Module Catalogue
for the Subject
Mathematics
as a Bachelor’s with 1 major
with the degree "Bachelor of Science"
(180 ECTS credits)

Examination regulations version: 2012
Responsible: Institute of Mathematics
Contents

The subject is divided into 6
Content and Objectives of the Programme 7
Abbreviations used, Conventions, Notes, In accordance with 8
Compulsory Courses 9
 Analysis 10
 Applied Mathematics 12
 Linear Algebra 14
 Pure Mathematics 16
 Advanced Mathematics 18
 Advanced Analysis 20
Compulsory Electives 21
Compulsory Electives Mathematics 22
 Introduction to Stochastic Financial Mathematics 23
 Selected Topics from Mathematics 24
 Mathematics in Culture and Society 26
 Additional Seminar in Mathematics 28
Application-oriented Subject 29
Application-oriented Subject Biology 30
 Application-oriented Subject Biology Compulsory Electives 31
 Genetics, Neurobiology, Behaviour 32
 Mathematical Biology and Biostatistics 34
 Plant and Animal Ecology 35
 From Cells to Organisms for minor field of study 36
 Developmental Biology of Animals 38
Application-oriented Subject Biology Compulsory Electives 2 39
 Functional Morphology of arthropods 40
 Basic Physiology of Animals for minor field of study 42
 Basic Physiology of Prokaryotes for minor field of study 43
 Basic Physiology of Plants for minor field of study 44
 Genes, Molecules, Technologies 45
 Principles of Biochemistry 47
 The Flora of Germany 48
 The Fauna of Germany 50
 Neurobiology 1 52
 Integrative Behavioral Biology 54
 Basics in Light- and Electron-Microscopy 56
 Analysis of Chromosomes 58
 Special Bioinformatics 1 60
 Molecular modelling - From DNA to protein 62
 Introduction to Methods in Plant Ecophysiology 64
 Pharmaceutical Drugs in Plants 66
 Laboratory practical course I 68
 Excursion I 69
 Interdisciplinary Project I 70
 External Practical Course 71
 Excursion II 72
 Interdisciplinary Project II 73
 Laboratory Practical Course II 74
 Organisation and Safety in Biosciences 75
 Developmental Biology of Plants for minor field of study 77
Application-oriented Subject Chemistry 78
Application-oriented Subject Chemistry

Compulsory Courses
- Introduction to Physics for Students of Non-physics-related Minor Subjects
- Physical Chemistry 1
- Introduction to Inorganic Chemistry for Students of Mathematics and other Subjects
- Organic Chemistry 1

Compulsory Electives
- Theoretical Models in Chemistry
- Physical and Theoretical Chemistry 3: Symmetry and Quantum Chemistry
- Organic Chemistry 2

Application-oriented Subject Geography

Basics of the Scientific Discipline
- General Physical Geography 1 (Earth System: Exogeneous Dynamics - Geomorphology)
- General Physical Geography 2 (Earth System: Climate System)
- General Physical Geography 3 (Earth System: Endogenic Dynamics)
- Introduction to the Geography of Cities, Towns and Villages
- Introduction to Economic Geography
- Introduction to Social and Population Geography

Special Topics
- Working Methods: Solid Earth System
- Theories and Methodology in Human Geography
- Special Issues of Human Geography 1
- Quantitative and Qualitative Regional Analysis
- Special Issues of Human Geography 2
- Applied Human Geography
- Remote Sensing 1
- Remote Sensing 2
- Special Problems of Physical Geography 1
- Special Problems of Physical Geography 2
- Data Acquisition and Processing in Physical Geography
- Applied Physical Geography
- Cartography 1
- Working Methods of Physical Geography
- Methods of Planning in Human Geography

Application-oriented Subject Computer Science

- Algorithmic Graph Theory
- Algorithm and data structures
- Software Technology
- Practical Course in Programming
- Practical course in software
- Digital computer systems
- Information Transmission
- Theoretical informatics
- Logic for informatics
- Databases
- Object-oriented Programming
- Theory of Complexity
- Automation and Control Technology
- Computer Architecture
- Computer Networks and Communication Systems

Application-oriented Subject Philosophy

Compulsory Courses
- Philosophy and the sciences
- Principles of Philosophy

Compulsory Electives
- General Knowledge in Social Sciences
- Theories of Knowledge in Social Sciences
Theoretical Philosophy 135
Practical Philosophy 136
History of Philosophy 137
Issues of research in philosophy 138
Text Analysis: Ancient Philosophy 139
Text Analysis: Medieval Philosophy 140
Text Analysis: Modern Philosophy 141
Text Analysis: Contemporary Philosophy 142
Basic disciplines of theoretical philosophy 143
Specific disciplines of theoretical philosophy 144
Basic disciplines of practical philosophy 145
Problems of Older Philosophy 146
Specific disciplines of practical philosophy 147
Problems of Modern Philosophy 148
Problems of Theoretical Philosophy 149
Problems of Practical Philosophy 150

Application-oriented Subject Physics 151
Application-oriented Subject Physics Compulsory Electives 1: Basics 152
Introduction to Physics Part 1 for students of Physics Related Minor Subjects 153
Introduction to Physics Part 2 for students of Physics Related Minor Subjects 154
Classical Physics (Mechanics, Thermodynamics, Waves, Oscillations, Electricity, Magnetism and Optics) 155

Application-oriented Subject Physics Compulsory Electives 2: Lab Course 157
Physics Laboratory Course for students of Physics Related Minor Subjects 158
Lab Course A 159
Basic Practical Course B (Minor Studies) 160

Application-oriented Subject Physics Compulsory Electives 3 161
Condensed Matter (Quanta, Atoms, Molecules, Solid State Physics) 162
Statistical Mechanics, Thermodynamics and Electrodynamics 164
Theoretical Mechanics and Quantum Mechanics 165
Theoretical Electrodynamics 167
Solid State Physics 1 168
Theoretical Mechanics 169
Quanta, Atoms, Molecules 170
Quantum Mechanics 171
Statistical Mechanics and Thermodynamics 172
Nuclear and Elementary Particle Physics 173

Application-oriented Subject Business Management and Economics 174
Application-oriented Subject Business Management and Economics Compulsory Courses 175
Managerial Accounting 176
Financial Accounting 178
Introduction to Business Administration 179
Introduction to Economics 180
Macroeconomics 1 181
Microeconomics 1 183

Application-oriented Subject Business Management and Economics Compulsory Electives 185
Introduction to Market-Oriented Management 186
Supply, Production and Operations Management. An Introduction 188
Investment and Finance. An Introduction 189
Macroeconomics 2 191
Microeconomics 2 192
Introduction to Economic Policy 194
Thesis

Thesis Mathematics (Bachelor Thesis)

Subject-specific Key Skills

Mathematics and Computer
Introduction into mathematical thinking and working
Seminar Mathematics
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>109</td>
<td>9</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>Compulsory Electives Mathematics</td>
<td>max. 10</td>
<td>22</td>
</tr>
<tr>
<td>Application-oriented Subject</td>
<td>30-40</td>
<td>29</td>
</tr>
<tr>
<td>Application-oriented Subject Biology</td>
<td>30-40</td>
<td>30</td>
</tr>
<tr>
<td>Application-oriented Subject Biology Compulsory Electives</td>
<td>14-20</td>
<td>31</td>
</tr>
<tr>
<td>Application-oriented Subject Biology Compulsory Electives 2</td>
<td>16-20</td>
<td>39</td>
</tr>
<tr>
<td>Application-oriented Subject Chemistry</td>
<td>32-40</td>
<td>78</td>
</tr>
<tr>
<td>Application-oriented Subject Chemistry Compulsory Courses</td>
<td>26</td>
<td>79</td>
</tr>
<tr>
<td>Application-oriented Subject Chemistry Compulsory Electives</td>
<td>6-14</td>
<td>84</td>
</tr>
<tr>
<td>Application-oriented Subject Geography</td>
<td>30-40</td>
<td>88</td>
</tr>
<tr>
<td>Application-oriented Subject Geography - Basics of the Scientific Discipline</td>
<td>10-20</td>
<td>89</td>
</tr>
<tr>
<td>Application-oriented Subject Geography - Special Topics</td>
<td>10-30</td>
<td>96</td>
</tr>
<tr>
<td>Application-oriented Subject Computer Science</td>
<td>30-40</td>
<td>112</td>
</tr>
<tr>
<td>Application-oriented Subject Philosophy</td>
<td>30-40</td>
<td>128</td>
</tr>
<tr>
<td>Application-oriented Subject Philosophy Compulsory Courses</td>
<td>20</td>
<td>129</td>
</tr>
<tr>
<td>Application-oriented Subject Philosophy Compulsory Electives</td>
<td>10-20</td>
<td>134</td>
</tr>
<tr>
<td>Application-oriented Subject Physics</td>
<td>33-40</td>
<td>151</td>
</tr>
<tr>
<td>Application-oriented Subject Physics Compulsory Electives 1: Basics</td>
<td>14-16</td>
<td>152</td>
</tr>
<tr>
<td>Application-oriented Subject Physics Compulsory Electives 2: Lab Course</td>
<td>3-9</td>
<td>157</td>
</tr>
<tr>
<td>Application-oriented Subject Physics Compulsory Electives 3</td>
<td>16-24</td>
<td>161</td>
</tr>
<tr>
<td>Application-oriented Subject Business Management and Economics</td>
<td>30-40</td>
<td>174</td>
</tr>
<tr>
<td>Application-oriented Subject Business Management and Economics Compulsory Courses</td>
<td>30</td>
<td>175</td>
</tr>
<tr>
<td>Application-oriented Subject Business Management and Economics Compulsory Electives</td>
<td>max. 10</td>
<td>185</td>
</tr>
<tr>
<td>Thesis</td>
<td>11</td>
<td>196</td>
</tr>
<tr>
<td>Subject-specific Key Skills</td>
<td>16</td>
<td>198</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

The mathematics Bachelor programme is offered by the Department of Mathematics, with a total of (currently: SS 2010) nine chairs. At the end of this course of study, the student should be familiar with the main branches of Mathematics, taught methods of mathematical reasoning and working as well as analytical thinking, abstract concepts and the ability to recognise and construct complex structures and interconnections. Through the course these skills, which the students acquires provides the basic knowledge required for a consecutive Bachelor-Masters degree. Moreover, they can later familiarise themselves with the many areas of society, in which mathematical methods can be applied to or be of use. This is supported through the study of an integrated elective application-oriented subject (biology, chemistry, geography, computer science, philosophy, physics or economics), in which the choice of the student is trusted to utilise the basic thoughts and technical skills of the subject, where there is an application of mathematical methods. In the mathematics Bachelor study, the main emphasis is put on basic mathematical knowledge, method knowledge and the development of the mental constructs which are typical for mathematics. The acquisition of special topics in different secondary branches of mathematics is subordinate. For the Bachelor thesis the student should work on a thematic and temporally closely limited frame in order to carry out a mathematical task, using well-known procedures and scientific criteria under guidance but, to a large extent, independently. The exam enables the acquisition of a comparable, international degree in the field of mathematics and provides the framework of a consecutive Bachelor-Masters degree as an initial professional qualification, which can be used as a means for entry into the working world or as preparation for further Masters study. The exam should ascertain whether the candidate overlooks the context of the basics in mathematics and possesses the ability to use the related scientific methods, with regards to mathematics and the selected elective application-oriented subjects.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

 ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

 24-Oct-2012 (2012-167)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses
(109 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>10-M-ANA-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, differential and integral calculus in one variable, introduction to differential calculus in several variables.

Intended learning outcomes

The student knows and masters the essential methods and notions of analysis. He/She is able to perform easy mathematical arguments and present them adequately in written and oral form. He/She is acquainted with the central proof methods and concepts in analysis, their analytic background and geometric interpretation.

Courses

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-ANA-1-122: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ANA-2-122: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ANA-P-122: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ANA-1-122: Analysis 1

- 8 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes). Module will also be considered successfully completed if the module component was selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination was passed.
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ANA-2-122: Analysis 2

- 8 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes). Module will also be considered successfully completed if the module component was selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination was passed.
- Language of assessment: German, English if agreed upon with the examiner
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ANA-P-122: Examination in Analysis

- 4 ECTS, Method of grading: numerical grade
- Oral examination of one candidate each (approx. 30 minutes); assessment will have reference to the contents of modules 10-M-ANA-1 and 10-M-ANA-2
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of the written examination in any one of the other two module components is a prerequisite for participation in module component 10-M-ANA-P.

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module title	Abbreviation
Applied Mathematics | 10-M-ANW-122-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
20 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Two of the following topics in applied mathematics:

Numerical Mathematics 1 (Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration)

Numerical Mathematics 2 (Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems)

Stochastics 1 (Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem)

Stochastics 2 (Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics)

Intended learning outcomes

The student is acquainted with the fundamental concepts and notions of some field in applied mathematics. He/she is able to interconnect these concepts and and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

This module has 5 components; information on courses listed separately for each component.

- 10-M-NUM-1-122, 10-M-NUM-2-122, 10-M-STO-1-122, and 10-M-STO-2-122: V + Ü (no information on language and number of weekly contact hours available)
- 10-M-ANW-P-112: M (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following 5 assessment components. To pass this module, students must pass one out of the 4 assessment components that are first in the list below and the assessment component that is last in the list below.

- 8 ECTS credits, pass / fail
- written examination (approx. 90 to 180 minutes). If announced by the lecturer, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 30 minutes). The module component will also be considered successfully completed if it is selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination is passed.
- Language of assessment; German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If stu-
Students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ANW-P-112: Prüfung Angewandte Mathematik (Assessment Applied Mathematics)

- 4 ECTS credits, numerical grading
- Oral examination of one candidate each (approx. 30 minutes). Assessment will have reference to the topics covered in the two module components selected by students.
- Language of assessment: German; English if agreed upon with examiner(s)
- Only after successful completion of module components: Module component 10-M-ANW-P can only be taken by students who passed the written examination in one of the other four module components.

Allocation of places

--

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Linear Algebra
Abbreviation: 10-M-LNA-122-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 20
Method of grading: numerical grade
Duration: 2 semester
Module level: undergraduate
Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Basic notions and structures; vector spaces, linear maps and systems of linear equations; theory of matrices and determinants; eigenvalue theory; bilinear forms and Euclidean/unitary vector spaces; diagonalisability and Jordan normal form.

Intended learning outcomes
The student knows and masters the basic notions and essential methods of linear algebra. He/She is able to perform easy mathematical arguments independently, and can present them adequately in written and oral form. He/She is able to apply the central proof methods and concepts of linear algebra and knows about their algebraic and geometric background.

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.
- 10-M-LNA-1-122: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-2-122: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-P-122: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-LNA-1-122: Linear Algebra 1
- 8 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes). Module will also be considered successfully completed if the module component was selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination was passed.
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-2-122: Linear Algebra 2
- 8 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes). Module will also be considered successfully completed if the
module component was selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination was passed.

- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-P-122: Examination in Linear Algebra

- 4 ECTS, Method of grading: numerical grade
- Oral examination of one candidate each (approx. 30 minutes); assessment will have reference to the contents of modules 10-M-LNA-1 and 10-M-LNA-2
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of the written examination in any one of the other two module components is a prerequisite for participation in module component 10-M-LNA-P.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie</td>
</tr>
</tbody>
</table>
Module title | Abbreviation
---|---
Pure Mathematics | 10-M-REI-122-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Two of the following topics in pure mathematics:

Introduction to Algebra (Fundamental algebraic structures: groups, rings, fields; Galois theory)
Introduction to Differential Geometry (Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds in Euclidean spaces, hypersurfaces in particular, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces)
Ordinary Differential Equations (Existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order)
Introduction to Complex Analysis (Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps)
Geometric Analysis (Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stokes’s theorem and applications in vector analysis and topology)
Introduction to Projective Geometry (Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces)

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in pure mathematics. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses (type, number of weekly contact hours, language — if other than German)

This module has 7 components; information on courses listed separately for each component.

