Module Catalogue
for the Subject
Computer Science
as a Bachelor’s with 1 major
with the degree "Bachelor of Science"
(180 ECTS credits)

Examination regulations version: 2010
Responsible: Institute of Computer Science
Contents

The subject is divided into 4
Content and Objectives of the Programme 5
Abbreviations used, Conventions, Notes, In accordance with 6

Compulsory Courses 7
Computer Science 8
 Algorithm and data structures 9
 Software Technology 10
 Practical Course in Programming 11
 Practical course in software 12
 Digital computer systems 13
 Information Transmission 14
 Practical Course in Hardware 15
 Theoretical informatics 16

Basics of Mathematics 17
Logic for informatics 18

Compulsory Electives 19
Mathematics 20
 Mathematics 1 and 2 for students in Computer Science 21
 Mathematics 3 for students in Computer Science 23
 Mathematics 1 and 2 for students of Space- and Aerospace Computer Science 24
 Analysis 26
 Linear Algebra 28

Computer Science 30
Algorithmic Graph Theory 31
Databases 32
Knowledge-based Systems 33
Data Mining 34
Object-oriented Programming 35
Theory of Complexity 36
Automation and Control Technology 37
Operating Systems 38
Computer Architecture 39
Computer Networks and Communication Systems 40
Bioinformatics 41

Subsidiary Subject 42
Mathematics 43
Introduction to Discrete Mathematics 44
Numerical Mathematics 1 45
Stochastics 1 46
Computer-oriented Mathematics 47
Introduction to Number Theory 48
Ordinary Differential Equations 49
Operations Research 50

Physics 51
Introduction to Physics for Students of Non-physics-related Minor Subjects 52
Practical Course Physics for Students of Non-physics-related Minor Subjects 53

Business Management and Economics 54
Introduction to Business Administration - Minor 55
Introduction to Economics - Minor 56
Financial Accounting 57
Supply, Production and Operations Management. An Introduction 58
<table>
<thead>
<tr>
<th>Module</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managerial Accounting</td>
<td>59</td>
</tr>
<tr>
<td>Investment and Finance. An Introduction</td>
<td>61</td>
</tr>
<tr>
<td>Introduction to Business Informatics</td>
<td>63</td>
</tr>
<tr>
<td>Business Processes</td>
<td>65</td>
</tr>
<tr>
<td>Forward and Reverse Business Engineering</td>
<td>66</td>
</tr>
<tr>
<td>Linguistics</td>
<td>67</td>
</tr>
<tr>
<td>Level One Module Introduction to German Linguistics</td>
<td>68</td>
</tr>
<tr>
<td>Level Two Module Grammatical Structures of German</td>
<td>69</td>
</tr>
<tr>
<td>Medicine</td>
<td>70</td>
</tr>
<tr>
<td>Medical decision making</td>
<td>71</td>
</tr>
<tr>
<td>Geography</td>
<td>72</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>73</td>
</tr>
<tr>
<td>Thesis</td>
<td>74</td>
</tr>
<tr>
<td>Bachelor-Thesis</td>
<td>75</td>
</tr>
<tr>
<td>Subject-specific Key Skills</td>
<td>76</td>
</tr>
<tr>
<td>Seminar 1</td>
<td>77</td>
</tr>
<tr>
<td>Seminar 2</td>
<td>78</td>
</tr>
<tr>
<td>Bachelor-Kolloquium</td>
<td>79</td>
</tr>
</tbody>
</table>
The subject is divided into

<table>
<thead>
<tr>
<th>section / sub-section</th>
<th>ECTS credits</th>
<th>starting page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Courses</td>
<td>86</td>
<td>7</td>
</tr>
<tr>
<td>Computer Science</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>Basics of Mathematics</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Compulsory Electives</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>Mathematics</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Computer Science</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Subsidiary Subject</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>Mathematics</td>
<td>max. 10</td>
<td>43</td>
</tr>
<tr>
<td>Physics</td>
<td>max. 10</td>
<td>51</td>
</tr>
<tr>
<td>Business Management and Economics</td>
<td>max. 10</td>
<td>54</td>
</tr>
<tr>
<td>Linguistics</td>
<td>max. 10</td>
<td>67</td>
</tr>
<tr>
<td>Medicine</td>
<td>max. 10</td>
<td>70</td>
</tr>
<tr>
<td>Geography</td>
<td>max. 10</td>
<td>72</td>
</tr>
<tr>
<td>Thesis</td>
<td>12</td>
<td>74</td>
</tr>
<tr>
<td>Subject-specific Key Skills</td>
<td>12</td>
<td>76</td>
</tr>
</tbody>
</table>
Content and Objectives of the Programme

The bachelor of science in computer science combining theoretical and practical elements is the first degree level offered by the Department of Mathematics and Computer Science at the Maximilian University of Würzburg.

The aim of this degree is to teach students the most important aspects of computer science, to understand the theory of algorithms and their application as well as to improve analytical skills, the ability to think in abstract terms and structure complex problems. With this degree the students have the skills to either continue their studies in a consecutive Master of Science program or be able to apply their knowledge in one of the many fields of computer science present outside academia. This is complemented by a specialization field in which the students become familiar with the basic techniques and ways of thinking in a subject of their choice for which methods of computer science are used.

