the Botanical Garden and the vicinity of Würzburg. Students will become familiar with the common as well as scientific names of the plants found and will be introduced to the family- as well as species-specific characteristics of these plants. Students will practise using field guides and identification keys on site. Habitat ecological, geobotanical, climatic as well as conservation-relevant characteristics will also be discussed. The module will also include sessions at the Botanical Garden of the University of Würzburg with its outdoor facilities and greenhouses to help students acquire species identification skills.

Intended learning outcomes

Students have acquired knowledge and skills related to the ecology, systematics and taxonomy of indigenous flowering plants. They are familiar with the terminology of plant morphology and know how to use Floras and set up scientific herbaria.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(2) + E(2.5)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted or portfolio 1:1

Assessment offered: Once a year, summer semester creditable for bonus

Allocation of places

180 yes

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module com-

ponent that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

210 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 41 | Nr. 1 (3 ECTS credits) and § 41 | Nr. 4 (2 ECTS credits) § 61 | Nr. 1 (3 ECTS credits) and § 61 | Nr. 4 (2 ECTS credits)

Module appears in

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Module title					Abbreviation	
The Fa	una of	Germany			07-4A4FAU-152-m01	
Module	e coord	linator		Module offered by		
holder	of the	Chair of Animal Ecolo	gy and Tropical Biology	Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. cor	Only after succ. compl. of module(s)		
7	nume	rical grade				
Duratio	on	Module level	Other prerequisites	Other prerequisites		
1 semester undergraduate		(minimum 80%) an exercises (minimun	d completion of exerc n 80%) and successfu	egular attendance of field trips ises. Regular attendance of Il completion of the respective erequisite for admission to as-		

In this module, students will acquire an overview of selected groups of animals to be found in Central Europe. They will acquire a fundamental knowledge of the systematics and taxonomy of these animals and will practise identifying species, using specimens of animals. Selection of specimens will be taxon-specific and will represent specific habitats or lifestyles. Exercises in a variety of habitats will provide students with an opportunity to consolidate the knowledge and skills they acquired in the lab by identifying living specimens including their ecology and behavioural biology.

Intended learning outcomes

Students possess species identification skills. They know how to taxonomically classify selected representatives of the indigenous fauna (vertebrates, invertebrates) and use identification keys. They are familiar with selected Central European habitats as well as their faunas and phenology. On the basis of the morphology and habitats of species, students are able to predict the biology and ecology of these species as well as, where applicable, to predict whether they function as indicators and are of conservation concern.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(2) + E(2.5)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted

Assessment offered: Once a year, summer semester creditable for bonus

Allocation of places

180 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subjects Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

210 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Modules Special Biosciences I

(ECTS credits)

Module title					Abbreviation
Neuro	oiology	1			07-4S1NVO1-152-m01
Modul	e coord	inator		Module offered by	
holder	of the (Chair of Neurobiology an	d Genetics	Faculty of Biology	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate					
_					

Neurobiology and methods in molecular neurobiology (neurogenetic model system Drosophila and humans) -- focus: sleep behaviour and endogenous clock.

Intended learning outcomes

Students have acquired an advanced knowledge of the neurobiology of a model organism and are able to apply the relevant methods in neurobiology.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + S(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

20 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according

to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation
Integra	tive Be	ehavioral Biology 1			07-4S1NVO2-152-m01
Module	e coord	inator		Module offered by	
holder logy	holder of the Chair of Behavioral Physiology and Sociobiology			Faculty of Biology	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Othe		Other prerequisites			
1 semester undergraduate					
Conten	Contents				

Communication in the animal kingdom, neuroethology and behavioural development, perception and processing of olfactory signals, temporal organisation of behaviour, adaptive feeding behaviour, reproductive behaviour, social behaviour, orientation mechanisms.

Intended learning outcomes

Students have acquired an advanced knowledge in the area of behavioural biology and are able to deliver presentations on current studies on relevant topics.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

20 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics))

at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Modul	e title		Abbreviation		
Biolog	y and E	cology of Arthropods	5		07-4S1NVO5-152-m01
Module coordinator				Module offered by	l .
holder	of the	Chair of Animal Ecolo	gy and Tropical Biology	Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate -					
Contor	ntc.	•	•		

More in-depth discussion of the structure and dynamics of human and animal populations; regulation of population density; management.

Intended learning outcomes

Students are able to interpret the structure and dynamics of populations and metapopulations on the basis of model concepts in population ecology and to apply more advanced methods of quantitative analysis to these.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + S(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

15 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according

to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation
Metho	ds in Bi	iotechnology			07-4S1AMB-152-m01
Module	e coord	inator		Module offered by	L
holder	of the	Chair of Biotechnology ar	nd Biophysics	Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	ster	undergraduate			
Conten	Contents				

This module (lecture and seminar) will provide students with an overview of instrument-based methods in biotechnology and biomedicine and the underlying physical principles. It will discuss modern methods for the analysis of biological matter on the molecular and cellular level. These methods include light microscopy, fluorescence spectroscopy, electron microscopy, atomic force microscopy, flow cytometry and microfluidics.

Intended learning outcomes

Students will gain an overview of key methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$

V(2) + S(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 30 to 60 minutes) creditable for bonus

Allocation of places

25 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation	
Aspect	ts of Mo	olecular Biotechnology			07-4S1MOLB-152-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Biotechnology	and Biophysics	Faculty of Biology	Faculty of Biology	
ECTS	Metho	od of grading	Only after succ.	compl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conter	ntc					

Fundamental principles of "white" biotechnology, bioreactors, biocatalysis, immobilisation of cells and enzymes, production of biomolecules, molecular biology, recombinant DNA technology, protein engineering, biosensor design, drug design, drug targeting, molecular diagnostics, recombinant antibodies, hybridoma technology, electromanipulation of cells.

Intended learning outcomes

Students will gain an overview of traditional and modern methods in biotechnology and their respective advantages and disadvantages. They will learn to decide what method is most suitable for addressing a particular issue. Students will acquire a knowledge of fundamental methods in biotechnology that will enable them to independently review relevant literature. In addition, they will become acquainted with - or, where necessary, will be able to independently acquaint themselves with - relevant mechanisms.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + S(2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 30 to 60 minutes) creditable for bonus

Allocation of places

25 places.

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking.

Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Master's degree (1 major) Functional Materials (2016)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Biology (2022)

Master's degree (1 major) Functional Materials (2022)

exchange program Biosciences (2022)

Bachelor's degree (1 major) Mathematics (2023)

Master's degree (1 major) Functional Materials (2025)

Module title					Abbreviation
Specia	l Bioin	formatics 1			07-4S1MZ6-152-m01
Module coordinator				Module offered by	
holder	of the	Chair of Bioinformatics		Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
Conter	ntc				

Fundamental principles of the tree of life, fundamental principles of phylogenetics (methods and markers), fundamental principles of evolutionary biology (concepts), sequence analysis, RNA structure prediction, phylogenetic reconstruction.

Intended learning outcomes

Students are able to use software and databases for sequence analysis, RNA structure prediction and phylogenetic reconstruction.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(5)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

Log (approx. 10 to 20 pages)

Language of assessment: German or English

creditable for bonus

Allocation of places

20 places. Should the number of applications exceed the number of available places, places will be allocated as follows:

Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module title					Abbreviation
Methods in Plant Ecophysiology					07-4S1PS2-211-m01
Module coordinator				Module offered by	
holder	of the	Chair of Plant Physiol	ogy and Biophysics	Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisite	Other prerequisites		
1 semester undergraduate					
Contor	ntc.	•	•		

Complex experiments to introduce students to the current state of research in plant ecophysiology as well as discussion of experimental findings in a comprehensive scientific context.

Intended learning outcomes

Students are able to use current methods in plant ecophysiology as well as to document experimental findings and put these in a scientific context.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + S(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours). Students will be informed about the method and length of the assessment prior to the course.

creditable for bonus

Allocation of places

15 yes

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according

to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Workload

150 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Module title				,	Abbreviation
Pharm	aceutic	al Drugs in Plants			07-4S1PS3-152-m01
Modul	e coord	linator		Module offered	by
holder	of the	Chair of Pharmaceuti	cal Biology	Faculty of Biolo	gy
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)	
5	nume	rical grade			
Durati	Duration Module level		Other prerequis	Other prerequisites	
1 semester undergraduate					
Contai	nt c	-	<u></u>		

This module will introduce students to the major active agent groups in medicinal plants and phytopharmaceuticals as well as to their application in pharmacy. Microscopic and phytochemical analyses will be performed and the requirements and analytical methods of the pharmacopoeia will be explained.

Intended learning outcomes

Students have acquired a specialist knowledge on active agents from medicinal plants and phytopharmaceuticals as well as on the requirements and analytical methods of the pharmacopoeia.

Courses (type, number of weekly contact hours, language — if other than German)

 $\ddot{U}(4) + S(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

15 places

Should the number of applications exceed the number of available places, places will be allocated as follows: Students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits will be given preferential consideration. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one place in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in the same procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration.

A waiting list will be maintained and places re-allocated as they become available.

Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their

average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot.

Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50 % of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25 % of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25 % of places): lottery.

Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Modul	e title				Abbreviation
Laboratory Practical Course I					07-S1-LP1-152-m01
Modul	e coord	linator		Module offered by	
Coordi	Coordinator BioCareers			Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate			Please consult with	Please consult with course advisory service in advance.	
Conte	ntc				

This practical coursed is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course. creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 168 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Modul	e title				Abbreviation
Excurs	ion I				07-S1-Ex1-152-m01
Modul	Module coordinator			Module offered by	
Coordi	Coordinator BioCareers			Faculty of Biology	
ECTS	Meth	od of grading Only after succ. compl. of module(s)		npl. of module(s)	
5	nume	rical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		undergraduate	Please consult with course advisory service in advance.		

Contents of the field trip to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language - if other than German)

F (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Modul	e title				Abbreviation
Interdi	isciplin	ary Project I			07-S1-IP1-152-m01
Module coordinator				Module offered by	
Coordinator BioCareers				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
5	nume	rical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		undergraduate	Please consult with course advisory service in advance.		
C 4		•			

Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language - if other than German)

R (5`

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Mathematics (2023)

Modules Special Biosciences II

(ECTS credits)

Modul	e title				Abbreviation
Extern	al Pract	tical Course			07-5EP-152-m01
Module coordinator				Module offered by	
Coordinator BioCareers				Faculty of Biology	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
10	nume	rical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		undergraduate	Please consult with course advisory service in advance.		
C 4		-			

Students will complete a placement at an authority, a non-university research institution or a business. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of external institutions and businesses and have developed skills which qualify them to work in their profession.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

P (1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major) Biology (2022)

exchange program Biosciences (2022)

Module	e title				Abbreviation
Excurs	ion II				07-S2-EX2-152-m01
Module	Module coordinator			Module offered by	
Coordinator BioCareers				Faculty of Biology	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
10	nume	rical grade			
Duration Module		Module level	Other prerequisites	1	

Please consult with course advisory service in advance.

1 semester Contents

Contents of the field trip to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

F (8)

Module taught in: German and/or English

undergraduate

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

 $Language\ of\ assessment:\ German\ and/or\ English$

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's with 1 major Mathematics (2023)

JMU Würzburg • generated 19-Apr-2025 • exam. reg.

data record Bachelor (180 ECTS) Mathematik - 2023

exchange program Biosciences (2022) Bachelor's degree (1 major) Mathematics (2023)

Modul	e title				Abbreviation	
Interdisciplinary Project II				07-S2-IP2-152-m01	07-S2-IP2-152-m01	
Module coordinator				Module offered by		
Coordinator BioCareers				Faculty of Biology		
ECTS	Meth	od of grading	Only after succ. compl. of module(s)			
10	nume	rical grade				
Duration Module level		Module level	Other prerequisites	Other prerequisites		
1 semester		undergraduate	Please consult with	Please consult with course advisory service in advance.		
Conto	ntc	-				

Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language - if other than German)

R (8)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021)

Bachelor's degree (1 major) Biology (2022)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 179 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

exchange program Biosciences (2022) Bachelor's degree (1 major) Mathematics (2023)

Module	e title				Abbreviation
Laboratory Practical Course II				07-S2-LP2-152-m01	
Module	e coord	inator		Module offered by	
Coordinator BioCareers Faculty of Biolo			Faculty of Biology	of Biology	
ECTS Method of grading On		Only after succ. con	Only after succ. compl. of module(s)		
10	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate Plea			Please consult with	Please consult with course advisory service in advance.	
Conten	Contents				

This practical coursed is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of internal institutions and have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 45 to 60 minutes) or
- b) log (approx. 10 to 20 pages) or
- c) oral examination of one candidate each (approx. 30 minutes) or
- d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or
- e) presentation (approx. 20 to 30 minutes) or
- f) practical examination (on average approx. 2 hours; time to complete will vary according to subject area but will not exceed a maximum of 4 hours).

Students will be informed about the method and length of the assessment prior to the course.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Biology (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2015)

Bachelor's degree (1 major) Biology (2017)

Bachelor's degree (1 major) Biology (2021)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2020)

Bachelor's degree (1 major, 1 minor) Biology (Minor, 2021) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Mathematics (2023)

Focus Chemistry

(30 ECTS credits)

Compulsory

(21 ECTS credits)

Module title		Abbreviation
Experimental Chemistry		o8-AC-ExChem-152-mo1
Module coordinator	Module offered by	
lecturer of lecture "Experimentalchemie" (Experimental	Institute of Inorgan	ic Chemistry

ECTS	Metho	od of grading	Only after succ. compl. of module(s)
5	5 numerical grade		
Duratio	n	Module level	Other prerequisites
1 semester		undergraduate	

Contents

Chemistry)

The module provides an overview of the fundamental knowledge of chemistry. Emphasis is placed on the material and particle level, metals, acid-base reactions, the periodic table, chemical equilibrium and complexometry.

Intended learning outcomes

The student understands the principles of the periodic table and can obtain information from it. He/she is proficient in basic models of the structure of matter and can describe them properly. He/she can depict chemical reactions using typical chemical formula language and interpret them by identifying the type of reaction.

Courses (type, number of weekly contact hours, language - if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Musicology (2015)

Bachelor's degree (1 major) Physics (2015)


```
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
```



```
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
Bachelor's degree (1 major) Biology (2021)
Magister Theologiae Catholic Theology (2021)
Bachelor's degree (2 majors) History (2021)
Bachelor's degree (1 major, 1 minor) History (2021)
Bachelor's degree (1 major) Media Communication (2021)
Bachelor's degree (2 majors) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) English and American Studies (2021)
```



```
Bachelor's degree (2 majors) English and American Studies (2021)
Bachelor's degree (1 major) Functional Materials (2021)
Bachelor's degree (1 major) Computer Science und Sustainability (2021)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)
Bachelor's degree (1 major) Quantum Technology (2021)
Bachelor's degree (2 majors) Special Education (2021)
Bachelor's degree (1 major) Business Information Systems (2021)
Bachelor's degree (1 major) Economathematics (2021)
Bachelor's degree (1 major) Business Management and Economics (2021)
Bachelor's degree (1 major) Human-Computer Systems (2022)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)
Bachelor's degree (1 major) Biology (2022)
Bachelor's degree (1 major) Economathematics (2022)
Bachelor's degree (1 major) Mathematical Data Science (2022)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)
Bachelor's degree (1 major, 1 minor) Ancient World (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)
Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)
Bachelor's degree (1 major) European Law (2023)
Bachelor's degree (1 major, 1 minor) English and American Studies (2023)
Bachelor's degree (2 majors) English and American Studies (2023)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)
Bachelor's degree (1 major) Mathematics (2023)
Bachelor's degree (1 major) Business Information Systems (2023)
Bachelor's degree (1 major) Economathematics (2023)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) Special Education (2023)
Bachelor's degree (1 major) Business Management and Economics (2023)
Bachelor's degree (1 major) Geography (2023)
Bachelor's degree (2 majors) Geography (2023)
Bachelor's degree (1 major, 1 minor) Geography (2023)
Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)
Bachelor's degree (1 major) Mathematical Physics (2024)
Bachelor's degree (2 majors) German Language and Literature (2024)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)
Bachelor's degree (1 major) Music Education (2024)
Bachelor's degree (2 majors) Music Education (2024)
Bachelor's degree (1 major, 1 minor) Music Education (2024)
Bachelor's degree (1 major) Indology/South Asian Studies (2024)
Bachelor's degree (2 majors) Indology/South Asian Studies (2024)
Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)
Bachelor's degree (1 major, 1 minor) Ancient World (2024)
Bachelor's degree (2 majors) Digital Humanities (2024)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)
Bachelor's degree (1 major) Midwifery (2024)
Bachelor's degree (2 majors) Greek Philology (2024)
Bachelor's degree (2 majors) Latin Philology (2024)
Bachelor's degree (1 major) Business Information Systems (2024)
Bachelor's degree (1 major) Economathematics (2024)
Bachelor's degree (1 major) Business Management and Economics (2024)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)
```


Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Modul	e title				Abbreviation
Organic Chemistry 1					08-0C1-152-m01
Modul	e coord	linator		Module offe	ered by
holder of the Professorship of Organic Chemistry Institute of Organic Chemistry			Organic Chemistry		
ECTS	ECTS Method of grading Only a		Only after succ.	compl. of modul	e(s)
5 numerical grade					
Duration Module level		Other prerequis	Other prerequisites		
1 semester undergraduate					
Conto	nt c				

Contents

This module provides students with an overview of the fundamental principles of organic chemistry. It examines the bonding situation of carbon and introduces students to the nomenclature of simple and moderately complex organic compounds. The module also discusses the fundamental principles of stereochemistry, substitution, addition and elimination reactions as well as synthesis planning.

Intended learning outcomes

Students know important categories of substances in organic chemistry. They are able to use different systems of nomenclature to determine simple substance names. Students are able to analyse the stereochemistry of molecules. They are able to describe and formulate some of the most important reactions in organic chemistry. For that purpose, they can analyse and categorise the characteristic reaction conditions and can use them for simple syntheses.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

according to § 2 para. 2 sentence 2 APOLmCh in conjunction with No. I 2nd letter b) of annex 1 to the APOLmCh and No. 2 of annex 2 to the APOLmCh

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 62 | Nr. 2

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)


```
Bachelor's degree (2 majors) Special Education (2009)
Magister Theologiae Catholic Theology (2013)
Bachelor's degree (2 majors) English and American Studies (2009)
Bachelor's degree (2 majors) German Language and Literature (2013)
Bachelor's degree (1 major) Biochemistry (2015)
Bachelor's degree (1 major) Chemistry (2015)
Bachelor's degree (1 major) Geography (2015)
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Gymnasium Chemistry (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
```



```
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Module studies (Bachelor) Orientierungsstudien (2020)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
```


Bachelor's degree (1 major) Nanostructure Technology (2020)

```
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
Bachelor's degree (1 major) Biology (2021)
Magister Theologiae Catholic Theology (2021)
Bachelor's degree (2 majors) History (2021)
Bachelor's degree (1 major, 1 minor) History (2021)
Bachelor's degree (1 major) Media Communication (2021)
Bachelor's degree (2 majors) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) English and American Studies (2021)
Bachelor's degree (2 majors) English and American Studies (2021)
Bachelor's degree (1 major) Functional Materials (2021)
Bachelor's degree (1 major) Computer Science und Sustainability (2021)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)
Bachelor's degree (1 major) Food Chemistry (2021)
Bachelor's degree (1 major) Quantum Technology (2021)
Bachelor's degree (2 majors) Special Education (2021)
Bachelor's degree (1 major) Business Information Systems (2021)
Bachelor's degree (1 major) Economathematics (2021)
Bachelor's degree (1 major) Business Management and Economics (2021)
Bachelor's degree (1 major) Human-Computer Systems (2022)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)
Bachelor's degree (1 major) Biochemistry (2022)
Bachelor's degree (1 major) Biology (2022)
Bachelor's degree (1 major) Economathematics (2022)
Bachelor's degree (1 major) Mathematical Data Science (2022)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)
Bachelor's degree (1 major, 1 minor) Ancient World (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)
Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)
Bachelor's degree (1 major) European Law (2023)
Bachelor's degree (1 major, 1 minor) English and American Studies (2023)
Bachelor's degree (2 majors) English and American Studies (2023)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)
Bachelor's degree (1 major) Mathematics (2023)
Bachelor's degree (1 major) Business Information Systems (2023)
Bachelor's degree (1 major) Economathematics (2023)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) Special Education (2023)
Bachelor's degree (1 major) Business Management and Economics (2023)
Bachelor's degree (1 major) Geography (2023)
Bachelor's degree (2 majors) Geography (2023)
Bachelor's degree (1 major, 1 minor) Geography (2023)
Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)
Bachelor's degree (1 major) Mathematical Physics (2024)
Bachelor's degree (2 majors) German Language and Literature (2024)
Bachelor's with 1 major Mathematics (2023)
```


Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)

Bachelor's degree (1 major) Music Education (2024)

Bachelor's degree (2 majors) Music Education (2024)

Bachelor's degree (1 major, 1 minor) Music Education (2024)

Bachelor's degree (1 major) Indology/South Asian Studies (2024)

Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module	e title			Abbreviation	
Principles of quantum mechanics and spectroscopy for engine				gineering students	08-PC-QMS-FU-152-m01
Module coordinator N				Module offered by	
lecturer of lecture "Grundlagen der Quantenmechanik ar Spektroskopie" (Principles of Quantum Mechanics and Spectroscopy)			Institute of Physical and Theoretical Chemistry		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
8	nume	rical grade			
Duration Module level Other pro		Other prerequisites			
1 semester undergraduate					
Conten	nts				

This module introduces students to the fundamental principles of quantum mechanics. It analyses molecules on the basis of the following models: particle in a box, harmonic oscillator and rigid rotor. As regards spectroscopy, the module focuses on vibrational spectroscopy, angular momentum quantisation, microwave spectroscopy and UV-VIS spectroscopy. In addition, the module discusses linear operators, eigenvalue problems, matrix representation, differential equations, Fourier transform and orthogonal functions as mathematical bases of the topics listed above.