- 10-M-ALG-1-122, 10-M-DGE-1-122, 10-M-DGL-1-122, 10-M-FTH-1-122, 10-M-GAN-1-122, and 10-M-PGE-1-122: V + Ü (no information on language and number of weekly contact hours available)
- 10-M-REI-P-122: M (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following 7 assessment components. To pass this module, students must select two out of the 6 assessment components that are first in the list below and pass one of them, furthermore they must pass the assessment component that is last in the list below.

Assessment in module component 10-M-ALG-1-122: Einführung in die Algebra (Introduction to Algebra), in **module component 10-M-DGE-1-122**: Einführung in die Differentialgeometrie (Introduction to Differential Geometry), in **module component 10-M-DGL-1-122**: Gewöhnliche Differentialgleichungen (Ordinary Differential Equations), in **module component 10-M-FTH-1-122**: Einführung in die Funktionentheorie (Introduction to Complex Analysis), in **module component 10-M-GAN-1-122**: Geometrische Analysis (Geometric Analysis), and in **module component 10-M-PGE-1-122**: Einführung in die Projektive Geometrie (Introduction to Projective Geometry):

- 8 ECTS credits, pass / fail
- written examination (approx. 90 to 180 minutes). If announced by the lecturer, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 30 minutes). The module component will also be considered suc-
successfully completed if it is selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination is passed.

- Language of assessment: German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-REI-P-122: Prüfung Reine Mathematik (Assessment Pure Mathematics)

- 4 ECTS credits, numerical grading
- Oral examination of one candidate each (approx. 30 minutes). Assessment will have reference to the topics covered in the two module components selected by students.
- Language of assessment: German; English if agreed upon with examiner(s)
- Only after successful completion of module components: Module component 10-M-REI-P can only be taken by students who passed the written examination in one of the other six module components.

Allocation of places

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Abbreviation
Advanced Mathematics | 10-M-SPZ-122-m01

Module coordinator	Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
20 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Two of the following topics in pure or applied mathematics which have not been chosen as subject of assessment in module 10-M-ANW or 10-M-REI:

Numerical Mathematics 1 (Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration)

Numerical Mathematics 2 (Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems)

Stochastics 1 (Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem)

Stochastics 2 (Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics)

Introduction to Algebra (Fundamental algebraic structures: groups, rings, fields; Galois theory)

Introduction to Differential Geometry (Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds in Euclidean spaces, hypersurfaces in particular, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces)

Ordinary Differential Equations (Existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order)

Introduction to Complex Analysis (Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstrass product theorem and theorem of Mittag-Leffler, conformal maps)

Geometric Analysis (Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stokke's theorem and applications in vector analysis and topology)

Introduction to Projective Geometry (Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces)

Introduction to Discrete Mathematics (Techniques from combinatorics, introduction to graph theory including applications, cryptographic methods, error-correcting codes)

Introduction to Functional Analysis (Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis)

Operations Research (Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems)

Introduction to Number Theory (Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetic, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations).

Intended learning outcomes

The student is acquainted with advanced concepts and methods of pure and/or applied mathematics. Based on these fundamental mathematical concepts and methods he/she is able to pursue further studies and interrelate these concepts, and realises the advantages of thinking across the borders of different branches in mathematics.
Courses (type, number of weekly contact hours, language — if other than German)

This module has 15 components; information on courses listed separately for each component.

- 10-M-SPZ-P-122: M (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following 15 assessment components. To pass this module, students must pass one out of the 14 assessment components that are first in the list below and the assessment component that is last in the list below.

- 8 ECTS credits, pass / fail
- written examination (approx. 90 to 180 minutes). If announced by the lecturer, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 30 minutes). The module component will also be considered successfully completed if it is selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination is passed.
- Language of assessment: German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-ERG-P-122: Prüfung in Ergänzung Mathematik (Assessment in Selected Topics from Mathematics):

- 2 ECTS credits, numerical grading
- oral examination of one candidate each (approx. 30 minutes). Assessment will have reference to the topics covered in the module component selected by students.
- Language of assessment: German; English if agreed upon with examiner(s)
- Only after successful completion of module components: Module component 10-M-ERG-P can only be taken by students who passed the written examination in one of the other 14 module components.

Allocation of places

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Analysis</td>
<td>10-M-VAN-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Continuation of analysis in several variables, integration theorems.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lesbegue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Compulsory Electives
(40 ECTS credits)
Compulsory Electives Mathematics
(max. 10 ECTS credits)
Module Catalogue for the Subject Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Stochastic Financial Mathematics</td>
<td>10-M-EFM-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Arbitrage and no-arbitrage, annuities and bonds, valuation of deterministic cash flows, actuarial present value, term structures and yield curves, forwards, payout profiles of options and other derivaives, fundamental theorem of asset pricing in the stochastic one-period model, risk neutral price measures, replication and completeness, stochastic multi-period models, valuation of European options in the binomial model, Black-Scholes formula.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of stochastic financial mathematics, can apply them to practical problems and knows about typical fields of application.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available))

Method of assessment

written examination (approx. 90 to 180 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics from Mathematics</td>
<td>10-M-ERG-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

One of the following topics in pure or applied mathematics which has not been chosen as subject of assessment in modules 10-M-REI, 10-M-ANW and 10-M-SPZ:

Numerical Mathematics 1 (Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration)

Numerical Mathematics 2 (Solution methods and applications for eigenvalue problems, linear programming, initial value problems for ordinary differential equations, boundary value problems)

Stochastics 1 (Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem)

Stochastics 2 (Elements of data analysis, statistics of data in normal and other distributions, elements of multivariate statistics)

Introduction to Algebra (Fundamental algebraic structures: groups, rings, fields; Galois theory)

Introduction to Differential Geometry (Curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds in Euclidean spaces, hypersurfaces in particular, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces)

Ordinary Differential Equations (Existence and uniqueness theorem; continuous dependence of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order)

Introduction to Complex Analysis (Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstrass product theorem and theorem of Mittag-Leffler, conformal maps)

Geometric Analysis (Fundamentals in analysis on manifolds, submanifolds, calculus of differential forms, Stoke's theorem and applications in vector analysis and topology)

Introduction to Projective Geometry (Projective and affine planes, projective and affine spaces, theorem of Desargues, fundamental theorems for projective spaces, dualities and polarities of projective spaces)

Introduction to Discrete Mathematics (Techniques from combinatorics, introduction to graph theory including applications, cryptographic methods, error-correcting codes)

Introduction to Functional Analysis (Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis)

Operations Research (Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems)

Introduction to Number Theory (Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetic, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations).

Intended learning outcomes

The student is acquainted with advanced concepts and methods of pure and/or applied mathematics. Based on these fundamental mathematical concepts and methods he/she is able to pursue further studies and interrelate these concepts, and he/she knows about interrelations of the acquired knowledge.

Courses

Courses (type, number of weekly contact hours, language — if other than German)

This module has 15 components; information on courses listed separately for each component.

10-M-ERG-P-122: M (no information on language and number of weekly contact hours available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following 15 assessment components. To pass this module, students must pass one out of the 14 assessment components that are first in the list below and the assessment component that is last in the list below.

Assessment in module component 10-M-NUM-1-122: Numerische Mathematik 1 (Numerical Mathematics 1), **in module component 10-M-NUM-2-122:** Numerische Mathematik 2 (Numerical Mathematics 2), **in module component 10-M-STO-1-122:** Stochastik 1 (Stochastics 1), **in module component 10-M-STO-2-122:** Stochastik 2 (Stochastics 2), **in module component 10-M-ALG-1-122:** Einführung in die Algebra (Introduction to Algebra), **in module component 10-M-DGE-1-122:** Einführung in die Differentialgeometrie (Introduction to Differential Geometry), **in module component 10-M-DGL-1-122:** Gewöhnliche Differentialgleichungen (Ordinary Differential Equations), **in module component 10-M-FTH-1-122:** Einführung in die Funktionentheorie (Introduction to Complex Analysis), **in module component 10-M-GAN-1-122:** Geometrische Analysis (Geometric Analysis), **in module component 10-M-PGE-1-122:** Einführung in die Projektive Geometrie (Introduction to Projective Geometry), **in module component 10-M-DIM-1-122:** Einführung in die Diskrete Mathematik (Introduction to Discrete Mathematics), **in module component 10-M-FAN-1-122:** Einführung in die Funktionalanalysis (Introduction to Functional Analysis), **in module component 10-M-ORS-1-122:** Operations Research, and **in module component 10-M-ZTH-1-122:** Einführung in die Zahlentheorie (Introduction to Number Theory):

- 8 ECTS credits, pass / fail
- written examination (approx. 90 to 180 minutes). If announced by the lecturer, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 30 minutes). The module component will also be considered successfully completed if it is selected as subject of the oral examination covering several modules (separate module component for assessment purposes (Prüfungsteilmodul)) and this examination is passed.
- Language of assessment: German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-SPZ-P-122: Prüfung in Spezialisierung Mathematik (Assessment in Advanced Mathematics)

- 4 ECTS credits, numerical grading
- oral examination of one candidate each (approx. 30 minutes). Assessment will have reference to the topics covered in the two module components selected by students.
- Language of assessment: German; English if agreed upon with examiner(s)
- Only after successful completion of module components: Module component 10-M-SPZ-P can only be taken by students who passed the written examination in one of the other 14 module components.

Allocation of places

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Mathematics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics in Culture and Society</td>
<td>10-M-MKG-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Only after succ. compl. of module(s)</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Historical and cultural development as well as social relevance of mathematics; more in-depth discussion of the fundamentals of mathematics, in particular in its relation to other sciences and humanities as well as to the image of mathematics in modern society.

Intended learning outcomes

Based on selected examples, the student has gained insight into the historical and cultural genesis of mathematical theories and their social relevance. He/she is able to present mathematical ideas and concepts to a general audience.

Courses

This module has 4 components; information on courses listed separately for each component.

- 10-M-GES-1-122, 10-M-MSC-1-122, and 10-M-SCH-1-122: V + Ü (no information on language and number of weekly contact hours available)
- 10-M-PRO-1-122: S (no information on language and number of weekly contact hours available)

Method of assessment

This module has the following 4 assessment components. To pass the module as a whole students must pass two of the four assessment components.

Assessment in module component 10-M-GES-1-122: Ausgewählte Kapitel aus der Geschichte der Mathematik (Selected Topics from the History of Mathematics), in module component 10-M-MSC-1-122: Mathematisches Schreiben (Mathematical Writing), and in module component 10-M-SCH-1-122: Schulmathematik vom höheren Standpunkt (School Mathematics from a Higher Perspective):
- 4 ECTS credits, pass / fail
- project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- Assessment will be offered in the semester in which the course is offered and in the subsequent semester.
- Language of assessment: German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-PRO-1-122: Proseminar Mathematik (Proseminar Mathematics)
- 4 ECTS credits, pass / fail
- talk (approx. 60 to 180 minutes)
- Assessment will be offered in the semester in which the course is offered and in the subsequent semester.
- Language of assessment: German; English if agreed upon with examiner(s)
- Additional prerequisites: To qualify for admission to assessment, students must meet certain prerequisites. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If stu-
Students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information on module duration: 1 to 2 semesters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Module title | Abbreviation
---|---
Additional Seminar in Mathematics | 10-M-SE2-122-m01

Module coordinator | Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | (not) successfully completed | ---

Duration | Module level | Other prerequisites
1 semester | undergraduate | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

An additional selected topic in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

talk (approx. 60 to 180 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Application-oriented Subject
(30-40 ECTS credits)

Students must take one of the following application-oriented subjects, each with the specified mandatory courses and/or mandatory electives: Biologie (Biology), Chemie (Chemistry), Geographie (Geography), Informatik (Computer Science), Philosophie (Philosophy), Physik (Physics), Wirtschaftswissenschaft (Business Management and Economics).
Application-oriented Subject Biology

(30-40 ECTS credits)
Application-oriented Subject Biology Compulsory Electives
(14-20 ECTS credits)
Module title	Abbreviation
Genetics, Neurobiology, Behaviour | 07-2A2GNV-072-m01

Module coordinator | Module offered by
Dean of Studies Biologie (Biology) | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Fundamental principles of genetics, neurobiology and behavioural biology.

Intended learning outcomes
[Version 1: Students will understand that there are molecular, cellular and system biological mechanisms and processes involved in animal behaviour and will be able to relate animal behaviour to the molecular and formal bases of inheritance.] [Version 2: Students will understand that there are molecular, cellular and system biological mechanisms and processes involved in animal behaviour and will be able to relate animal behaviour to the molecular and formal bases of inheritance.]

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.

- **07-2A2GNV-1G-072**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **07-2A2GNV-2N-072**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **07-2A2GNV-3V-072**: V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-2A2GNV-1G-072: Basic Genetics Basic Genetics

- 2 ECTS, Method of grading: numerical grade
- written examination (approx. 30 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Assessment in module component 07-2A2GNV-2N-072: Basic Neurobiology Basic Neurobiology

- 2 ECTS, Method of grading: numerical grade
- written examination (approx. 30 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Assessment in module component 07-2A2GNV-3V-072: Behavioural Biology Behavioural Biology

- 2 ECTS, Method of grading: numerical grade
- written examination (approx. 30 minutes, word problems and/or multiple choice questions)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Allocation of places
Only as part of "spezielles Studienangebot": 10 places.

Additional information
--
Referred to in LPO I (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Biology and Biostatistics</td>
<td>07-2BM-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of the most important mathematical and statistical methods in biology.

Intended learning outcomes

Students will have acquired fundamental skills in the evaluation of experiments, the interpretation of readings and numbers as well as the mathematical description of biological processes.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 45 minutes) including multiple choice questions

Allocation of places

Only as part of "spezielles Studienangebot": 30 places.

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Plant and Animal Ecology
Abbreviation | 07-3A3OE-102-m01

Module coordinator | Dean of Studies Biologie (Biology)
Module offered by | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
</table>
| 6 | numerical grade | 1 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents
This module will provide students with an overview of the interactions of plants and animals with their abiotic and biotic environments. The module will focus on the functional adaptation to environmental conditions as well as on the structure and dynamics of populations and ecosystems. Students will be introduced to fundamental model concepts of ecology, will become familiar with examples of research findings and will acquire the fundamental knowledge necessary to develop an understanding of current ecological problems.

Intended learning outcomes
Students are familiar with the fundamental principles of research in the field of ecology and with the most important abiotic and biotic factors that influence the distribution and frequency of occurrence of organisms in their environment. In addition, they understand the scientific relevance ecology has to the assessment of environmental issues.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 07-3A3OE-1-102: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 07-3A3OE-2-102: V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

- 3 ECTS, Method of grading: numerical grade
- written examination (approx. 45 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Assessment in module component 07-3A3OE-2-102: Plant Ecology Plant Ecology
- 3 ECTS, Method of grading: numerical grade
- written examination (approx. 45 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Allocation of places
Only as part of pool of general key skills (ASQ): 15 places. Places will be allocated by lot.

Additional information

Referred to in LPO 1 (examination regulations for teaching-degree programmes)
Module title	Abbreviation
From Cells to Organisms for minor field of study | 07-1A1ZO-NF-102-m01

Module coordinator | Module offered by
Dean of Studies Biologie (Biology) | Faculty of Biology

ECTS	Method of grading	Other prerequisites
10 | numerical grade | Only after succ. compl. of module(s)

Duration	Module level
1 semester | undergraduate

By way of exception, additional prerequisites are listed in the section on assessments.