The bachelor program focuses on well established and fundamental knowledge of facts and methods as well as on the development of thought processes necessary for computer science. Furthermore, state-of-the-art methods and their relevant applications are taught. With the bachelor thesis, students demonstrate their ability to work on a specific task and use the scientific methods learned within a defined period of time. Though guided by a mentor, they largely carry out the selected project on their own. The bachelor is an internationally acknowledged degree in the field of computer science that demonstrates the ability to work in this field or continue on to obtain a higher degree.
Abbreviations used

Course types: E = field trip, K = colloquium, O = conversatorium, P = placement/lab course, R = project, S = seminar, T = tutorial, Ü = exercise, V = lecture

Term: SS = summer semester, WS = winter semester

Methods of grading: NUM = numerical grade, B/NB = (not) successfully completed

Regulations: (L)ASPO = general academic and examination regulations (for teaching-degree programmes), FSB = subject-specific provisions, SFB = list of modules

Other: A = thesis, LV = course(s), PL = assessment(s), TN = participants, VL = prerequisite(s)

Conventions

Unless otherwise stated, courses and assessments will be held in German, assessments will be offered every semester and modules are not creditable for bonus.

Notes

Should there be the option to choose between several methods of assessment, the lecturer will agree with the module coordinator on the method of assessment to be used in the current semester by two weeks after the start of the course at the latest and will communicate this in the customary manner.

Should the module comprise more than one graded assessment, all assessments will be equally weighted, unless otherwise stated below.

Should the assessment comprise several individual assessments, successful completion of the module will require successful completion of all individual assessments.

In accordance with

the general regulations governing the degree subject described in this module catalogue:

ASPO2009

associated official publications (FSB (subject-specific provisions)/SFB (list of modules)):

3-Aug-2010 (2010-42)

This module handbook seeks to render, as accurately as possible, the data that is of statutory relevance according to the examination regulations of the degree subject. However, only the FSB (subject-specific provisions) and SFB (list of modules) in their officially published versions shall be legally binding. In the case of doubt, the provisions on, in particular, module assessments specified in the FSB/SFB shall prevail.
Compulsory Courses

(86 ECTS credits)
Computer Science
(80 ECTS credits)
Module Catalogue for the Subject
Computer Science

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm and data structures</td>
<td>10-I-ADS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

| ECTS | Method of grading | Only after succ. compl. of module(s) | |
|------|-----------------------|--------------------------------------|
| 10 | numerical grade | -- |

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

- Design and analysis of algorithms, recursion vs. iteration, sort and search methods, data structures, abstract data types, lists, trees, graphs, basic graph algorithms, programming in Java.

Intended learning outcomes

- The students are able to independently design algorithms as well as to precisely describe and analyse them. The students are familiar with the basic paradigms of the design of algorithms and are able to apply them in practical programs. The students are able to estimate the run-time behaviour of algorithms and to prove their correctness.

Courses

- **V + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- Written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

- --

Additional information

- --

Referred to in LPO I

- § 49 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
- § 69 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Technology</td>
<td>10-I-ST-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents
Object-oriented software development with UML, development of graphical user interfaces, foundations of databases and object-relational mapping, foundations of web programming (HTML, XML), software development processes, unified process, agile software development, project management, quality assurance.

Intended learning outcomes
The students possess a fundamental theoretical and practical knowledge on the design and development of software systems.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie
§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course in Programming</td>
<td>10-I-PP-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS	Method of grading	Other prerequisites
10 | (not) successfully completed | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course). |

Contents
The programming language Java. Independent creation of small to middle-sized, high-quality Java programs.

Intended learning outcomes
The students are able to independently develop small to middle-sized, high-quality Java programs.

Courses
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places
--

Additional information
Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. c) Informatik Praktische Softwareentwicklung
§ 69 (1) 1. d) Informatik Praktische Softwareentwicklung
Module title	Abbreviation
Practical course in software | 10-I-SWP-102-m01

Module coordinator	Module offered by
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS	Method of grading	Only after succ. compl. of module(s)
10 | (not) successfully completed | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | --

Contents
Completion of a project assignment in groups, problem analysis, creation of requirements specifications, specification of solution components (e. g. UML) and milestones, user manual, programming documentation, presentation and delivery of the runnable software product in a colloquium.

Intended learning outcomes
The students possess the practical skills for the design, development and execution of a software project in small teams.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
completion of project assignments, presentation

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
§ 49 (1) 1. c) Informatik Praktische Softwareentwicklung
§ 69 (1) 1. d) Informatik Praktische Softwareentwicklung
Module title: Digital computer systems

Abbreviation: 10-I-RAL-102-m01

Module coordinator: holder of the Chair of Computer Science V

Module offered by: Institute of Computer Science

ECTS: 10

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents:
Introduction to digital technologies, Boolean algebras, combinatory circuits, synchronous and asynchronous circuits, hardware description languages, structure of a simple processor, machine programming, memory hierarchy.

Intended learning outcomes:
The students possess a knowledge of the fundamentals of digital technologies up to the design and programming of easy microprocessors as well as knowledge for the application of hardware description languages for the design of digital systems.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places:
--

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Transmission</td>
<td>10-I-IÜ-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science III</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Introduction to probability calculus, coding theory, coding for fault detection and fault correction, information theory, spectrum and Fourier transform, modulation technique, structure of digital transmission systems, introduction to the structure of computer networks, communication protocols.

Intended learning outcomes

The students possess a technical, theoretical and practical knowledge of the structure of systems for information transmission, a knowledge that is necessary to understand these systems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course in Hardware</td>
<td>10-I-HWP-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

ECTS

10

Method of grading

(n) successfully completed

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Practical experiments on hardware aspects, for example in communication technology, robots or the structure of a complete microprocessor.

Intended learning outcomes

The students are able to independently review, prepare and perform experiments with the help of experiment descriptions, to independently search for additional information as well as to document and evaluate experiment results.

Courses

(type, number of weekly contact hours, language — if other than German)

P (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Completion of project assignments, presentation (type and expenditure of time to be specified by the lecturer at the beginning of the course)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical informatics</td>
<td>10-I-TI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Computability, decidability, countability, complexity of calculations, Boolean functions and circuits, finite automata and regular sets, generative grammars, context-free languages, context-sensitive languages.