Intended learning outcomes

Students are able to explain key models of quantum mechanics and to apply them to molecules. They are able to describe different spectroscopic methods. In addition, students know how to apply the mathematical bases of quantum mechanics.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

240 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 195 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Functional Materials (2025)

Module title Abbro			Abbreviation		
Quantum Chemistry					08-TC-152-m01
Module coordinator				Module offered by	
lecture	er of lec	ture "Quantenchemie"	Institute of Physical and Theoretical Chemistry		l and Theoretical Chemistry
ECTS	ECTS Method of grading Only a		Only after succ. con	npl. of module(s)	
3 numerical grade					
Duration Module level Other pro		Other prerequisites			
1 semester undergraduate					

Contents

This module provides students with deeper insights into advanced topics in quantum chemistry. It focuses on spin, the Pauli principle, Slater determinants, the Hartree-Fock method, correlation energy, configuration interaction and excited states, the Born-Oppenheimer approximation and bonding models of H2+.

Intended learning outcomes

Students are able to describe excited states of molecules with the help of key concepts and models.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Grundschule Chemistry (2015)

First state examination for the teaching degree Realschule Chemistry (2015)

First state examination for the teaching degree Gymnasium Chemistry (2015)

First state examination for the teaching degree Mittelschule Chemistry (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Chemistry (2017)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

First state examination for the teaching degree Mittelschule Chemistry (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Mathematics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Bachelor's degree (1 major) Functional Materials (2025)

Compulsory Electives

(9 ECTS credits)

Module title Organic Chemistry 2 and analytical methods in organic chemistry			Abbreviation		
			08-0C2-152-m01		
Module coordinator				Module offered by	
holder of the Chair of Physically Organic Chemistry		ganic Chemistry	Institute of O	Institute of Organic Chemistry	
ECTS	Meth	Method of grading Only aft		compl. of module	(s)
9 numerical grade					
Duration Module level		Other prerequisi	Other prerequisites		
1 semester undergraduate					
C 4	_4_				

Contents

This module introduces students to the rules of aromaticity and discusses specific reactions of aromatics. Using the example of carbonyl compounds, it extends the students' knowledge of substitution, elimination and addition reactions to complex reaction mechanisms. The course also focuses on oxidation and reduction reactions as well as rearrangement. In addition, it introduces students to the spectroscopic methods of infrared spectroscopy, mass spectrometry and NMR spectroscopy.

Intended learning outcomes

Students have become familiar with the criteria for aromaticity. They can analyse the varying reactivity of carbonyl compounds. They are able to describe specific reactions of carbonyls and aromatics. For that purpose, they can plan and formulate multi-stage syntheses with complex reaction mechanisms and can transfer them to unknown reactions. Students are able to describe important spectroscopic methods, to evaluate a spectrum and to draw conclusions regarding the molecular structure.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1) + V(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Chemistry (2017)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Functional Materials (2025)

Module title Abbreviation					Abbreviation
Thermodynamics, Kinetics, Electrochemistry				08-PC-TKE-152-m01	
Module	lodule coordinator Module offered by				
lecturer of lecture "Thermodynamik, Kinetik, Elektrochemie"		netik, Elektroche-	Institute of Physical and Theoretical Chemistry		
ECTS	Metho	od of grading	Only after succ. compl. of module(s)		
9	nume	rical grade			
Duration Module level Other prerequisites					
Duration Module level Other prerequisites					

1 semester Contents

This module introduces students to the principles of thermodynamics. It focuses on the laws of thermodynamics, chemical equilibria, ideal and real gasses/solutions/mixed phases and electrochemistry. In addition to thermodynamic processes, it discusses the fundamental principles of kinetics.

Intended learning outcomes

undergraduate

Students are able to explain the laws of thermodynamics. They are able to describe thermodynamic aspects of solutions, gases, mixed phases and electrochemical reactions. Students are able to interpret the kinetic aspects of chemical reactions.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 62 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Gymnasium Chemistry (2015)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Chemistry (2017)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 202 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Functional Materials (2025)

Module title					Abbreviation
Symmetry, chemical bonding and light					08-PC-SBL-152-m01
Module coordinator				Module offered by	
lecturer of lecture "Symmetrie, chemisc Licht"		che Bindung and	Institute of Physical and Theoretical Chemistry		
ECTS Method of grading		Only after succ. compl. of module(s)			
9	nume	rical grade			
Duration Module level Othe		Other prerequisites			
2 semester undergraduate		·			

Contents

This module provides an introduction to the symmetry of molecules. It focuses on group theory, symmetry operations, point groups, character tables and selection rules. The module deals with the chemical bond based on the qualitative MO theory and gives an introduction to the fundamentals of computational chemistry. It also gives students the opportunity to analyse the interactions between symmetry, chemical bonding and light in detail.

Intended learning outcomes

Students are able to analyse the symmetry of molecules. They are able to draw conclusions about the spectroscopic properties of a particular molecule from the symmetry of that molecule.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(2) + V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

270 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Chemistry (2017)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Mathematics (2023)

Module title	Abbreviation
Inorganic Chemistry of the Elements	08-AS1-152-m01

 Module coordinator
 Module offered by

 lecturer of lecture "Chemie der Hauptgruppenelemente" (Chemistry of Main-group Elements)
 Institute of Inorganic Chemistry

`		0 1	, , , , , , , , , , , , , , , , , , ,		
ECTS	CTS Method of grading		Only after succ. compl. of module(s)		
6	numerical grade				
Duratio	n	Module level	Other prerequisites		
1 seme	ster	undergraduate			

Contents

This module equips students with an advanced knowledge of the periodic table and selected elements. It focuses on bonding conditions, trends in the periodic table and the description and structure of elements. In addition, it introduces students to elementary organic chemistry, coordination chemistry and complex chemistry.

Intended learning outcomes

Students are able to characterise main group elements and transition metal elements in terms of their structure, reactivity and fabrication. They are able to identify the coordination of the atoms. In addition, they have learned how to use the periodic table, an essential tool for chemists.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + V(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes) or
- b) oral examination of one candidate each (20 to 30 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate) or
- d) log (approx. 20 pages) or
- e) presentation (approx. 30 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

according to § 2 para. 2 sentence 2 APOLmCh in conjunction with No. I 2nd letter a) of annex 1 to the APOLmCh and No. 1 of annex 2 to the APOLmCh

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 62 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Chemistry (2015)

Bachelor's degree (1 major) Biochemistry (2017)

Bachelor's degree (1 major) Chemistry (2017)

Module studies (Bachelor) Chemistry (2019)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 205 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Food Chemistry (2021)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Food Chemistry (2025)

Focus Geography

(30 ECTS credits)

Module title				Abbreviation		
General Physical Geography: Exogenic Dynamics - Geomorpho				morphology	04-Geo-PG1Ex-152-m01	
Modul	e coord	inator		Module offere	Module offered by	
holder of the Professorship of Physical Geog			ical Geography	Institute of Ge	Institute of Geography and Geology	
ECTS	Meth	od of grading	Only after succ.	compl. of module((s)	
5	nume	umerical grade				
Duration Module level		Other prerequis	Other prerequisites			
1 semester undergraduate						
Contents						

Erosion and accumulation processes and accumulation results: gravitative, fluvial, glacial and periglacial, Aeolian, marin, littoral, solution; monoprocessual large forms, e.g. endogenous/tectonic forms like volcanoes, break clod, fold mountains or Aeolian "Draas" (huge dunes), deflation (enclosed) basins; - polyprocessual large forms, e.g. glacial series, shape of coastlines, escarpments

Intended learning outcomes

Students dispose over the following knowledge: basics of the system earth, i.e. the understanding of processes that are dominating the landscape on the Earth's surface and which are driven by the geological factors rocks, relief, climate, soil, water, flora and fauna. These are decisive for understanding the structure, function and dynamics of the natural environment and its anthropogenic transformation (the environment that has been shaped from humans by land utilisation, settlements, transport routes etc.).

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + T(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 | Nr. 1 § 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

First state examination for the teaching degree Grundschule Geography (2015)

First state examination for the teaching degree Realschule Geography (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

First state examination for the teaching degree Mittelschule Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (2 majors) Classical Archaeology (2018)

Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)

First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Module title	Abbreviation
General Physical Geography: Endogenic Dynamics - Introduction to Geology	04-Geo-PG1En-152-m01

Module coordinatorModule offered byholder of the Professorship of Geodynamics and Geomate-
rials ResearchInstitute of Geography and Geology

ECTS	S Method of grading		Only after succ. compl. of module(s)		
5	numerical grade				
Duratio	n	Module level	Other prerequisites		
1 semester		undergraduate			

Contents

Introduction to "Physical Geography": basics of endogenous dynamics: formation/structure of the Earth, features of important rock forming, ecologically important minerals, volcanism/ igneous rocks, plutonism/magma genesis, sediments/ sedimentary rocks, metamorphosis; geological structures, ocean floor, plate tectonics, earthquakes, orogenesis, continental crust, distribution of mineral raw materials

Intended learning outcomes

The students dispose over basic knowledge of endogenous dynamics

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(3) + T(1)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 | Nr. 1

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

First state examination for the teaching degree Realschule Geography (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (2 majors) Classical Archaeology (2018)

Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
General Physical Geography: Climate System					04-Geo-PG1Kl-152-m01
Module coordinator				Module offered by	
holder of the Professorship of Climatology			atology	Institute of Geography and Geology	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	numerical grade				
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate					
Conte	Contents				

The following basics of the Earth's climate system will be presented: terrestrial and celestial mechanical basics; radiation and energy; vertical and horizontal flow dynamics; data sources, charateristics and variability of the Earth's climate system.

Intended learning outcomes

The students will gain a basic physical understanding of the Earth's climate system.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 | Nr. 1

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

First state examination for the teaching degree Grundschule Geography (2015)

First state examination for the teaching degree Realschule Geography (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

First state examination for the teaching degree Mittelschule Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015)) Bachelor's degree (1 major) Mathematics (2023)

Module title	Abbreviation
General Human Geography: Introduction to the Geography of Cities, Towns	04-Ge0-HG1S-152-m01
and Villages	

Module coordinatorModule offered byholder of the Professorship of Geography and Regional
ScienceInstitute of Geography and Geology

ECTS	Method of grading		Only after succ. compl. of module(s)			
5	numerical grade					
Duratio	on	Module level	Other prerequisites			
1 semester		undergraduate				

Contents

Introduction to "Settlement Geography", students will deal with the following topic areas: - geographical urbanism, - Geography of rural settlements, - urban system research, - urbanisation, - regional urban types, - theories of urban development, - city models

Intended learning outcomes

Students dispose over basic knowledge of Urban Geography as well as Geography of Rural Settlements.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 | Nr. 1

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Geography (2015)


```
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Mittelschule Geography (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
```



```
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
```


Bachelor's degree (1 major) Mathematical Physics (2020) Bachelor's degree (1 major) Aerospace Computer Science (2020) Bachelor's degree (1 major, 1 minor) Museology and material culture (2020) Bachelor's degree (1 major, 1 minor) Pedagogy (2020) Bachelor's degree (2 majors) Pedagogy (2020) Bachelor's degree (1 major) Psychology (2020) Bachelor's degree (1 major) Biology (2021) Magister Theologiae Catholic Theology (2021) Bachelor's degree (2 majors) History (2021) Bachelor's degree (1 major, 1 minor) History (2021) Bachelor's degree (1 major) Media Communication (2021) Bachelor's degree (2 majors) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) English and American Studies (2021) Bachelor's degree (2 majors) English and American Studies (2021) Bachelor's degree (1 major) Functional Materials (2021) Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021) Bachelor's degree (1 major) Food Chemistry (2021) Bachelor's degree (1 major) Quantum Technology (2021) Bachelor's degree (2 majors) Special Education (2021) Bachelor's degree (1 major) Business Information Systems (2021) Bachelor's degree (1 major) Economathematics (2021) Bachelor's degree (1 major) Business Management and Economics (2021) Bachelor's degree (1 major) Human-Computer Systems (2022) Bachelor's degree (1 major, 1 minor) Museology and material culture (2022) Bachelor's degree (1 major) Biochemistry (2022) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Economathematics (2022) Bachelor's degree (1 major) Mathematical Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022) Bachelor's degree (1 major, 1 minor) Ancient World (2022) Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022) Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022) First state examination for the teaching degree Gymnasium Geography (2023) First state examination for the teaching degree Realschule Geography (2023) First state examination for the teaching degree Grundschule Geography (2023) First state examination for the teaching degree Mittelschule Geography (2023) Bachelor's degree (1 major) European Law (2023) Bachelor's degree (1 major, 1 minor) English and American Studies (2023) Bachelor's degree (2 majors) English and American Studies (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Business Information Systems (2023) Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (2 majors) German Language and Literature (2024)

Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)

Bachelor's degree (1 major) Music Education (2024)

Bachelor's degree (2 majors) Music Education (2024)

Bachelor's degree (1 major, 1 minor) Music Education (2024)

Bachelor's degree (1 major) Indology/South Asian Studies (2024)

Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

e title		Abbreviation			
General Human Geography: Introduction to Economic Geography				04-Geo-HG1W-152-m01	
Module coordinator			Module offer	Module offered by	
holder of the Professorship of Economic Geography			Institute of G	Institute of Geography and Geology	
Metho	od of grading	Only after succ.	compl. of module	e(s)	
nume	rical grade				
Duration Module level Other		Other prerequis	Other prerequisites		
ster	undergraduate				
	e coord of the I Metho	e coordinator of the Professorship of Eco Method of grading numerical grade on Module level	e coordinator of the Professorship of Economic Geography Method of grading numerical grade on Module level Other prerequis	Human Geography: Introduction to Economic Geography e coordinator of the Professorship of Economic Geography Method of grading numerical grade on Module level Other prerequisites	

Introduction to basic concepts as well as fundamental contents and methods of "Economic Geography". Topics of theoretical "Economic Geography" like the choice of location and system, structure and dynamics of the economic sector, the geographical influence of groups of players and geographical imbalance will be covered. The examination of theories will be made with the help of typical examples and empirical knowledge.

Intended learning outcomes

Students dispose over knowledge skills of Economic Geography concerning terms, contents and methods.

Courses (type, number of weekly contact hours, language - if other than German)

V₍₃₎

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 47 | Nr. 1

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Chemistry (2015)

Bachelor's degree (1 major) Geography (2015)


```
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Mittelschule Geography (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
```



```
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
```


Bachelor's degree (1 major) Mathematical Physics (2020) Bachelor's degree (1 major) Aerospace Computer Science (2020) Bachelor's degree (1 major, 1 minor) Museology and material culture (2020) Bachelor's degree (1 major, 1 minor) Pedagogy (2020) Bachelor's degree (2 majors) Pedagogy (2020) Bachelor's degree (1 major) Psychology (2020) Bachelor's degree (1 major) Biology (2021) Magister Theologiae Catholic Theology (2021) Bachelor's degree (2 majors) History (2021) Bachelor's degree (1 major, 1 minor) History (2021) Bachelor's degree (1 major) Media Communication (2021) Bachelor's degree (2 majors) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) English and American Studies (2021) Bachelor's degree (2 majors) English and American Studies (2021) Bachelor's degree (1 major) Functional Materials (2021) Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021) Bachelor's degree (1 major) Food Chemistry (2021) Bachelor's degree (1 major) Quantum Technology (2021) Bachelor's degree (2 majors) Special Education (2021) Bachelor's degree (1 major) Business Information Systems (2021) Bachelor's degree (1 major) Economathematics (2021) Bachelor's degree (1 major) Business Management and Economics (2021) Bachelor's degree (1 major) Human-Computer Systems (2022) Bachelor's degree (1 major, 1 minor) Museology and material culture (2022) Bachelor's degree (1 major) Biochemistry (2022) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Economathematics (2022) Bachelor's degree (1 major) Mathematical Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022) Bachelor's degree (1 major, 1 minor) Ancient World (2022) Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022) Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022) First state examination for the teaching degree Gymnasium Geography (2023) First state examination for the teaching degree Realschule Geography (2023) First state examination for the teaching degree Grundschule Geography (2023) First state examination for the teaching degree Mittelschule Geography (2023) Bachelor's degree (1 major) European Law (2023) Bachelor's degree (1 major, 1 minor) English and American Studies (2023) Bachelor's degree (2 majors) English and American Studies (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Business Information Systems (2023) Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (2 majors) German Language and Literature (2024)

Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)

Bachelor's degree (1 major) Music Education (2024)

Bachelor's degree (2 majors) Music Education (2024)

Bachelor's degree (1 major, 1 minor) Music Education (2024)

Bachelor's degree (1 major) Indology/South Asian Studies (2024)

Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title				Abbreviation		
General Human Geography: Introduction to Social and Population Geography					04-Geo-HG1B-152-m01	
Module coordinator Module offered by						
holder of the Professorship of Social Geography Institu			Institute of Geograp	nstitute of Geography and Geology		
ECTS	Metho	od of grading	Only after succ. con	ıpl. of module(s)		
5	nume	rical grade				
Duration Module level Other		Other prerequisites				
1 seme	ester	undergraduate	ate			

Introduction to basic concepts as well as fundamental contents and methods of social and "Population Geography". In particular, topics of geographical "Population Geography" and structure, population movement, geographical society research, Vienna-Munich School of Social Geography, social spatial analysis as well as perception, behaviour and action-theoretical approaches will be covered.

Intended learning outcomes

Students acquire a basic understanding of population and socio-geographical issues. They dispose over skills of central population and socio-geographical terms, scientific approaches and theories as well as of acquired possibilities and their implementation on issues of the Applied Population and Social Geography.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (3)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 | Nr. 1

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)


```
Bachelor's degree (1 major) Chemistry (2015)
Bachelor's degree (1 major) Geography (2015)
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Mittelschule Geography (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
```



```
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))
```


Bachelor's degree (1 major) Physics (2020) Bachelor's degree (1 major) Nanostructure Technology (2020) Bachelor's degree (1 major) Mathematical Physics (2020) Bachelor's degree (1 major) Aerospace Computer Science (2020) Bachelor's degree (1 major, 1 minor) Museology and material culture (2020) Bachelor's degree (1 major, 1 minor) Pedagogy (2020) Bachelor's degree (2 majors) Pedagogy (2020) Bachelor's degree (1 major) Psychology (2020) Bachelor's degree (1 major) Biology (2021) Magister Theologiae Catholic Theology (2021) Bachelor's degree (2 majors) History (2021) Bachelor's degree (1 major, 1 minor) History (2021) Bachelor's degree (1 major) Media Communication (2021) Bachelor's degree (2 majors) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) English and American Studies (2021) Bachelor's degree (2 majors) English and American Studies (2021) Bachelor's degree (1 major) Functional Materials (2021) Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021) Bachelor's degree (1 major) Food Chemistry (2021) Bachelor's degree (1 major) Quantum Technology (2021) Bachelor's degree (2 majors) Special Education (2021) Bachelor's degree (1 major) Business Information Systems (2021) Bachelor's degree (1 major) Economathematics (2021) Bachelor's degree (1 major) Business Management and Economics (2021) Bachelor's degree (1 major) Human-Computer Systems (2022) Bachelor's degree (1 major, 1 minor) Museology and material culture (2022) Bachelor's degree (1 major) Biochemistry (2022) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Economathematics (2022) Bachelor's degree (1 major) Mathematical Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022) Bachelor's degree (1 major, 1 minor) Ancient World (2022) Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022) Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022) First state examination for the teaching degree Gymnasium Geography (2023) First state examination for the teaching degree Realschule Geography (2023) First state examination for the teaching degree Grundschule Geography (2023) First state examination for the teaching degree Mittelschule Geography (2023) Bachelor's degree (1 major) European Law (2023) Bachelor's degree (1 major, 1 minor) English and American Studies (2023) Bachelor's degree (2 majors) English and American Studies (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Business Information Systems (2023) Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023) Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (2 majors) German Language and Literature (2024) Bachelor's degree (1 major, 1 minor) German Language and Literature (2024) Bachelor's degree (1 major) Music Education (2024) Bachelor's degree (2 majors) Music Education (2024) Bachelor's degree (1 major, 1 minor) Music Education (2024) Bachelor's degree (1 major) Indology/South Asian Studies (2024) Bachelor's degree (2 majors) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Ancient World (2024) Bachelor's degree (2 majors) Digital Humanities (2024) Bachelor's degree (1 major, 1 minor) Digital Humanities (2024) Bachelor's degree (1 major) Midwifery (2024) Bachelor's degree (2 majors) Greek Philology (2024) Bachelor's degree (2 majors) Latin Philology (2024) Bachelor's degree (1 major) Business Information Systems (2024) Bachelor's degree (1 major) Economathematics (2024) Bachelor's degree (1 major) Business Management and Economics (2024) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024) Bachelor's degree (1 major) Human-Computer-Interaction (2024) Bachelor's degree (2 majors) Art Education (2024) Bachelor's degree (1 major) Digital Business & Data Science (2024) Bachelor's degree (1 major) Classics (2024) Bachelor's degree (1 major) Diversity, Ethics and Religions (2024) Bachelor's degree (1 major) Functional Materials (2025) Bachelor's degree (1 major) (2025) Bachelor's degree (1 major) Food Chemistry (2025) Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025) Bachelor's degree (1 major) Pedagogy (2025) Bachelor's degree (2 majors) Pedagogy (2025) Bachelor's degree (1 major) Economathematics (2025) Bachelor's degree (1 major) Academic Speech Therapy (2025) Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title	Abbreviation
Cartography and Geoinformation	04-Geo-KART-152-m01

Module coordinatorModule offered byholder of the Professorship of Geography and Regional
ScienceInstitute of Geography and Geology

Jeiene	<u> </u>		
ECTS	S Method of grading Only after succ. compl. of module(s)		
5	numerical grade		
Duratio	n	Module level	Other prerequisites
1 seme	ster	undergraduate	

Contents

Introduction to "Cartography" as well as to geodata collection and processing with focus on map projection teaching and map grids, topographical cartography, topical cartography and GIS/geographic information.