Contents
The first part of the course will acquaint students with the elementary building blocks of life as well as biological categories. Building on this knowledge, the course will then discuss the cell, the smallest unit of life, starting with its macroscopic structure before moving on to its microscopic structure. The course will point out differences and similarities between prokaryotic cells (bacteria, archaeabacteria) and eukaryotic cells (animals, plants). The second part will address one of the central issues of biology: evolution. Fundamental mechanisms and hypotheses will be discussed and students will be introduced to major phylogenetic reconstruction methods. Using the examples of plants and animals, the subsequent module components will introduce students to the phylogenetic diversity of eukaryotes. At the level of groups in the plant and animal kingdoms, students will acquire the fundamental knowledge necessary to understand the forms and functions of animal and plant organisms, with morphology and cytology being discussed in an evolutionary and ecological context. The contents of the module are relevant for biological disciplines at all levels of biological organisation.

Intended learning outcomes
- Knowledge of the structures of prokaryotic and eukaryotic cells and their (biological) macromolecules.
- Knowledge of the specific characteristics of the intracellular and extracellular structures of prokaryotes as well as animal and plant cells.
- Ability to recognise evolution as the driving force behind the phylogeny of species.
- Familiarity with the concepts of phylogenetic relationships between plants/animals.
- Familiarity with the distinguishing characteristics and major representatives of groups in the plant and animal kingdoms.
- Ability to select those plant and animal organisms that are most suitable for particular scientific issues.
- Familiarity with the components and functioning of microscopes.

Courses (type, number of weekly contact hours, language — if other than German)
This module has 4 components; information on courses listed separately for each component.

- 07-1A1ZO-3P-072, 07-1A1ZO-4T-072, and 07-1A1ZO-2E-102: V + Ü (no information on language and number of weekly contact hours available)
- 07-1A1ZO-NF-1Z-082: V (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
This module has the following 4 assessment components. Unless stated otherwise, students must pass all of these assessment components to pass the module as a whole.

Assessment in module component 07-1A1ZO-3P-072: Das Pflanzenreich (The Plant Kingdom)
- 4 ECTS credits, numerical grading
- written examination (approx. 60 minutes)
- Additional prerequisites: admission prerequisite to assessment: regular attendance of exercises as well as successful completion of the respective exercises.

Assessment in module component 07-1A1ZO-4T-072: Das Tierreich (The Animal Kingdom)
- 4 ECTS credits, numerical grading
- written examination (approx. 60 minutes)
- Additional prerequisites: admission prerequisite to assessment: regular attendance of and participation in exercises as well as successful completion of the respective exercises as specified at the beginning of the course.
<table>
<thead>
<tr>
<th>Assessment in module component 07-1A1ZO-NF-1Z-082: Die Zelle für das Nebenfach Biologie (The Cell for Biology Minors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 ECTS credit, numerical grading</td>
</tr>
<tr>
<td>• written examination (approx. 60 minutes) including multiple choice questions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment in module component 07-1A1ZO-2E-102: Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 ECTS credit, pass / fail</td>
</tr>
<tr>
<td>• written examination (approx. 30 minutes, including multiple choice questions)</td>
</tr>
<tr>
<td>• Additional prerequisites: admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title
Developmental Biology of Animals

Abbreviation
07-3A3EBIOT-102-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
4

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
In this module, students will acquire theoretical and practical background knowledge on animal developmental biology. The following topics will be covered: early embryonic development of various model organisms (amphibians, nematodes, Drosophila, mouse) and relevance for the systematics of animals, gametogenesis (production of spermatozoa and ova), differential gene expression, cell growth and molecular regulation of cell development, organogenesis, pattern formation, carcinogenesis, stem cell research and cloning, metamorphosis (amphibians, insects), eco-devo, evo-devo.

Intended learning outcomes

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 30 to 60 minutes) including multiple choice questions

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Application-oriented Subject Biology Compulsory Electives 2
(16-20 ECTS credits)

When taking up their studies, students are highly recommended to consult with the course advisory service Biology that will help them choose appropriate modules from the list below. Modules from the areas "Spezielle Biowissenschaften I / II" ("Specific Biosciences I / II") may only be used by students who achieved no less than 14 ECTS credits in the area of mandatory electives 1 beforehand.
Module title

Fuctional Morphology of arthropods

Abbreviation

07-4S1NVO3-092-m01

Module coordinator

holder of the Chair of Zoology III

Module offered by

Faculty of Biology

ECTS

5

Method of grading

numerical grade

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents

Morphology, anatomy, phylogeny and ecology of arthropods.

Intended learning outcomes

Students are able to explain arthropod radiations in a functional context as well as to explain the importance of arthropods to ecosystems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (approx. 5 to 10 pages)

Allocation of places

Number of places: 20. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits; among applicants with the same number of ECTS credits achieved, places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated according to the following quotas:Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated according to the following quotas:Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated according to the following quotas:Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated according to the following quotas:Quota 3 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated according to the following quotas:Quota 3 (25% of places): number of subject semesters of the respective applicant;
places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Basic Physiology of Animals for minor field of study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

This module will acquaint students with the principles of general and comparative plant physiology and will provide them with an opportunity to develop the fundamental skills for working in a physiological laboratory. The module will discuss the physiological processes that regulate the internal environment of animals.

Intended learning outcomes

Students have developed an understanding of the physiological functions and regulation of organisms. They have acquired fundamental knowledge on planning, setup, interpretation and presentation of scientific results.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes, word problems and/or multiple choice questions)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Physiology of Prokaryotes for minor field of study</td>
<td>07-2A2PPR-NF-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
This module will acquaint students with the principles of prokaryotic physiology. It will discuss prokaryotic metabolic diversity.

Intended learning outcomes
Students have developed an understanding of the physiological functions and regulation of organisms. They have acquired fundamental knowledge on planning, setup, interpretation and presentation of scientific results.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes) including multiple choice questions

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Physiology of Plants for minor field of study</td>
<td>07-2A2PPF-NF-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Biologie (Biology)</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

This module will acquaint students with the principles of general and comparative plant physiology and will provide them with an opportunity to develop the fundamental skills for working in a physiological laboratory. The module will discuss the physiological processes that regulate the internal environment of plants.

Intended learning outcomes

Students have developed an understanding of the physiological functions and regulation of organisms. They have acquired fundamental knowledge on planning, setup, interpretation and presentation of scientific results.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Genes, Molecules, Technologies
Abbreviation: 07-3A3GMT-102-m01

Module coordinator: Dean of Studies Biologie (Biology)
Module offered by: Faculty of Biology

ECTS: 6

Method of grading: numerical grade

Only after succ. compl. of module(s): --

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:
The module component Spezielle Genetik (Special Genetics) will build on Einführung in die Genetik (Introduction to Genetics) and will deepen the students' knowledge of topics from the following areas: structure and evolution of the eukaryotic genome, regulatory RNA, epigenetically and evolutionarily significant genetic mechanisms. The section will also focus on methods of gene expression profiling, reverse genetics and modern methods of gene function and gene sequence analysis. In the module component Einführung in die Bioinformatik (Introduction to Bioinformatics), students will acquire an overview of major areas in the field of bioinformatics: protein sequence and protein domain analysis, phylogeny and evolution of sequences, protein structure, RNA/DNA sequences and structures, cellular networks (regulation, metabolism) and systems biology. In the module component Einführung in die Biotechnologie (Introduction to Biotechnology), students will acquire an overview of the following topics: history of biotechnology, DNA and RNA technologies, recombinant antibodies, molecular diagnostics, nanobiotechnology, biomaterials, bioprocess engineering, microbial biotechnology, transgenic animals and plants, microfluidics. The module component Einführung in die Pharmakokinetik (Introduction to Pharmacokinetics) will provide students with an overview of the rational development of drugs and active agents. The module component will discuss an important aspect for biologists in more detail: the optimisation of the pharmacokinetics of small molecules and proteins. Pharmacokinetics describes the uptake, distribution, metabolism and elimination of a drug or xenobiotic in an organism.

Intended learning outcomes:
Module component Spezielle Genetik (Special Genetics): Advanced knowledge on genome evolution and the regulation of gene expression. Essential knowledge on current methods in genetics. Module component Einführung in die Biotechnologie (Introduction to Biotechnology): Students will acquire an overview of both traditional and modern methods in biotechnology and will become familiar with fundamental topics in biotechnology. Module component Einführung in die Biotechnologie (Introduction to Biotechnology): Students will acquire an overview of both traditional and modern methods in biotechnology and will become familiar with fundamental topics in biotechnology. Module component Einführung in die Pharmakokinetik (Introduction to Pharmacokinetics): Students will acquire an overview of the fundamental principles of the development and review of active agents in research, clinical practice and the pharmaceutical industry. Optimisation of active agents with regard to absorption, distribution, metabolism and elimination takes place during the early stages of active agent development. The course will equip students with fundamental knowledge that will enable them to predict, on the basis of the structure and physicochemical properties of a small molecule or protein, whether the molecule or protein is suitable as an active agent as well as to predict the fate of the respective active agent in an organism.

Courses (type, number of weekly contact hours, language — if other than German):
This module has 4 components; information on courses listed separately for each component.
• 07-3A3GMT-1-102, 07-3A3GMT-2-102, 07-3A3GMT-3-102, and 07-3A3GMT-4-102: V (no information on language and number of weekly contact hours available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):
This module has the following 4 assessment components. Unless stated otherwise, students must pass all of these assessment components to pass the module as a whole.

Assessment in module component 07-3A3GMT-1-102: Genetik (Genetics), in module component 07-3A3GMT-2-102: Bioinformatik (Bioinformatics), in module component 07-3A3GMT-3-102: Biotechnologie (Biotechnology), and in module component 07-3A3GMT-4-102: Pharmakokinetik (Pharmacokinetics):

- 1.5 ECTS credits, numerical grading
- written examination (approx. 30 minutes, including multiple choice questions)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Principles of Biochemistry

Abbreviation
07-3A3BC-102-m01

Module coordinator
holder of the Chair of Plant Physiology and Biophysics

Module offered by
Faculty of Biology

ECTS
4

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
With the module component *Makromoleküle (Macromolecules)* as a starting point, the lecture will provide students with deeper insights into the molecular biology and biochemistry of prokaryotes and eukaryotes. Students will become familiar with fundamental principles of molecular biology (replication, transcription, splicing and translation) and the biochemistry of carbohydrates, lipids, proteins and nucleic acids. Experiments will be performed on selected topics that were discussed in the lecture. The exercise will cover practical aspects of lab work (PCR, DNA and protein gel electrophoresis, blot, enzyme kinetics and detection, protein isolation).

Intended learning outcomes
Students are familiar with the fundamental principles of biochemistry.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 30 to 60 minutes) including multiple choice questions

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
The Flora of Germany | 07-4A4FL-102-m01

Module coordinator
holder of the Chair of Ecophysiology and Vegetation Ecology

Module offered by
Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

The module will discuss the fundamental principles of the systematics and ecology of flowering plants. Students will acquire an overview of the major flowering plants to be found in the temperate zone as well as their ecological and economic importance. Using the field guide *Flora von Deutschland* by Schmeil-Fitschen, the course will demonstrate how dichotomous keys are used, and students will practise identifying freshly-gathered plants using dichotomous keys. Identifying plants, students will learn how to identify major morphological plant characteristics and will become familiar with the respective terminology. The module will also include field trips to typical habitats in the Botanical Garden and the vicinity of Würzburg. Students will become familiar with the common as well as scientific names of the plants found and will be introduced to the family- as well as species-specific characteristics of these plants. Students will practise using field guides and identification keys on site. Habitat ecological, geobotanical, climatic as well as conservation-relevant characteristics will also be discussed. The module will also include sessions at the Botanical Garden of the University of Würzburg with its outdoor facilities and greenhouses to help students acquire species identification skills.

Intended learning outcomes

Students have acquired knowledge and skills related to the ecology, systematics and taxonomy of indigenous flowering plants. They are familiar with the terminology of plant morphology and know how to use Floras and set up scientific herbaria.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 07-4A4FL-1-102: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 07-4A4FL-2-102: E (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-4A4FL-1-102: Introduction to the Flora of Germany

- 4 ECTS, Method of grading: numerical grade
- written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted 1:1
- Assessment offered: once a year, summer semester
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises (particular emphasis to be placed on the setting up a herbarium) at the beginning of the course.

Assessment in module component 07-4A4FL-2-102: Field Excursions on the Flora of Germany

- 3 ECTS, Method of grading: (not) successfully completed
- log (approx. 1 to 2 pages per field trip)
- Assessment offered: once a year, summer semester
Allocation of places

Number of places: 180. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
The Fauna of Germany | 07-4A4FA-102-m01

Module coordinator | Module offered by
holder of the Chair of Animal Ecology and Tropical Biology | Faculty of Biology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents

In this module, students will acquire an overview of selected groups of animals to be found in Central Europe. They will acquire a fundamental knowledge of the systematics and taxonomy as well as the quantitative recording of biodiversity and will practice identifying species, using specimens of animals. Selection of specimens will be taxon-specific and will represent specific habitats or lifestyles. Field exercises in a variety of habitats will provide students with an opportunity to consolidate the knowledge and skills they acquired in the lab by identifying living specimens including their ecology and behavioural biology.

Intended learning outcomes

Students know how to taxonomically classify selected representatives of the indigenous fauna (vertebrates, invertebrates) and use identification keys. They are familiar with selected Central European habitats as well as their faunas and phenology. On the basis of the morphology and habitats of species, students are able to predict the biology and ecology of these species as well as, where applicable, to predict whether they function as indicators and are of conservation concern.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 07-4A4FA-1-102: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 07-4A4FA-2-102: E (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 07-4A4FA-1-102: Introduction to the Fauna of Germany
- 4 ECTS, Method of grading: numerical grade
- written examination (approx. 45 minutes) and practical identification assignment (approx. 45 minutes), weighted 1:1
- Assessment offered: once a year, summer semester
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises (particular emphasis to be placed on the setting up a herbarium) as specified at the beginning of the course.

Assessment in module component 07-4A4FA-2-102: Field Excursions on the Fauna of Germany
- 3 ECTS, Method of grading: (not) successfully completed
- log (approx. 1 to 2 pages per field trip)
- Assessment offered: once a year, summer semester

Allocation of places

Number of places: 180. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of pla-
8% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biology (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Neurobiology 1 | 07-4S1NVO1-102-m01

Module coordinator
holder of the Chair of Genetics

Module offered by
Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: regular attendance of lab course as specified at the beginning of the course.

Contents
Neurobiology and methods in neurobiology, using Drosophila as a neurogenetic model system.

Intended learning outcomes
Students have acquired an advanced knowledge of the neurobiology of a model organism and are able to apply the relevant methods in neurobiology.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course

Allocation of places
Number of places: 20. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics) with each 180 ECTS credits, as part of the application-oriented subject Biologie (Biology) as well as potentially to students of other ‘importing’ subjects. Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant;
among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title | Abbreviation
---|---
Integrative Behavioral Biology | 07-4S1NVO2-102-m01

Module coordinator | Module offered by
holder of the Chair of Behavioral Physiology and Sociobiology | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
Communication in the animal kingdom, neuroethology and behavioural development, perception and processing of olfactory signals, temporal organisation of behaviour, adaptive feeding behaviour, reproductive behaviour, social behaviour, orientation mechanisms.

Intended learning outcomes
Students have acquired an advanced knowledge in the area of behavioural biology and are able to deliver presentations on current studies on relevant topics.

Courses (type, number of weekly contact hours, language — if other than German)
V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course.

Allocation of places
Number of places: 20. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the...
qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Basics in Light- and Electron-Microscopy | 07-4S1MZ1-102-m01

Module coordinator | Module offered by
head of the Department of Electronmicroscopy | Faculty of Biology

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents

Fundamental principles of confocal laser scanning microscopy and electron microscopy.

Intended learning outcomes

Students have acquired theoretical knowledge and practical skills in the area of light and electron microscopy.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 30 to 60 minutes)

Allocation of places

Number of places: 18. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.
Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Analysis of Chromosomes | 07-4S1MZ2-102-m01

Module coordinator
head of the Department of Electronmicroscopy

Module offered by
Faculty of Biology

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
Overview of the structure of chromosomes of somatic and meiotic cells.