Intended learning outcomes

The students possess fundamental and applicable knowledge in the area of computability, decidability, countability, complexity of calculations, Boolean functions and circuits, finite automata and regular sets, generative grammars, context free languages, context sensitive languages.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
§ 69 (1) 1. a) Informatik Theoretische Informatik, Algorithmen und Datenstrukturen
Basics of Mathematics
(6 ECTS credits)
Logic for Informatics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic for informatics</td>
<td>10-I-LOG-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Intended learning outcomes

The students are proficient in the following areas: syntax and semantics of propositional logic, equivalence and normal forms, Horn formulas, SAT, resolution, infinite formula sets, syntax and semantics of predicate logic.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Compulsory Electives

(62 ECTS credits)
Mathematics
(29 ECTS credits)
Module title	Abbreviation
Mathematics 1 and 2 for students in Computer Science | 10-M-INF12-102-m01

Module coordinator	**Module offered by**
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration	**Module level**	**Other prerequisites**
2 semester | undergraduate | By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Fundamentals on numbers and functions, sequences and series, differential and integral calculus in one variable, vector spaces, simple differential equations, linear maps and systems of linear equations, matrix calculus, eigenvalue theory, differential and integral calculus in several variables, differential equations, Fourier analysis.

Intended learning outcomes
The student gets acquainted with fundamental concepts and methods of advanced mathematics. He/She learns to apply these methods to problems in natural and engineering sciences, in particular in computer science, and is able to interpret the results.

Courses
This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **10-M-INF12-1-102**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-INF12-2-102**: V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-INF12-1-102: Mathematics 1 for students in Computer Science Mathematics 1 for students in Computer Science

- 10 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew and have to register anew, too.

Assessment in module component 10-M-INF12-2-102: Mathematics 2 for students in Computer Science Mathematics 2 for students in Computer Science

- 10 ECTS, Method of grading: numerical grade
- written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew and have to register anew, too.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>
Module title | Abbreviation
--- | ---
Mathematics 3 for students in Computer Science | 10-M-INF3-102-m01

Module coordinator	Module offered by
Dean of Studies Mathematik (Mathematics) | Institute of Mathematics

ECTS	Method of grading	Only after succ. compl. of module(s)
9 | numerical grade | --

Duration	Module level	Other prerequisites
1 semester | undergraduate | Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew and have to register anew, too.

Contents
Elementary algebra and number theory: cardinality of sets, relations, maps, groups, fields, residue class rings and polynomial rings, prime numbers, basics in cryptography. Discrete mathematics: graph theory, combinatorics, integral optimisation and algorithmic applications. Discrete stochastics: combinatorics, basic notions in probability theory, random variables, expected value and variance, independency, Bayes’ law, important distribution functions, Markov chains, tests.

Intended learning outcomes
The student gets acquainted with fundamental concepts and methods of advanced mathematics. He/She learns to apply these methods to problems in natural and engineering sciences, in particular in computer science, and is able to interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title

Mathematics 1 and 2 for students of Space- and Aerospace Computer Science

Abbreviation: 10-M-LRI12-092-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>By way of exception, additional prerequisites are listed in the section on assessments.</td>
</tr>
</tbody>
</table>

Contents

Basics on numbers and functions, sequences and series, elementary functions, differential and integral calculus in one variable, vector calculus, linear maps and systems of linear equations, matrix calculus, eigenvalue theory, differential and integral calculus in several variables, differential equations, Fourier analysis, integral theorems.

Intended learning outcomes

The student gets acquainted with fundamental concepts and methods of mathematics. He/She learns to apply these methods to problems in natural and engineering sciences, in particular in aerospace computer science, and is able to interpret the results.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- **10-M-LRI12-1-092**: V + Ü (no information on SWS (weekly contact hours) and course language available)
- **10-M-LRI12-2-092**: V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-LRI12-1-092: Mathematics 1 for students of Space- and Aerospace Computer Science

- 10 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew and have to register anew, too.

Assessment in module component 10-M-LRI12-2-092: Mathematics 2 for students of Space- and Aerospace Computer Science

- 10 ECTS, Method of grading: numerical grade
- written examination (approx. 90 to 120 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Registration for the exercise must be made via SB@home at the beginning of the course or as announced by the lecturer in accordance with the specified registration deadlines. Certain prerequisites must be met to qualify for admission to assessment (e.g. successful completion of a certain percentage of exercises). The lecturer will inform students about the respective details at the beginning of the course. Registration for the exercise will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew and have to register anew, too.

<table>
<thead>
<tr>
<th>Allocation of places</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO 1 (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Module title
Analysis

Abbreviation
10-M-ANA-082-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
17

Method of grading
numerical grade

Duration
2 semester

Module level
undergraduate

Other prerequisites
By way of exception, additional prerequisites are listed in the section on assessments.

Contents
Real numbers and completeness, basic topological notions, convergence and divergence of sequences and series, power series, Taylor series, fundamental calculus in one and several variables (including inverse and implicit function theorem); fundamental integral calculus in one variable (Riemann integral and improper integrals).

Intended learning outcomes
The student knows and masters the essential methods and notions of analysis. He/She is able to perform easy mathematical arguments and present them adequately in written and oral form. He/She is acquainted with the central proof methods and concepts in analysis, their analytic background and geometric interpretation.

Courses
This module comprises 3 module components. Information on courses will be listed separately for each module component.

- 10-M-ANA-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ANA-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-ANA-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-ANA-1-082: Analysis 1 Analysis 1
- 8 ECTS, Method of grading: (not) successfully completed
 - a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended.