Intended learning outcomes

Students achieve fundamental skills in the area of Cartography and in the systematic dealing with geoinformation.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 75 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

_

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 66 I Nr. 2

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Master's degree (1 major) General and Applied Linguistics (2016)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (2 majors) Classical Archaeology (2018) Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018) Master's degree (1 major) General and Applied Linguistics (2022) Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Introduction to Geographical Remote Sensing					04-Geo-FERNE-152-m01
Module coordinator				Module offered by	
holder of the Professorship of Remote Sensing			e Sensing	Institute of Geography and Geology	
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites	Other prerequisites		
1 semester undergraduate					
Contents					

The lecture gives an overview of the principles of remote sensing, that are: theoretical basics, history of remote sensing / physical principles (energy and radiation, interactions radiation - atmosphere, interactions radiation - surfaces, objects under investigation: soils, vegetation, water) / thermal remote sensing: radiation laws, radiant temperature, emissivity / detectors: characterisation of remote sensing data, platforms and sensors (passive and active systems, e.g. hyperspectral and LiDAR) / radar remote sensing / radar interferometry / basics for remote sensing parameters (land, atmosphere, oceans).

Intended learning outcomes

The students describe basics of earth observation. They outline and explain the radiation path through the atmosphere to the object under investigation and back to the sensor. They emphasise essential characteristics of remote sensing data, sensors and platforms.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 I Nr. 2

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)

Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)

Bachelor's with 1 major Mathematics (2023)

First state examination for the teaching degree Gymnasium Geography (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Geography (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

First state examination for the teaching degree Gymnasium Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title					Abbreviation	
Applications of Remote Sensing in Geography				04-Geo-FERNA-152-m01		
Module coordinator				Module offered by		
holder	holder of the Professorship of Remote Sensing			Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Other		Other prerequisite	Other prerequisites		
1 semester undergraduate						
Contents						

The lecture imparts basic knowledge about the analysis of remote sensing data for geographical questions. First, fundamental understanding of remotely sensed data as geoinformation and later geoinformation in general (geographical data, metadata, spatial overlaying of geodata, geographical information systems) is given. Following topics are analogue, visual image interpretation, digital image processing (calibration, transformation, filter) and atmospheric correction. A focus lies on the digital remote sensing based mapping, i.e. spectral analysis, classification and change detection. Furthermore, basics in modelling of remote sensing parameters is conveyed.

Intended learning outcomes

The students explain applications of earth observation and remote sensing. They explain geographical data and reflect their essential characteristics. They summarise fundamental aspects of (digital) image processing and assess different methodological approaches for the evaluation of remote sensing data for geographical questions.

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + T(2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)

Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)

Bachelor's degree (2 majors) Geography (2015)

Bachelor's degree (1 major, 1 minor) Geography (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Geography (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Bachelor's degree (2 majors) Geography (2023)

Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023)

Bachelor's degree (1 major, 1 minor) Geography (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module	e title		Abbreviation		
Regional Geography - Lecture course 1					04-Geo-RG-V1-152-m01
Module coordinator				Module offered by	
holder of the Professorship of Physical Geography			l Geography	Institute of Geography and Geology	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					

Issues of "General Geography" in terms of European subspaces. This can be individual states as well as distinctive European subspaces due to their lay (e.g. Northern Europe, Alpine countries).

Intended learning outcomes

Students dispose over the following skills: Students will apply general-geographical skills to regional-related issues, particularly the partial steps: 1.Differentiation and characterisation of a region, 2.Emphasis on specific problems and spatial interactions as well as 3. Synthesis and demonstration of perspectives/problem solutions with thematic emphasis.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 45 minutes) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 I Nr. 2

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)


```
Bachelor's degree (2 majors) German Language and Literature (2013)
Bachelor's degree (1 major) Chemistry (2015)
Bachelor's degree (1 major) Geography (2015)
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Mittelschule Geography (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
```



```
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Master's degree (1 major) Russian Language and Culture (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Master's degree (1 major) Russian Language and Culture (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
```


Bachelor's degree (2 majors) Political and Social Studies (2020)

Bachelor's degree (2 majors) Special Education (2020)

First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)

Bachelor's degree (1 major, 1 minor) Pedagogy (2020)

Bachelor's degree (2 majors) Pedagogy (2020)

Bachelor's degree (1 major) Psychology (2020)

Bachelor's degree (1 major) Biology (2021)

Magister Theologiae Catholic Theology (2021)

Bachelor's degree (2 majors) History (2021)

Bachelor's degree (1 major, 1 minor) History (2021)

Bachelor's degree (1 major) Media Communication (2021)

Bachelor's degree (2 majors) Theological Studies (2021)

Bachelor's degree (1 major, 1 minor) Theological Studies (2021)

Bachelor's degree (1 major, 1 minor) English and American Studies (2021)

Bachelor's degree (2 majors) English and American Studies (2021)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)

Bachelor's degree (1 major) Food Chemistry (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (2 majors) Special Education (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Human-Computer Systems (2022)

Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)

Bachelor's degree (1 major, 1 minor) Ancient World (2022)

Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)

Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)

First state examination for the teaching degree Gymnasium Geography (2023)

First state examination for the teaching degree Realschule Geography (2023)

First state examination for the teaching degree Grundschule Geography (2023)

First state examination for the teaching degree Mittelschule Geography (2023)

Bachelor's degree (1 major) European Law (2023)

Bachelor's degree (1 major, 1 minor) English and American Studies (2023)

Bachelor's degree (2 majors) English and American Studies (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)

Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)

Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023) Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (2 majors) German Language and Literature (2024) Bachelor's degree (1 major, 1 minor) German Language and Literature (2024) Bachelor's degree (1 major) Music Education (2024) Bachelor's degree (2 majors) Music Education (2024) Bachelor's degree (1 major, 1 minor) Music Education (2024) Bachelor's degree (1 major) Indology/South Asian Studies (2024) Bachelor's degree (2 majors) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Ancient World (2024) Bachelor's degree (2 majors) Digital Humanities (2024) Bachelor's degree (1 major, 1 minor) Digital Humanities (2024) Bachelor's degree (1 major) Midwifery (2024) Bachelor's degree (2 majors) Greek Philology (2024) Bachelor's degree (2 majors) Latin Philology (2024) Bachelor's degree (1 major) Business Information Systems (2024) Bachelor's degree (1 major) Economathematics (2024) Bachelor's degree (1 major) Business Management and Economics (2024) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024) Bachelor's degree (1 major) Human-Computer-Interaction (2024) Bachelor's degree (2 majors) Art Education (2024) Bachelor's degree (1 major) Digital Business & Data Science (2024) Bachelor's degree (1 major) Classics (2024) Bachelor's degree (1 major) Diversity, Ethics and Religions (2024) Bachelor's degree (1 major) Functional Materials (2025) Bachelor's degree (1 major) (2025) Bachelor's degree (1 major) Food Chemistry (2025) Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title				Abbreviation	
Regional Geography - Lecture course 2					04-Geo-RG-V2-152-m01
Module coordinator				Module offered by	
holder of the Professorship of Physical Geography			al Geography	Institute of Geography and Geology	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					

Issues of "General Geography" in terms of global subspaces. This can be individual continents as well as distinctive subspaces due to their lay like North America or the Arabian Peninsula.

Intended learning outcomes

Students dispose over the following skills: Students will apply general-geographical skills to regional-related issues, particularly the partial steps: 1.Differentiation and characterisation of a region, 2.Emphasis on specific problems and spatial interactions as well as 3. Synthesis and demonstration of perspectives/problem solutions with thematic emphasis.

Courses (type, number of weekly contact hours, language - if other than German)

Module taught in: German and/or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 45 minutes) or
- b) oral examination of one candidate each (approx. 15 minutes) or
- c) oral examination in groups of up to 3 candidates (approx. 15 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: every year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 I Nr. 2

§ 66 | Nr. 1

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)


```
Bachelor's degree (2 majors) German Language and Literature (2013)
Bachelor's degree (1 major) Chemistry (2015)
Bachelor's degree (1 major) Geography (2015)
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Geography (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Physical Geography) (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Geography (Focus Human Geography) (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
First state examination for the teaching degree Grundschule Geography (2015)
First state examination for the teaching degree Realschule Geography (2015)
First state examination for the teaching degree Gymnasium Geography (2015)
First state examination for the teaching degree Mittelschule Geography (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
```



```
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Master's degree (1 major) Russian Language and Culture (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Master's degree (1 major) Russian Language and Culture (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
```


Bachelor's degree (2 majors) Political and Social Studies (2020)

Bachelor's degree (2 majors) Special Education (2020)

First state examination for the teaching degree Mittelschule Geography (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)

Bachelor's degree (1 major, 1 minor) Pedagogy (2020)

Bachelor's degree (2 majors) Pedagogy (2020)

Bachelor's degree (1 major) Psychology (2020)

Bachelor's degree (1 major) Biology (2021)

Magister Theologiae Catholic Theology (2021)

Bachelor's degree (2 majors) History (2021)

Bachelor's degree (1 major, 1 minor) History (2021)

Bachelor's degree (1 major) Media Communication (2021)

Bachelor's degree (2 majors) Theological Studies (2021)

Bachelor's degree (1 major, 1 minor) Theological Studies (2021)

Bachelor's degree (1 major, 1 minor) English and American Studies (2021)

Bachelor's degree (2 majors) English and American Studies (2021)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)

Bachelor's degree (1 major) Food Chemistry (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (2 majors) Special Education (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Human-Computer Systems (2022)

Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)

Bachelor's degree (1 major) Biochemistry (2022)

Bachelor's degree (1 major) Biology (2022)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)

Bachelor's degree (1 major, 1 minor) Ancient World (2022)

Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)

Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)

First state examination for the teaching degree Gymnasium Geography (2023)

First state examination for the teaching degree Realschule Geography (2023)

First state examination for the teaching degree Grundschule Geography (2023)

First state examination for the teaching degree Mittelschule Geography (2023)

Bachelor's degree (1 major) European Law (2023)

Bachelor's degree (1 major, 1 minor) English and American Studies (2023)

Bachelor's degree (2 majors) English and American Studies (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)

Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)

Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (Minor, 2023) Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (2 majors) German Language and Literature (2024) Bachelor's degree (1 major, 1 minor) German Language and Literature (2024) Bachelor's degree (1 major) Music Education (2024) Bachelor's degree (2 majors) Music Education (2024) Bachelor's degree (1 major, 1 minor) Music Education (2024) Bachelor's degree (1 major) Indology/South Asian Studies (2024) Bachelor's degree (2 majors) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024) Bachelor's degree (1 major, 1 minor) Ancient World (2024) Bachelor's degree (2 majors) Digital Humanities (2024) Bachelor's degree (1 major, 1 minor) Digital Humanities (2024) Bachelor's degree (1 major) Midwifery (2024) Bachelor's degree (2 majors) Greek Philology (2024) Bachelor's degree (2 majors) Latin Philology (2024) Bachelor's degree (1 major) Business Information Systems (2024) Bachelor's degree (1 major) Economathematics (2024) Bachelor's degree (1 major) Business Management and Economics (2024) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024) Bachelor's degree (1 major) Human-Computer-Interaction (2024) Bachelor's degree (2 majors) Art Education (2024) Bachelor's degree (1 major) Digital Business & Data Science (2024) Bachelor's degree (1 major) Classics (2024) Bachelor's degree (1 major) Diversity, Ethics and Religions (2024) Bachelor's degree (1 major) Functional Materials (2025) Bachelor's degree (1 major) (2025) Bachelor's degree (1 major) Food Chemistry (2025) Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025) Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Focus Computer Science

(30 ECTS credits)

Module title					Abbreviation
Fundamentals of Programming					10-I-GdP-172-m01
Module coordinator				Module offered by	
holder	holder of the Chair of Computer Science II			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	numerical grade				
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				

Data types, control structures, foundations of procedural programming, selected topics of C, introduction to object orientation in Java, selected topics of C++, further Java concepts, digression: scripting languages.

Intended learning outcomes

The students possess a fundamental knowledge about programming languages (in particular Java, C and C++) and are able to independently develop average to high level Java programs.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b)

§ 69 | Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Economathematics (2025)

Module title					Abbreviation
Algorithms and data structures					10-I-ADS-152-m01
Module coordinator				Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. con	compl. of module(s)	
10	10 numerical grade				
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
Conton	Contents				

Design and analysis of algorithms, recursion vs. iteration, sort and search methods, data structures, abstract data types, lists, trees, graphs, basic graph algorithms, programming in Java.

Intended learning outcomes

Students are proficient in independently designing, precisely describing and analyzing algorithms. The students know the basic paradigms for the design of algorithms and can implement them in practical programs. Students are able to estimate the runtime behavior of algorithms and prove the correctness of algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: only in winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 a)

§ 69 | Nr. 1 a)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Human-Computer Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Software Technology					10-I-ST-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Informatik (Computer Science)			Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
10 numerical grade					
Durati	Duration Module level (Other prerequisite	Other prerequisites	
1 semester undergraduate					
Conto	Contents				

Object-oriented software development with UML, development of graphical user interfaces, foundations of data-bases and object-relational mapping, foundations of web programming (HTML, XML), software development processes, unified process, agile software development, project management, quality assurance.

Intended learning outcomes

The students possess a fundamental theoretical and practical knowledge on the design and development of software systems.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

Teaching cycle: only in summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b)

§ 69 | Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Human-Computer Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Module title					Abbreviation
Practical Course in Programming					10-I-PP-191-m01
Module coordinator				Module offered by	
Dean of Studies Informatik (Computer S			Science)	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. compl. of module(s)		
10	(not) s	successfully completed			
Duration Module level Other prerequisites		Other prerequisites			
		Intended learning outcomes of the following module are required: 10-l-GdP. It is therefore strongly recommended to complete this before.			

The programming language Java. Independent creation of small to middle-sized, high-quality Java programs.

Intended learning outcomes

The students are able to independently develop small to middle-sized, high-quality Java programs.

Courses (type, number of weekly contact hours, language - if other than German)

P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical examination (programming exercises, approx. 240 hours) and written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 49 | Nr. 1 c)

§ 69 | Nr. 1 d)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Modul	e title				Abbreviation
Practical course in software					10-l-SWP-152-m01
Module coordinator				Module offered by	
Dean of Studies Informatik (Computer S			Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
10	(not)	successfully completed	10-I-PP, 10-I-ST		
Duratio	on	Module level	Other prerequisites		
1 semester		undergraduate	In addition, the knowledge and skills acquired in module 10-I-ADS are required. Prior attendance of this module is therefore highly recomme ded.		

Completion of a project assignment in groups, problem analysis, creation of requirements specifications, specification of solution components (e. g. UML) and milestones, user manual, programming documentation, presentation and delivery of the runnable software product in a colloquium.

Intended learning outcomes

The students possess the practical skills for the design, development and execution of a software project in small teams.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

P (6)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

practical project (Completion of a larger software project in groups (approx. 300 hours per person) and final presentation (approx. 10 minutes per group)

Allocation of places

Additional information

Workload

300 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 69 | Nr. 1 d)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Modul	Module title				Abbreviation	
Digital	Digital computer systems				10-I-RAL-152-m01	
Modul	Module coordinator			Module offered by		
Dean c	of Studi	es Informatik (Computer	Science)	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Contor	Contonte					

Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes

The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

Courses (type, number of weekly contact hours, language - if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Orientierungsstudien (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title		Abbreviation			
Computer Networks and Information Transmission					10-I-RIÜ-191-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Computer Scienc	e III	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
10	nume	rical grade				
Duration Module level Otl		Other prerequisites				
1 semester undergraduate						
Conton	Contonts					

- Computer networks and the Internet: Structure and Mechanisms of Telecommunication
- Communication Protocols: Basic Principles and the Layer Model
- Computer and Communication Systems: Network Systems, Data Traffic in Distributed Systems and inter-network Communication
- The Internet: Important Protocols and Routing
- Architecture and Structure of Computer Networks: Network Architecture, Access Mechanisms, Flow Control and Traffic Management
- Coding Theory: Mechanisms for Error Detection and Error Correction
- Information Theory: Entropy of Data
- Digital Communication Systems: Signal Modulation

Intended learning outcomes

Students command the technical, theoretical as well as practical knowledge to understand the structure of computer networks, the Internet and communication systems for telecommunication.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

creditable for bonus

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b), § 69 I Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 256 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Practical course in hardware					10-I-HWP-152-m01
Module coordinator				Module offered by	
Dean c	of Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
10	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					

Practical experiments on hardware aspects, for example in communication technology, robots or the structure of a complete microprocessor.

Intended learning outcomes

The students are able to independently review, prepare and perform experiments with the help of experiment descriptions, to independently search for additional information as well as to document and evaluate experiment results.

Courses (type, number of weekly contact hours, language — if other than German)

P (6)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

portfolio: completion of approx. 3 to 10 project assignments (approx. 250 hours total) and presentation of results (approx. 10 minutes per project)

Allocation of places

--

Additional information

--

Workload

300 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 258 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (1 major) Mathematics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Theore	Theoretical Informatics				10-I-TIV-152-m01	
Modul	Module coordinator			Module offered by		
Dean o	f Studi	es Informatik (Compute	er Science)	Institute of Compu	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. co	ompl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 semester undergraduate						

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 a)

§ 69 | Nr. 1 a)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016) Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 260 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	1

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Tutorial Theoretical Informatics					10-I-TIT-191-m01
Module coordinator				Module offered by	
Dean o	f Studi	es Informatik (Computer	Science)	Institute of Computer Science	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				

Computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of calculations, P-NP problem, NP completeness.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of computability, decidability, countability, finite automata, regular sets, generative grammars, context-free languages, context-sensitive languages, complexity of computations, P-NP problem, NP completeness.

Courses (type, number of weekly contact hours, language - if other than German)

Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) exercises (consisting in completion of approx. 11 home work exercise sheets, presentation of own solutions in the exercise groups as well as approx. 5 short assessments written in the exercise group) or
- b) written examination (approx. 180 to 240 minutes)

Die Prüfungsart ist vom Prüfling festzulegen

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation	
Logic for informatics					10-I-LOG-152-m01	
Module coordinator				Module offered by		
Dean of Studies Informatik (Computer Sc			Science)	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Duration Module level		Other prerequisites				
1 seme	1 semester undergraduate					
Contor	Contonts					

Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes

The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 263 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Algorithmic Graph Theory					10-I-AGT-152-m01	
Modul	Module coordinator			Module offered by		
holder	of the	Chair of Computer Scie	nce I	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Contar	Contents					

We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes

The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 265 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Interactive Computer Graphics					10-l=ICG-161-m01
Modul	e coord	linator		Module offered by	
holder	holder of the Chair of Computer Science IX		Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites		5			
1 semester graduate					
Conto	nt c				

Computer graphics studies methods for digitally synthesising and manipulating visual content. This course specifically concentrates on interactive graphics with an additional focus on 3D graphics as a requirement for many contemporary as well as for novel human-computer interfaces and computer games. The course will cover topics about light and images, lighting models, data representations, mathematical formulations of movements, projection as well as texturing methods. Theoretical aspects of the steps involved in ray-tracing and the raster pipeline will be complemented by algorithmical approaches for interactive image syntheses using computer systems. Accompanying software solutions will utilise modern graphics packages and languages like OpenGL, GLSL and/ or DirectX.

Intended learning outcomes

At the end of the course, the students will have a broad understanding of the underlying theoretical models of computer graphics. They will be able to implement a prominent variety of these models, to build their own interactive graphics applications and to choose the right software tool for this task.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Separate written examination for Master's students.

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): HCI.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2016)

Master's degree (1 major) Computer Science (2017)

Master's degree (1 major) Computer Science (2018)

Master's degree (1 major) eXtended Artificial Intelligence (xtAI) (2020)

Master's degree (1 major) Computer Science (2021)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)
Bachelor's degree (1 major) Mathematics (2023)

Modul	e title				Abbreviation
Databa	Databases				10-I-DB-152-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)		Science)	Institute of Computer Science	
ECTS	Metho	lethod of grading Only after succ. cor		npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites					
1 semester undergraduate					
			·	•	·

Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes

The students possess knowledge about database modelling and queries in SQL as well as transactions.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 | Nr. 1 b)

§ 69 | Nr. 1 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Realschule Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's degree (1 major) Physics (2016)

Bachelor's degree (1 major) Business Information Systems (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 269 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Modul	e title				Abbreviation
Knowledge-based Systems					10-I-WBS-152-m01
Modul	e coord	inator		Module offered by	
holder	holder of the Chair of Computer Science VI		Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites					
1 semester undergraduate					

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 271 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Data Mining					10-l-DM-152-m01
Modul	e coord	inator		Module offered by	
holder of the Chair of Computer Science VI		e VI	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites					
1 seme	ester	undergraduate			
	_		•		·

Foundations in the following areas: definition of data mining and knowledge, discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e. g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Business Information Systems (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Bachelor's degree (1 major) Business Information Systems (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Master's degree (1 major) Information Systems (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Modul	e title				Abbreviation
Computational Complexity					10-I-KT-191-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)		Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites		s			
1 semester undergraduate					
Contor	nt c	•	•		

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Bachelor's degree (1 major) Games Engineering (2025)

Modul	e title	,			Abbreviation
Crypto	Cryptography and Data Security				10-I-KD-191-m01
Modul	e coord	inator		Module offered by	
Dean c	Dean of Studies Informatik (Computer Science)		Institute of Computer Science		
ECTS	Metho	hod of grading Only after succ. cor		npl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites		i			
1 semester undergraduate					
Contor					

Private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography systems, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response methods, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of private key cryptography systems, Vernam one-time pad, AES, perfect security, public key cryptography, RSA, Diffie-Hellman, Elgamal, Goldwasser-Micali, digital signature, challenge-response method, secret sharing, millionaire problem, secure circuit evaluation, homomorphous encryption

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 277 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025) Bachelor's degree (1 major) Games Engineering (2025)

Modul	e title				Abbreviation
3D Point Cloud Processing					10-l-3D-152-m01
Modul	e coord	inator		Module offered by	I.
holder	holder of the Chair of Computer Science XVII		Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites		5			
1 semester undergraduate					
Conto	ntc				

Laser scanning, Kinect and camera models, basic data structures (lists, arrays, oc-trees), calculating normals, kd trees, registration, features, segmentation, tracking, applications for airborne mapping, applications to mobile mapping.