Intended learning outcomes
Students are able to analyse chromosomal structures.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 30 to 60 minutes)

Allocation of places
Number of places: 18. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject Biologie (Biolog) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biolog) with 180 ECTS credits, places will be allocated according to the selection process of group 1.
Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Bioinformatics 1</td>
<td>07-4S1MZ6-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of the tree of life, fundamental principles of phylogenetics (methods and markers), fundamental principles of evolutionary biology (concepts), sequence analysis, RNA structure prediction, phylogenetic reconstruction.

Intended learning outcomes

Students are able to use software and databases for sequence analysis, RNA structure prediction and phylogenetic reconstruction.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>(approx. 10 to 20 pages) Language of assessment: German or English</td>
</tr>
</tbody>
</table>

Allocation of places

Number of places: 20. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, pla-
ces will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

Referred to in LPO I (examination regulations for teaching-degree programmes)

| -- |
Module title	Abbreviation
Molecular modelling - From DNA to protein | 07-4S1PS1-102-m01

Module coordinator | Module offered by
holder of the Chair of Plant Physiology and Biophysics | Faculty of Biology

ECTS	Method of grading	Other prerequisites
5 | numerical grade | Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
This module will equip students with advanced knowledge on the structure and function of nucleic acids and proteins as well as on the search for and analysis and modelling of plant macromolecules using databases and specific software.

Intended learning outcomes
Students have acquired a specialist knowledge of the structure-function relationships of macromolecules and are able to work with relevant databases and software.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
computerised practical examination (approx. 6 hours)

Allocation of places
Number of places: 18. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biologie; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant;
among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title: Introduction to Methods in Plant Ecophysiology
Abbreviation: 07-4S1PS2-102-m01

Module coordinator: holder of the Chair of Plant Physiology and Biophysics
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: numerical grade
Duration: 1 semester
Module level: undergraduate
Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises and seminar as well as successful completion of the respective exercises as specified at the beginning of the course.

Contents:
Complex experiments to introduce students to the current state of research in plant ecophysiology as well as discussion of experimental findings in a comprehensive scientific context.

Intended learning outcomes:
Students are able to use current methods in plant ecophysiology as well as to document experimental findings and put these in a scientific context.

Courses:
Ü + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
log (approx. 10 to 20 pages)

Allocation of places:
Number of places: 15. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biolog) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biolog) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of
places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module Catalogue for the Subject Mathematics

Bachelor’s with 1 major, 180 ECTS credits

Pharmaceutical Drugs in Plants

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Drugs in Plants</td>
<td>07-4S1PS3-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Pharmaceutical Biology

Module offered by

Faculty of Biology

ECTS | **Method of grading** | **Only after succ. compl. of module(s)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | **Module level** | **Other prerequisites**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of exercises and seminar as well as successful completion of the respective exercises as specified at the beginning of the course.</td>
</tr>
</tbody>
</table>

Contents

This module will introduce students to the major active agent groups in medicinal plants and phytopharmaceuticals as well as to their application in pharmacy. Microscopic and phytochemical analyses will be performed and the requirements and analytical methods of the pharmacopoeia will be explained.

Intended learning outcomes

Students have acquired a specialist knowledge on active agents from medicinal plants and phytopharmaceuticals as well as on the requirements and analytical methods of the pharmacopoeia.

Courses (type, number of weekly contact hours, language — if other than German)

Ü + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course.

Allocation of places

Number of places: 6. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor’s degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor’s degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other ‘importing’ subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants’ previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants’ position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the
following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor’s degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Laboratory practical course I | 07-S1-LP1-102-m01

Module coordinator | Module offered by
Coordinator BioCareers | Faculty of Biology

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: regular attendance of lab course as specified at the beginning of the course; please consult with academic advisory service in advance.

Contents

This practical course is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
meths of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excursion I</td>
<td>07-S1-Ex1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of field trip as specified at the beginning of the course; please consult with academic advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Contents of the field trip to be determined by the respective institution.

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses

(type, number of weekly contact hours, language — if other than German)

E (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title	Interdisciplinary Project I
Abbreviation | 07-S1-IP1-102-m01

Module coordinator
Coordinator BioCareers

Module offered by
Faculty of Biology

ECTS	5
Method of grading | Only after succ. compl. of module(s)
---|---
numerical grade | --

Duration | 1 semester
Module level | undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of project sessions as specified at the beginning of the course; please consult with academic advisory service in advance.

Contents
Contents of the project to be determined by the competent coordinators; contents will vary according to topic.

Intended learning outcomes
Students have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)
R (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module Catalogue for the Subject Mathematics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Practical Course</td>
<td>07-5EP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course as specified at the beginning of the course; please consult with academic advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

Students will complete a placement at an authority, a non-university research institution or a business. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of external institutions and businesses and have developed skills which qualify them to work in their profession.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excursion II</td>
<td>07-S2-EX2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of field trip as specified at the beginning of the course; please consult with academic advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

[Version 1: Contents of the field trip to be determined by the respective institution.] [Version 2: Contents of the project to be determined by the competent coordinators; contents will vary according to topic.]

Intended learning outcomes

Students have developed skills which qualify them to work in their profession.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>no information on SWS (weekly contact hours) and course language available</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

Methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Project II</td>
<td>07-S2-IP2-102-m01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Module offered by</td>
</tr>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTS</td>
<td>Method of grading</td>
</tr>
<tr>
<td>10</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
<tr>
<td>Duration</td>
<td>Module level</td>
</tr>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
</tr>
<tr>
<td></td>
<td>Other prerequisites</td>
</tr>
<tr>
<td></td>
<td>Admission prerequisite to assessment: regular attendance of project sessions as specified at the beginning of the course; please consult with academic advisory service in advance.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>Contents of the project to be determined by the competent coordinators; contents will vary according to topic.</td>
<td></td>
</tr>
<tr>
<td>Intended learning outcomes</td>
<td></td>
</tr>
<tr>
<td>Students have developed skills which qualify them to work in their profession.</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td></td>
</tr>
<tr>
<td>(type, number of weekly contact hours, language — if other than German)</td>
<td></td>
</tr>
<tr>
<td>R (no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
</tr>
<tr>
<td>Method of assessment</td>
<td>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</td>
</tr>
<tr>
<td>methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course</td>
<td></td>
</tr>
<tr>
<td>Allocation of places</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Module title</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Laboratory Practical Course II</td>
<td>07-S2-LP2-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator BioCareers</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of lab course as specified at the beginning of the course; please consult with academic advisory service in advance.</td>
</tr>
</tbody>
</table>

Contents

This practical course is offered by an institution that is part of the University. Contents to be determined by the respective institution.

Intended learning outcomes

Students are familiar with the structures of internal institutions and have developed skills which qualify them to work in their profession.

Courses

Type, number of weekly contact hours, language — if other than German

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

Methods of assessment: a) written examination (approx. 45 to 60 minutes) or b) log (approx. 10 to 20 pages) or c) oral examination of one candidate each (approx. 30 minutes) or d) oral examination in groups of up to 3 candidates (approx. 20 minutes per candidate) or e) presentation (approx. 20 to 30 minutes); students will be informed about the method and length of the assessment prior to the course.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Organisation and Safety in Biosciences
Abbreviation: 07-SQF-OSB-102-m01

Module coordinator: Coordinator BioCareers
Module offered by: Faculty of Biology

ECTS: 5
Method of grading: Only after succ. compl. of module(s)
numerical grade: --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
Safety procedures in the biosciences, in particular radiation protection, handling of genetically modified organisms, hygiene procedures and hazardous substances, working with lab animals. Fundamental concepts that help ensure an effective and efficient workflow in the biosciences. Structure and organisation of institutions in the bioscience/biotech sector. Process-based project management. HR management in the biosciences, responsibilities of managers/supervisors, appraisal interviews, target agreements, management styles.

Intended learning outcomes:
Students have developed a fundamental knowledge of the regulations governing work in the bioscience sector and are familiar with fundamental organisational principles that are relevant for work in research and production. They are also familiar with fundamental principles of process-based project work in the biosciences.

Courses:
V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
(a) written examination (30 to 60 minutes) and (b) presentation (approx. 10 minutes) or term paper (approx. 5 to 10 pages)

Allocation of places:
Number of places: 15. Should the number of applications exceed the number of available places, places will be allocated as follows: Places will primarily be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits. Should the module be used in other subjects, there will be two quotas: 95% of places will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits and 5% of places (a minimum of one participant in total) will be allocated to students of the Bachelor's degree subject Biologie (Biology) with 60 ECTS credits and to students of the Bachelor's degree subjects Computational Mathematics and Mathematik (Mathematics), each with 180 ECTS credits, as part of the application-oriented subject Biologie (as well as potentially to students of other 'importing' subjects). Should the number of places available in one quota exceed the number of applications, the remaining places will be allocated to applicants from the other quota. Should there be, within one module component, several courses with a restricted number of places, there will be a uniform regulation for the courses of one module component. In this case, places on all courses of a module component that are concerned will be allocated in a standardised procedure. In this procedure, applicants who already have successfully completed at least one other module component of the respective module will be given preferential consideration. A waiting list will be maintained and places re-allocated as they become available. Selection process group 1 (95%): Places will primarily be allocated according to the applicants' previous academic achievements. For this purpose, applicants will be ranked according to the number of ECTS credits they have achieved and their average grade of all assessments taken during their studies or of all module components in the subject of Biologie (Biology) (excluding Chemie (Chemistry), Physik (Physics), Mathematik (Mathematics)) at the time of application. This will be done as follows: First, applicants will be ranked, firstly, according to their average grade weighted according to the number of ECTS credits (qualitative ranking) and, secondly, according to their total number of ECTS credits achieved (quantitative ranking). The applicants' position in a third ranking will be calculated as the sum of these two rankings, and places will be allocated according to this third ranking. Among applicants with the same ranking, places will be allocated according to the qualitative ranking or otherwise by lot. Selection process group 2 (5%): Places will be allocated according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in modules/module
components of the Faculty of Biology; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Should the module be used only in the Bachelor's degree subject Biologie (Biology) with 180 ECTS credits, places will be allocated according to the selection process of group 1.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title
Developmental Biology of Plants for minor field of study
Abbreviation
07·3A3EBIOP-102-m01

Module coordinator
Dean of Studies Biologie (Biology)

Module offered by
Faculty of Biology

ECTS
4

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: regular attendance of exercises and successful completion of the respective exercises as specified at the beginning of the course.

Contents
In this module, students will acquire an insight into the fundamental processes of plant developmental biology over a plant’s entire life cycle from germination to reproduction. The module will discuss the molecular determination and regulation of different developmental biological processes in plants as well as their plasticity.

Intended learning outcomes

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 30 to 60 minutes) including multiple choice questions

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Application-oriented Subject Chemistry
(32-40 ECTS credits)
Application-oriented Subject Chemistry Compulsory Courses
(26 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physics for Students of Non-physics-related Minor Subjects</td>
<td>11-EFNF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Mechanics, vibration theory, thermodynamics, optics, science of electricity, Atomic and Nuclear Physics.

Intended learning outcomes

The students have knowledge of the principles of Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Allocation of places

Only as part of pool of general key skills (ASQ): 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Physical Chemistry 1

Abbreviation
08-PC1-092-m01

Module coordinator
Lecturer of lecture "Grundlagen der Quantenmechanik and Spektroskopie" (Principles of Quantum Mechanics and Spectroscopy)

Module offered by
Institute of Physical and Theoretical Chemistry

ECTS
8

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module introduces students to the fundamental principles of quantum mechanics. It analyses molecules on the basis of the following models: particle in a box, harmonic oscillator and rigid rotor. As regards spectroscopy, the module focuses on vibrational spectroscopy, angular momentum quantisation, microwave spectroscopy and UV-VIS spectroscopy. In addition, the module discusses linear operators, eigenvalue problems, matrix representation, differential equations, Fourier transform and orthogonal functions as mathematical bases of the topics listed above.

Intended learning outcomes
Students are able to explain key models of quantum mechanics and to apply them to molecules. They are able to describe different spectroscopic methods. In addition, students know how to apply the mathematical bases of quantum mechanics.

Courses
(V + Ü + V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Inorganic Chemistry for Students of Mathematics and other</td>
<td>o8-CM1-112-m01</td>
</tr>
<tr>
<td>Subjects</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecturer of lecture "Experimentalchemie" (Experimental Chemistry)</td>
<td>Institute of Inorganic Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Basics of general and anorganic chemistry.

Intended learning outcomes
Students have become familiar with the fundamental principles of general and inorganic chemistry.

Courses
(type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)
written examination (approx. 90 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--
Module title
Organic Chemistry 1

Abbreviation
08-OC1-092-m01

Module coordinator
holder of the Professorship of Organic Chemistry

Module offered by
Institute of Organic Chemistry

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents
This module provides students with an overview of the fundamental principles of organic chemistry. It examines the bonding situation of carbon and introduces students to the nomenclature of simple and moderately complex organic compounds. The module also discusses the fundamental principles of stereochemistry, substitution, addition and elimination reactions as well as synthesis planning.

Intended learning outcomes
Students know important categories of substances in organic chemistry. They are able to use different systems of nomenclature to determine simple substance names. Students are able to analyse the stereochemistry of molecules. They are able to describe and formulate some of the most important reactions in organic chemistry. For that purpose, they can analyse and categorise the characteristic reaction conditions and can use them for simple syntheses.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 62 (1) 2. Chemie "Organische und Bioorganische Chemie"
Application-oriented Subject Chemistry Compulsory Electives
(6-14 ECTS credits)
Module Title

Theoretical Models in Chemistry

Abbreviation

08-TC-092-m01

Module Coordinator

lecturer of lecture "Quantenchemie"

Module Offered by

Institute of Physical and Theoretical Chemistry

ECTS

3

Method of Grading

Only after succ. compl. of module(s)

Duration

1 semester

Module Level

undergraduate

Other Prerequisites

Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

This module provides students with deeper insights into advanced topics in quantum chemistry. It focuses on spin, the Pauli principle, Slater determinants, the Hartree-Fock method, correlation energy, configuration interaction and excited states, the Born-Oppenheimer approximation and bonding models of H2+.

Intended Learning Outcomes

Students are able to describe excited states of molecules with the help of key concepts and models.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of Assessment

(a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or (b) oral examination of one candidate each (approx. 20 minutes) or (c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of Places

--

Additional Information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title

Physical and Theoretical Chemistry 3: Symmetry and Quantum Chemistry

Abbreviation

08-PC3-092-m01

Module coordinator

Lecturer of lecture “Quantenchemie”

Module offered by

Institute of Physical and Theoretical Chemistry

ECTS

6

Method of grading

Only after succ. compl. of module(s)

Numerical grade

--

Duration

1 semester

Module level

Undergraduate

Contents

This module deals with basics of quantum chemistry and symmetry in chemistry.

Intended learning outcomes

Students have become familiar with the fundamental principles of quantum chemistry and symmetry in chemistry and are able to apply the knowledge they have developed.

Courses

V + Ü + V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) 1 to 3 written examinations (1 written examination: 90 minutes; 2 written examinations: 60 or 90 minutes each; 3 written examinations: 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Organic Chemistry 2 | 08-OC2-102-m01

Module coordinator | Module offered by
holder of the Chair of Physically Organic Chemistry | Institute of Organic Chemistry

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
</table>
| 9 | numerical grade | 08-OC1

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
</table>
| 1 semester | undergraduate | Admission prerequisite to assessment: successful completion of exercises in the respective classes as specified at the beginning of the course (usually 70% of exercises to be successfully completed) as well as regular attendance of exercises (usually a maximum of 2 incidents of unexcused absence).

Contents

This module introduces students to the rules of aromaticity and discusses specific reactions of aromatics. Using the example of carbonyl compounds, it extends the students’ knowledge of substitution, elimination and addition reactions to complex reaction mechanisms. The course also focuses on oxidation and reduction reactions as well as rearrangement. In addition, it introduces students to the spectroscopic methods of infrared spectroscopy, mass spectrometry and NMR spectroscopy.