Assessment in module component 10-M-ANA-2-082: Analysis 2 Analysis 2
- 7 ECTS, Method of grading: (not) successfully completed
 - a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Other prerequisites: Modules 10-M-VKM and 10-M-PPM are recommended; in addition, module component 10-M-ANA-1 is recommended for module component 10-M-ANA-2.

Assessment in module component 10-M-ANA-P-082: Examination in Analysis
- 2 ECTS, Method of grading: numerical grade
 - oral examination of one candidate each (approx. 30 minutes)
 - Language of assessment: German, English if agreed upon with the examiner
 - Only after successful completion of module components: Successful completion of any one of the module components 10-M-ANA-1, 10-M-ANL-1, 10-M-ANA-2, 10-M-ANL-2 is a prerequisite for participation in module component 10-M-ANA-P.
Module Catalogue for the Subject
Computer Science

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Allocation of places</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 1. Mathematik Analysis
Module title: Linear Algebra
Abbreviation: 10-M-LNA-082-m01

Module coordinator: Dean of Studies Mathematik (Mathematics)
Module offered by: Institute of Mathematics

ECTS: 14
Method of grading: numerical grade
Duration: 2 semester
Module level: undergraduate
Other prerequisites: By way of exception, additional prerequisites are listed in the section on assessments.

Contents:
Sets, relations and maps; notions of groups, rings and fields (in particular, polynomial rings); vector spaces (subspaces, quotient spaces, linear independency, basis, dimension); linear maps (isomorphism theorem, image, kernel, rank); matrix calculus; systems of linear equations, determinants, eigenvalues, eigenvectors and eigenspaces, diagonalisability (including characteristic polynomial, minimal polynomial), normal forms, bilinear forms; Euclidean and unitary vector spaces (orthonormal bases, isometries, principal axis transformation).

Intended learning outcomes:
The student knows and masters the basic notions and essential methods of linear algebra. He/She is able to perform easy mathematical arguments independently, and can present them adequately in written and oral form. He/She is able to apply the central proof methods and concepts of linear algebra and knows about their algebraic and geometric background.

Courses:
This module comprises 3 module components. Information on courses will be listed separately for each module component.
- 10-M-LNA-1-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-2-082: V + Ü (no information on SWS (weekly contact hours) and course language available)
- 10-M-LNA-P-082: M (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 10-M-LNA-1-082: Linear Algebra 1
- 7 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-2-082: Linear Algebra 2
- 5 ECTS, Method of grading: (not) successfully completed
- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner

Bachelor's with 1 major Computer Science (2010)
• Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Assessment in module component 10-M-LNA-P-082: Examination in Linear Algebra
- 2 ECTS, Method of grading: numerical grade
- oral examination of one candidate each (approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner
- Only after successful completion of module components: Successful completion of module component 10-M-LNA-1 or module component 10-M-LNA-2 is a prerequisite for participation in module component 10-M-LNA-P.

Allocation of places

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Referred to in LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie</td>
</tr>
</tbody>
</table>

Computer Science

(23 ECTS credits)
Module title	Abbreviation
Algorithmic Graph Theory | 10-I-GT-102-m01

Module coordinator | Module offered by
Dean of Studies Informatik (Computer Science) | Institute of Computer Science

ECTS | Method of grading | Only after succ. compl. of module(s)
5 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
We discuss typical graph problems: We solve round trip problems, calculate maximal flows, find matchings and colourings, work with planar graphs and find out how the ranking algorithm of Google works. Using the examples of graph problems, we also become familiar with new concepts, for example how we model problems as linear programs or how we show that they are fixed parameter computable.

Intended learning outcomes
The students are able to model typical problems in computer science as graph problems. In addition, the participants are able to decide which tool from the course helps solve a given graph problem algorithmically. In this course, students learn in detail how to estimate the run time of given graph algorithms.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases</td>
<td>10-I-DB-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Relational algebra and complex SQL statements; database planning and normal forms; transaction management.

Intended learning outcomes

The students possess knowledge about database modelling and queries in SQL as well as transactions.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 49 (1) 1. b) Datenbanksysteme und Softwaretechnologie
§ 69 (1) 1. b) Datenbanksysteme und Softwaretechnologie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge-based Systems</td>
<td>10-I-WBS-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VI</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: knowledge management systems, knowledge representation, solving methods, knowledge acquisition, learning, guidance dialogue, semantic web.

Intended learning outcomes

The students possess theoretical and practical knowledge for the understanding and design of knowledge-based systems including knowledge formalisation and have acquired experience in a small project.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>10-I-DM-102-m01</td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science VI
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Foundations in the following areas: definition of data mining and knowledge, discovery in databases, process model, relationship to data warehouse and OLAP, data preprocessing, data visualisation, unsupervised learning methods (cluster and association methods), supervised learning (e.g. Bayes classification, KNN, decision trees, SVM), learning methods for special data types, other learning paradigms.

Intended learning outcomes

The students possess a theoretical and practical knowledge of typical methods and algorithms in the area of data mining and machine learning. They are able to solve practical knowledge discovery problems with the help of the knowledge acquired in this course and by using the KDD process. They have acquired experience in the use or implementation of data mining algorithms.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes).

Language of assessment: German, English if agreed upon with the examiner.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object-oriented Programming</td>
<td>10-I-OOP-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents
Polymorphism, generic programming, meta programming, web programming, templates, document management.

Intended learning outcomes
The students are proficient in the different paradigms of object-oriented programming and have experience in their practical use.