Intended learning outcomes

Students understand the fundamental principles of all aspects of 3D point cloud processing and are able to communicate with engineers / surveyors / CV people / etc. Students are able to solve problems of modern sensor data processing and have experienced that real application scenarios are challenging in terms of computational requirements, in terms of memory requirements and in terms of implementation issues.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

 $Language\ of\ assessment:\ German\ and/or\ English$

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 279 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science (2019)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation	
Operat	ting Sys	stems			10-l-BS-191-m01	
Modul	e coord	inator		Module offered by		
holder	holder of the Chair of Computer Science II			Institute of Computer Science		
ECTS	Meth	ethod of grading Only after succ. cor		mpl. of module(s)		
5	nume	rical grade	grade			
Duration Module level		Other prerequisites	Other prerequisites			
1 semester undergraduate		undergraduate				

Introduction to computer systems, development of operating systems, architecture principles, interrupt processing in operating systems, processes and threads, CPU scheduling, synchronisation and communication, memory management, device and file management, operating system virtualisation.

Intended learning outcomes

The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Business Information Systems (2020)

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Master's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Master's degree (1 major) Quantum Engineering (2024)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title					Abbreviation	
Computer Architecture						10-I-RAK-152-m01
Module coordinator					Module offered by	
Dean of Studies Informatik (Computer S			iter Science)		Institute of Computer Science	
ECTS	Meth	thod of grading Only after succ. cor		. con	pl. of module(s)	
5	nume	rical grade				
Duration Module level		Other prerequi	Other prerequisites			
1 semester undergraduate		undergraduate				
<i>~</i> .	Control					

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 b)

§ 69 | Nr. 1 c): Rechnerarchitektur

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

First state examination for the teaching degree Gymnasium Computer Science (2015)

Master's degree (1 major) Physics (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Master's degree (1 major) Physics International (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Master's degree (1 major) Physics International (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2025)

Module title					Abbreviation
Control Principles of Modern Communication Systems					10-I-SKS-191-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science III			ce III	Institute of Computer Science	
ECTS	Meth	hod of grading Only after succ. cor		npl. of module(s)	
8	nume	rical grade			
Duration Module level		Other prerequisites			
ı semester u		undergraduate			

- Control Mechanisms of Modern Communication Systems
- Multimedia Networking
- Broadband Access Networks
- Mobile Communication Systems
- · Home Access Networks
- Current trends such as Internet of Things (IoT)
- Software Defined Networking (SDN)
- Control mechanisms implemented and deployed on the Internet
- Introduction of analytical performance evaluation

Intended learning outcomes

The students possess advanced knowledge regarding the structure, architecture and control mechanisms of modern communication systems and are able to apply it to evaluate systems and protocols within simulations and measurement setups. In addition, students have gathered insights of the basic methodologies in the field of analytical performance evaluation.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

__

Workload

240 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 285 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	1

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation	
Autom	ation a	nd Control Technology			10-I-AR-152-m01	
Module coordinator				Module offered by		
holder	holder of the Chair of Computer Science VII			Institute of Computer Science		
ECTS	Meth	thod of grading Only after succ. cor		npl. of module(s)		
8	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester undergraduate						
Conter	nte					

Overview of automation systems, foundations of control technology, simple design methods, model creation, differential equations, nomenclature, transfer function, step response and realising of easy linear controllers, structure images and structure image reduction, locus curves and Bode diagrams, frequency characteristic, persistent control deviation, controller design through parameter optimisation, basics of fuzzy control, scanning systems, eigenvalue based system analysis, classification of automation and control systems, examples.

Intended learning outcomes

The students master the fundamentals of automation and control.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

240 h

Teaching cycle

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 b)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Mathematics (2023)

Module title				Abbreviation	
Introduction into Human-Computer Interaction					10-I-MCS-191-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science IX			ience IX	Institute of Computer Science	
ECTS	Meth	od of grading Only after succ. co		ompl. of module(s)	
5	nume	rical grade			
Duration Module level		Other prerequisit	Other prerequisites		
1 semester		undergraduate			
Contor	ntc.				

Human-Computer Interaction studies the design, evaluation, and implementation of interactive computer systems. Special focus lies on fundamental psychological and physiological properties of the human users, the technical principals and models of modern computer systems, as well as on the derived boundary conditions of designing usable and human-oriented interactions with technical systems. The topics of this course cover the human perception and cognition, the human memory and attention, the design of interactive systems, popuplar evaluation methods, principles of computer systems, input processing techniques, human interfaces and typical means of interaction, from text-based input methods over graphical user interfaces to multi-modal interfaces. Accompanying practical tasks convey to the students typical methods of requirement analysis, prototyping and evaluation.

Intended learning outcomes

After successfully completing this course, students have a fundamental understanding of human-computer interface design principles. They understand the possibilities and limitations of technology and user and the applications of modern user interfaces. They know the necessary steps of user-centric design and typical design princip-

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Bachelor's degree (1 major) Business Information Systems (2020)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 288 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Module title					Abbreviation	
IT Security					10-I-SEC-191-m01	
Module coordinator				Module offered by		
holder of the Chair of Computer Science II			ce II	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. con	compl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conter	Contents					

The course provides a broad sweep through concepts and technologies related to IT security:

- Theoretical aspects: information-theoretic security, computational security, introduction to cryptography (historical and modern ciphers, hash functions, pseudo-random generators, message authentication codes, public key cryptography)
- Network security: protocol security, security of TCP/IP, public key infrastructure, user authentication
- Software security: Software vulnerabilities, common programming errors and exploitation techniques, reverse engineering and obfuscation, malware and anti-malware
- Platform security: access control models, security policies, operating system security, virtualization, security mechanisms with support in hardware

Intended learning outcomes

Students will be introduced to the main concepts and abstractions of IT security. They learn how to model threats and analyze security of a system critically from the attacker view point. After visiting the lecture students are going to understand the purpose and function of several security technologies, as well as their limitations. The exercises provide some hands-on experience of security flows in software.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

150 h

Teaching cycle

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 290 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Games Engineering (2025)

Module title					Abbreviation	
Selected Basics of Computer Science					10-l-Gl-152-m01	
Module coordinator				Module offered by		
Dean o	of Studi	es Informatik (Computer	Science)	Institute of Computer Science		
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Contor	Contents					

Selected topics in computer science.

Intended learning outcomes

The students are able to understand solutions to fundamental problems in computer science and to transfer them to related topics.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes).

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Computer Science (2015)

Bachelor's degree (1 major) Computer Science (2017)

Bachelor's degree (1 major) Computer Science (2019)

Module studies (Bachelor) Computer Science (2019)

Bachelor's degree (1 major) Computer Science und Sustainability (2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Focus Philosophy

(30 ECTS credits)

Module title Abbreviation						
Introduction to Philosophy 06-Ph-B-P1/1-152-mo1						
Modul	e coord	inator		Module offered by	l.	
holder	of the (Chair of Practical Philoso	phy	Institute of Philoso	phy	
ECTS	Metho	od of grading	Only after succ. com	ipl. of module(s)		
5	(not)	successfully completed				
Duratio	on	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conter	ıts					
Introdu	uction to	o systematic approaches	to, methods in, and	history of philosoph	у	
Intend	ed learı	ning outcomes		· · ·		
		asic problems and position	ons in philosophy; ma	astery of the fundam	entals of formal logic (propositio-	
Course	S (type, r	number of weekly contact hours, I	anguage — if other than Ger	man)		
V (2) +	Ü (2)					
		sessment (type, scope, langua	ge — if other than German, e	examination offered — if no	ot every semester, information on whether	
written	exami	nation (90 minutes)	•			
Allocat	tion of p	olaces				
Additio	onal inf	ormation				
Worklo	ad					
150 h						
Teachi	ng cycl	e				
Teachi	ng cycle	e: Once a year, winter ser	nester			
Referre	ed to in	LPO I (examination regulation	s for teaching-degree progra	mmes)		
Modul	e appea	ars in				
		gree (1 major) Mathemati	cs (2015)			
		gree (1 major, 1 minor) Ph		5)		
Bachel	Bachelor's degree (1 major, 1 minor) Philosophy (2015)					

Bachelor's degree (2 majors) Philosophy (2015) Bachelor's degree (1 major) Mathematics (2023)

Module	e title		Abbreviation			
Historical epochs, main works, authors					06-Ph-B-P1/2-152-m01	
Module coordinator				Module offered by		
holder	of the	Chair of Practical Philoso	phy	Institute of Philosophy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conten	Contents					

Introduction into a period in the history of philosophy and/or into a systematic problem of philosophy and/or into a philosophical school)

Intended learning outcomes

Insight into a period in the history of philosophy; elementary knowledge of systematic problems in philosophy; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, generalizability; ability to present philosophical positions in a structured, linguistically appropriate, and rhetorically effective manner.

Courses (type, number of weekly contact hours, language - if other than German)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination (approx. 25 minutes)

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

Module title					Abbreviation	
Philosophical principles of sciences I					06-Ph-B-P2/1-152-m01	
Modul	e coord	inator		Module offered by		
holder	of the	Chair of Theoretical Philo	sophy	Institute of Philosophy		
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)		
5	(not)	successfully completed				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Contor	Contonts					

Introduction to the theory of intellectual disciplines and to the historical and philosophical bases of the individual intellectual disciplines.

Intended learning outcomes

Insight into the relationship of philosophy to individual intellectual disciplines; ability to reflect on the historical and intellectual origins of our knowledge culture; insight into the scope and limits of various intellectual disciplines; familiarity with, and ability to criticize, basic assumptions of visions of the world and systems of thought.

Courses (type, number of weekly contact hours, language - if other than German)

V (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (45 minutes)

Allocation of places

Only as part of pool of general transferable skills (ASQ): max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Biochemistry (2015)

Bachelor's degree (1 major) Chemistry (2015)


```
Bachelor's degree (1 major) Geography (2015)
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Master's degree (2 majors) European Ethnology (2016)
Bachelor's degree (1 major) Mathematical Physics (2016)
Master's degree (1 major) European Ethnology (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
```



```
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
```



```
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
Bachelor's degree (1 major) Biology (2021)
Magister Theologiae Catholic Theology (2021)
Bachelor's degree (2 majors) History (2021)
Bachelor's degree (1 major, 1 minor) History (2021)
Bachelor's degree (1 major) Media Communication (2021)
Bachelor's degree (2 majors) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) English and American Studies (2021)
Bachelor's degree (2 majors) English and American Studies (2021)
Bachelor's degree (1 major) Functional Materials (2021)
Bachelor's degree (1 major) Computer Science und Sustainability (2021)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)
Bachelor's degree (1 major) Food Chemistry (2021)
Bachelor's degree (1 major) Quantum Technology (2021)
Bachelor's degree (2 majors) Special Education (2021)
Bachelor's degree (1 major) Business Information Systems (2021)
Bachelor's degree (1 major) Economathematics (2021)
Bachelor's degree (1 major) Business Management and Economics (2021)
Bachelor's degree (1 major) Human-Computer Systems (2022)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)
Bachelor's degree (1 major) Biochemistry (2022)
Bachelor's degree (1 major) Biology (2022)
Bachelor's degree (1 major) Economathematics (2022)
Bachelor's degree (1 major) Mathematical Data Science (2022)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)
Bachelor's degree (1 major, 1 minor) Ancient World (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)
Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)
Bachelor's degree (1 major) European Law (2023)
Bachelor's degree (1 major, 1 minor) English and American Studies (2023)
Bachelor's degree (2 majors) English and American Studies (2023)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)
Bachelor's degree (1 major) Mathematics (2023)
Bachelor's degree (1 major) Business Information Systems (2023)
Bachelor's degree (1 major) Economathematics (2023)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) Special Education (2023)
Bachelor's degree (1 major) Business Management and Economics (2023)
Bachelor's degree (1 major) Geography (2023)
Bachelor's degree (2 majors) Geography (2023)
Bachelor's degree (1 major, 1 minor) Geography (2023)
Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)
Bachelor's degree (1 major) Mathematical Physics (2024)
Bachelor's degree (2 majors) German Language and Literature (2024)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)
Bachelor's degree (1 major) Music Education (2024)
Bachelor's degree (2 majors) Music Education (2024)
Bachelor's degree (1 major, 1 minor) Music Education (2024)
Bachelor's degree (1 major) Indology/South Asian Studies (2024)
```


Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title					Abbreviation	
Philosophical principles of sciences II					o6-Ph-B-P2/2-152-mo1	
Module coordinator				Module offered by		
holder	of the	Chair of Theoretical Ph	ilosophy	Institute of Philosophy		
ECTS	Metho	od of grading	Only after succ. co	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level		Other prerequisite	Other prerequisites		
1 seme	1 semester undergraduate					
Conte	Contents					

Introduction to the historical and philosophical bases of individual intellectual disciplines, especially the humanities, the social sciencies, the natural sciences, and the technical sciences.

Intended learning outcomes

Insight into the relationship of philosophy to the individual intellectual disciplines; ability to reflect on the historical and intellectual origins of our knowledge culture; insight into the scope and limits of various intellectual disciplines; familiarity with, and ability to criticize, basic assumptions of visions of the world and systems of thought; ability to analyze philosophical texts and positions; ability to organize concepts and philosophical positions into overarching intellectual schemata.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (90 minutes)

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Theoretical Philosophy I					o6-Ph-B-P3/1-152-mo1
Module coordinator				Module offered by	
holder	of the	Chair of Theoretical Philo	sophy	Institute of Philosophy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				

Introduction to theoretical philosophy by systematic analysis of fundamental problems, historical traditions, and paradigmatic texts.

Intended learning outcomes

An overview of basic problems and positions in theoretical philosophy; an overview of systems and disciplines within theoretical philosophy; familiarity with, and ability to evaluate, methods of argumentation and justification within theoretical philosophy.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (45 minutes)

Allocation of places

Only as part of pool of general transferable skills (ASQ): max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Chemistry (2015)


```
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
```



```
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Module studies (Bachelor) Philosophy (2020)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
```


Bachelor's degree (1 major) Biology (2021) Magister Theologiae Catholic Theology (2021) Bachelor's degree (2 majors) History (2021) Bachelor's degree (1 major, 1 minor) History (2021) Bachelor's degree (1 major) Media Communication (2021) Bachelor's degree (2 majors) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) English and American Studies (2021) Bachelor's degree (2 majors) English and American Studies (2021) Bachelor's degree (1 major) Functional Materials (2021) Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021) Bachelor's degree (1 major) Food Chemistry (2021) Bachelor's degree (1 major) Quantum Technology (2021) Bachelor's degree (2 majors) Special Education (2021) Bachelor's degree (1 major) Business Information Systems (2021) Bachelor's degree (1 major) Economathematics (2021) Bachelor's degree (1 major) Business Management and Economics (2021) Bachelor's degree (1 major) Human-Computer Systems (2022) Bachelor's degree (1 major, 1 minor) Museology and material culture (2022) Bachelor's degree (1 major) Biochemistry (2022) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Economathematics (2022) Bachelor's degree (1 major) Mathematical Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022) Bachelor's degree (1 major, 1 minor) Ancient World (2022) Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022) Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022) Bachelor's degree (1 major) European Law (2023) Bachelor's degree (1 major, 1 minor) English and American Studies (2023) Bachelor's degree (2 majors) English and American Studies (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Business Information Systems (2023) Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (2 majors) German Language and Literature (2024) Bachelor's degree (1 major, 1 minor) German Language and Literature (2024) Bachelor's degree (1 major) Music Education (2024) Bachelor's degree (2 majors) Music Education (2024) Bachelor's degree (1 major, 1 minor) Music Education (2024) Bachelor's degree (1 major) Indology/South Asian Studies (2024) Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title					Abbreviation
Practical Philosophy I					o6-Ph-B-P4/1-152-mo1
Module coordinator				Module offered by	
holder of the Chair of Practical Philosop			phy	Institute of Philosophy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				

Introduction to practical philosophy by the systematic analysis of fundamental problems, historical traditions, and paradigmatic texts.

Intended learning outcomes

Overview of fundamental problems and positions in practical philosophy; overview of systems and disciplines in practical philosophy; knowledge of, and ability to evaluate, methods of argumentation and justification within practical philosophy.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (45 minutes)

Allocation of places

Only as part of pool of general transferable skills (ASQ): max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Chemistry (2015)


```
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
```



```
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
Bachelor's degree (1 major) Biology (2021)
```



```
Magister Theologiae Catholic Theology (2021)
Bachelor's degree (2 majors) History (2021)
Bachelor's degree (1 major, 1 minor) History (2021)
Bachelor's degree (1 major) Media Communication (2021)
Bachelor's degree (2 majors) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) Theological Studies (2021)
Bachelor's degree (1 major, 1 minor) English and American Studies (2021)
Bachelor's degree (2 majors) English and American Studies (2021)
Bachelor's degree (1 major) Functional Materials (2021)
Bachelor's degree (1 major) Computer Science und Sustainability (2021)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021)
Bachelor's degree (1 major) Food Chemistry (2021)
Bachelor's degree (1 major) Quantum Technology (2021)
Bachelor's degree (2 majors) Special Education (2021)
Bachelor's degree (1 major) Business Information Systems (2021)
Bachelor's degree (1 major) Economathematics (2021)
Bachelor's degree (1 major) Business Management and Economics (2021)
Bachelor's degree (1 major) Human-Computer Systems (2022)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2022)
Bachelor's degree (1 major) Biochemistry (2022)
Bachelor's degree (1 major) Biology (2022)
Bachelor's degree (1 major) Economathematics (2022)
Bachelor's degree (1 major) Mathematical Data Science (2022)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022)
Bachelor's degree (1 major, 1 minor) Ancient World (2022)
Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022)
Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022)
Bachelor's degree (1 major) European Law (2023)
Bachelor's degree (1 major, 1 minor) English and American Studies (2023)
Bachelor's degree (2 majors) English and American Studies (2023)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)
Bachelor's degree (1 major) Mathematics (2023)
Bachelor's degree (1 major) Business Information Systems (2023)
Bachelor's degree (1 major) Economathematics (2023)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2023)
Bachelor's degree (2 majors) Special Education (2023)
Bachelor's degree (1 major) Business Management and Economics (2023)
Bachelor's degree (1 major) Geography (2023)
Bachelor's degree (2 majors) Geography (2023)
Bachelor's degree (1 major, 1 minor) Geography (2023)
Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023)
Bachelor's degree (1 major) Mathematical Physics (2024)
Bachelor's degree (2 majors) German Language and Literature (2024)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2024)
Bachelor's degree (1 major) Music Education (2024)
Bachelor's degree (2 majors) Music Education (2024)
Bachelor's degree (1 major, 1 minor) Music Education (2024)
Bachelor's degree (1 major) Indology/South Asian Studies (2024)
Bachelor's degree (2 majors) Indology/South Asian Studies (2024)
Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)
Bachelor's degree (1 major, 1 minor) Ancient World (2024)
```


Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module title					Abbreviation
History of Philosophy I					o6-Ph-B-P5/1-152-mo1
Module	e coord	inator		Module offered by	
holder	of the (Chair of the History of Phi	losophy	Institute of Philosophy	
ECTS	Metho	od of grading	Only after succ. cor	npl. of module(s)	
5	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				

Introduction to the history of philosophy by the systematic analysis of fundamental problems, historical traditions and paradigmatic texts.

Intended learning outcomes

Overview of fundamental problems and positions in the history of philosophy; ability to use and distinguish between different methods of historiography; familiarity with, understanding of, and ability to evaluate methods and questions of scholarly inquiry with respect to the history of philosophy.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (45 minutes)

Allocation of places

Only as part of pool of general transferable skills (ASQ): max. 20 places. Should the number of applications exceed the number of available places, places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot. A waiting list will be maintained and places re-allocated by lot as they become available.