Intended learning outcomes

Students have become familiar with the criteria for aromaticity. They can analyse the varying reactivity of carbonyl compounds. They are able to describe specific reactions of carboxyls and aromatics. For that purpose, they can plan and formulate multi-stage syntheses with complex reaction mechanisms and can transfer them to unknown reactions. Students are able to describe important spectroscopic methods, to evaluate a spectrum and to draw conclusions regarding the molecular structure.

Courses (type, number of weekly contact hours, language — if other than German)

V + V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) 1 to 3 written examinations (1 written examination: approx. 90 minutes; 2 written examinations: approx. 60 or 90 minutes each; 3 written examinations: approx. 60 minutes each) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Application-oriented Subject Geography
(30-40 ECTS credits)
Application-oriented Subject Geography - Basics of the Scientific Discipline

(10-20 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physical Geography 1 (Earth System: Exogeneous Dynamics - Geomorphology)</td>
<td>09-PG1ExD-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Physical Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Physical Geography": basics of exogenous dynamics and geomorphology. Erosion and accumulation processes and accumulation results: gravitative, fluvial, glacial and periglacial, Aeolian, marin, littoral, solution: monoprocessual large forms, e.g. endogenous/tectonic forms like volcanoes, break clod, fold mountains or Aeolian "Draas" (huge dunes), deflation (enclosed) basins; polyprocessual large forms, e.g. glacial series, shape of coastlines, escarpments.

Intended learning outcomes

Students dispose over basic knowledge of exogenous dynamics and geomorphology.

Courses (type, number of weekly contact hours, language — if other than German)

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Physiogeographie
§ 66 (1) 1. Geographie Physiogeographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physical Geography 2 (Earth System: Climate System)</td>
<td>09-PG1KS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Climatology</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Physical Geography": basics of the climate system: Earth and celestial mechanical basics; radiation and energy; vertical and horizontal movement processes; data sources and appearance of the terrestrial climate system

Intended learning outcomes

Students will gain a basic physical understanding of the Earth’s climate system.

Courses (type, number of weekly contact hours, language — if other than German)

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Physiogeographie
§ 66 (1) 1. Geographie Physiogeographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physical Geography 3 (Earth System: Endogenic Dynamics)</td>
<td>09-PG1EnD-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Geodynamics and Geomaterials Research</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Physical Geography": basics of endogenous dynamics: formation/structure of the Earth, features of important rock forming, ecologically important minerals, volcanism/igneous rocks, plutonism/magma genesis, sediments/sedimentary rocks, metamorphosis; geological structures, ocean floor, plate tectonics, earthquakes, orogenesis, continental crust, distribution of mineral raw materials

Intended learning outcomes

Students dispose over basic knowledge of endogenous dynamics

Courses (type, number of weekly contact hours, language — if other than German)

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Physiogeographie
§ 66 (1) 1. Geographie Physiogeographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Geography of Cities, Towns and Villages</td>
<td>09-HG1SI-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Professorship of Cultural Geography

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Introduction to "Settlement Geography".

Intended learning outcomes

Students possess knowledge of Urban Geography as well as in Geography of Rural Settlements.

Courses

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Humangeographie

§ 66 (1) 1. Geographie Humangeographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Economic Geography</td>
<td>09-HG1WI-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Professorship of Economic Geography

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Economic Geography".

Intended learning outcomes

Students possess knowledge of Economic Geography. They are also acquainted with the geographical economic theory, location theory and development theory.

Courses

(V + T (no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination</td>
<td>(approx. 45 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Humangeographie

§ 66 (1) 1. Geographie Humangeographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Social and Population Geography</td>
<td>09-HG1SO-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Social Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Social and Population Geography".

Intended learning outcomes

Students possess knowledge of Social and Population Geography as well as Civilisation Geographical Research.

Courses (type, number of weekly contact hours, language — if other than German)

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 47 (1) 1. Geographie Humangeographie
§ 66 (1) 1. Geographie Humangeographie
Application-oriented Subject Geography - Special Topics
(10-30 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Methods: Solid Earth System</td>
<td>09-MT3-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Geodynamics and Geomaterials Research

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Basic observations on geological materials that can already be made in the field and which can lead to a first interpretation of geological processes, which took place, as well as the creation of value of geomaterials. Students will be provided with distinctive features and characteristics of the most important rock-forming and economically relevant minerals by means of chosen visuals. Subsequently, the classification of the most important sedimentary, igneous and metamorphic rock types will be elucidated and practised on the basis of their in the hand-piece identifiable mineral existence and structure. In the following modular section, the understanding of two-dimensional display of three-dimensional display of geological phenomena like the geographical distribution of different rock types or tectonic structures will be developed in form of geological maps and sections as well as simple structural-geological diagrams.

Intended learning outcomes

Students are able to identify the most important mineral types and as far as possible, to outline and interpret the rock samples without analytical tools. Moreover, they are able to interpret geological maps correctly and to show geological field observations in map form, profiles and suitable diagrams.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 09-MT3-1-082: S (no information on SWS (weekly contact hours) and course language available)
- 09-MT3-2-082: Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-MT3-1-082: Mineral and Rock Identification

- 5 ECTS, Method of grading: numerical grade
- written or oral examination of one candidate each (30 minutes each)

Assessment in module component 09-MT3-2-082: Geological Maps and Structures

- 5 ECTS, Method of grading: numerical grade
- written or oral examination of one candidate each (approx. 30 minutes each) or term paper (approx. 20 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 (1) 2. Geographie Methoden der Geographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theories and Methodology in Human Geography</td>
<td>09-MT2-o82-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Cultural Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This course will introduce students to general theory of science and geographical specific theory, discussion of different perspectives of research and methodologies, basics of empirical study in analytical and prescriptive sciences.

Intended learning outcomes

Students possess knowledge of theoretical and methodological basics. Students are acquainted with empirical research methods as well as models and modelling to Human Geography.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (45 minutes) and presentation (approx. 20 minutes), weighted 1:1

Allocation of places

--

Additional information

--

Referred to in LPO I

§ 66 (I) 2. Geographie Methoden der Geographie
Module title
Special Issues of Human Geography 1

Abbreviation
09-HG2T1-102-m01

Module coordinator
holder of the Professorship of Social Geography

Module offered by
Institute of Geography and Geology

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
This module deals with and consolidates chosen issues of "Theoretical and Applied Human Geography" from a sub-area of "Human Geography".

Intended learning outcomes
Students are familiar with technical theories and have solid knowledge of a sub-area of Human Geography and their application-oriented implementation. They are acquainted with the production of seminar papers on the basis of independent literature work as well as presentation of the seminar papers in a freely hold presentation.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Quantitative and Qualitative Regional Analysis | 09-MT4-102-m01

Module coordinator | Module offered by
holder of the Professorship of Social Geography | Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
This module includes processes of quantitative regional research, multivariate statistical processes, processes of geographical modelling and simulation. Processes of qualitative social and regional research. Presentation and discussion of methods, criticism of methods. Application of methods based on typical examples.

Intended learning outcomes
Students possess the following skills: The students' process-related skills will be applied to regional and analytical methods as well as the skills concerning the assessment and evaluation of the processes application and efficiency.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 2 module components. Information on courses will be listed separately for each module component.
- 09-MT4-1-102: S (no information on SWS (weekly contact hours) and course language available)
- 09-MT4-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-MT4-1-102: Quantitative Regional Analysis
- 5 ECTS, Method of grading: numerical grade
- presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1

Assessment in module component 09-MT4-2-102: Qualitative Regional Analysis
- 5 ECTS, Method of grading: numerical grade
- a) presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1 or b) 2 short presentations (10 minutes each) and one portfolio (including approx. 5 logs of practical exercises as well as approx. 3 exercises), weighted 1:1:2

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 66 (1) 2. Geographie Methoden der Geographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Issues of Human Geography 2</td>
<td>09-HG2T2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Professorship of Social Geography

Module offered by

Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

This module deals with and consolidates chosen issues of "Theoretical and Applied Human Geography" from a sub-area of "Human Geography".

Intended learning outcomes

Students are familiar with technical theories and have solid knowledge of a sub-area of Human Geography and their application-oriented implementation. They are acquainted with the production of seminar papers on the basis of independent literature work as well as presentation of the seminar papers in a freely hold presentation.

Courses

(no information on SWS (weekly contact hours) and course language available)

Method of assessment

presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Human Geography</td>
<td>09-HG3-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Social Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>09-HG1 and 09-MT2 and 09-MT4 and 09-STAT-1 and 09-KART-1 and either 09-STAT-2 or 09-KART-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Students will choose a topic of "Human Geography" and attend a project seminar: data collection, data analysis and presentation of explored issues.

Intended learning outcomes

Students possess the following skills:
- Application of the already acquired technical and methodological basics of practice-oriented issues of geographical planning and development using empirical research methods;
- Elaboration of action-oriented solutions;
- Presentation of results;
- Knowledge concerning the use of empirical survey and analysis methodology, project work, team spirit, results-oriented methods, acquisition of communicative technique skills.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 09-HG3-1-082: S (no information on SWS (weekly contact hours) and course language available)
- 09-HG3-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-HG3-1-082: Project-oriented Seminar 1 for Applied Human Geography

- 5 ECTS, Method of grading: numerical grade
- Presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1

Assessment in module component 09-HG3-2-102: Project-oriented Seminar 2 for Applied Human Geography

- 5 ECTS, Method of grading: numerical grade
- Presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing 1</td>
<td>09-FERN1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Remote Sensing</td>
</tr>
<tr>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Geographical Remote Sensing”.

Intended learning outcomes

Students possess the following skills: Theoretical basics of the Remote Sensing System, Remote Sensing against the background of different sensor and platform specifications.

Courses

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 (1) 2. Geographie Methoden der Geographie
Module Catalogue for the Subject Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing 2</td>
<td>09-FERN2-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Remote Sensing

Module offered by
Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Application of Remote Sensing to Geography.

Intended learning outcomes
Students have skills of current geographical fields of application concerning the cross-sectional methodology, consolidation of application possibilities of different sensor and platform specifications.

Courses
V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 45 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module Catalogue for the Subject Mathematics

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Problems of Physical Geography 1</td>
<td>09-PG2T1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physical Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

This module covers synthesis and networking of physical-geographical factors in the light of different methodical approaches and particularly on the basis of the human impact: geomorphology, climate, soil, hydro geography, global change and past global change incl. geo and ecosystem research and ecosystem prediction as well as the cycle of materials on Earth's surface.

Intended learning outcomes

Students are acquainted with the synthesis and interconnectedness of skills that have already been acquired concerning the processes on Earth’s surface, which are dominating the landscape on Earth’s surface and are driven by the geological factors rock, relief, climate, soil, water, flora and fauna. These processes determine structure, function and dynamics of the natural environment and its anthropogenic transformation (the environment that has been shaped from humans by land utilisation, settlements, transport routes etc.). Through the quantitative acquisition of current process structures, Physical Geography is not only able to derive predications for the capability and capacity of geological systems, but also to predict changes in future by analysing the development and change of geographical territories in the past. These important planning decision-making bases concerning the management as well as the sustainable use and development, are given weight to the task of Physical Geography in the practical area.

Courses

(type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Special Problems of Physical Geography 2

Abbreviation
09-PG2T2-102-m01

Module coordinator
holder of the Chair of Physical Geography

Module offered by
Institute of Geography and Geology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Contents

This module covers synthesis and networking of physical-geographical factors in the light of different methodical approaches and particularly on the basis of the human impact: geomorphology, climate, soil, hydro geography, global change and past global change incl. geo and ecosystem research and ecosystem prediction as well as the cycle of materials on Earth's surface.

Intended learning outcomes

Students are acquainted with the synthesis and interconnectedness of skills that have already been acquired concerning the processes on Earth’s surface, which are dominating the landscape on Earth’s surface and are driven by the geological factors rock, relief, climate, soil, water, flora and fauna. These processes determine structure, function and dynamics of the natural environment and its anthropogenic transformation (the environment that has been shaped from humans by land utilisation, settlements, transport routes etc.). Through the quantitative acquisition of current process structures, Physical Geography is not only able to derive predications for the capability and capacity of geological systems, but also to predict changes in future by analysing the development and change of geographical territories in the past. These important planning decision-making bases concerning the management as well as the sustainable use and development, are given weight to the task of Physical Geography in the practical area.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>presentation (approx. 30 minutes) with written elaboration (approx. 20 pages), weighted 1:1</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Acquisition and Processing in Physical Geography</td>
<td>09-MT1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physical Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Consolidation of methodical knowledge concerning the collection and processing of data sets, which will be aduced in "Physical Geography" as a typical example in order to understand the natural environment; Advanced students can attend alternative seminars, in which applications from the areas ground climatology, climate modelling, geophysical methods, soil science of fields, remote sensing and GIS (geographic information system) will be offered optionally.

Intended learning outcomes
Students have advanced knowledge of the area basic principles, methodology, cartography and EDP (if necessary statistics, too), which are gained by means of a precise task. Thus, each form of data collection in the field or the modelling at the computer with different stages of data processing in the lab or at the computer will be linked together in order to teach the practical dealing with geophysical measurement methods as well as the dealing with different software applications.

Courses
(no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
(no information on SWS (weekly contact hours) and course language available)

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>presentation (approx. 15 minutes) with written elaboration (15 pages), weighted 1:1</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Module title

Applied Physical Geography

Abbreviation

09-PG3-102-m01

Module coordinator

holder of the Chair of Physical Geography

Module offered by

Institute of Geography and Geology

ECTS

10

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Students will choose a topic of "Physical Geography" and attend a project seminar: data collection, data analysis and presentation of explored issues.

Intended learning outcomes

Students know how to use their skills, which they have already acquired in the area basics and methods, in order to implement them practically. Based on a specific issue, which is partly integrated in a current research project, process steps of geographical research and method will be undergone. Students are acquainted with the data collection in the field or the modelling at the computer, the application of statistical processes, the cartographic visualisation and presentation in form of lectures, posters, films, Internet or reports. They also possess the ability to work independently.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 09-PG3-1-082: S (no information on SWS (weekly contact hours) and course language available)
- 09-PG3-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-PG3-1-082: Project Seminar: Establishing Current Status and Data Acquisition

- 5 ECTS, Method of grading: numerical grade
- presentation (30 minutes) with written elaboration (20 pages), weighted 1:1

Assessment in module component 09-PG3-2-102: Project Seminar: Data Evaluation, Data Visualisation and Presentation

- 5 ECTS, Method of grading: numerical grade
- project report (approx. 20 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartography 1</td>
<td>09-KART1-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Professorship of Cultural Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Cartography" and to the "Collection and Processing of Geodata".

Intended learning outcomes

Students possess the following skills: Basics of cartography and use of geodata.

Courses

(type, number of weekly contact hours, language — if other than German)

V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 75 minutes) and practice work (approx. 30 hours for creating approx. 3 maps or diagrams); weighted 1:1

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 66 (1) 2. Geographie Methoden der Geographie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Methods of Physical Geography</td>
<td>09-MT5-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Physical Geography</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Field course: basic principles of physical-geographical field, mapping and measuring method (geomorphology, soil geography, vegetation geography, hydro geography, climatology); 10 days of fieldwork. Practical exercise: data preparation, analysis and interpretation; Synthesis of partial results, visualisation and presentation of data with the help of the GIS discussion and the production of a final report.