Courses
<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + Ü</td>
<td>(no information on SWS (weekly contact hours) and course language available)</td>
<td></td>
</tr>
</tbody>
</table>

Method of assessment
- written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
- Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Complexity</td>
<td>10-I-KT-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Informatik (Computer Science)</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Intended learning outcomes

The students possess a fundamental and applicable knowledge in the areas of complexity measurements and classes, general relationships between space and time classes, memory consumption versus computation time, determinism versus indeterminism, hierarchical theorems, translation methods, P-NP problem, completeness problems, Turing reduction, interactive proof systems.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation and Control Technology</td>
<td>10-I-AR-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science VII</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Overview of automation systems, fundamental principles of control technology, Laplace transformation, transfer function, plant, controller types, basic feedback loop, fundamental principles of control engineering, automata, structure of Petri nets, Petri nets for automisation, machine-related structure of processing computation machines, communication between process computers and periphery devices, software for automation systems, process synchronisation, process communication, real-time operating systems, real-time planning.

Intended learning outcomes

The students master the fundamentals of automation and control.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Module title
Operating Systems

Abbreviation
10-I-BS-102-m01

Module coordinator
holder of the Chair of Computer Science II

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents
Batch, time sharing, real-time virtual machines, system calls, processes and threads, cooperating processes, schedulers, process synchronisation, semaphores, monitors, critical regions, deadlocks, dynamic memory management, segmentation, paging, file systems, interfaces, directory structure, network file systems, hard drive organisation, basics of MS operating systems.

Intended learning outcomes
The students possess knowledge and practical skills in building and using essential parts of operating systems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
§ 69 (1) 1. c) Informatik Technische Informatik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Architecture</td>
<td>10-I-RAK-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Computer Science V</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Instruction set architectures, command processing through pipelining, statitical and dynamic instruction scheduling, caches, vector processors, multi-core processors.

Intended learning outcomes

The students master the most important techniques to design fast computers as well as their interaction with compilers and operating systems.

Courses

<table>
<thead>
<tr>
<th>(type, number of weekly contact hours, language — if other than German)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + Ü (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 69 (1) 1. c) Informatik Technische Informatik
Module title

Computer Networks and Communication Systems

Abbreviation

10-I-RK-102-m01

Module coordinator

holder of the Chair of Computer Science III

Module offered by

Institute of Computer Science

ECTS

8

Method of grading

Numerical grade: --

Only after succ. compl. of module(s)

Duration

1 semester

Module level

Undergraduate

Other prerequisites

Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).

Contents

Intended learning outcomes

The students possess an intricate knowledge of the structure of computer networks and communication systems as well as fundamental principles to rate these systems.

Courses

(V + Ü) (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Written examination (approx. 80 to 90 minutes). If announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups. A 80 to 90 minute written examination is equivalent to a 20 minute (approx.) oral examination of one candidate each, a 30 minute (approx.) oral examination in groups of 2 and a 40 minute (approx.) oral examination in groups of 3.

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics</td>
<td>07-BI-102-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Bioinformatics</td>
<td>Faculty of Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Admission prerequisite to assessment: exercises (type and scope to be announced by the lecturer at the beginning of the course).</td>
</tr>
</tbody>
</table>

Contents

Fundamental principles of bioinformatics.

Intended learning outcomes

Students are proficient in methods for the analysis of DNA and protein databases.

Courses (type, number of weekly contact hours, language — if other than German)

| V + Ü (no information on SWS (weekly contact hours) and course language available) |

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Subsidiary Subject
(10 ECTS credits)
Mathematics
(max. 10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Discrete Mathematics</td>
<td>10-M-EDM-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Techniques from combinatorics, introduction to graph theory (including applications), cryptographic methods, error-correcting codes.

Intended learning outcomes

The student is acquainted with the fundamental concepts and results in discrete mathematics, masters the relevant proof techniques, is able to apply methods from number theory and algebra to discrete mathematics and realises the scope of applications of discrete structures.

Courses

(type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

§ 73 (1) 2. Mathematik Lineare Algebra, Algebra und Elemente der Zahlentheorie
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Mathematics 1</td>
<td>10-M-NM1-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
undergraduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Solution of systems of linear equations and curve fitting problems, nonlinear equations and systems of equations, interpolation with polynomials, splines and trigonometric functions, numerical integration.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods in numerical mathematics, applies them to practical problems and knows about their typical fields of application.

Courses
(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
Language of assessment: German, English if agreed upon with the examiner

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
§ 73 (1) 5. Mathematik Angewandte Mathematik
Module Catalogue for the Subject
Computer Science

Bachelor's with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastics 1</td>
<td>10-M-ST1-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

- Combinatorics, Laplace models, selected discrete distributions, elementary measure and integration theory, continuous distributions: normal distribution, random variable, distribution function, product measures and stochastic independence, elementary conditional probability, characteristics of distributions: expected value and variance, limit theorems: law of large numbers, central limit theorem.

Intended learning outcomes

The student is acquainted with fundamental concepts and methods in stochastics, applies these methods to practical problems and knows about the typical fields of application.

Courses

- **V + Ü** (no information on SWS (weekly contact hours) and course language available)

Method of assessment

- written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)
- Language of assessment: German, English if agreed upon with the examiner

Allocation of places

- --

Additional information

- --

Referred to in LPO I

- § 73 (1) 3. Mathematik Stochastik
Module Title

Computeroriented Mathematics

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computeroriented Mathematics</td>
<td>10-M-COM-082-m01</td>
</tr>
</tbody>
</table>

Module Coordinator
Dean of Studies Mathematik (Mathematics)

Module Offered by
Institute of Mathematics

ECTS
3

Method of Grading
Only after succ. compl. of module(s)

Duration
1 semester

Module Level
undergraduate

Other Prerequisites
Admission prerequisite to assessment: regular attendance of exercises (attendance monitored, a maximum of one incident of unexcused absence).