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Biology (2011)

Bachelor's degree (1 major) Chemistry (2010)

Bachelor's degree (1 major) Psychology (2010)

Bachelor's degree (1 major, 1 minor) Pedagogy (2013)

Bachelor's degree (1 major, 1 minor) Political and Social Studies (2013)

Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2008)

Bachelor's degree (2 majors) Special Education (2009)

Magister Theologiae Catholic Theology (2013)

Bachelor's degree (2 majors) English and American Studies (2009)

Bachelor's degree (2 majors) German Language and Literature (2013)

Bachelor's degree (1 major) Chemistry (2015)


```
Bachelor's degree (1 major) Mathematics (2015)
Bachelor's degree (1 major) Musicology (2015)
Bachelor's degree (1 major) Physics (2015)
Bachelor's degree (1 major) Psychology (2015)
Bachelor's degree (1 major) Business Management and Economics (2015)
Bachelor's degree (1 major) Nanostructure Technology (2015)
Bachelor's degree (1 major) Music Education (2015)
Bachelor's degree (1 major) Computational Mathematics (2015)
Bachelor's degree (1 major) Political and Social Studies (2015)
Bachelor's degree (1 major) Functional Materials (2015)
Bachelor's degree (1 major) Academic Speech Therapy (2015)
Bachelor's degree (1 major) Indology/South Asian Studies (2015)
Bachelor's degree (1 major, 1 minor) Egyptology (2015)
Bachelor's degree (1 major, 1 minor) Pedagogy (2015)
Bachelor's degree (1 major, 1 minor) History (2015)
Bachelor's degree (1 major, 1 minor) Musicology (2015)
Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)
Bachelor's degree (1 major, 1 minor) Philosophy (2015)
Bachelor's degree (1 major, 1 minor) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (1 major, 1 minor) Ancient World (2015)
Bachelor's degree (1 major, 1 minor) Philosophy and Religion (2015)
Bachelor's degree (1 major, 1 minor) Theological Studies (2015)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2015)
Bachelor's degree (1 major, 1 minor) Russian Language and Culture (2015)
Bachelor's degree (1 major, 1 minor) German Language and Literature (2015)
Bachelor's degree (2 majors) Egyptology (2015)
Bachelor's degree (2 majors) Pedagogy (2015)
Bachelor's degree (2 majors) Protestant Theology (2015)
Bachelor's degree (2 majors) Musicology (2015)
Bachelor's degree (2 majors) Philosophy (2015)
Bachelor's degree (2 majors) Special Education (2015)
Bachelor's degree (2 majors) Pre- and Protohistoric Archaeology (2015)
Bachelor's degree (2 majors) Latin Philology (2015)
Bachelor's degree (2 majors) Music Education (2015)
Bachelor's degree (2 majors) Philosophy and Religion (2015)
Bachelor's degree (2 majors) Theological Studies (2015)
Bachelor's degree (2 majors) Political and Social Studies (2015)
Bachelor's degree (2 majors) Russian Language and Culture (2015)
Bachelor's degree (2 majors) Greek Philology (2015)
Bachelor's degree (2 majors) European Ethnology (2015)
Bachelor's degree (2 majors) Indology/South Asian Studies (2015)
Bachelor's degree (2 majors) Geography (2015)
Bachelor's degree (2 majors) French Studies (2015)
Bachelor's degree (2 majors) History (2015)
Bachelor's degree (2 majors) Sport Science (Focus on health and Pedagogics in Movement) (2015)
Bachelor's degree (2 majors) German Language and Literature (2015)
Bachelor's degree (1 major) Mathematical Physics (2016)
Bachelor's degree (1 major, 1 minor) French Studies (2016)
Bachelor's degree (2 majors) French Studies (2016)
Bachelor's degree (1 major, 1 minor) Italian Studies (2016)
Bachelor's degree (2 majors) Italian Studies (2016)
Bachelor's degree (1 major, 1 minor) Spanish Studies (2016)
Bachelor's degree (2 majors) Spanish Studies (2016)
```



```
Bachelor's degree (1 major) Romanic Languages (French/Italian) (2016)
Bachelor's degree (1 major) Romanic Languages (French/Spanish) (2016)
Bachelor's degree (1 major) Romanic Languages (Italian/Spanish) (2016)
Bachelor's degree (1 major) Business Information Systems (2016)
Bachelor's degree (1 major) Games Engineering (2016)
Bachelor's degree (1 major, 1 minor) English and American Studies (2016)
Bachelor's degree (2 majors) English and American Studies (2016)
Bachelor's degree (1 major) Media Communication (2016)
Bachelor's degree (1 major) Food Chemistry (2016)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2016)
Bachelor's degree (1 major) Biology (2017)
Bachelor's degree (1 major, 1 minor) Geography (2017)
Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) History of Medieval and Modern Art (2017)
Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2017)
Bachelor's degree (1 major) Aerospace Computer Science (2017)
Bachelor's degree (1 major) Biochemistry (2017)
Bachelor's degree (1 major) Chemistry (2017)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2017)
Bachelor's degree (1 major) Economathematics (2017)
Bachelor's degree (1 major) Games Engineering (2017)
Bachelor's degree (1 major) Computer Science (2017)
Bachelor's degree (1 major) Media Communication (2018)
Bachelor's degree (1 major) Biomedicine (2018)
Bachelor's degree (1 major) Human-Computer Systems (2018)
Bachelor's degree (2 majors) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Classical Archaeology (2018)
Bachelor's degree (1 major, 1 minor) Digital Humanities (2018)
Bachelor's degree (2 majors) Digital Humanities (2018)
Bachelor's degree (1 major) Computer Science (2019)
Bachelor's degree (1 major, 1 minor) English and American Studies (2019)
Bachelor's degree (1 major) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Information Systems (2019)
Bachelor's degree (2 majors) Indology/South Asian Studies (2019)
Bachelor's degree (1 major) Business Management and Economics (2019)
Bachelor's degree (1 major) Modern China (2019)
Module studies (Bachelor) Philosophy (2020)
Bachelor's degree (1 major) Biomedicine (2020)
Bachelor's degree (1 major) Pedagogy (2020)
Bachelor's degree (1 major) Political and Social Studies (2020)
Bachelor's degree (1 major) Business Information Systems (2020)
Bachelor's degree (1 major, 1 minor) Political and Social Studies (2020)
Bachelor's degree (2 majors) European Ethnology (2020)
Bachelor's degree (2 majors) Political and Social Studies (2020)
Bachelor's degree (2 majors) Special Education (2020)
Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Mathematical Physics (2020)
Bachelor's degree (1 major) Aerospace Computer Science (2020)
Bachelor's degree (1 major, 1 minor) Museology and material culture (2020)
Bachelor's degree (1 major, 1 minor) Pedagogy (2020)
Bachelor's degree (2 majors) Pedagogy (2020)
Bachelor's degree (1 major) Psychology (2020)
```


Bachelor's degree (1 major) Biology (2021) Magister Theologiae Catholic Theology (2021) Bachelor's degree (2 majors) History (2021) Bachelor's degree (1 major, 1 minor) History (2021) Bachelor's degree (1 major) Media Communication (2021) Bachelor's degree (2 majors) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) Theological Studies (2021) Bachelor's degree (1 major, 1 minor) English and American Studies (2021) Bachelor's degree (2 majors) English and American Studies (2021) Bachelor's degree (1 major) Functional Materials (2021) Bachelor's degree (1 major) Computer Science und Sustainability (2021) Bachelor's degree (2 majors) Comparative Indo-European Linguistics (2021) Bachelor's degree (1 major) Food Chemistry (2021) Bachelor's degree (1 major) Quantum Technology (2021) Bachelor's degree (2 majors) Special Education (2021) Bachelor's degree (1 major) Business Information Systems (2021) Bachelor's degree (1 major) Economathematics (2021) Bachelor's degree (1 major) Business Management and Economics (2021) Bachelor's degree (1 major) Human-Computer Systems (2022) Bachelor's degree (1 major, 1 minor) Museology and material culture (2022) Bachelor's degree (1 major) Biochemistry (2022) Bachelor's degree (1 major) Biology (2022) Bachelor's degree (1 major) Economathematics (2022) Bachelor's degree (1 major) Mathematical Data Science (2022) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022) Bachelor's degree (2 majors) Ancient Near Eastern Archaeology (2022) Bachelor's degree (1 major, 1 minor) Ancient World (2022) Bachelor's degree (2 majors) Ancient Near Eastern Studies (2022) Bachelor's degree (1 major) Franco-German studies: language, culture, digital competence (2022) Bachelor's degree (1 major) European Law (2023) Bachelor's degree (1 major, 1 minor) English and American Studies (2023) Bachelor's degree (2 majors) English and American Studies (2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023) Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Business Information Systems (2023) Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major, 1 minor) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) History of Medieval and Modern Art (2023) Bachelor's degree (2 majors) Special Education (2023) Bachelor's degree (1 major) Business Management and Economics (2023) Bachelor's degree (1 major) Geography (2023) Bachelor's degree (2 majors) Geography (2023) Bachelor's degree (1 major, 1 minor) Geography (2023) Bachelor's degree (2 majors) European Ethnology/Empiric Cultural Studies (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (2 majors) German Language and Literature (2024) Bachelor's degree (1 major, 1 minor) German Language and Literature (2024) Bachelor's degree (1 major) Music Education (2024) Bachelor's degree (2 majors) Music Education (2024) Bachelor's degree (1 major, 1 minor) Music Education (2024) Bachelor's degree (1 major) Indology/South Asian Studies (2024) Bachelor's degree (2 majors) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Indology/South Asian Studies (2024)

Bachelor's degree (1 major, 1 minor) Ancient World (2024)

Bachelor's degree (2 majors) Digital Humanities (2024)

Bachelor's degree (1 major, 1 minor) Digital Humanities (2024)

Bachelor's degree (1 major) Midwifery (2024)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

Bachelor's degree (1 major) Business Information Systems (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Business Management and Economics (2024)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Bachelor's degree (1 major) Human-Computer-Interaction (2024)

Bachelor's degree (2 majors) Art Education (2024)

Bachelor's degree (1 major) Digital Business & Data Science (2024)

Bachelor's degree (1 major) Classics (2024)

Bachelor's degree (1 major) Diversity, Ethics and Religions (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) (2025)

Bachelor's degree (1 major) Food Chemistry (2025)

Bachelor's degree (1 major, 1 minor) European Ethnology/Empiric Cultural Studies (2025)

Bachelor's degree (1 major) Pedagogy (2025)

Bachelor's degree (2 majors) Pedagogy (2025)

Bachelor's degree (1 major) Economathematics (2025)

Bachelor's degree (1 major) Academic Speech Therapy (2025)

Bachelor's degree (1 major, 1 minor) Pedagogy (2025)

Bachelor's degree (1 major) Games Engineering (2025)

Module	title				Abbreviation	
Issues	of rese	arch in philosophy I			06-Ph-B-P6/1-152-m01	
Module coordinator				Module offered by		
holder	of the (Chair of the History of Phi	losophy	Institute of Philosophy		
ECTS	Metho	od of grading	Only after succ. compl. of module(s)			
5	nume	rical grade				
Duratio	Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate					
Conten	Contents					

Discussion of selected research topics in philosophy.

Intended learning outcomes

Knowledge of selected research topics in philosophy; knowledge and understanding of scholarly inquiry in philosophy; ability to subject the problems discussed to historical and systematic evaluation; ability to analyze philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop and present philosophical issues and positions.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination (approx. 25 minutes)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

Module title					Abbreviation
Text Analysis: Ancient Philosophy					06-Ph-B-W1-152-m01
Module coordinator				Module offered by	
holder	holder of the Chair of the History of Philosophy			Institute of Philosophy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				

Reading of ancient philosophical texts.

Intended learning outcomes

Ability to analyse texts of ancient philosophy while taking into account the historical and intellectual context of their origin; knowledge of, and ability to criticise, basic assumptions in ancient systems of thought, culture, and knowledge; ability to independently develop and present philosophical issues.

Courses (type, number of weekly contact hours, language — if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes) or term paper (10 to 12 pages)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 68 I Nr. 2 a)

§ 72 | Nr. 2 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Political and Social Studies (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Latin Philology (2015)

Bachelor's degree (2 majors) Greek Philology (2015)

First state examination for the teaching degree Gymnasium Greek Philology (2015)

First state examination for the teaching degree Gymnasium Latin Philology (2015)

First state examination for the teaching degree Gymnasium Greek Philology (2018)

Bachelor's degree (1 major) Political and Social Studies (2020)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (2 majors) Greek Philology (2024)

Bachelor's degree (2 majors) Latin Philology (2024)

First state examination for the teaching degree Gymnasium Latin Philology (2024)

First state examination for the teaching degree Gymnasium Greek Philology (2024)

Bachelor's degree (1 major) Classics (2024)

Module title					Abbreviation	
Text Analysis: Medieval Philosophy					o6-Ph-B-W2-152-mo1	
Module coordinator				Module offered by		
holder of the Chair of the History of Philosophy			Philosophy	Institute of Philosophy		
ECTS Method of grading C		Only after succ. co	er succ. compl. of module(s)			
5	nume	rical grade				
Duratio	n	Module level	Other prerequisite	Other prerequisites		
1 seme	ster	undergraduate				
Conten	ts					
Readin	g of me	dieval philosophical t	exts.			
Intend	ed lear	ning outcomes				
Ability to analyse texts of medieval philosophy while taking into account the historical and intellectual context of their origin; knowledge of, and ability to criticise, basic assumptions in pre-modern systems of thought, culture, and knowledge; ability to independently develop and present philosophical issues.						
Courses (type, number of weekly contact hours, language — if other than German)						
S (2)						
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)						
written examination (90 minutes) or term paper (10 to 12 pages)						
Allocation of places						
Additional information						
						
Workload						

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Political and Social Studies (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (1 major) Political and Social Studies (2020)

Module	e title			Abbreviation		
Text Analysis: Modern Philosophy					o6-Ph-B-W3-152-mo1	
Module	e coord	inator		Module offered by		
holder	of the	Chair of Practical Philoso	phy	Institute of Philosophy		
ECTS	Meth	od of grading	Only after succ. compl. of module(s)			
5	(not)	successfully completed				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conten	ts					
Readin	Reading of modern philosophical texts.					
Intended learning outcomes						
Ability to analyse texts of modern philosophy; knowledge of, and ability to criticise, basic assumptions of systems of thought, culture, and knowledge of modernity; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.						
Courses (type, number of weekly contact hours, language — if other than German)						
S (2)						
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)						

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

portfolio: 2 to 3 essays (approx. 10 pages total)

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Political and Social Studies (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (1 major) Political and Social Studies (2020)

Module title				Abbreviation	
Text Analysis: Contemporary Philosophy					o6-Ph-B-W4-152-mo1
Module coordinator				Module offered by	
holder	of the	Chair of Practical Philoso	phy	Institute of Philosophy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					
Reading of contemporary philosophical texts.					
Intended learning outcomes					
Ability to analyse texts of contemporary philosophy; knowledge of, and ability to criticise, basic assumptions of systems of thought, culture, and knowledge of the contemporary world; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.					
Courses (type, number of weekly contact hours, language — if other than German)					
S (a)					

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

portfolio: 2 to 3 essays (approx. 10 pages total)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Political and Social Studies (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (1 major) Political and Social Studies (2020)

Module title					Abbreviation
Basic disciplines of theoretical philosophy: Metaphysics and Epistemology				o6-Ph-B-W5-152-mo1	
Module coordinator Module offered					
holder	holder of the Chair of Theoretical Philosophy			Institute of Philosophy	
ECTS	Metho	Method of grading Only after succ. con		npl. of module(s)	
5	nume	merical grade			
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				

Problems in and theoretical models of basic disciplines of theoretical philosophy.

Intended learning outcomes

Insight into the fundamental disciplines of theoretical philosophy; ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to independently develop philosophical ideas and to present them in a structured, linguistically appropriate, and rhetorically practised manner.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

S(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (10 to 12 pages)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 32 | Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

First state examination for the teaching degree Grundschule Educational Science (2015)

First state examination for the teaching degree Sonderpädagogik Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Educational Science (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Specific disciplines of theoretical philosophy					06-Ph-B-W6-152-m01
Module	e coord	inator		Module offered by	
holder	holder of the Chair of Theoretical Philosophy			Institute of Philosophy	
ECTS	Meth	thod of grading Only after succ. cor		npl. of module(s)	
5	nume	numerical grade			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					

Problems in and theoretical models of special disciplines of theoretical philosophy.

Intended learning outcomes

Insight into selected special disciplines of theoretical philosophy; ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to independently develop philosophical ideas and to present them in a structured, linguistically appropriate, and rhetorically practised manner.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

term paper (10 to 12 pages)

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 32 | Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

First state examination for the teaching degree Grundschule Educational Science (2015)

First state examination for the teaching degree Sonderpädagogik Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Educational Science (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation
Basic o	discipli	nes of practical philosop	hy		06-Ph-B-W7-152-m01
Module	e coord	inator		Module offered by	
holder	holder of the Chair of Practical Philosophy			Institute of Philosophy	
ECTS	Meth	Method of grading Only after succ. cor		npl. of module(s)	
5	numerical grade				
Duration Module level		Other prerequisites			
1 semester undergraduate					
Contents					

Problems in and theoretical models of basic disciplines of practical philosophy.

Intended learning outcomes

Insight into the fundamental disciplines of practical philosophy; ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to independently develop philosophical ideas and to present them in a structured, linguistically appropriate, and rhetorically practised manner.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

term paper (10 to 12 pages)

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 32 | Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

First state examination for the teaching degree Grundschule Educational Science (2015)

First state examination for the teaching degree Sonderpädagogik Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Educational Science (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Modul	e title			Abbreviation		
Specif	ic disci _l	plines of practical phil	osophy		o6-Ph-B-W8-152-mo1	
Module coordinator Module offered by						
holder	of the	Chair of Practical Philo	sophy	Institute of Philosophy		
ECTS	Metho	od of grading	Only after succ. cor	mpl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Oth		Other prerequisites	Other prerequisites		
1 seme	1 semester undergraduate					
Contents						

Problems in and theoretical models of special disciplines of practical philosophy.

Intended learning outcomes

Insight into selected special disciplines of practical philosophy; ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to independently develop philosophical ideas and to present them in a structured, linguistically appropriate, and rhetorically practised manner.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (10 to 12 pages)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: once a year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 32 | Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

First state examination for the teaching degree Grundschule Educational Science (2015)

First state examination for the teaching degree Sonderpädagogik Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Educational Science (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Modul	e title			•	Abbreviation	
Proble	ms of N	Modern Philosophy			o6-Ph-B-W10-152-m01	
Modul	e coord	linator		Module offered	by	
holder	of the	Chair of the History o	f Philosophy	Institute of Philo	Institute of Philosophy	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
5	nume	rical grade				
Durati	Duration Module level Othe		Other prerequis	ites		
1 seme	1 semester undergraduate					
Conto	ntc	-				

Reading and discussion of selected problems in modern philosophy.

Intended learning outcomes

Ability to analyse philosophical problems of modern philosophy (early modern to contemporary); in-depth know-ledge of the history of philosophical concepts, arguments, and theories; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

oral examination (approx. 25 minutes)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 32 | Nr. 1 c)

Module appears in

Bachelor's degree (1 major) Geography (2015)

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (2 majors) Philosophy (2015)

First state examination for the teaching degree Grundschule Educational Science (2015)

First state examination for the teaching degree Sonderpädagogik Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2015)

First state examination for the teaching degree Mittelschule Educational Science (2020 (Prüfungsordnungsversion 2015))

First state examination for the teaching degree Sonderpädagogik Educational Science (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Geography (2023)

Module	e title				Abbreviation	
Proble	ms of T	heoretical Philosophy			o6-Ph-B-W11-152-m01	
Module	coord	inator		Module offered by		
holder	of the (Chair of Theoretical Philo	sophy	Institute of Philoso	phy	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)		
5	nume	rical grade				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conten	ts					
Readin	g and c	discussion of selected pro	oblems in theoretical	philosophy.		
Intend	ed lear	ning outcomes				
sophic parenc	al conc y, cons	epts, arguments, and the	eories; ability to apply apply apply apply appleteness, and gene	y general principles ralisability; ability to	nowledge of the history of philo- of argumentation such as trans- o present philosophical issues in	
Course	S (type, r	number of weekly contact hours, l	anguage — if other than Ger	man)		
S (2)						
		sessment (type, scope, langua ele for bonus)	ge — if other than German, o	examination offered — if no	ot every semester, information on whether	
portfolio: 2 to 3 essays (approx. 10 pages total)						
Allocation of places						
Additio	nal inf	ormation				

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (1 major) Mathematics (2023)

Module	e title				Abbreviation
Proble	ms of P	Practical Philosophy			o6-Ph-B-W12-152-m01
Module	e coord	linator		Module offered by	I.
holder	of the	Chair of Practical Philoso	phy	Institute of Philosophy	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	nume	rical grade			
Duratio	on	Module level	Other prerequisites		
1 semester undergraduate					
Conten	its				
Readin	g and o	discussion of selected pr	oblems in practical p	hilosophy.	