Intended learning outcomes

Students possess the fundamental physical-geographical mapping, measurement and lab methods. They have skills of the difficulties of field, measurement and lab works and possess an overview of analysis and interpretation possibilities of the acquired field and lab data. They possess the visualisation and presentation of geodata and have the ability of networked considerations and of discussing the results scientifically.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 09-MT5-1-082: P (no information on SWS (weekly contact hours) and course language available)
- 09-MT5-2-102: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-MT5-1-082: Introduction to physiogeographical Fieldwork Skills, Field Mapping and Measuring

- 5 ECTS, Method of grading: numerical grade
- placement report / fieldwork report / report on practical training / report on practical course / project report / report on technical course (approx. 15 pages)

Assessment in module component 09-MT5-2-102: Data management, -analysis and -interpretation

- 5 ECTS, Method of grading: numerical grade
- presentation of project (approx. 30 minutes) with written elaboration (approx. 20 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Methods of Planning in Human Geography

Abbreviation
09-MT6-102-m01

Module coordinator
holder of the Professorship of Cultural Geography

Module offered by
Institute of Geography and Geology

ECTS
10

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Application of empirical research methods on practice-oriented issues on geographical planning and development, development of action-oriented problem solving, presentation of the results.

Intended learning outcomes
Students possess the following skills: Application of empirical survey and analysis methodology concerning regional development planning and regional or spatial development, project work, the ability to work in a team, result-oriented methods, communicative techniques.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **09-MT6-1-082**: S (no information on SWS (weekly contact hours) and course language available)
- **09-MT6-2-102**: S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-MT6-1-082: Methods of Planning in Human Geography 1

- 5 ECTS, Method of grading: numerical grade
- a) presentation (approx. 25 minutes) with written elaboration (approx. 12 pages), weighted 1:1 or b) term paper (approx. 20 pages) or c) several small assessments (total length/expenditure of time comparable to a) and/or b)), weighted 1:1

Assessment in module component 09-MT6-2-102: Planning Methods in Human Geography 2

- 5 ECTS, Method of grading: numerical grade
- a) presentation (approx. 25 minutes) with written elaboration (approx. 12 pages) or b) term paper (approx. 20 pages) or c) several small assessments (total length/expenditure of time comparable to a) and/or b))

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Application-oriented Subject Computer Science
(30-40 ECTS credits)
Module title: Algorithmic Graph Theory
Abbreviation: 10-I-AGT-122-m01

Module coordinator: holder of the Chair of Computer Science I
Module offered by: Institute of Computer Science

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents:
We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes:
The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: English, German if agreed upon with the examiner

Allocation of places:
--

Additional information:
--

Referred to in LPO I:
(examination regulations for teaching-degree programmes)
--
Module title	Abbreviation
Algorithm and data structures | 10-I-ADS-102-m01

Module coordinator | Module offered by
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Design and analysis of algorithms, recursion vs. iteration, sort and search methods, data structures, abstract data types, lists, trees, graphs, basic graph algorithms, programming in Java.

Intended learning outcomes
The students are able to independently design algorithms as well as to precisely describe and analyse them. The students are familiar with the basic paradigms of the design of algorithms and are able to apply them in practical programs. The students are able to estimate the run-time behaviour of algorithms and to prove their correctness.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
§ 69 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
Module title

Software Technology

Abbreviation

10-I-ST-102-m01

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

ECTS

10

Method of grading

Only after succ. compl. of module(s)

Numerical grade

--

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Object-oriented software development with UML, development of graphical user interfaces, foundations of databases and object-relational mapping, foundations of web programming (HTML, XML), software development processes, unified process, agile software development, project management, quality assurance.

Intended learning outcomes

The students possess a fundamental theoretical and practical knowledge on the design and development of software systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie

§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course in Programming</td>
<td>10-I-PP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>(not) successfully completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

The programming language Java. Independent creation of small to middle-sized, high-quality Java programs.

Intended learning outcomes

The students are able to independently develop small to middle-sized, high-quality Java programs.

Courses

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 (1) 1. c) Informatik Praktische Softwareentwicklung

§ 69 (1) 1. d) Informatik Praktische Softwareentwicklung
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical course in software</td>
<td>10-I-SWP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Completion of a project assignment in groups, problem analysis, creation of requirements specifications, specification of solution components (e.g. UML) and milestones, user manual, programming documentation, presentation and delivery of the runnable software product in a colloquium.

Intended learning outcomes

The students possess the practical skills for the design, development and execution of a software project in small teams.

Courses (type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Completion of project assignments, presentation

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 (1) 1. c) Informatik Praktische Softwareentwicklung
§ 69 (1) 1. d) Informatik Praktische Softwareentwicklung
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital computer systems</td>
<td>10-I-RAL-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes

The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
Module title	Abbreviation
Information Transmission | 10-I-IÜ-102-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science III | Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Introduction to probability calculus, coding theory, coding for fault detection and fault correction, information theory, spectrum and Fourier transform, modulation technique, structure of digital transmission systems, introduction to the structure of computer networks, communication protocols.

Intended learning outcomes

The students possess a technical, theoretical and practical knowledge of the structure of systems for information transmission, a knowledge that is necessary to understand these systems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
Module title	**Abbreviation**
Theoretical informatics | 10-I-TI-102-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS	**Method of grading**	**Module level**	**Other prerequisites**
10 | numerical grade | undergraduate | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Computability, decidability, countability, complexity of calculations, Boolean functions and circuits, finite automata and regular sets, generative grammars, context-free languages, context-sensitive languages.

Intended learning outcomes
The students possess fundamental and applicable knowledge in the area of computability, decidability, countability, complexity of calculations, Boolean functions and circuits, finite automata and regular sets, generative grammars, context free languages, context sensitive languages.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
§ 69 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic for informatics</td>
<td>10-I-LOG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes

The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases</td>
<td>10-I-DB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes

The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie

§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
Module title
Object-oriented Programming

Abbreviation
10-I-OOP-102-m01

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Polymorphism, generic programming, meta programming, web programming, templates, document management.

Intended learning outcomes
The students are proficient in the different paradigms of object-oriented programming and have experience in their practical use.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Complexity</td>
<td>10-I-KT-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Automation and Control Technology

Abbreviation
10-I-AR-102-m01

Module coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
8 | numerical grade | --

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Overview of automation systems, fundamental principles of control technology, Laplace transformation, transfer function, plant, controller types, basic feedback loop, fundamental principles of control engineering, automata, structure of Petri nets, Petri nets for automisation, machine-related structure of processing computation machines, communication between process computers and periphery devices, software for automation systems, process synchronisation, process communication, real-time operating systems, real-time planning.

Intended learning outcomes

The students master the fundamentals of automation and control.

Courses

(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes). Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
Module title	Computer Networks and Communication Systems	10-I-RK-102-m01
Module coordinator | holder of the Chair of Computer Science III | Institute of Computer Science
ECTS | 8 | numerical grade
Method of grading | Only after succ. compl. of module(s)
Duration | 1 semester | undergraduate
Other prerequisites | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Intended learning outcomes

The students possess an intricate knowledge of the structure of computer networks and communication systems as well as fundamental principles to rate these systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Application-oriented Subject Philosophy
(30-40 ECTS credits)
Application-oriented Subject Philosophy Compulsory Courses
(20 ECTS credits)
Module title

Philosophy and the sciences

Abbreviation

06-B-P2-102-m01

Module coordinator

holder of the Chair of Theoretical Philosophy

Module offered by

Institute of Philosophy

ECTS

10

Method of grading

numerical grade

Duration

1 semester

Module level

undergraduate

Other prerequisites

By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Introduction to the theory of intellectual disciplines; philosophical bases of the humanities and the social sciences; philosophical bases of the natural sciences and engineering.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes:
- insight into the relationship of philosophy to individual intellectual disciplines
- ability to reflect on the historical and intellectual origins of our knowledge culture
- ability to organise topics into overarching historical, social, and political schemata
- insight into the scope and limits of various intellectual disciplines
- knowledge of, and ability to criticise, basic assumptions in systems of thought, culture, and knowledge

Formal outcomes (skills to be tested in assessments):
- ability to analyse philosophical texts and issues
- ability to organise concepts and philosophical positions into overarching intellectual schemata
- ability to present philosophical positions in a structured and linguistically appropriate manner

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 06-B-P2-1-102: V + S (no information on SWS (weekly contact hours) and course language available)
- 06-B-P2-2-102: V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 06-B-P2-1-102: Philosophical principles of arts and humanities

- 5 ECTS, Method of grading: numerical grade
- written examination (approx. 90 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).

Assessment in module component 06-B-P2-2-102: Philosophical principles of natural sciences and technology

- 5 ECTS, Method of grading: numerical grade
- written examination (approx. 90 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).

Allocation of places

Only as part of pool of general key skills (ASQ): max. 20 places. Places will be allocated according to the number of subject semesters. Among applicants with the same number of subject semesters, places will be allocated by lot.

Additional information

--
Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Principles of Philosophy

Abbreviation
06-B-P1-122-m01

Module coordinator
holder of the Chair of Practical Philosophy

Module offered by
Institute of Philosophy

ECTS
10

Method of grading
umerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Introduction to the systems and the history of philosophy; introduction to academic writing and research in philosophy; introduction to formal logic; insight into a period in the history of philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: - insight into basic problems and positions in philosophy - knowledge of, and ability to apply, methods in philosophy and ability to follow the rules of scholarly work - mastery of the fundamentals of formal logic - insight into a period in the history of philosophy Formal outcomes (skills to be tested in assessments): - ability to apply the principles of logic to argumentation - ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability - ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 06-B-P1-1-122: Ü (no information on SWS (weekly contact hours) and course language available)
- 06-B-P1-2-122: S (no information on SWS (weekly contact hours) and course language available)
- 06-B-P1-3-122: V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 06-B-P1-1-122: Introduction to academic working techniques
- 2 ECTS, Method of grading: (not) successfully completed
- 1 small written assessment (approx. 1 page) and/or 1 oral assessment (approx. 5 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of exercises (a maximum of 2 incidents of unexcused absence).

Assessment in module component 06-B-P1-2-122: Introduction to formal logic
- 3 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).

Assessment in module component 06-B-P1-3-122: Principles of Philosophy: historical epochs, main works, authors
- 5 ECTS, Method of grading: numerical grade
- oral examination (approx. 25 minutes)
- Other prerequisites: Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).

Allocation of places

--
Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Application-oriented Subject Philosophy Compulsory Electives
(10-20 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Philosophy</td>
<td>06-B-P3-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Theoretical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminars (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to theoretical philosophy, using basic problems and paradigmatic texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: An overview of basic problems and positions in theoretical philosophy; an overview of systems and disciplines in theoretical philosophy; ability to use and distinguish between different methods in theoretical philosophy; familiarity with, and ability to evaluate, methods of argumentation and justification within theoretical philosophy; ability to reflect on the factors involved in the process of theoretical opinion formation. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to organise concepts and philosophical positions into overarching intellectual schemata; ability to present philosophical positions in a structured and linguistically appropriate manner.

Courses

(V + S + S) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Oral examination (approx. 25 minutes) in one of the seminars (seminar to be selected by students)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module Catalogue for the Subject Mathematics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Philosophy</td>
<td>06-B-P4-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator: holder of the Chair of Practical Philosophy
Module offered by: Institute of Philosophy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Admission prerequisite to assessment: regular attendance of seminars (a maximum of 2 incidents of unexcused absence).

Contents

Introduction to practical philosophy, using basic problems and paradigmatic texts.

Intended learning outcomes

Content-related outcomes: An overview of basic problems and positions in practical philosophy; an overview of systems and disciplines in practical philosophy; ability to use and distinguish between different methods in practical philosophy; knowledge of, and ability to evaluate, methods of argumentation and justification within practical philosophy; ability to reflect on the factors involved in the process of moral opinion formation.
Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to organise concepts and philosophical positions into overarching intellectual schema; ability to present philosophical positions in a structured and linguistically appropriate manner.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + S + S (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment: written examination (approx. 120 minutes) in one of the seminars (seminar to be selected by students)
Allocation of places: --
Additional information: --
Referred to in LPO I: (examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Philosophy</td>
<td>06-B-P5-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of the History of Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminars (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Introduction to the history of philosophy, using basic problems and paradigmatic texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: 1. an overview of basic problems and positions in the history of philosophy 2. ability to use and distinguish between different methods of historiography 3. familiarity with, understanding of, and ability to evaluate methods and questions of scholarly inquiry with respect to the history of philosophy Formal outcomes (skills to be tested in the assessment): 4. ability to analyse philosophical texts and positions 5. ability to organise concepts and philosophical positions into overarching intellectual schemata 6. ability to present philosophical positions in a structured and linguistically appropriate manner

Courses

(V + S + S) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 120 minutes) in one of the seminars (seminar to be selected by students)

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issues of research in philosophy</td>
<td>06-B-P6-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of the History of Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminars (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Selected research issues in philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Knowledge and understanding of scholarly inquiry in philosophy. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in an appropriate manner.

Courses

V + S + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

oral examination (approx. 25 minutes) in one of the seminars (seminar to be selected by students)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Analysis: Ancient Philosophy</td>
<td>06-B-W1-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of the History of Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Ancient philosophical texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: - ability to analyse texts of ancient philosophy while taking into account the historical and intellectual context of their origin - knowledge of, and ability to criticise, basic assumptions in ancient systems of thought, culture, and knowledge Formal outcomes (skills to be tested in the assessment): - ability to analyse philosophical texts and issues - ability to follow the rules of scholarly work (when writing a term paper) - ability to organise historical concepts and philosophical positions into overarching intellectual schemata - ability to independently develop and present philosophical issues

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes) or term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Analysis: Medieval Philosophy</td>
<td>06-B-W2-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of the History of Philosophy

Module offered by

Institute of Philosophy

ECTS

5

Method of grading

numerical grade

Duration

1 semester

Module level

undergraduate

Other prerequisites

Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).

Contents

Medieval philosophical texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Ability to analyse texts of medieval philosophy while taking into account the historical and intellectual context of their origin; knowledge of, and ability to criticise, basic assumptions in pre-modern systems of thought, culture, and knowledge. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in an appropriate manner.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 120 minutes) or term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Analysis: Modern Philosophy</td>
<td>06-B-W3-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Practical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Modern philosophical texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Ability to analyse texts of modern philosophy; knowledge of, and ability to criticise, basic assumptions of systems of thought, culture, and knowledge of modernity. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Analysis: Contemporary Philosophy</td>
<td>06-B-W4-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Practical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Contemporary philosophical texts.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Ability to analyse texts of contemporary philosophy; knowledge of, and ability to criticise, basic assumptions of systems of thought, culture, and knowledge of the contemporary world. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic disciplines of theoretical philosophy</td>
<td>06-B-W5-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Theoretical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in and theoretical models of basic disciplines of theoretical philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Insight into the fundamental disciplines of theoretical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific disciplines of theoretical philosophy</td>
<td>06-B-W6-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Theoretical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in and theoretical models of special disciplines of theoretical philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Insight into special disciplines of theoretical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

term paper (approx. 12 pages) or oral examination (approx. 25 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic disciplines of practical philosophy</td>
<td>06-B-W7-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Practical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in and theoretical models of basic disciplines of practical philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Insight into the fundamental disciplines of practical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Term paper (approx. 12 pages) or oral examination (approx. 25 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems of Older Philosophy</td>
<td>06-B-W9-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of the History of Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in ancient and medieval philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Ability to analyse philosophical problems of older philosophy (ancient/medieval); in-depth knowledge of the history of philosophical concepts, arguments, and theories. Formal outcomes (skills to be tested in the assessment): Ability to apply the principles of logic to argumentation; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title
Specific disciplines of practical philosophy

Abbreviation
06-B-W8-122-m01

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Practical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents
Problems in and theoretical models of special disciplines of practical philosophy.