Contents
Introduction to modern mathematical software for symbolic computation (e.g., Mathematica or Maple) and numerical computation (e.g., Matlab) to supplement the basic modules in analysis and linear algebra (10-M-ANA or 10-M-ANL) and 10-M-LNA). Computer-based solution of problems in linear algebra, geometry, analysis, in particular differential and integral calculus; visualisation of functions.

Intended Learning Outcomes
The student learns the use of advanced modern mathematical software packages, and is able to assess their fields of application to solve mathematical problems.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of Assessment
Project in the form of programming exercises (as specified at the beginning of the course)

Assessment offered: once a year, summer semester

Language of assessment: German, English if agreed upon with the examiner

Allocation of Places
--

Additional Information
--

Referred to in LPO I
§ 73 (1) 5. Mathematik Angewandte Mathematik
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Number Theory</td>
<td>10-M-EZT-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetic, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainder, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of elementary number theory. He/She is able to apply these methods to practical problems, e.g., in cryptography.

Courses

(No information available)

Method of assessment

a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Differential Equations</td>
<td>10-M-ODE-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Studies Mathematik (Mathematics)</td>
<td>Institute of Mathematics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.</td>
</tr>
</tbody>
</table>

Contents

Existence and uniqueness theorem, continuous dependance of solutions on initial values, systems of linear differential equations, matrix exponential series, linear differential equations of higher order.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of the theory of ordinary differential equations. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research</td>
<td>10-M-ORS-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

undergraduate

Other prerequisites

Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Linear programming, duality theory, transport problems, integral linear programming, graph theoretic problems.

Intended learning outcomes

The student is acquainted with the fundamental methods in operations research, as required as a central tool for solving many practical problems especially in economics. He/She is able to apply these methods to practical problems, both theoretically and numerically.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 90 minutes); if announced by the lecturer, the written examination can be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups (groups of 2, approx. 30 minutes)

Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

§ 73 (1) 5. Mathematik Angewandte Mathematik
Physics
(max. 10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physics for Students of Non-physics-related Minor Subjects</td>
<td>11-EFNF-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Mechanics, vibration theory, thermodynamics, optics, science of electricity, Atomic and Nuclear Physics.

Intended learning outcomes

The students have knowledge of the principles of Physics.

Courses (type, number of weekly contact hours, language — if other than German)

V + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Allocation of places

Only as part of pool of general key skills (ASQ): 10 places. Places will be allocated by lot.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Course Physics for Students of Non-physics-related Minor Subjects</td>
<td>11-PFN-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
3 | (not) successfully completed | --- |

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --- |

Contents
Mechanics, vibration theory, thermodynamics, optics, X-rays, nuclear magnetic resonance, Atomic and Nuclear Physics.

Intended learning outcomes
The students have knowledge of the principles of Physics.

Courses (type, number of weekly contact hours, language — if other than German)
P (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
a) oral test (approx. 15 minutes) during experiment and b) ungraded written examination (approx. 90 minutes)

Allocation of places
Only as part of pool of general key skills (ASQ): 10 places. Places will be allocated by lot.

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Business Management and Economics
(max. 10 ECTS credits)
Module title
Introduction to Business Administration - Minor

Abbreviation
12-NW-EBWL-092-m01

Module coordinator
holder of the Chair of Business Management, Banking and Finance

Module offered by
Faculty of Business Management and Economics

ECTS
5

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
The module will provide students with an insight into economics. The course will first discuss how markets work. The resulting market result - traded amounts and price - will be analysed and different starting points for economic policy measures (e.g. regulation of monopolies, introduction of minimum wages, environmental policy) will be discussed. Students will then acquire an overview of macroeconomic interrelationships. In this context, the course will focus on providing students with an understanding of business cycles (unemployment, inflation) and growth processes. Current issues such as monetary and fiscal policy in the euro area will also be discussed.

Intended learning outcomes
After completing the module, students should be able to describe the modern business economics as a scientific discipline in its institutional economic expression and to master appropriate level in their problem-solving techniques used on the character of an orientation session.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 60 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Introduction to Economics - Minor
Abbreviation: 12-NW-EVWL-092-m01

Module coordinator: holder of the Chair of Monetary Policy and International Economics
Module offered by: Faculty of Business Management and Economics

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: --

Contents:
The course offers basic insights into the principles of economics. We analyse how markets work, i.e. how consumers form their demand and how suppliers make production decisions. On the basis of first insights into market economies, we analyse why governments might want to intervene. In this context, we focus on monopoly, environmental issues and minimum wages in labour markets.
In addition to micro topics, we also focus on macroeconomic aspects and analyse why we observe business cycles (unemployment, inflation) and long term economic growth. We also address topics related to monetary and fiscal policy in the euro area.

Intended learning outcomes:
The students have a basic knowledge of economics, with which they can analyze complex economic relationships. They can deal critically with current economic policy issues and make an independent judgment. In addition, elementary mathematical techniques for solving micro pores and macroeconomic models are mediated.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 60 minutes)

Allocation of places:
--

Additional information:
--

Referred to in LPO I:
(examination regulations for teaching-degree programmes)
--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Accounting</td>
<td>12-ExtUR-G-082-m01</td>
</tr>
</tbody>
</table>

Module coordinator

holder of the Chair of Business Taxation

Module offered by

Faculty of Business Management and Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Contents

This course offers an introduction to the fundamentals of financial accounting, including the technique of double-entry book-keeping as well as the fundamentals of recognition, valuation and presentation of assets, liabilities and equity according to German commercial law.