Ability to analyse philosophical problems of practical philosophy; in-depth knowledge of the history of philosophical concepts, arguments, and theories; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

portfolio: 2 to 3 essays (approx. 10 pages total)

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: Once a year, winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Philosophy (2015)

Bachelor's degree (1 major) Mathematics (2023)

Focus Physics

(30 ECTS credits)

Compulsory Courses

(14 ECTS credits)

Module	Module title				Abbreviation	
Classic	al Phy	sics 1 for Students of	Physics related Disci	plines	11-ENNF1-152-m01	
Module	e coord	linator		Module offere	d by	
Managi	ing Dire	ector of the Institute	of Applied Physics	Faculty of Phy	sics and Astronomy	
ECTS	Meth	od of grading	Only after succ.	Only after succ. compl. of module(s)		
7	nume	rical grade				
Duratio	n	Module level	Other prerequisi	prerequisites		
1 seme	ster	undergraduate	13 exercise sheet approx. 50% of e	ts per semester). S exercises will quali	nent: completion of exercises (approx. Students who successfully completed fy for admission to assessment. The the respective details at the beginning	

- 1. Principles: Physical quantities, prefactors, derived quantities, dimensional analysis, time / length / mass (definition, measurement procedures, SI), importance of metrology;
- 2. Point Mechanics: Kinematics, motion in 2D and 3D / vectors, special cases: Uniform and constant accelerated motion, free fall, slate litter; circular motion in polar coordinates;
- 3. Newton's laws: Forces and momentum definition, weight vs. mass forces on the pendulum, forces on an atomic scale, isotropic and anisotropic friction. Preparation of the equations of motion and solutions;
- 4. Work and energy: (Kinetic) performance, examples;
- 5. Elastic, inelastic and super-elastic collision: Energy and momentum conservation, surges in centre of mass and balance system, rocket equation;
- 6. Conservative and non-conservative force fields: Potential, potential energy; law, weight scale, field strength and potential of gravity (general relations);
- 7. Rotational motion: Angular momentum, angular velocity, torque, rotational energy, moment of inertia, analogies to linear translation, applications, satellites (geostationary and interstellar), escape velocities, trajectories in the central potential;
- 8. Tidal forces: Inertial system, reference systems, apparent forces, Foucault pendulum, Coriolis force, centrifugal force;
- 9. Galilean transformation: Brief digression to Maxwell's equations, ether, Michelson interferometer, Einstein's postulates, problem of simultaneity, Lorentz transformation, time dilation and length contraction, relativistic impulse;
- 10. Rigid body and gyroscope: Determining the centre of mass, inertia tensor and -ellipsoid, principal axes and their stability, tensor on the example of the elasticity tensor, physics of the bike; gyroscope: Precession and nutation, the Earth as a spinning top;
- 11. Friction: Static and dynamic friction, stick-slip motion, rolling friction, viscous friction, laminar flow, eddy formation;
- 12. Vibration: Representation by means of complex e-function, equation of motion (DGL) on forces, torque and power approach, Taylor expansion, harmonic approximation; spring and pendulum, physical pendulum, damped vibration (resonant case, Kriechfall, aperiodic limit), forced vibration, Fourier analysis;
- 13. Coupled vibrations: Eigenvalues and eigenfunctions, double pendulum, deterministic vs. chaotic motion, non-linear dynamics and chaos;
- 14. Waves: Wave equation, transverse and longitudinal waves, polarisation, principle of superposition, reflection at the open and closed end, speed of sound; interference, Doppler effect; phase and group velocity, dispersion relation;
- 15. Elastic deformation of solid bodies: Elastic modulus, general Hooke's law, elastic waves;
- 16. Fluids: Hydrostatic pressure and buoyancy, surface tension and contact angle, capillary forces, steady flows, Bernoulli equation; Boyle-Mariotte, gas laws, barometric height formula, air pressure, compressibility and compressive modulus;
- 17. Kinetic theory of gases: ideal and real gas, averages, distribution functions, equipartition theorem, Brownian motion, collision cross section, mean free path, diffusion and osmosis, degrees of freedom, specific heat

The students understand the basic contexts and principles of mechanics, vibration, waves and kinetic theory of gases. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

__

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

210 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Mathematics (2023)

Module	e title			Abbreviation	
Classic	al Phy	sics 2 for Students of	f Physics related Disci	iplines	11-ENNF2-152-m01
Module	e coord	linator		Module offered by	
Managi	ing Dire	ector of the Institute	of Applied Physics	Faculty of Physics a	and Astronomy
ECTS	Meth	od of grading	Only after succ.	Only after succ. compl. of module(s)	
7	nume	rical grade			
Duratio	n	Module level	Other prerequisi	tes	
1 semester undergraduate		13 exercise sheet approx. 50% of e	ts per semester). Stude exercises will qualify for rm students about the r	completion of exercises (approx. ents who successfully completed r admission to assessment. The respective details at the beginning	

- 1. Thermodynamics (linked to 11-E-M); temperature and quantity of heat, thermometer, Kelvin scale;
- 2. Heat conduction, heat transfer, diffusion, convection, radiant heat;
- 3. Fundamental theorems of thermodynamics, entropy, irreversibility, Maxwell's demon;
- 4. Heat engines, working diagrams, efficiency, example: Stirling engine;
- 5. Real gases and liquids, states of matter (also solids), van der Waals, critical point, phase transitions, critical phenomena (opalescence), coexistence region, Joule-Thomson;
- 6. Electrostatics, basic concepts: Electrical charge, forces; electric field, reps. field concept, field lines, field of a point charge;
- 7. Gaussian sentence, related to Coulomb's law, definition of "river"; Gaussian surface, divergence theorem; special symmetries; divergence and GS in differential form;
- 8. Electrical potential, working in the E-box, electric. potential, potential difference, voltage; potential equation, equipotential surfaces; several important examples: Sphere, hollow sphere, capacitor plates, electric dipole; lace effects, Segner wheel;
- 9. Matter in the E-field, charge in a homogeneous field, Millikan experiment, Braun tube; electron: Field emission, thermionic emission, dipole in homogeneous and inhomogeneous field; induction, Faraday cage;
- 10. Capacitor, mirror charge, definition, capacity; plate and spherical capacitor; combination of capacitors; media in the capacitor; electrical polarisation, displacement and orientation polarisation, microscopic image; dielectric displacement; electrolytic capacitor; Piezoelectric effect;
- 11. Electricity, introduction, current density, drift velocity, conduction mechanisms;
- 12. Resistance and conductivity, resistivity, temperature dependence; Ohm's law; realisations (resistive and non-ohmic, NTC, PTC);
- 13. Circuits, electrical networks, Kirchhoff's rules (meshes, nodes); internal resistance of a voltage source, measuring instruments; Wheatstone bridge;
- 14. Power and energy in the circuit; Capacitor charge; galvanic element; thermovoltage;
- 15. Transfer mechanisms, conduction in solids: Band model, semiconductor; line in liquids and gases;
- 16. Magnetostatics, fundamental laws; permanent magnet, field properties, definitions and units; Earth's magnetic field; Amper's Law, analogous to e-box, magn. river, swirl;
- 17. Vector potential, formal derivation, analogous to electric scalar potential; calculation of fields, examples, Helmholtz coils;
- 18. Moving charge in the static magnetic field, current balance, Lorentz force, right-hand rule, electric motor; dipole field; movement paths, mass spectrometer, Wien filters, Hall effect; electron: e / m determination;
- 19. matter in the magnetic field, effects of the field on matter, relative permeability, susceptibility; para-, dia-, ferromagnetism; magn. moment of the electron, behaviour at interfaces;
- 20. induction, Faraday's law of induction, Lenz's rule, flux change, eddy electric field, Waltenhofen's pendulum; inductance, self-induction; applications: Transformer, generator;
- 21. Maxwell's displacement current, choice of integration area, displacement current; Maxwell's extension, wave equation; Maxwell equations;
- 22. AC: Fundamentals, sinusoidal vibrations, amplitude, period and phase; power and RMS value, ohmic resistance; Capacitive & inductive resistor, capacitor and coil, phase shift and frequency dependence; impedance: Complex resistance; performance of the AC;

23. Resonant circuits, combinations of RLC; series and parallel resonant circuit; forced vibration, damped harmonic oscillator (related to 11-E-M);

24: Hertz dipole, characteristics of irradiation, near field, far field; Rayleigh scattering; accelerated charge, synchrotron radiation, X-rays; 25. Electromagnetic waves: Principles, Maxwell's determination to electromagnetism, radiation pressure (Poynting vector, radiation pressure).

Intended learning outcomes

The students understand the basic principles and contexts of thermodynamics, science of electricity and magnetism. They know relevant experiments to observe and measure these principles and contexts. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

__

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

210 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Mathematics (2023)

Compulsory Electives 1

(3 ECTS credits)

Students must take either module 11-PNNF or the two modules 11-P-PA and 11-P-FR1. Other combinations are not permitted.

Modul	e title			Abbreviation	
Labora	Laboratory Course Physics for Students of Physics Related				11-PNNF-152-m01
Modul	e coord	ordinator Module offered by			
Manag	ing Dire	ector of the Institute of A _l	oplied Physics Faculty of Physics and Astronomy		cs and Astronomy
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
3	(not)	successfully completed			
Duration Module level (Other prerequisites			
1 semester undergraduate					
Conter	nts.				

Simple experiments in the fields of mechanics, vibration theory, thermodynamics, optics, X-rays, nuclear magnetic resonance, Atomic and Nuclear Physics, imaging methods.

Intended learning outcomes

The students have detected and understood physical contexts on the basis of the implementation of own experiments. They have a basic understanding of physical phenomena and know the basic ideas and ways of functioning of different measuring and imaging methods as well as their applications, especially in the field of Biomedicine.

Courses (type, number of weekly contact hours, language - if other than German)

P (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) practical assignment with oral test (approx. 15 minutes, during experiments) and b) written examination (90 minutes).

Each experiment comprises preparation, performance and evaluation. Test as well as performance of experiments can each be repeated once.

Allocation of places

Additional information

Workload

90 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Functional Materials (2025)

Modul	e title			Abbreviation	
Labora	Laboratory Course Physics A (Mechanics, Heat, Electromagneti				11-P-PA-152-m01
Modul	e coord	inator		Module offere	ed by
Manag	ing Dire	ector of the Institute of A	oplied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)
3	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Cantar		-	•		

Measurement tasks in mechanics, thermodynamics and electricity theory, e.g. measurement of voltages and currents, heat capacity, calorimetry, density of bodies, dynamic viscosity, elasticity, surface tension, spring constant, drafting of graphics and drafting of measurement protocols.

Intended learning outcomes

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate's understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

__

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Module	title				Abbreviation
Data ar	nd Erro	r Analysis			11-P-FR1-152-m01
Module	coord	inator		Module offered by	
Managi	ng Dire	ector of the Institute of Ap	oplied Physics	Faculty of Physics a	nd Astronomy
ECTS	Metho	od of grading	Only after succ. compl. of module(s)		
2	(not)	successfully completed			
Duratio	n	Module level	Other prerequisites	i	
1 semester undergraduate		13 exercise sheets papprox. 50% of exe	oer semester). Stude rcises will qualify for	completion of exercises (approx. nts who successfully completed admission to assessment. The espective details at the beginning	

Types of errors, error approximation and propagation, graphic representations, linear regression, mean values and standard deviation.

Intended learning outcomes

The students are able to evaluate measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(1) + \ddot{U}(1)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

60 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 53 | Nr. 1 c) § 77 | Nr. 1 d)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Aerospace Computer Science (2015)

Bachelor's degree (1 major) Functional Materials (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

First state examination for the teaching degree Grundschule Physics (2015)

First state examination for the teaching degree Realschule Physics (2015)

First state examination for the teaching degree Gymnasium Physics (2015)

First state examination for the teaching degree Mittelschule Physics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Aerospace Computer Science (2017)

First state examination for the teaching degree Grundschule Physics (2018)

First state examination for the teaching degree Realschule Physics (2018)

First state examination for the teaching degree Gymnasium Physics (2018)

First state examination for the teaching degree Mittelschule Physics (2018)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Aerospace Computer Science (2020)

First state examination for the teaching degree Grundschule Physics (2020)

First state examination for the teaching degree Gymnasium Physics (2020)

First state examination for the teaching degree Realschule Physics (2020)

First state examination for the teaching degree Mittelschule Physics (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Module	title :		Abbreviation			
Labora	tory Co	ourse Physics B for Stude	ents of other Discip	olines	11-P-NFB-152-m01	
Module	coord	inator		Module offer	red by	
Managi	ing Dire	ector of the Institute of A _l	oplied Physics	Faculty of Physics and Astronomy		
ECTS	Metho	od of grading	Only after succ.	compl. of module	e(s)	
4	(not)	successfully completed				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	undergraduate	Students are highly recommended to complete modules 11-P-PA ar P-FR1 prior to completing module 11-P-NFB.		•	
Conten	ts					
Physica	Physical laws of optics, vibrations and waves, science of electricity and circuits with electric components.					

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses (type, number of weekly contact hours, language - if other than German)

P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

practical assignment with talk (approx. 30 minutes)

Preparing, performing and evaluating (record of readings or lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Exactly one experiment that was not successfully completed can be repeated once. After completion of all experiments, talk (with discussion; approx. 30 minutes) to test the candidate's understanding of the physics-related contents of the module. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematics (2023)

Compulsory Electives 2

(7 ECTS credits)

Modul	e title				Abbreviation
Optics	and Wa	aves			11-E-O-152-m01
Modul	e coord	inator		Module offered by	
Manag	ing Dire	ector of the Institute of	Applied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. co	ompl. of module(s)	
8	nume	rical grade			
Duratio	Duration Module level O		Other prerequisites		
1 seme	1 semester undergraduate				
Conter	nte	,			

- 1. Light (linked to 11-E-E): basic concepts, the speed of light, Huygens-Fresnel principle: reflection, refraction.
- 2. Light in matter: propagation velocity in the medium; dispersion, complex and frequency-dependent dielectric constant; absorption, Kramers-Kronig relation, interfaces, Fresnel equations, polarization, generation by absorption, birefringence, optical activity (dipole)
- 3. Geometrical optics: basic concepts, Fermat's principle, optical path, planar interfaces, Snell's law, total reflection, optical tunneling, evanescent waves, prism; normal and anomalous dispersion, curved interfaces, thin and thick lenses, lens systems, lens grinder formula, aberrations, imaging errors (spherical & chromatic aberration, astigmatism, coma, distortion, correction approaches).
- 4. Optical instruments: characteristics; camera, eye, magnifying glass, microscope, telescope types, bundle beam vs. image construction (electron lenses, electron microscope), confocal microscopy.
- 5. Wave optics: spatial and temporal coherence, Young's double slit experiment, interference pattern (intensity profile), thin films, parallel layers, wedge-shaped layers, phase shift, Newton rings, interferometer (Michelson, Mach-Zender, Fabry-Perot).
- 6. Diffraction in the far field: Fraunhofer diffraction, , single slit, intensity distribution, apertures, resolving power, Rayleigh & Abbé criterion, Fourier optics, optical grating, n-fold slit, intensity distribution, grating spectrometer and resolution, diffraction off atomic lattices, convolution theorem.
- 7. Diffraction in the near field: Fresnel, near-field diffraction at circular apertures/disks, Fresnel zone plate, near-field microscopy, holography, Huygens-Fresnel concept; white light hologram.
- 8. Failure of classical physics I from light wave to photon; black body radiation and Planck's quantum hypothesis; photoelectric effect and Einstein's explanation, Compton effect, light as a particle, wave-particle duality, , quantum structure of nature
- 9. Failure of classical physics II particles as waves: de Broglie's matter wave concept; diffraction of particle waves (Davisson-Germer-experiment, double slit interference).
- 10. Wave mechanics: wave packets, phase and group velocity (recap of 11-EM), uncertainty principle, Nyquist-Shannon theorem, wave function as probability amplitude, probability of residence, measurement process in quantum mechanics (double-slit experiment & which-way information, collapse of the wave function, Schrödinger's cat).
- 11. Mathematical concepts of quantum mechanics: Schrödinger equation as wave equation, conceptual comparison to wave optics, free particle and particles in a potential, time-independent Schrödinger equation as eigenvalue equation, simple examples in 1D (potential step, potential barrier and tunnel effect, box potential and energy quantization, harmonic oscillator), box potential in higher dimensions and degeneracy, formal theory of QM (states, operators, observables).

The students understand the basic principles and contexts of radiation, wave and quantum optics. They understand the theoretical concepts and know the structure and application of important optical instruments and measuring methods. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title	"		Abbreviation	
Atoms	Atoms and Quanta			11-E-A-152-m01	
Modul	e coord	linator		Module offered by	
Manag	ging Dir	ector of the Institute	of Applied Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ. o	ompl. of module(s)	
8	nume	rical grade			
Duration Module level Other		Other prerequisit	Other prerequisites		
1 seme	1 semester undergraduate				
Conto	nt c	•	·		

- 1. Structure of atoms: Experimental evidence for the existence of atoms, size of the atom, charges and masses in the atom, isotopes, internal structure, Rutherford experiment, instability of the "classical" Rutherford atom.
- 2. Quantum mechanical foundations of Atomic Physics (short recap of part A.): Light as particle beam, particles as waves, wave functions and probability of presence, uncertainty relation and stability of atoms, energy quantisation in atoms, Franck-Hertz experiment, atomic spectra, Bohr's model and its limitations, non-relativistic Schrödinger equation.
- 3. The non-relativistic hydrogen atom: Hydrogen and hydrogen-like atoms, central potential and angular momentum in QM, Schrödinger equation of the H-atom, atomic orbitals: Radial and angular wave functions, quantum numbers, energy eigenvalues.
- 4. Atoms in external fields: orbital magnetic dipole moment, gyromagnetic ratio, magentic fields: normal Zeeman effect, electrical fields: Stark effect.
- 5. Fine and hyperfine structure: Electron spin and magnetic spin moment, Stern-Gerlach experiment, Einstein-de Haas effect, glimpse of the Dirac equation (spin as a relativistic phenomenon and existence of antimatter), electron spin resonance (ESR), spin-orbit interaction, relativistic fine structure, Lamb shift (quantum electrodynamics), nuclear spin and hyperfine structure.
- 6. Multi-electron atoms: Helium atom as simplest example, indistinguishability of identical particles, (anti)symmetry with respect to particle exchange, fermions and bosons, relation to spin, Pauli principle, orbital and spin wave function of two-particle systems (spin singlets and triplets), LS- and jj-coupling, Periodic Table of the Elements. Aufbau principles and Hund's rules.
- 7. Light-matter interaction: Time-dependent perturbation theory (Fermi's Golden Rule) and optical transitions, matrix elements and dipole approximation, selection rules and symmetry, line broadening (lifespan, Doppler effect, collision broadening), atomic spectroscopy.
- 8. Laser: Elementary optical processes (absorption, spontaneous and stimulated emission), stimulated emission as light amplification, Einstein's rate equations, thermal equilibrium, non-equilibrium character of a laser: Rate equations, population inversion and laser condition, basic structure of a laser, optical pumping, 2-, 3- and 4-level lasers, examples (ruby laser, He-Ne laser, semiconductor laser).
- 9. Inner-shell excitations and X-ray physics: Generation of x-radiation, bremsstrahlung and characteristic spectrum, X-ray emission for elemental analysis (EDX), X-ray absorption and contrast formation in X-ray images, X-ray photoemission, non-radiative Auger processes, synchrotron radiation, application examples.
- 10. Molecules and chemical bonding: Molecular hydrogen ion (H2+) as simplest example: Rigid molecule approximation and LCAO approach, bonding and anti-bonding molecular orbitals, hydrogen molecule (H2): Molecular orbital vs. Heitler-London approximation, diatomic heteronuclear molecules: covalent vs. ionic bonding, van der Waals bonds and Lennard-Jones potential, (time allowing: conjugated molecules).
- 11. Molecule rotations and vibrations: Born-Oppenheimer approximation, energy levels of the rigid rotator (symmetric and asymmetrical molecules), centrifugal expansion, molecule as (an)harmonic oscillator, Morse potential, normal modes, vibrational-rotational interaction.
- 12. Molecular spectroscopy: Transition matrix elements, vibrational spectroscopy: Infrared spectroscopy and Raman effect, vibrational-rotational transitions: Fortrat diagram, electronic transitions: Franck-Condon principle.

Intended learning outcomes

The students understand the basic principles and contexts of quantum phenomena as well as Atomic and Molecular Physics. They understand the ideas and concepts of quantum theory and Astrophysics and the relevant experiments to observe and measure quantum phenomena. They are able to apply mathematical methods to the

formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

V (4) + Ü (2)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title				Abbreviation	
Introd	uction t	o Solid State Physics			11-E-F-152-m01	
Module coordinator Module offered by						
Manag	Managing Director of the Institute of Applied			Faculty of Physics	Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. c	ompl. of module(s)		
8	nume	rical grade				
Duration Module level		Other prerequisites				
1 seme	1 semester undergraduate					
Contor	Contents					

- 1. The free-electron gas (FEG), free electrons; density of states; Pauli principle; Fermi-Dirac statistics; spec. heat, Sommerfeld coefficient; electrons in fields: Drude-Lorentz-Sommerfeld; electrical and thermal conductivity, Wiedemann-Franz law; Hall effect; limitations of the model
- 2. Crystal structure, periodic lattice; types of lattices; Bravais lattice; Miller indices; simple crystal structures; lattice defects; polycrystals; amorphous solids; group theoretical approaches, the importance of symmetry for electronic properties
- 3. The reciprocal lattice (RG), motivation: Diffraction; Bragg condition; definition; Brillouin zones; diffraction theory: Scattering; Ewald construction; Bragg equation; Laue's equation; structure and form factor
- 4. Structure determination, probes: X-ray, electron, neutron; methods: Laue, Debye-Scherrer, rotating crystal; electron diffraction, LEED
- 5. lattice vibrations (phonons), equations of motion; dispersion; group velocity; diatomic base: optical, acoustic branch; quantisation: Phonon momentum; optical properties in the infrared; dielectric function (Lorentz model); examples of dispersion curves (occ. Kramers-Kronig), measurement methods
- 6. Thermal properties of insulators, Einstein and Debye model; phonon density of states; anharmonicity and thermal expansion; thermal conductivity; Umklapp processes; crystal defects
- 7. Electrons in a periodic potential, Bloch theorem; band structure; approximation of nearly free electrons (NFE); strongly bound electrons (tight binding, LCAO); examples of band structures, Fermi surfaces, spin-orbit interacti-
- 8. Superconductivity, BCS theory, pairing, coupling of bosonic and fermionic modes, band structure, many-particle aspects (quasiparticle concept)

The students understand the basic contexts and principles of Solid-State Physics (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)). They understand the structure of solids and know the experimental methods and theoretical models for the description of phenomena of Solid-State Physics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

__

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title		Abbreviation			
Nuclea	r and E	lementary Particle Ph	ysics		11-E-T-152-m01	
Modul	e coord	inator		Module offered by	y	
Manag	Managing Director of the Institute of Applied Ph			Faculty of Physics	Faculty of Physics and Astronomy	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
6	nume	rical grade				
Duratio	Duration Module level		Other prerequisi	Other prerequisites		
1 seme	ester	undergraduate				
Conter	Contents					

- 1. Overview, historical introduction, history and significance of Nuclear and Particle Physics
- 2. Methods of Nuclear Physics, scattering and spectroscopy, nuclear radius, composition of matter, mass and charge distribution in the nucleus, the discovery of the proton and neutron
- 3. Nuclear models, the mass of the atomic nuclei, droplet model, bonding energy, nuclear shell model
- 4. Structure of cores, angular momentum, spin, parity, mag. and electr. moments, collective excitation forms, spin-orbit interaction
- 5. Radioactivity and spectroscopy, radioactive decay, natural and civilisational sources of ionising radiation
- 6. Nuclear energy, nuclear fission, nuclear reactors, nuclear fusion, star power, star development, formation of the chemical elements of hydrogen
- 7. Radiation and matter, interaction of radiation and matter, Bethe-Bloch formula, photoelectric effect, pair production
- 8. Instruments, accelerators and detectors
- 9. Electromagnetic interaction, differential cross section, virtual photons, Feynman graphs, exchange interaction
- 10. Strong interaction, quarks, gluons, colour and degree of freedom, deep-inelastic electron-proton scattering, confinement, asymptotic freedom, particle zoo, isospin, strangeness, SU (3) symmetry, antiprotons
- 11. Weak interaction, cracked mirror symmetries, Wu experiment, charge conjugation, time reversal, CP invariance, exchange particles, W and Z, neutrinos, neutrino vibrations
- 12. Standard model, three families of leptons and quarks, quark-lepton symmetry, Higgs boson, free parameters

The students understand the basic connections between fundamental Nuclear and Elementary Particle Physics. They have an overview of the experimental observations of Particle Physics and the theoretical models which describe them.

Courses (type, number of weekly contact hours, language - if other than German)

V (3) + Ü (1)

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

. . .