Intended learning outcomes
Intended learning outcomes: Content-related outcomes: Insight into special disciplines of practical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to analyse philosophical texts and issues; ability to follow the rules of scholarly work; ability to independently develop philosophical issues and to present them in a linguistically appropriate manner.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
term paper (approx. 12 pages) or oral examination (approx. 25 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems of Modern Philosophy</td>
<td>06-B-W10-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of the History of Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Only after succ. compl. of module(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in early modern and contemporary philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Ability to analyse philosophical problems of modern philosophy (early modern to contemporary); in-depth knowledge of the history of philosophical concepts, arguments, and theories. Formal outcomes (skills to be tested in the assessment): Ability to apply the principles of logic to argumentation; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems of Theoretical Philosophy</td>
<td>06-B-W11-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Theoretical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in theoretical philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Advanced knowledge of problems in theoretical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to apply the principles of logic to argumentation; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems of Practical Philosophy</td>
<td>06-B-W12-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Practical Philosophy</td>
<td>Institute of Philosophy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: regular attendance of seminar (a maximum of 2 incidents of unexcused absence).</td>
</tr>
</tbody>
</table>

Contents

Problems in practical philosophy.

Intended learning outcomes

Intended learning outcomes: Content-related outcomes: Advanced knowledge of problems in practical philosophy. Formal outcomes (skills to be tested in the assessment): Ability to apply the principles of logic to argumentation; ability to apply general principles of argumentation such as transparency, consistency, discursivity, completeness, and generalisability; ability to present philosophical issues in a structured and linguistically and rhetorically appropriate way.

Courses *(type, number of weekly contact hours, language — if other than German)*

S *(no information on SWS (weekly contact hours) and course language available)*

Method of assessment *(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)*

term paper (approx. 12 pages)

Allocation of places

--

Additional information

--

Referred to in LPO I *(examination regulations for teaching-degree programmes)*

--
Application-oriented Subject Physics
(33-40 ECTS credits)
Application-oriented Subject Physics Compulsory Electives 1: Basics
(14-16 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physics Part 1 for students of Physics Related Minor Subjects</td>
<td>11-ENNF1-062-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
7

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Mechanics, vibration theory, thermodynamics.

Intended learning outcomes
The students have basic knowledge of physics for engineering students.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 120 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 20 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physics Part 2 for students of Physics Related Minor Subjects</td>
<td>11-ENNF2-062-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS | **Method of grading** | **Module level** | **Other prerequisites** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Science of electricity, magnetism, optics, Atomic Physics.

Intended learning outcomes
The students have basic knowledge of physics for engineering students.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 20 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Classical Physics (Mechanics, Thermodynamics, Waves, Oscillations, Electricity, Magnetism and Optics)

Abbreviation
11-KP-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
16

Method of grading
Only after succ. compl. of module(s)

Numerical grade
--

Duration
2 semester

Module level
undergraduate

Other prerequisites
Bridge course Mathematische Rechenmethoden der Physik (Mathematische Rechenmethoden der Physik) for first-semester students.

Contents

Intended learning outcomes
The students understand the basic principles and connections of mechanics, thermodynamics, vibrations, waves, science of electricity, magnetism, electromagnetic vibrations and waves, radiation and wave optics. They are able to apply mathematical methods to the formulation of physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses
(Klassische Physik 1 (Mechanik, Wellen, Wärme) (Classical Physics 1 (Mechanics, Waves, Heat)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)

Klassische Physik 2 (Elektromagnetismus, Optik) (Classical Physics 2 (Electromagnetism, Optics)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Klassische Physik 1 (Classical Physics 1)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Klassische Physik 2 (Classical Physics 2)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s). Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.

To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Klassische Physik 1 (Classical Physics 1) and Klassische Physik 2 (Classical Physics 2). The topics discussed in these two courses will be covered in assessment component 3.

Students must register for assessment components 1 through 3 online (details to be announced). To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.

The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places
--
Additional information

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application-oriented Subject Physics Compulsory Electives 2: Lab Course

(3-9 ECTS credits)

Exactly one of the two modules 11-P-PA Physikalisches Praktikum Teil A (Physics Practical Course A) and 11-PNNF Physikalisches Praktikum für Studierende eines physiknahen Nebenfachs (Physics Practical Course for Students of Physics-related Minors) must be taken; students are not permitted to take both of these modules.
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Laboratory Course for students of Physics Related Minor Subjects</td>
<td>11-PNNF-062-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
- Mechanics, vibration theory, thermodynamics, optics, X-rays, nuclear magnetic resonance, Atomic and Nuclear Physics.

Intended learning outcomes
The students know the principles of Physics.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
- a) oral test (approx. 15 minutes) during experiment
- b) ungraded written examination (approx. 90 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 15 places. Places will be allocated by lot.

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Lab Course A

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Course A</td>
<td>11-P-PA-112-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
5

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents

Physical laws of mechanics, thermodynamics, science of electricity, types of error, error approximation and propagation, graphs, linear regression, average values and standard deviation, distribution functions, significance tests, writing of lab reports and publications..

Intended learning outcomes

The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
<th>Language</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswertung von Messungen und Fehlerrechnung</td>
<td>V</td>
<td>1</td>
<td>German</td>
<td>winter semester</td>
</tr>
<tr>
<td>Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity, BAM)</td>
<td>P</td>
<td>2 weekly contact hours</td>
<td>German</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment

This module has the following assessment components
1. Topics covered in lectures and exercises: written examination (approx. 120 minutes)
2. Lab course: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

Successful completion of approx. 50% of practice work is a prerequisite for admission to assessment component 1.

To pass assessment component 2, students must pass both elements a) and b). Students will be offered one opportunity to retake element a) and/or element b).

Students must register for assessment components 1 and 2 online (details to be announced).

Students must attend Auswertung von Messungen und Fehlerrechnung (Measurements and Data Analysis) before attending Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity).

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 53 (1) 1. a) Physik Mechanik, Wärmelehre, Elektrizitätslehre, Optik, der speziellen Relativitätstheorie
§ 53 (1) 1. c) Physik physikalische Grundpraktika
§ 77 (1) 1. a) Physik "Grundlagen der Experimentalphysik"
§ 77 (1) 1. d) Physik "physikalische Praktika"
Module title
Basic Practical Course B (Minor Studies)

Abbreviation
11-P-NFB-122-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Physical laws of optics, vibrations and waves, science of electricity and circuits with electric components.

Intended learning outcomes
The students know and have mastered physical measuring methods and experimenting techniques. They are able to independently plan and conduct experiments, to cooperate with others, and to document the results in a measuring protocol. They are able to evaluate the measuring results on the basis of error propagation and of the principles of statistics and to draw, present and discuss the conclusions.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) Preparing, performing and evaluating (lab report) the experiments will be considered successfully completed if a Testat (exam) is passed. Experiments that were not successfully completed can be repeated once. And b) talk (with discussion; approx. 30 minutes) to test the candidate’s understanding of the physics-related contents of the module component. Talks that were not successfully completed can be repeated once. Both components of the assessment have to be successfully completed.

Allocation of places
--

Additional information
Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Application-oriented Subject Physics Compulsory Electives 3
(16-24 ECTS credits)

Out of several module components covering the same contents, students may only use one each. This means that the following combinations are not permitted:
- 11-KM may neither be combined with 11-QAM nor with 11-FKP.
- 11-STE may neither be combined with 11-ST nor with 11-ED.
- 11-TQM may neither be combined with 11-TM nor with 11-QM.
Module title
Condensed Matter (Quanta, Atoms, Molecules, Solid State Physics)

Abbreviation
11-KM-092-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
16

Method of grading
Only after succ. compl. of module(s)

Duration
2 semester

Module level
undergraduate

Other prerequisites
--

Contents

Intended learning outcomes
The students know the basic contexts and principles of quantum phenomena, Atomic Physics and solids (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas)). They are able to apply mathematical methods to the formulation of modern physical contexts and autonomously apply their knowledge to the solution of mathematical-physical tasks.

Courses
(Kondensierte Materie 1 (Quanten, Atome, Moleküle) (Condensed Matter 1 (Quanta, Atoms, Molecules)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
Kondensierte Materie 2 (Festkörperphysik 1) (Condensed Matter 2 (Solid State Physics)): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Kondensierte Materie 1 (Condensed Matter 1)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Kondensierte Materie 2 (Condensed Matter 2)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s). Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2. To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Kondensierte Materie 1 (Condensed Matter 1) and Kondensierte Materie 2 (Condensed Matter 2). The topics discussed in these two courses will be covered in assessment component 3. Students must register for assessment components 1 through 3 online (details to be announced). To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3. The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places
--
Additional information

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Module Catalogue for the Subject Mathematics
Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Mechanics, Thermodynamics and Electrodynamics</td>
<td>11-STE-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>10-M1-PHY and 10-M2-PHY or 10-M1-NST and 10-M2-NST</td>
</tr>
</tbody>
</table>

Contents

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of electrodynamics, thermodynamics and statistical mechanics. They are familiar with the corresponding calculation methods and are able to independently apply them to the description and solution of problems in this area.

Courses

- **Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics):** V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
- **Theoretische Elektrodynamik (Theoretical Electrodynamics):** V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises in part 1 (Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Theoretische Elektrodynamik (Theoretical Electrodynamics)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Assessment component 3 will be offered in German; English if agreed upon with examiner(s). Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.

Students are highly recommended to attend both courses Statistische Mechanik und Thermodynamik (Statistical Mechanics and Thermodynamics) and Theoretische Elektrodynamik (Theoretical Electrodynamics). The topics discussed in these two courses will be covered in assessment component 3.

Students must register for assessment components 1 through 3 online (details to be announced).

To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.

The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Bachelor's with 1 major Mathematics (2012)

JMU Würzburg • generated 23-Aug-2021 • exam. reg. data record Bachelor (180 ECTS) Mathematik - 2012

page 164 / 203
Module title	Abbreviation
Theoretical Mechanics and Quantum Mechanics | 11-TQM-092-m01

Module coordinator	Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	Method of grading	Only after succ. compl. of module(s)
16 | numerical grade | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | 10-M1-PHY, 10-M2-PHY and 11-MPI-3 or 10-M1-NST, 10-M2-NST and MPI-3

Contents

Intended learning outcomes
The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations and understand the principles of quantum theory. They are able to apply the acquired calculation methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)
Theoretische Mechanik (Theoretical Mechanics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (winter semester)
Quantenmechanik (Quantum Mechanics): V (4 weekly contact hours) + Ü (2 weekly contact hours), once a year (summer semester)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
This module has the following assessment components
1. Topics covered in lectures and exercises in part 1 (Theoretische Mechanik (Theoretical Mechanics)): written examination (approx. 120 minutes).
2. Topics covered in lectures and exercises in part 2 (Quantenmechanik (Quantum Mechanics)): written examination (approx. 120 minutes).
3. Topics covered in lectures and exercises in parts 1 and 2: oral examination of one candidate each (approx. 30 minutes, usually chosen) or written examination (approx. 120 minutes).

Successful completion of approx. 50% of practice work each is a prerequisite for admission to assessment components 1 and 2.
To qualify for admission to assessment component 3, students must pass assessment component 1 and/or 2. Students are highly recommended to attend both courses Theoretische Mechanik (Theoretical Mechanics) and Quantenmechanik (Quantum Mechanics). The topics discussed in these two courses will be covered in assessment component 3.
Students must register for assessment components 1 through 3 online (details to be announced).
To pass this module, students must first pass assessment component 1 or 2 and must then pass assessment component 3.
The grade achieved in assessment component 1 or 2 (whichever is better) and the grade achieved in assessment component 3 will each count 50% towards the overall grade awarded for the module.

Allocation of places
--
<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I</td>
</tr>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>Module title</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Theoretical Electrodynamics</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Principles of electrostatics, magnetostatics, Maxwell equations, covariant formulation, electrodynamics and matter

Intended learning outcomes
The students have knowledge of the principles of classical electrodynamics and the required calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Physics 1</td>
<td>11-FKP-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>numerical grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Physical laws of solids: Bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas).

Intended learning outcomes

The students understand the basic contexts and principles of solids (bonding and structure, lattice dynamics, thermal properties, principles of electronic properties (free electron gas).

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title	Abbreviation
Theoretical Mechanics | 11-TM-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Newtonian mechanics, Lagrangian and Hamiltonian formalism, conservation laws, limits of classical physics.

Intended learning outcomes
The students have knowledge of the principles of classical theoretical mechanics and the required calculation methods.

Courses
(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Quanta, Atoms, Molecules
Abbreviation: 11-QAM-092-m01

Module coordinator: Managing Director of the Institute of Applied Physics
Module offered by: Faculty of Physics and Astronomy

ECTS: 8
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:
Physical laws of Atomic, Quantum and Molecular Physics.

Intended learning outcomes:
The students have knowledge of the basic contexts and principles of Atomic and Molecular Physics (atoms: Quantum mechanical atom model, one/multi-electron atoms, electronic dipole transitions, atoms in B field, as well as molecules: Bonding models and elementary excitations: rotations, vibrations, electronic excitations)

Courses (type, number of weekly contact hours, language — if other than German): Ü + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus):
written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places: --

Additional information: --

Referred to in LPO I (examination regulations for teaching-degree programmes): --
Module Catalogue for the Subject Mathematics
Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Mechanics</td>
<td>11-QM-092-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents
Limits of classical physics, Schrödinger equation, mathematical foundations of quantum mechanics, harmonic oscillator, angular momentum and spin, hydrogen atom, many-particle systems

Intended learning outcomes
The students have knowledge of the principles of quantum mechanics and the required calculation methods.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)
Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Mechanics and Thermodynamics</td>
<td>11-ST-092-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Principles of thermodynamics, fundamental theorems, thermodynamic potentials, principles of statistical mechanics.

Intended learning outcomes

The students have knowledge of the principles of thermodynamics and statistical mechanics and the required calculation methods.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes, for modules with less than 4 ECTS credits approx. 90 minutes; unless otherwise specified)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title
Nuclear and Elementary Particle Physics

Abbreviation
11-KET-122-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Only after succ. compl. of module(s)

Numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students understand the basic connections between fundamental Nuclear and Elementary Particle Physics. They have an overview of the experimental observations of Particle Physics and the theoretical models which describe them.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 120 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--
Application-oriented Subject Business Management and Economics (30-40 ECTS credits)
Application-oriented Subject Business Management and Economics
Compulsory Courses
(30 ECTS credits)
Module title	Abbreviation
Managerial Accounting | 12-IntUR-G-o82-m01

Module coordinator | Module offered by
holder of the Chair of Business Management and Accounting | Faculty of Business Management and Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | -- |

Contents

Content:
This course offers an introduction to aims and methods of managerial accounting (cost accounting).

Outline of syllabus:
1. Managerial accounting and financial accounting
2. Managerial accounting: basic terms
3. Different types of costs
4. Cost centre accounting based on total costs
5. Job costing based on total costs
6. Cost centre accounting and job costing based on direct/variable costs
7. Budgeting and cost-variance analysis
8. Cost-volume-profit analysis
9. Cost information and operating decisions

Reading:
Friedl/Hofmann/Pedell: Kostenrechnung. Eine entscheidungsorientierte Einführung. (most recent editions)

Intended learning outcomes

After completing the course "Management Accounting and Control", the students will be able to
(i) set out the responsibilities of the company's internal accounting and control;
(ii) define the central concepts of internal enterprise computing restriction and control and assign case studies the terms;
(iii) apply the basic methods of internal corporate accounting and control on a full and cost base to idealized case studies of medium difficulty that calculate relevant costs and benefits and take on this basis a reasoned decision.

Courses
(V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor's students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of ECTS credits achieved, places will be allocated by lot.
subject semesters, places will be allocated by lot. Quota 3 (25\% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Accounting</td>
<td>12-ExtUR-G-o82-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Business Taxation</td>
<td>Faculty of Business Management and Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	Module level	Other prerequisites
1 semester | undergraduate | -- |

Contents

This course offers an introduction to the fundamentals of financial accounting, including the technique of double-entry book-keeping as well as the fundamentals of recognition, valuation and presentation of assets, liabilities and equity according to German commercial law.