Intended learning outcomes

Students acquire a basic understanding of the fundamentals of financial accounting. They are able to arrange, reproduce and apply this knowledge, i.e. they are able to solve simple accounting problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--
Module title: Supply, Production and Operations Management. An Introduction

Abbreviation: 12-BPL-G-082-m01

Module coordinator:
holder of the Chair of Business Management and Industrial Management

Module offered by:
Faculty of Business Management and Economics

ECTS: 5

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:
This course will provide students with an overview of fundamental processes in procurement, production and logistics and the related corporate functions as well as a model-based introduction to related planning procedures.

Intended learning outcomes:
The students will be able to describe and discuss the objectives and major processes in the domains of corporate procurement, production and logistics as well as their interdependencies. Furthermore, they are capable of developing and applying basic planning models in these fields.

Courses:
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 60 minutes)

Allocation of places:
Number of places: 405. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information:
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Managerial Accounting

Module title

Managerial Accounting

Abbreviation

12-IntUR-G-o82-m01

Module coordinator

holder of the Chair of Business Management and Accounting

Module offered by

Faculty of Business Management and Economics

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

Duration

1 semester

Module level

undergraduate

Other prerequisites

--

Contents

Content:
This course offers an introduction to aims and methods of managerial accounting (cost accounting).

Outline of syllabus:
1. Managerial accounting and financial accounting
2. Managerial accounting: basic terms
3. Different types of costs
4. Cost centre accounting based on total costs
5. Job costing based on total costs
6. Cost centre accounting and job costing based on direct/variable costs
7. Budgeting and cost-variance analysis
8. Cost-volume-profit analysis
9. Cost information and operating decisions

Reading:
Friedl/Hofmann/Pedell: Kostenrechnung. Eine entscheidungsorientierte Einführung.
(most recent editions)

Intended learning outcomes

After completing the course "Management Accounting and Control", the students will be able to
(i) set out the responsibilities of the company's internal accounting and control;
(ii) define the central concepts of internal enterprise computing restriction and control and assign case studies
the terms;
(iii) apply the basic methods of internal corporate accounting and control on a full and cost base to idealized ca-
se studies of medium difficulty that calculate relevant costs and benefits and take on this basis a reasoned deci-
sion.

Courses

(type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether
module is creditable for bonus)
written examination (approx. 60 minutes)

Allocation of places

Number of places: 640. No restrictions with regard to available places for Bachelor's students of Wirtschafts-
wiissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics)
and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students
of other subjects. Should the number of applications exceed the number of available places, places will be allo-
cated in a standardised procedure among all applicants irrespective of their subjects according to the following
quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject;
among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of
places): number of subject semesters of the respective applicant; among applicants with the same number of
subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment and Finance. An Introduction</td>
<td>12-I&F-G-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Business Management, Banking and Finance</td>
<td>Faculty of Business Management and Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Content:
This course offers an introduction to principles of financial mathematics, several methods of capital budgeting and principles of financial economics.

Outline of syllabus:
1. Principles of financial mathematics
2. Fundamental concepts
3. Problems of investment and finance in one commodity world under certainty
4. Problems of investment and finance in one commodity world under uncertainty
5. Problems of investment and finance in many commodities world under uncertainty
6. Capital market and corporate financing in Germany

Intended learning outcomes

After completing the course "Principles of Investments and Finance", the students will be able
(i) to understand the fundamentals in financial mathematics and solve several problems, e.g. via the PV approach;
(ii) to address the central problems in intertemporal allocation given different capital market scenarios;
(iii) to budget and calculate the optimal useful life given static and dynamic investment approaches under the consideration of several other investment opportunities and the capital market scenario, especially the influence of taxes.

Courses

<table>
<thead>
<tr>
<th>Type, number of weekly contact hours, language — if other than German</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + Ü (no information on SWS (weekly contact hours) and course language available)</td>
</tr>
</tbody>
</table>

Method of assessment

<table>
<thead>
<tr>
<th>Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>written examination (approx. 60 minutes)</td>
</tr>
</tbody>
</table>

Allocation of places

Number of places: 405. No restrictions with regard to available places for Bachelor's students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information

--
<table>
<thead>
<tr>
<th>Referring to LPO I (examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

Bachelor's with 1 major Computer Science (2010)
Module title	Abbreviation
Introduction to Business Informatics | 12-EWiinf-G-082-m01

Module coordinator	Module offered by
holder of the Chair of Business Management and Business Information Systems | Faculty of Business Management and Economics

ECTS	Method of grading	Only after succ. compl. of module(s)
5 | numerical grade | -- |

Duration	Module level	Other prerequisites
1 semester | undergraduate | -- |

Contents

Content:
This course offers an introduction to the essential aspects of business information systems.

Outline of syllabus:
1. Integration of IT systems
2. From data processing to information processing
3. eCommerce and eGovernment
4. Functionality of IT technology
5. Application development principles
6. Intercommunication

Reading:
Thome: Grundzüge der Wirtschaftsinformatik.

Intended learning outcomes
The course “Einführung in die Wirtschaftsinformatik” communicates
(i) an overview of the different task fields of the business informations systems discipline;
(ii) an understanding for recent developments in the discipline and related technologies.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)

Allocation of places
Number of places: 640. No restrictions with regard to available places for Bachelor’s students of Wirtschaftswissenschaft (Business Management and Economics), Wirtschaftsmathematik (Mathematics for Economics) and Wirtschaftsinformatik (Business Information Systems). The remaining places will be allocated to students of other subjects. Should the number of applications exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. Applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--
<table>
<thead>
<tr>
<th>Referred to in LPO I</th>
<th>(examination regulations for teaching-degree programmes)</th>
</tr>
</thead>
</table>
Module title
Business Processes

Abbreviation
12-GP-G-082-m01

Module coordinator
holder of the Chair of Business Management and Business Information Systems

Module offered by
Faculty of Business Management and Economics

ECTS Method of grading Only after succ. compl. of module(s)
5 numerical grade --

Duration Module level Other prerequisites
1 semester undergraduate --

Contents
This course is aimed at students of Wirtschaftsinformatik (Business Information Systems) and Wirtschaftswissenschaft (Business Management and Economics) interested in the topic. The course is divided up into two parts. In the theoretical part, students will acquire the necessary theoretical knowledge that will serve as a basis for the practical part. The practical exercise will present students with an opportunity to apply their newly acquired knowledge by working with an SAP Business ByDesign system on case studies on the model company Almika. In this context, the human resources, purchasing, sales, service, project management and finance departments will be dealt with.