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 349 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	ĺ

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Module title Abbreviation						
Theore	tical M	echanics			11-T-M-152-m01	
Module	coord	linator		Module offered by		
Managing Director of the Institute of Theoretical Physics and Astrophysics				Faculty of Physics and Astronomy		
ECTS	CTS Method of grading Only after succ. o			ompl. of module(s)		
8	nume	rical grade				
Duratio	n	Module level	Other prerequisite	Other prerequisites		
1 semester undergraduate		undergraduate	13 exercise sheets approx. 50% of exe	per semester). Stude ercises will qualify for	completion of exercises (approx. nts who successfully completed admission to assessment. The espective details at the beginning	

- 1. Newton's formulation: Inertial systems, Newton's laws of motion, equations of motion; one-dimensional motion, energy conservation; Harmonic oscillator; Movement in space of intuition, conservative forces;
- 2. Lagrangian formulation: Variational principles, Euler-Lagrange equation; constraints; coordinate transformations, mechanical gauge transformation; symmetries, Noether theorem, cyclic coordinates; accelerated reference systems and apparent forces;
- 3. Hamiltonian formulation: Legendre transformation, phase space; Hamilton function, canonical equations; Poisson brackets, canonical transformations; generator of symmetries, conservation laws; minimal coupling; Liouville theorem; Hamilton-Jacobi formulation [optional];
- 4. Applications: Central-force problems; mechanical similarity, Virial theorem; minor vibrations; particles in an electromagnetic field; rigid bodies, torque and inertia tensor, centrifugal and Euler equations [optional]; scattering, cross section [optional];
- 5. Relativistic dynamics: Lorentz Transformation; Minkowski space; equations of motion; 6. Non-linear dynamics: Stability theory; KAM theory [optional]; deterministic chaos [optional]

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations. They are able to independently apply the acquired mathematical methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Module	title				Abbreviation	
Quantu	ım Med	chanics			11-T-Q-152-m01	
Module	coord	linator		Module offered by		
Managing Director of the Institute of Theoretical Phys and Astrophysics				Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)		
8	nume	rical grade				
Duratio	n	Module level	Other prerequisite	Other prerequisites		
1 semester undergraduate		undergraduate	13 exercise sheets approx. 50% of exelecturer will inform	Admission prerequisite to assessment: completion of exercises (approx. 13 exercise sheets per semester). Students who successfully completed approx. 50% of exercises will qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the semester.		

- 1. History and basics: Limits of classical physics; fundamental historical experiments; from classical physics to quantum mechanics (QM);
- 2. Wave function and Schrödinger equation (SG): SG for free particles; superposition; probability distribution for pulse measurement; correspondence principles; postulates of QM; Ehrenfest theorem; continuity equation; stationary solutions of SG
- 3. Formalisation of QM: Eigenvalue equations; Physical significance of the eigenvalues of an operator; state space and Dirac notation; representations in state space; tensor products of state spaces;
- 4. Postulates of QM (and their interpretation): State; measurement; chronological development; energy-time uncertainty;
- 5. One-Dimensional problems: The harmonic oscillator; potential level; potential barrier; potential well; symmetry properties;
- 6. Spin-1/2 systems I: Theoretical description in Dirac notation; Spin 1/2 in the homogeneous magnetic field; two-level systems (qubits);
- 7. Angular momentum: Commutation and rotations; eigenvalues of the angular momentum operators (abstract); solution of the eigenvalue equation in polar coordinates (concrete);
- 8. Central potential hydrogen atom: Bonding states in 3D; Coulomb potential;
- 9. Motion in an electromagnetic field: Hamiltonian; Normal Zeeman effect; canonical and kinetic momentum; Gauge transformation; Aharonov-Bohm effect; Schrödinger, Heisenberg and interaction representation; motion of a free electron in a magnetic field;
- 10. Spin-1/2 systems II: Formulation using angular momentum algebra;
- 11. Addition of angular momenta:
- 12. Approximation methods: Stationary perturbation theory (with examples); variational method; WKB method; time-dependent perturbation theory;
- 13. Atoms with several electrons: Identical particles; Helium atom; Hartree and Hartree-Fock approximation; atomic structure and Hund's rules

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of quantum theory. They are able to apply the acquired mathematical methods and techniques to simple problems of quantum theory and to interpret the results. They have especially acquired knowledge of advanced mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

__

Additional information

Registration: If a student registers for the exercises and obtains the qualification for admission to assessment, this will be considered a declaration of will to seek admission to assessment pursuant to Section 20 Subsection 3 Sentence 4 ASPO (general academic and examination regulations). If the module coordinators subsequently find that the student has obtained the qualification for admission to assessment, they will put the student's registration for assessment into effect. Only those students that meet the respective prerequisites can successfully register for an assessment. Students who did not register for an assessment or whose registration for an assessment was not put into effect will not be admitted to the respective assessment. If a student takes an assessment to which he/she has not been admitted, the grade achieved in this assessment will not be considered.

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title			Abbreviation		
Statist	ical Ph	ysics			11-T-S-152-m01	
Modul	e coord	linator		Module offered by		
Managing Director of the Institute of The and Astrophysics			Theoretical Physics	Faculty of Physics a	and Astronomy	
ECTS	ECTS Method of grading Only after su		Only after succ. co	mpl. of module(s)		
8	nume	rical grade				
Duration Module level		Other prerequisites				
1 semester undergraduate						
Conter	Contents					

- o. Principles of statistics; elements of statistics (central limit theorem and statistics of extremes); Micro- and macro-states; Probability space (conditional probability, statistical independence);
- 1. Statistical Physics: Entropy and probability theory; entropy in classical physics; thermodynamic equilibrium in closed and open systems (with energy and / or particle exchange);
- 2. Ideal systems: Spin systems; linear oscillators; ideal gas;
- 3. Statistical Physics and thermodynamics: The 1st law; quasi-static processes; entropy and temperature; generalised forces; the second and third law; reversibility; transition from Statistical Physics to thermodynamics;
- 4. Thermodynamics: Thermodynamic fundamentals relationship; thermodynamic potentials; changes of state; thermodynamic machines (Carnot engine and efficiency); chemical potential;
- 5. Ideal Systems II, quantum statistics: Systems of identical particles; ideal Fermi gas; ideal Bose gas and Bose-Einstein condensation; grids and normal modes: Phonons;
- 6. Systems of interacting particles: Approximation methods (mean-field theory, Sommerfeld expansion); computer simulation (Monte Carlo method); interacting phonons (Debye approximation); Ising models (particularities in 1 and 2 dimensions); Yang-Lee-theorems; Van der Waals equation for real interacting gases;
- 7. Critical phenomena: Scaling laws, critical slowing down, fast variable as Bad (electron-phonon interaction and BCS superconductivity); magnetism (quantum criticality at low temperatures, quantum phase transitions at T = o); problems of the thermodynamic limit

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of statistical mechanics and thermodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: Ü: German or English

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

240 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 355 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Module	e title				Abbreviation
Electro	dynam	ics			11-T-E-152-m01
Module	coord	inator		Module offered by	
_	Managing Director of the Institute of Theoretical Physics and Astrophysics			Faculty of Physics and Astronomy	
ECTS	Method of grading Only after succ.		Only after succ. con	npl. of module(s)	
8	numerical grade				
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				
C	Combants				

- o. Mathematical tools: Gradient, divergence, curl; curve, surface, volume integrals; Stokes and Gaussian sentence; Delta function; Fourier transform; full functional systems; solving PDEs;
- 1. Maxwell equations;
- 2. Electrostatics: Coulomb's law; electrostatic potential; charged interface; electrostatic field energy (capacitor); multipole expansion; Boundary value problems; numerical solution; Image charges; Green's functions; development according to orthogonal functions;
- 3. Magnetostatics: Current density; continuity equation; vector potential; Biot-Savart law; magnetic moment; analogies to electrostatics;
- 4. Maxwell equations in matter: Electrical and magnetic susceptibility; interfaces;
- 5. Dynamics of electromagnetic fields: Faraday induction; RCL-circuits; field energy and pulse; potentials; plane waves; wave packets; plane waves in matter; cavity resonators and wave guides; inhomogeneous wave equation; temporally oscillating sources and dipole radiation; accelerated point charges;
- 6. Special Theory of Relativity: Lorentz transform; simultaneity; length contraction and time dilation; light cone; effect, energy and momentum; co- and contra-variant tensors; covariant classical mechanics;
- 7. Covariant electrodynamics: Field strength tensor and Maxwell's equations; transformation of the fields; Doppler effect; Lorentz force

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of theoretical electrodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(4) + \ddot{U}(2)$

Module taught in: Ü: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Workload

240 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 357 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2015)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major, 1 minor) Physics (Minor, 2020)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Mathematics (2023)

exchange program Physics (2023)

Focus Economics

(30 ECTS credits)

Module title	Abbreviation
Organization	12-EBWL-G-212-m01

Module coordinatorModule offered byholder of the Chair for Human Resource Management and
OrganisationFaculty of Management and Economics

ECTS	Method of grading		Only after succ. compl. of module(s)		
5	numerical grade				
Duratio	n	Module level	Other prerequisites		
1 seme	ster	undergraduate			

Contents

The lecture Organisation covers the basic methodological, empirical, and institutional concepts of management that are necessary for the further study of the subject. More specifically, it gives answers to the question why there are organisations. In addition, different goals, strategies, and structures of enterpreises as well as their economic and societal environment are discussed. Finally, selected empirical findings from organisation research are presented together with the basic tool kit for empirical methods and approaches.

Intended learning outcomes

Students should be able to understand, discuss and apply basic theories, econometric techniques as well as empirical findings in organisation science.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Master's degree (1 major) Media Entertainment (2022)

Master's degree (1 major) Psychology of digital media (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title	Abbreviation
Accounting	12-ExtUR-G-212-m01

Module coordinatorModule offered byholder of the Chair of Business Management and Business
TaxationFaculty of Management and Economics

ECTS Method of grading		od of grading	Only after succ. compl. of module(s)		
5	numerical grade				
Duration Module level		Module level	Other prerequisites		
1 seme	ster	undergraduate			

Contents

This course offers an introduction to the fundamentals of financial accounting, including the technique of double-entry book-keeping as well as the fundamentals of recognition, valuation and presentation of assets, liabilities and equity according to German commercial law.

Intended learning outcomes

Students acquire a basic understanding of the fundamentals of financial accounting. They are able to arrange, reproduce and apply this knowledge, i.e. they are able to solve simple accounting problems.

 $\textbf{Courses} \ (\textbf{type}, \textbf{number of weekly contact hours}, \textbf{language} - \textbf{if other than German})$

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023) Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title	Abbreviation	
Managerial Accounting		12-IntUR-G-212-m01
		•

 Module coordinator
 Module offered by

 holder of the Chair of Business Management, Controlling
 Faculty of Management and Economics

holder of the Chair of Business Management, Controlling and Accounting

aa., 10		· ວ			
ECTS Method of grading		Only after succ. com	pl. of module(s)		
5	5 numerical grade				
Duration Module level Other prerequisites					
1 seme	ster	undergraduate			

Contents

Content:

This course offers an introduction to aims and methods of managerial accounting (cost accounting).

Outline of syllabus:

- 1. Managerial accounting and financial accounting
- 2. Managerial accounting: basic terms
- 3. Different types of costs
- 4. Cost centre accounting based on total costs
- 5. Job costing based on total costs
- 6. Cost centre accounting and job costing based on direct/variable costs
- 7. Budgeting and cost-variance analysis
- 8. Cost-volume-profit analysis
- 9. Cost information and operating decisions

Reading:

Coenenberg/Fischer/Günther: Kostenrechnung und Kostenanalyse, Stuttgart. Friedl/Hofmann/Pedell: Kostenrechnung. Eine entscheidungsorientierte Einführung.

(most recent editions)

Intended learning outcomes

After completing the course "Management Accounting and Control", the students will be able to

- (i) set out the responsibilities of the company's internal accounting and control;
- (ii) define the central concepts of internal enterprise computing restriction and control and assign case studies the terms;
- (iii) apply the basic methods of internal corporate accounting and control on a full and cost base to idealized case studies of medium difficulty that calculate relevant costs and benefits and take on this basis a reasoned decision.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title	Abbreviation
Microeconomics 1	12-Mik1-G-212-m01

 Module coordinator
 Module offered by

 holder of the Chair for Economics, Contract Theory and Information Economics
 Faculty of Management and Economics

ECTS	ECTS Method of grading		Only after succ. compl. of module(s)
5	numerical grade		
Duratio	n	Module level	Other prerequisites
1 seme	ster	undergraduate	

Contents

The lecture covers the following topics

Theory of the household:

- 1. Utility maximisation under constraints
- 2. Comparative statics
- 3. Income and substitution effects
- 4. Labour supply
- 5. Intertemporal consumption / savings decisions

Theory of the firm:

- 6. Production functions (technology)
- 7. Profit maximisation
- 8. Long run versus short run cost minimisation
- 9. Supply of goods

Intended learning outcomes

Students are systematically trained in microeconomic methods relevant in household and firm theory. Accordingly, they will know how to solve optimization problems under constraints. These scientific methods will serve as useful in many fields of specialization in economics and business administration. In particular, studends know analytically how to analyze the impact of changes in the economic environment, e.g., wages, interest rates, income on individual decision making.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 366 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Module title				Abbreviation	
Microeconomics 2				12-Mik2-G-212-m01	
Module coordinator				Module offered by	
holder	holder of the Chair of Industrial Economics Faculty of Manager			Faculty of Manager	nent and Economics
ECTS	Method of grading Only after succ. cor		npl. of module(s)		
5	nume	rical grade			
Duration Module level Other prerequisites					
1 semester undergraduate					
Conten	Contents				

Outline of syllabus:

- 1. Cost minimisation
- 2. Profit maximisation and the supply function
- 3. Short-run market equilibrium
- 4. Long-run market equilibrium
- 5. Government interventions
- 6. Monopoly
- 7. Pricing strategies with market power
- 8. Introduction to game theory
- 9. Strategic interaction and oligopoly

Intended learning outcomes

The aim of the course is to understand how markets work. We will investigate the behavior of a company in different market structures; namely perfectly competitive markets, monopoly markets and all forms in between, the so-called oligopoly markets. Ultimately, we are interested in whether the market results from a social point of view is desirable. Using our models, we will also try to analyze the consequences of different government interventions. The knowledge that students gain in this course will be in their future course of studies of benefits to them. In almost all business and economics lectures markets play a role. It also discussed in detail how economic actors make their decisions. Students will thus learn the important building blocks of economic thought. This knowledge will also be useful in the workplace and even in their private lives.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 368 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title			Abbreviation		
Macroeconomics 1			12-Mak1-G-212-mo1		
Module coordinator Module o				Module offered by	
holder of the Chair of International Economics Faculty of Management and Economics			nent and Economics		
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisites					
1 semester undergraduate					
Contents					

Description:

This module covers basic macroeconomic relationships, the declaration of employment, production, interest, current and capital account, nominal and real exchange rate, prices and inflation - in the long run (with flexible wages and prices) and in the short term (with fixed wages and prices). The course will familiarise students with concepts which are of central importance in a globalised environment (e. g. interest rate arbitrage, foreign exchange risk, purchasing power parity). The explanations will be applied to current issues (e. g. current account balances in the global economy; questions related to the European monetary union and the global financial crisis).

Outline of syllabus:

- 1. Macroeconomic issues and characteristics
 - · Issues of macroeconomics
 - The measurement of economic activity
- 2. Long-term relationships
 - The classic long-term model of the closed economy
 - Money and Inflation
 - The classic long-term model of a small open economy
 - Unemployment
- 3. Short and medium-term relationships
 - Fluctuations of economic activity: an introduction
 - The IS-LM model of a closed economy
 - The IS-LM model of an open economy
 - Aggregate supply and Phillips curve
 - Conclusion and outlook

Reading:

The latest editions of the following textbooks:

N. Gregory Mankiw: Macroeconomics [students are recommended to read the original English edition; they may also read the German translation]

Olivier Blanchard and David H. Johnson, Macroeconomics Prentice Hall; [a German-language edition of the book by Oliver Blanchard and Gerhard Illing is available from Pearson Studium].

Michael Burda and Charles Wyplosz: Macroeconomics. A European text.

To illustrate the lecture, case studies in particular will be developed in which more current sources are used.

Intended learning outcomes

This expertise enables the students to penetrate economically-intuitively and analytically macroeconomic interactions and problems in the course of advancing globalization and to deal with these arguments. Students learn to interpret on a scientific basis the impact of macroeconomic developments in individual economic actors (businesses, households, the state).

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 370 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Modul	e title				Abbreviation
Macroeconomics 2				12-Mak2-G-212-m01	
Module coordinator Module offered by					
holder	of the	Chair of Public Finance	Faculty of Management and Economics		
ECTS	ECTS Method of grading Only after succ. con		npl. of module(s)		
5	nume	rical grade			
Duratio	on	Module level	vel Other prerequisites		
1 semester undergraduate					
Conter	nts				

Description:

The lecture provides an introduction to long run or dynamic issues of macroeconomic theory and policy.

Contents:

- 1. Phillips curve and dynamic model
- 2. Growth theory and policy
- 3. Microeconomic foundations of macroeconomics
- 4. Macroeconomic policy

Lecture notes to be provided by Chair.

Intended learning outcomes

After completing the course "Makroökonomie 2" students are familiar with the most important concepts of growth theory, they know the microeconomic foundations of modern macroeconomic theory and understand the intertemporal budget constraint of the government. Therefore they are able to discuss the growth and distributional consequences of policy reforms by applying simple economic models.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Module title	Abbreviation
Supply, Production and Operations Management	12-BPL-G-212-m01

Module coordinator

Module offered by

holder of the Chair of Business Management and Industrial Faculty of Management and Economics Management

ECTS	ECTS Method of grading		Only after succ. compl. of module(s)
5	numerical grade		-
Duratio	Duration Module level		Other prerequisites
1 seme	ster	undergraduate	-

Contents

This course will provide students with an overview of fundamental processes in procurement, production and logistics and the related corporate functions as well as a model-based introduction to related planning procedures.

Intended learning outcomes

The students will be able to describe and discuss the objectives and major processes in the domains of corporate procurement, production and logistics as well as their interdependencies. Furthermore, they are capable of developing and applying basic planning models in these fields.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours, language} - \textbf{if other than German})$

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)
Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)
Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title	Abbreviation
Investment and Finance	12-I&F-G-212-m01

Module coordinator	Module offered by
holder of the Chair of Business Management and Corporate	Faculty of Management and Economics
Finance	

ECTS	TS Method of grading		Only after succ. compl. of module(s)
5	numerical grade		
Duratio	n	Module level	Other prerequisites
1 seme	ster	undergraduate	

Contents

Content:

This course offers an introduction to principles of financial mathematics, several methods of capital budgeting and principles of financial economics.

Outline of syllabus:

- 1. Principles of financial mathematics
- 2. Fundamental concepts
- 3. Problems of investment and finance in one commodity world under certainty
- 4. Problems of investment and finance in one commodity world under uncertainty
- 5. Problems of investment and finance in many commodities world under uncertainty
- 6. Capital market and corporate financing in Germany

Intended learning outcomes

After completing the course "Principles of Investments and Finance", the students will be able

- (i) to understand the fundamentals in financial mathematics and solve several problems, e.g. via the PV approach;
- (ii) to address the central problems in intertemporal allocation given different capital market scenarios;
- (iii) to budget and calculate the optimal useful life given static and dynamic investment approaches under the consideration of several other investment opportunities and the capital market scenario, especially the influence of taxes.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 376 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	ĺ

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title				Abbreviation	
Marketing					12-Mark-G-212-m01
Module coordinator				Module offered by	
holder of the Chair of Business Administration and Mark		nistration and Marke-	Faculty of Management and Economics		
ECTS	Meth	od of grading	Only after succ. con	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequisit		Other prerequisites			
1 semester undergraduate					
Contents					

Contents

Description

In this module, students will acquire the theoretical foundations of market-oriented management.

With the stakeholder approach as a starting point, the basic design of market-oriented management will be explained and exemplified in the 5 classical steps: situation analysis, objectives, strategies, tools and controlling. The course will focus not only on the behavioural approaches of consumer behaviour but also on industrial purchasing behaviour. A case study introducing students to the fundamental principles of market research based on a conjoint analysis will provide students with deeper insights into the topic.

Outline of syllabus:

- 1. Marketing, entrepreneurship and business management
- 2. Explanations of consumer behaviour
- 3. Fundamentals of market research
- 4. Strategic marketing; marketing tools
- 5. Corporate social responsibility versus creating shared value

Reading:

Foscht, T. / Swoboda, B.: Käuferverhalten: Grundlagen -- Perspektiven -- Anwendungen, 4th revised and exp. ed., Wiesbaden 2011.

Homburg, Ch.: Grundlagen des Marketingmanagements: Einführung in Strategie, Instrumente, Umsetzung und Unternehmensführung, 4th revised and exp. ed., Wiesbaden 2012.

Homburg, Ch.: Grundlagen des Marketingmanagements: Einführung in Strategie, Instrumente, Umsetzung und Unternehmensführung, 3rd ed., Wiesbaden, 2012a.

Kroeber-Riel, W. /Weinberg, P.: Konsumentenverhalten, 9th ed., Munich 2009.

Meffert, H. / Burman, Ch / Kirchgeorg, M.: Marketing -- Grundlagen marktorientierter Unternehmensführung: Konzepte -- Instrumente -- Praxisbeispiele, 11th revised and exp. ed., Wiesbaden 2012.

Meffert, H. / Burman, Ch / Becker, Ch.: Internationales Marketing-Management -- Ein markenorientierter Ansatz, 4th ed., Stuttgart 2010.

Meyer, M.: Ökonomische Organisation der Industrie: Netzwerkarrangements zwischen Markt und Unternehmung, Wiesbaden 1995.

Porter, M. E.: Wettbewerbsvorteile -- Spitzenleistungen erreichen und behaupten, 8th ed., Campus Frankfurt / New York 2014. (Original: Porter, M.: Competitive Advantage, New York 1985.)