Intended learning outcomes

Students acquire a basic understanding of the fundamentals of financial accounting. They are able to arrange, reproduce and apply this knowledge, i.e. they are able to solve simple accounting problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Abbreviation
Introduction to Business Administration | 12-EBWL-G-082-m01

Module coordinator	Module offered by
holder of the Chair of Human Resource Management and Organisation | Faculty of Business Management and Economics |

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | undergraduate | -- |

Contents

This course will introduce students to relevant subject areas of business administration. Students will acquire an overview of the different perspectives and main points of view from which a theoretical examination of business enterprise may take place. The course will focus on what companies or other organisations are, how they behave and in what form they are organised. For this purpose, a study will be made of the economic subject's decision-making behaviour.

Reading list to be provided during lecture.

Intended learning outcomes

The aim of the lectures is to familiarise the students with the basic problem issues and perspectives within the field of business administration.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor's students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title: Introduction to Economics
Abbreviation: 12-EVWL-G-082-m01

Module coordinator: holder of the Chair of Monetary Policy and International Economics
Module offered by: Faculty of Business Management and Economics

ECTS: 5
Method of grading: numerical grade only after successful completion of module(s)

Duration: 1 semester

Module level: undergraduate

Contents:
The course deals with the following topics:
1. Economics shows how markets function
2. The division of labour is the basis of our wealth
3. The market in action
4. Monopolies and cartels endanger market economies
5. The labour market and the role of unions
6. The government’s role in a social market economy
7. Governmental redistribution guarantees the social balance in a market economy
8. Environmental policy and the government’s allocation function
9. Objectives and agents in the macro economy
10. How do aggregate supply and demand come into equilibrium?
11. The role of fiscal policy
12. How does a central bank stabilise aggregate demand by setting interest rates?

Intended learning outcomes:
By completing this course, students receive a fundamental understanding of economics. Students are able to grasp microeconomic as well as macroeconomic subjects and to analyze them in theoretical models.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 60 minutes)

Allocation of places:
Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information:

Referred to in LPO I (examination regulations for teaching-degree programmes)
Module title	Macroeconomics 1
Abbreviation | 12-Mak1-G-082-m01

Module coordinator | holder of the Chair of International Macroeconomics
Module offered by | Faculty of Business Management and Economics

ECTS	5
Method of grading	numerical grade
Only after succ. compl. of module(s)	--

Duration | 1 semester
Module level | undergraduate
Other prerequisites | --

Contents

Description:
This module covers basic macroeconomic relationships, the declaration of employment, production, interest, current and capital account, nominal and real exchange rate, prices and inflation - in the long run (with flexible wages and prices) and in the short term (with fixed wages and prices). The course will familiarise students with concepts which are of central importance in a globalised environment (e.g. interest rate arbitrage, foreign exchange risk, purchasing power parity). The explanations will be applied to current issues (e.g. current account balances in the global economy; questions related to the European monetary union and the global financial crisis).

Outline of syllabus:
1. Macroeconomic issues and characteristics
 - Issues of macroeconomics
 - The measurement of economic activity
2. Long-term relationships
 - The classic long-term model of the closed economy
 - Money and Inflation
 - The classic long-term model of a small open economy
 - Unemployment
3. Short and medium-term relationships
 - Fluctuations of economic activity: an introduction
 - The IS-LM model of a closed economy
 - The IS-LM model of an open economy
 - Aggregate supply and Phillips curve
 - Conclusion and outlook

Reading:
The latest editions of the following textbooks:
N. Gregory Mankiw: Macroeconomics [students are recommended to read the original English edition; they may also read the German translation]
Olivier Blanchard and David H. Johnson, Macroeconomics Prentice Hall; [a German-language edition of the book by Oliver Blanchard and Gerhard Illing is available from Pearson Studium].
Michael Burda and Charles Wyplosz: Macroeconomics. A European text.

To illustrate the lecture, case studies in particular will be developed in which more current sources are used.

Intended learning outcomes
This expertise enables the students to penetrate economically-intuitively and analytically macroeconomic interactions and problems in the course of advancing globalization and to deal with these arguments. Students learn to interpret on a scientific basis the impact of macroeconomic developments in individual economic actors (businesses, households, the state).

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)
Method of assessment (type, scope, language — if other than German, examination offered — If not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module title	Microeconomics 1
Abbreviation | 12-Mik1-G-082-m01

Module coordinator | holder of the Chair of Economics, Information and Contract Economics
Module offered by | Faculty of Business Management and Economics

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

The lecture covers the following topics

Theory of the household:
1. Utility maximisation under constraints
2. Comparative statics
3. Income and substitution effects
4. Labour supply
5. Intertemporal consumption / savings decisions

Theory of the firm:
6. Production functions (technology)
7. Profit maximisation
8. Long run versus short run cost minimisation
9. Supply of goods

Intended learning outcomes

Students are systematically trained in microeconomic methods relevant in household and firm theory. Accordingly, they will know how to solve optimization problems under constraints. These scientific methods will serve as useful in many fields of specialization in economics and business administration. In particular, students know analytically how to analyze the impact of changes in the economic environment, e.g., wages, interest rates, income on individual decision making.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given prefer-
rential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Application-oriented Subject Business Management and Economics
Compulsory Electives
(max. 10 ECTS credits)
Module title | Abbreviation
---|---
Introduction to Market-Oriented Management | 12-Mark-G-o82-m01

Module coordinator

holder of the Chair of Business Management and Marketing
Faculty of Business Management and Economics

### ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | --

Duration |

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Description

In this module, students will acquire the theoretical foundations of market-oriented management.

Content:

With the stakeholder approach as a starting point, the basic design of market-oriented management will be explained and exemplified in the 5 classical steps: situation analysis, objectives, strategies, tools and controlling. The course will focus not only on the behavioural approaches of consumer behaviour but also on industrial purchasing behaviour. A case study introducing students to the fundamental principles of market research based on a conjoint analysis will provide students with deeper insights into the topic.

Outline of syllabus:

1. Marketing, entrepreneurship and business management
2. Explanations of consumer behaviour
3. Fundamentals of market research
4. Strategic marketing; marketing tools
5. Corporate social responsibility versus creating shared value

Reading:

Intended learning outcomes

The students have a basic understanding of business management and are able to classify the knowledge systematically. In addition, they can use the acquired knowledge solve and identify the conventional problem fields of business management.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)
<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 60 minutes)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of places</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Module title: Supply, Production and Operations Management. An Introduction

Abbreviation: 12-BPL-G-082-m01

Module coordinator: holder of the Chair of Business Management and Industrial Management

Module offered by: Faculty of Business Management and Economics

ECTS: 5

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:
This course will provide students with an overview of fundamental processes in procurement, production and logistics and the related corporate functions as well as a model-based introduction to related planning procedures.

Intended learning outcomes:
The students will be able to describe and discuss the objectives and major processes in the domains of corporate procurement, production and logistics as well as their interdependencies. Furthermore, they are capable of developing and applying basic planning models in these fields.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 60 minutes)

Allocation of places:
Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title
Investment and Finance. An Introduction

Abbreviation
12-I&F-G-082-m01

Module coordinator
holder of the Chair of Business Management, Banking and Finance

Module offered by
Faculty of Business Management and Economics

ECTS
5

Method of grading
numerical grade

Duration
1 semester

Module level
undergraduate

Only after succ. compl. of module(s)

Other prerequisites

Contents

Content:
This course offers an introduction to principles of financial mathematics, several methods of capital budgeting and principles of financial economics.

Outline of syllabus:
1. Principles of financial mathematics
2. Fundamental concepts
3. Problems of investment and finance in one commodity world under certainty
4. Problems of investment and finance in one commodity world under uncertainty
5. Problems of investment and finance in many commodities world under uncertainty
6. Capital market and corporate financing in Germany

Intended learning outcomes

After completing the course "Principles of Investments and Finance", the students will be able
(i) to understand the fundamentals in financial mathematics and solve several problems, e.g. via the PV approach;
(ii) to address the central problems in intertemporal allocation given different capital market scenarios;
(iii) to budget and calculate the optimal useful life given static and dynamic investment approaches under the consideration of several other investment opportunities and the capital market scenario, especially the influence of taxes.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 60 minutes)

Allocation of places

Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--
<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>
Module title | Macroeconomics 2
Abbreviation | 12-Mak2-G-082-m01

Module coordinator | holder of the Chair of Public Finance
Module offered by | Faculty of Business Management and Economics

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents

Description:
The lecture provides an introduction to long run or dynamic issues of macroeconomic theory and policy.

Contents:
1. Phillips curve and dynamic model
2. Growth theory and policy
3. Microeconomic foundations of macroeconomics
4. Macroeconomic policy

Lecture notes to be provided by Chair.

Intended learning outcomes

After completing the course "Makroökonomie 2" students are familiar with the most important concepts of growth theory, they know the microeconomic foundations of modern macroeconomic theory and understand the intertemporal budget constraint of the government. Therefore they are able to discuss the growth and distributional consequences of policy reforms by applying simple economic models.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor's students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Module title

Microeconomics 2

Abbreviation

12-Mik2-G-o82-m01

Module coordinator

holder of the Chair of Industrial Economics

Module offered by

Faculty of Business Management and Economics

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Outline of syllabus:
1. Cost minimisation
2. Profit maximisation and the supply function
3. Short-run market equilibrium
4. Long-run market equilibrium
5. Government interventions
6. Monopoly
7. Pricing strategies with market power
8. Introduction to game theory
9. Strategic interaction and oligopoly

Intended learning outcomes

The aim of the course is to understand how markets work. We will investigate the behavior of a company in different market structures; namely perfectly competitive markets, monopoly markets and all forms in between, the so-called oligopoly markets. Ultimately, we are interested in whether the market results from a social point of view is desirable. Using our models, we will also try to analyze the consequences of different government interventions. The knowledge that students gain in this course will be in their future course of studies of benefits to them. In almost all business and economics lectures markets play a role. It also discussed in detail how economic actors make their decisions. Students will thus learn the important building blocks of economic thought. This knowledge will also be useful in the workplace and even in their private lives.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--
<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
</table>

`--`
Introduction to Economic Policy

Module title	Abbreviation
Introduction to Economic Policy | 12-WiPo-G-082-m01

Module coordinator | Module offered by
holder of the Chair of Economic Order and Social Policy | Faculty of Business Management and Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration | Module level | Other prerequisites
1 semester | undergraduate | -- |

Contents

Description:
The course consists of six chapters. The first chapter illustrates what economists have in mind when referring to the term "economic policy" and discusses its objectives, means and institutions. The following chapters deal with the objectives that are set out in the German "Gesetz zur Förderung der Stabilität und des Wachstums der Wirtschaft" ("Law for Promoting Stability and Growth of the Economy") of 1967. Each chapter uses current macroeconomic data to evaluate the degree to which the particular objective is achieved, discusses the reasons of possible problems and demonstrates actions the government may take to cure the problems.

Outline of syllabus:
1. Introduction
 - What is "Economic Policy"?
 - Objectives of economic policy
 - Instruments of economic policy
 - Institutions of economic policy
2. Full employment
 - Empirics: The status quo of the labour market
 - Reasons for unemployment
 - Cure for labour market problems
3. Price level stability
 - Empirics: Inflation, deflation or price stability?
 - Reasons for inflation and deflation
 - Cure for price instability
 - The contradicting relationship between full employment and stable prices
4. Business cycles and economic growth
 - Empirics: current situation of the world economy and long-term economic growth
 - Reasons for cyclical fluctuations and determinants of economic growth
 - Cure for macroeconomic instabilities and means to facilitate economic growth
5. Balance in foreign trade
 - Empirics: balances of payments of Germany, Europe and the World
 - Reasons for macroeconomic imbalances
 - Cure for instabilities in foreign trade
6. Income distribution
 - Empirics: the distribution of incomes and its historical development
 - Reasons for an increase in income inequality
 - Cure for inequality and redistribution

Intended learning outcomes

The students gain a basic understanding of the role of the state in national and international economies. Based on a number of macroeconomic models (AS/AD, IS/LM, phillips curve, labor market equilibria, Solow model, Beveridge curve, etc.), students study the ability of the state to influence national and global economies. Students learn to assess in which situations such influence can be welfare-enhancing and under which circumstances governmental interventions may be harmful. After successful completion of the course, students are able to analyze concrete economic situations and to develop policy options of the state. In addition, students have learned to...
Module Catalogue for the Subject Mathematics
Bachelor’s with 1 major, 180 ECTS credits

assess the situation of a country on the basis of empirical macroeconomic data and to explain the particular problems based on different models.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 minutes)

Allocation of places

Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referenced in LPO I (examination regulations for teaching-degree programmes)

--
Thesis
(11 ECTS credits)
Module Catalogue for the Subject Mathematics

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis Mathematics (Bachelor Thesis)</td>
<td>10-M-BAM-122-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>numerical grade</td>
<td>Where applicable, specific modules/module components as specified by supervisor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independently researching and writing on a topic in mathematics selected in consultation with the supervisor.

Intended learning outcomes

The student is able to work independently on a given mathematical topic and apply the skills and methods obtained during his/her studies in the bachelor programme. He/She can write down the result of his/her work in a suitable form.

Courses (type, number of weekly contact hours, language — if other than German)

no courses assigned

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written thesis
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subject-specific Key Skills

(16 ECTS credits)
Module title	Module title abbreviation
Mathematics and Computer | 10-M-MCO-122-m01

Module coordinator	Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
7 | (not) successfully completed | --

Duration	Module level	Other prerequisites
2 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Basics of a modern programming language (e. g. C or Fortran) taking into account the particular needs in mathematics.; introduction to modern mathematical software for symbolic computation (e. g. Mathematica or Maple) and numerical computation (e. g. Matlab); computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended learning outcomes
The student is able to work on small programming exercises in mathematics. He/She learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses (type, number of weekly contact hours, language — if other than German)
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **10-M-COM-1-122:** V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-PRG-1-122:** P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-COM-1-122: Computational Mathematics Computational Mathematics
- 4 ECTS, Method of grading: (not) successfully completed
- project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-PRG-1-122: Programming course for students of Mathematics and other subjects
- 3 ECTS, Method of grading: (not) successfully completed
- project in the form of programming exercises (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will...
put their registration for assessment into effect. Students who meet all prerequisites will be admitted to
assessment in the current or in the subsequent semester. For assessment at a later date, students will
have to obtain the qualification for admission to assessment anew.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| Referred to in LPO I |</p>
<table>
<thead>
<tr>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Introduction into mathematical thinking and working

Module title
Introduction into mathematical thinking and working

Abbreviation
10-M-MDA-122-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
4

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents

Logical foundations of mathematical proofs, in particular axiomatic and deduction; basic concepts in mathematics, e. g. sets and functions; basic techniques and methods for proving; mathematical writing.

Intended learning outcomes

The student is acquainted with the basic proof methods and techniques in mathematics. He/She is able to perform easy mathematical arguments independently and present them adequately and reasonably in written and oral form.

Courses

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **10-M-MDA-1-122**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-MDA-2-122**: V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-MDA-1-122: Basic Notions and Methods of Mathematical Reasoning

- 2 ECTS, Method of grading: (not) successfully completed
- project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-MDA-2-122: Reasoning and Writing in Mathematics

- 2 ECTS, Method of grading: (not) successfully completed
- project assignments (type and expenditure of time to be specified by the lecturer at the beginning of the course)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to
assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
</tr>
</thead>
<tbody>
<tr>
<td>(examination regulations for teaching-degree programmes)</td>
</tr>
</tbody>
</table>

§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Mathematics</td>
<td>10-M-SEM-122-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

A selected topic in mathematics.

Intended learning outcomes

The student gains first experience with independent scientific work. He/She masters elaboration and structuring of a given topic using selected literature, and prepares a talk on the subject. He/She is able to participate actively in a scientific discussion.

Courses (type, number of weekly contact hours, language — if other than German)

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Talk (approx. 60 to 180 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Bachelor’s with 1 major Mathematics (2012)

JMU Würzburg • generated 23-Aug-2021 • exam. reg.

data record Bachelor (180 ECTS) Mathematik - 2012