Simon, H. / Fassnacht, M.: Preismanagement, Strategie -- Analyse -- Entscheidung -- Umsetzung, 3rd ed., Wiesbaden 2009.

Intended learning outcomes

The students have a basic understanding of business management and are able to classify the knowledge systematically. In addition, they can use the acquired knowledge solve and identify the conventional problem fields of business management.

Courses (type, number of weekly contact hours, language — if other than German)

V(2) + T(2)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 378 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: summer semester

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title				Abbreviation	
Public Policy					12-WiPo-G-212-m01
Module coordinator				Module offered by	
holder of the Chair of Labour Economics			ics	Faculty of Management and Economics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	nume	rical grade			
Duration Module level O		Other prerequisites			
1 semester undergraduate					
Contents					

This course provides an introduction into public policy. Public policy studies the role of the government in the economy. It basically answers four questions:

- When should the government intervene?
- How might the government intervene?
- What is the effect of those interventions?
- Why do governments choose to intervene in the way that they do?

The lecture will cover the following topics:

- 1. Introduction into public economics/finance
- 2. Theoretical toolkit
- 3. Empirical toolkit
- 4. Public goods
- 5. Cost Benefit Analysis

Intended learning outcomes

The aim of the course is to provide students with and understanding of the public policy making process of the government and to endow them with the necessary skills to judge about and/or design public policies. Students will learn the core theoretical models of public economics as well as modern empirical methods of public finance. The focus will not lie on the theoretical details, but rather on the beauty of the different methods to provide answers to public policy questions.

Courses (type, number of weekly contact hours, language — if other than German)

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 minutes) or
- b) portfolio (approx. 20 pages)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 380 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Module title					Abbreviation
Business Informatics					12-EWiinf-G-212-m01
Module coordinator				Module offered by	
holder of the Chair of Business Management and Business Information Systems		gement and Business	Faculty of Management and Economics		
ECTS	Meth	od of grading	Only after succ. con	ompl. of module(s)	
5	5 numerical grade				
Duration Module level Other prerequisite		Other prerequisites			
1 semester undergraduate					
Conten	Contents				

This course provides a comprehensive overview of the theoretical and practical aspects of information systems. The content ranges from the history of information systems and business software to business models, technical requirements and process modelling. In addition to the lectures, tutorials with practical exercises in HTML, CSS, process mining and BPMN support a deeper understanding and application of the knowledge learnt.

Outline of syllabus:

- 1. overview and technological basics of WI
- 2. hardware, computer networks and the internet
- 3. databases and blockchain
- 4. business models, company structure and organisation
- 5. connection between business administration and information systems
- 6. business software and process mining
- 7. software development
- 8. future technologies and current research

Reading:

Thome: Grundzüge der Wirtschaftsinformatik.

Intended learning outcomes

The "Business Informatics" module aims to achieve the following learning outcomes:

- 1. Apply fundamentals: after completing the module, students will have an understanding of the basic concepts and terms of information systems and will be able to explain lecture elements addressed, such as hardware components, various database types or blockchain technology. Thanks to the practical exercises, they are able to implement simple applications and apply what they have learnt in practice. The students were also able to gain an overview of the various fields of business informatics.
- 2. Analysing business processes and system landscapes: After completing the module, students will be able to analyse business models and process modelling and demonstrate their skills by creating BPMN diagrams in practical exercises. They know the basics of software development and are familiar with ERP systems.
- 3. Conception of business solutions: Students are able to use learned knowledge about business software, structural and process organisation and new technologies to develop realistic solution strategies and business models for operational challenges. They have knowledge of the integration of information systems into operational processes.
- 4. Evaluating technology trends: Participants will be able to critically evaluate current and future trends in business informatics, including artificial intelligence and Industry 4.0, and contribute their assessments to discussions.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

V (2) + T (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)
Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Module title			Abbreviation		
E-Business					12-Ebus-F-212-m01
Module coordinator				Module offered by	
holder of the Chair of Information Systems Engineering			stems Engineering	Faculty of Management and Economics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	nume	rical grade			
Duration Module level Other prerequi		Other prerequisite	s		
1 semester undergraduate					
Conte	Contents				

E-business is a comprehensive, digital processing of business transactions between private and public enterprises as well as institutions and their clients on global public and private networks such as the internet. Precisely because euphoria for e-business has waned considerably in recent years, a lot of emphasis is now being placed on introducing such solutions in a user-oriented way. This lecture will first discuss the supporting economic theories and will then describe and analyse individual solutions such as e-procurement, e-shop, e-marketplace and e-community in detail.

Intended learning outcomes

The module provides students with knowledge about:

- (i) E-Procurement
- (ii) E-Shop
- (iii) E-Marketplace
- (iv) E-Community

Courses (type, number of weekly contact hours, language - if other than German)

V(2) + T(2)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination of fered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language})$ module is creditable for bonus)

- a) written examination (approx. 60 minutes) or
- b) term paper (approx. 15 pages) or
- c) term paper (approx. 10 pages) and presentation (approx. 10 minutes); (weighted 2:1) or
- d) oral examination in groups of up to 3 candidates (approx. 10 minutes per candidate)

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

150 h

Teaching cycle

Teaching cycle: summer semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Master's degree (1 major) China Business and Economics (2021)

Bachelor's degree (1 major) Business Information Systems (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Business Management and Economics (2021)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2022)

Master's degree (1 major) Media Entertainment (2022)

Master's degree (1 major) Psychology of digital media (2022)

exchange program Business Management and Economics (2022)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Business Information Systems (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Business Management and Economics (2023)

Bachelor's degree (1 major, 1 minor) Business Management and Economics (Minor, 2023)

Bachelor's degree (1 major) Artificial Intelligence and Data Science (2024)

Key Skills Area

(20 ECTS credits)

General Key Skills

(5 ECTS credits)

In addition to the modules listed below, students may also take modules offered by JMU as part of the pool of general transferable skills (ASQ).

General Key Skills (subject-specific)

(ECTS credits)

Module title					Abbreviation
Exercise tutor or proof-reading in Mathematics					10-M-TuKo-152-m01
Module coordinator				Module offered by	
Dean o	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	ethod of grading Only after suc		ompl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester		undergraduate			
Contonto					

Contents

Tutoring or grading homework for one of the basic courses in the Bachelor's or teaching degree programmes under supervision of the respective lecturer or exercise supervisor.

Intended learning outcomes

The student is able to support the acquisition of mathematical skills and knowledge. He/She helps to identify mistakes in mathematical proof exercises and to find possible solutions.

Courses (type, number of weekly contact hours, language - if other than German)

T (o)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment of tutoring activities or correcting work by supervising lecturers or exercise supervisors (1 to 2 teaching units or approx. 5 pieces of correcting work)

Allocation of places

--

Additional information

Please direct application to teaching coordinator Mathematics, he/she will select participants.

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023) Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (1 major) Economathematics (2024) Bachelor's degree (1 major) Economathematics (2025)

Module title					Abbreviation	
E-Learning and Blended Learning Mathematics 1					10-M-VHB1-152-m01	
Module coordinator				Module offered by		
Dean of Studies Mathematik (Mathema			ics) Institute of Mathematics		natics	
ECTS	CTS Method of grading		Only after succ. compl. of module(s)			
2	(not)	successfully completed				
Duratio	n	Module level	Other prerequisites			
1 seme	ster	undergraduate				
Conten	ts					
Becoming familiar with and reflecting techniques in e-learning and blended learning in mathematics.						
Intended learning outcomes						
The student is able to employ basic methods of e-learning and blended learning in mathematics-						
Courses (type, number of weekly contact hours, language — if other than German)						
Ü (2) Course type: eLearning, mostly Virtuelle Hochschule Bayern (vhb)						
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)						
project (web-based, 15 to 20 hours) Assessment offered: Once a year, winter semester						
Allocation of places						
Additional information						

Workload

60 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Economathematics (2025)

	le title	Abbreviation			
E-Lear	ning and Blended Learning	10-M-VHB2-152-m01			
Modul	le coordinator		Module offer	Module offered by	
Dean c	of Studies Mathematik (Ma	thematics)	Institute of N	Institute of Mathematics	
ECTS	Method of grading	Only after su	Only after succ. compl. of module(s)		
2	(not) successfully comple	eted			
Duratio	on Module level	Other prereq	Other prerequisites		
1 seme	ester undergraduate				
Conter	nts				
Becom	ning familiar with and reflec	cting techniques in	e-learning and blende	ed learning in mathematics.	
Intend	led learning outcomes				
The student is able to employ advanced methods of e-learning and blended learning in mathematics-					
Courses (type, number of weekly contact hours, language — if other than German)					
Ü (2) Course	e type: eLearning, mostly V	irtuelle Hochschule	Bayern (vhb)		
	od of assessment (type, scope, is creditable for bonus)	, language — if other than	German, examination offere	${\sf d}$ — if not every semester, information on whethe	
	t (web-based, 15 to 20 hou sment offered: Once a year	=			
	tion of places				
Alloca	cion or places				
Alloca	tion of praces				
	onal information				
	-				
	onal information				
 Additio	onal information				
 Addition Worklo 60 h	onal information				
 Addition Worklo	onal information oad				

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Economathematics (2025)

Subject-specific Key Skills

(15 ECTS credits)

Subject-specific Key Skills, Compulsory Courses

(11 ECTS credits)

Modul	e title				Abbreviation
Computational Mathematics					10-M-COM-152-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)				Institute of Mathematics	
ECTS	Meth	Method of grading Only after succ		ompl. of module(s)	
4	(not)	successfully completed	ed		
Duration		Module level	Other prerequisites		
1 semester		undergraduate			

Contents

Introduction to modern mathematical software for symbolic computation (e. g. Mathematica or Maple) and numerical computation (e. g. Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA-G and 10-M-LNA-G). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes

The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(1) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project in the form of programming exercises (approx. 20 to 25 hours)

Language of assessment: German and/or English Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) Economathematics (2025)

Modul	e title			Abbreviation
Programming course for students of Mathematics and other subjects			10-M-PRG-152-m01	
Module coordinator Module offered by			Module offered by	
Dean o	of Studies Mathematik (Mathema	atics)	Institute of Mathem	natics
ECTS	Method of grading	Only after succ. compl. of module(s)		
3	(not) successfully completed			

Other prerequisites

1 semester Contents

Duration

Basics of a modern programming language (e. g. C).

Module level

undergraduate

Intended learning outcomes

The student is able to work independently on small programming exercises and standard programming problems in mathematics.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

P (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project in the form of programming exercises (approx. 20 to 25 hours)

Language of assessment: German and/or English Assessment offered: Once a year, summer semester

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Functional Materials (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Physics (2020)

Bachelor's degree (1 major) Nanostructure Technology (2020)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Functional Materials (2021)

Bachelor's degree (1 major) Quantum Technology (2021)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Functional Materials (2025)

Bachelor's degree (1 major) Economathematics (2025)

Modul	e title				Abbreviation
Basic I	Notions	and Methods of Mathen	natical Reasoning		10-M-GBM-152-m01
Modul	Module coordinator			Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Metho	od of grading	Only after succ. con	npl. of module(s)	
2	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 semester undergraduate					
Contor	at c	-	•		

Introduction to the basic notions and proof techniques in mathematics: approach to sets, formal logic and maps.

Intended learning outcomes

The student gets acquainted with the basic working techniques which are prerequisites for the further courses in the Bachelor's degree study programme.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(1) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project (10 to 15 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

Additional information on module duration: block taught prior to the beginning of the lecture period.

Workload

60 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Grundschule Mathematics (2015)

First state examination for the teaching degree Realschule Mathematics (2015)

First state examination for the teaching degree Mittelschule Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

First state examination for the teaching degree Mittelschule Mathematics (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Economathematics (2025)

Modul	e title				Abbreviation
Reaso	ning an	d Writing in Mathematic	s		10-M-ASM-152-m01
Modul	Module coordinator			Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
2	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 seme	1 semester undergraduate				
	_				

Introduction to fundamental methods of thinking and proving, basic techniques in mathematics as well as mathematical writing; insight into examples of abstracts concepts in mathematics; approach to axiomatic and deduction.

Intended learning outcomes

The student is acquainted with the basic proof methods and techniques in mathematics. He/She is able to perform easy mathematical arguments independently and present them adequately and reasonably in written and oral form.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(1) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

project (10 to 20 pages)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

60 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Mathematical Physics (2024) Bachelor's degree (1 major) Economathematics (2024) Bachelor's degree (1 major) Economathematics (2025)

Subject-specific Key Skills, Compulsory Electives

(4 ECTS credits)

Module	title				Abbreviation
Supplementary Seminar Mathematics				10-M-SEM2-152-m01	
Module	coord	inator		Module offered by	
Dean of	f Studi	es Mathematik (Mathema	atics)	Institute of Mathem	natics
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
4	(not)	successfully completed			
Duratio	n	Module level	Other prerequisites		
1 seme	ster	undergraduate			
Conten	ts				
A selec	ted top	oic in mathematics.			
Intende	ed lear	ning outcomes			
of a giv	en top	•	•	· · · · · · · · · · · · · · · · · · ·	sters elaboration and structuring /She is able to participate active
Course	S (type, r	number of weekly contact hours,	language — if other than Ge	rman)	
S (2)					
		sessment (type, scope, langua ble for bonus)	ge — if other than German,	examination offered — if no	ot every semester, information on whether
		o minutes) Issessment: German and	or English		
Allocat	ion of	places			

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Mathematical Data Science (2022)

Bachelor's degree (1 major) Mathematics (2023)

Modul	e title		Abbreviation			
Introduction to Stochastic Financial Mathematics					10-M-EFM-152-m01	
Modul	e coord	linator		Module offered by		
Dean	Dean of Studies Mathematik (Mathematics)			Institute of Mather	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ.	compl. of module(s)		
9	nume	rical grade				
Duration Module level (Other prerequisi	tes			
1 semester undergraduate						
Contor	ntc	•				

Arbitrage and no-arbitrage, annuities and bonds, valuation of deterministic cash flows, actuarial present value, term structures and yield curves, forwards, payout profiles of options and other derivates, fundamental theorem of asset pricing in the stochastic one-period model, risk neutral price measures, replication and completeness, stochastic multi-period models, valuation of European options in the binomial model, Black-Scholes formula.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of stochastic financial mathematics, can apply them to practical problems and knows about typical fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Economathematics (2017)

Bachelor's degree (1 major) Economathematics (2021)

Bachelor's degree (1 major) Economathematics (2022)

Bachelor's degree (1 major) Mathematics (2023)

Bachelor's degree (1 major) Economathematics (2023)

Bachelor's degree (1 major) Economathematics (2024)

Bachelor's degree (1 major) Economathematics (2025)

Modul	e title				Abbreviation
Introduction to Topology					10-M-TOP-152-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathema			atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites	3		
1 semester undergraduate					
Cantar		-	-		

Basics in set-theoretic topology, topological spaces and continuity, separation properties, connectivity, examples and constructions of topological spaces, quotients, convergence of sequences and nets, different notions of compactness, additional topics (optional), e. g. the theorems of Stone-Weierstraß, Arzela-Ascoli and Baire, and introduction to algebraic topology.

Intended learning outcomes

The student knows the fundamental concepts and methods of topology as well as the pertinent proof methods, is able to apply methods from linear algebra and analysis to topology, and realises the broad applicability of the theory to other branches of mathematics.

 $\textbf{Courses} \ (\textbf{type}, \, \textbf{number of weekly contact hours}, \, \textbf{language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 180 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Mathematics (2023)

Module title				Abbreviation	
Selected Topics in History of Mathematics					10-M-GES-152-m01
Modul	Module coordinator			Module offered by	
Dean of Studies Mathematik (Mathemat			atics)	Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. co	mpl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites	5		
1 semester undergraduate					
C 4	-4-	•			

Historical and cultural development as well as social relevance of mathematics; more in-depth discussion of the fundamentals of mathematics, in particular in its relation to other sciences and humanities as well as to the image of mathematics in modern society.

Intended learning outcomes

Based on selected examples, the student has gained insight into the historical and cultural genesis of mathematical theories and their social relevance. He/she is able to present mathematical ideas and concepts to a general audience.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) talk (45 to 90 minutes) or
- b) term paper (10 to 15 pages) or
- c) project work (15 to 25 hours)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 407 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title	,			Abbreviation
Mathe	Mathematical Writing				10-M-MSC-152-m01
Modul	Module coordinator			Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. con	npl. of module(s)	
5	(not)	successfully completed			
Duratio	Duration Module level		Other prerequisites		
1 seme	1 semester undergraduate				
Contor					

Discussion of good and bad mathematical writing using practical exercises and case examples. The course covers the whole range of mathematical texts from short proofs and the formulation of theorems and definitions to comprehensive works such as Bachelor's or Master's theses. Important aspects include not only mathematical rigour and efficiency but also didactic questions.

Intended learning outcomes

The student is able to formulate mathematical subject matter precisely and comprehensibly. He/She knows about the structures and conventions of mathematical literature and the requirements of scientific work.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) talk (45 to 90 minutes) or
- b) term paper (10 to 15 pages) or
- c) project work (15 to 25 hours)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 409 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	ĺ

Bachelor's degree (1 major) Mathematics (2023) Bachelor's degree (1 major) Mathematical Physics (2024)

Modul	e title				Abbreviation
School	Mathe	ematics from a Higher Pe	rspective		10-M-SCH-152-m01
Modul	Module coordinator			Module offered by	
Dean c	Dean of Studies Mathematik (Mathematics)			Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. cor	npl. of module(s)	
5	(not)	successfully completed			
Duration Module level		Other prerequisites			
1 semester undergraduate					
Conter	ntc.				

Discussion of selected topics in school mathematics with respect to their integration into wider theories and their didactic implementation at both school and university levels.

Intended learning outcomes

By means of selected examples, the student gains insight into the interrealtion between school mathematics and advanced mathematical theories. He/She is able to discuss these under mathematical, didactical and methodical aspect.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) talk (approx. 45 minutes) or
- b) term paper (10 to 15 pages) or
- c) project work (15 to 25 hours)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

First state examination for the teaching degree Grundschule Mathematics (2015)

First state examination for the teaching degree Realschule Mathematics (2015)

First state examination for the teaching degree Gymnasium Mathematics (2015)

First state examination for the teaching degree Mittelschule Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

First state examination for the teaching degree Gymnasium Mathematics (2019)

Bachelor's with 1 major Mathematics (2023)	JMU Würzburg • generated 19-Apr-2025 • exam. reg.	page 411 / 416
	data record Bachelor (180 ECTS) Mathematik - 2023	

First state examination for the teaching degree Mittelschule Mathematics (2020 (Prüfungsordnungsversion 2015))

Bachelor's degree (1 major) Mathematical Physics (2020)

Bachelor's degree (1 major) Mathematical Data Science (2022)

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation	
Proseminar Mathematics					10-M-PRO-152-m01	
Module coordinator				Module offered by		
Dean of Studies Mathematik (Mathematics)			atics)	Institute of Mathematics		
ECTS	Metho	ethod of grading Only after succ. cor		npl. of module(s)		
4	(not)	ot) successfully completed				
Duration Module level		Other prerequisites				
1 semester		undergraduate				
Contents						

Selected basic topics in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language - if other than German)

S (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (60 to 120 minutes)

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered

Allocation of places

--

Additional information

--

Workload

120 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2015)

Bachelor's degree (1 major) Computational Mathematics (2015)

Bachelor's degree (1 major) Mathematical Physics (2016)

Bachelor's degree (1 major) Mathematical Physics (2020)

exchange program Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Module title					Abbreviation		
Mathe	matical	Aspects of Modern Cryp	tography		10-M-KRY-232-m01		
Module coordinator				Module offered by			
Dean o	of Studi	es Mathematik (Mathema	atics)	Institute of Mathematics			
ECTS	Meth	od of grading	Only after succ. con	nly after succ. compl. of module(s)			
5	(not)	successfully completed					
Duration Module level		Other prerequisites					
1 semester		undergraduate					
Combonie							

Fundamentals of elementary number theory, public key cryptography, the mathematics of quantum computers, Shor's factorization algorithm, post-quantum cryptography.

Intended learning outcomes

The student knows the essential methods and basic concepts of elementary number theory, their application in public-key cryptosystems, and computational methods and algorithms for quantum computers.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(3) + \ddot{U}(1)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 to 120 minutes, usually chosen) or
- b) oral examination of one candidate each (15 to 30 minutes) or
- c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate)

Language of assessment: German and/or English

Assessment offered: in the semester in which the course is offered and in the subsequent semester creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 22 II Nr. 3 f)

Module appears in

exchange program Mathematics (2023)

First state examination for the teaching degree Gymnasium Mathematics (2023)

Bachelor's degree (1 major) Mathematics (2023)

Thesis

(11 ECTS credits)

Module	title			Abbreviation			
Bachelor Thesis Mathematics 10-M-BAM-152-mo1							
Module coordinator				Module offered by			
Dean of Studies Mathematik (Mathematics)				Institute of Mathematics			
ECTS	TS Method of grading Only after succ. compl. of			ıpl. of module(s)	. of module(s)		
11	nume	rical grade					
Duration Module level		Module level	Other prerequisites				
1 semester		undergraduate	The supervisor may make the successful completion of certain modules that are relevant for the respective topic a prerequisite for the assignment of the topic.				
Conten	ts						
Independently researching and writing on a topic in mathematics selected in consultation with the supervisor.							
Intende	ed lear	ning outcomes					
The student is able to work independently on a given mathematical topic and apply the skills and methods obtained during his/her studies in the bachelor programme. He/She can write down the result of his/her work in a suitable form.							
Courses (type, number of weekly contact hours, language — if other than German)							
No cour	rses as	signed to module					
Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)							
Bachelor's thesis (approx. 275 to 330 hours)							
Allocation of places							
Additional information							
Time to complete: 10 weeks.							
Workload							
330 h							
Teaching cycle							
Referred to in LPO I (examination regulations for teaching-degree programmes)							
							
Module appears in							

Bachelor's degree (1 major) Mathematics (2015) Bachelor's degree (1 major) Mathematics (2023)