The course will introduce students to business processes of an ERP system (Enterprise Resource Planning) using the example of SAP Business ByDesign. In addition to the basic principles, students will also become familiar with the processes and functionalities.

Intended learning outcomes
After completing the course, the students will be able to
1. reflect technical principles and operational models of ERP systems,
2. understand the functionality of ERP systems and
3. perform and understand business processes within the ERP system SAP Business ByDesign.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (approx. 60 minutes)

Allocation of places
Wirtschaftsinformatik (Business Information Systems) Bachelor’s (180 ECTS): no restrictions. Other degree programmes: minimum 15 places. More places will be available provided there is enough capacity. Should the number of applications from students of other subjects exceed the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective subject; among applicants with the same number of ECTS credits, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot; applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. A waiting list will be maintained and places re-allocated as they become available.

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Module title: Forward and Reverse Business Engineering

Abbreviation: 12-FRBE-F-082-m01

Module coordinator: Business Integration Prof. Thome

Module offered by: Faculty of Business Management and Economics

ECTS: 5

Method of grading: Only after succ. compl. of module(s)

Numerical grade: --

Duration: 1 semester

Module level: undergraduate

Other prerequisites: --

Contents:

"Business Engineering" refers to the method and model-based design theory for companies in the information age. "Forward" refers to design methods (such as situation analysis, requirements analysis and business process modelling) that help implement a new solution. "Reverse" refers to approaches (such as the use and process analysis) that make it possible to improve or re-design existing structures and processes. Market requirements and technological innovation potential are typical reasons for the continuous transformation of a company. The resulting change needs to be implemented into the organisational structure, business processes and information systems.

The course traces the implementation cycle of enterprise software from the point of view of a member of a project team. In addition to acquainting students with the theoretical basis of adaptation, the course will also discuss examples from practical projects.

Intended learning outcomes:

The students know in detail the process of adaptation of business software libraries. They master the methods of Forward Engineering (such as situation analysis, requirement analysis, process modeling and business blueprint) and Reverse Engineering (Reverse Business Engineering) and their implementation in tools.

Courses:

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

written examination (approx. 60 minutes)

Allocation of places:

Number of places: 50. Should the number of applications exceed the number of available places, places will be allocated as follows: (1) Bachelor’s students of Wirtschaftsinformatik (Business Information Systems) will be given preferential consideration. (2) The remaining places will be allocated to students of other subjects. (3) When places are allocated in accordance with (1) and the number of applications exceeds the number of available places, places will be allocated among applicants from within this group according to the respective FSB (subject-specific provisions) regarding Section 7 Subsection 4 ASPO (general academic and examination regulations). (4) When places are allocated in accordance with (2) and the number of applications exceeds the number of available places, places will be allocated in a standardised procedure among all applicants irrespective of their subjects according to the following quotas: Quota 1 (50% of places): total number of ECTS credits already achieved in the respective degree subject; among applicants with the same number of ECTS credits achieved, places will be allocated by lot. Quota 2 (25% of places): number of subject semesters of the respective applicant; among applicants with the same number of subject semesters, places will be allocated by lot. Quota 3 (25% of places): allocation by lot. (5) Within the groups according to (1) and (2), applicants who already have successfully completed at least one module component of the respective module will be given preferential consideration. (6) Places on all courses of the module component with a restricted number of places will be allocated in the same procedure. (7) A waiting list will be maintained and places re-allocated as they become available.

Additional information:

Referred to in LPO I (examination regulations for teaching-degree programmes)
Linguistics
(max. 10 ECTS credits)
Module title: Level One Module Introduction to German Linguistics

Abbreviation: 04-DtLA-BM-SW-092-m01

Module coordinator: holder of the Chair of German Linguistics

Module offered by: Institute of German Studies

ECTS: 5

Method of grading: numerical grade

Duration: 1 semester

Module level: undergraduate

Other prerequisites: Admission prerequisite to assessment: regular attendance (a maximum of 2 incidents of unexcused absence) of courses (lectures excluded).

Contents:

Within the lecture, this module aims to provide an overview and first introduction to the important parts of German linguistics. At the same time, the seminar that is a part of the module, provides students with analytical and description methods up to the word level, for example morphological segmentation and classification of individual word forms into basic morphemes, morphology and inflectional morphemes, morphological and semantic analysis of word formation structures, phonetic and phonological transcription in International Phonetic Alphabet (IPA)-phonetics, graphical realisation of phonemes and associated with orthography principles. The associated tutorial helps to practise further and to become more confident with the analytical and description methods, acquired in the seminar.

Intended learning outcomes:

Students possess an overview of the discipline German linguistics and its individual subdisciplines. They are able to describe and analyse linguistic units up to the word level assuredly. Thanks to the module, students are familiar with the basic analytical and description techniques of linguistics, which will be extended and consolidated in the following modules.

Courses:

T + V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

written examination (approx. 60 minutes)

Allocation of places:

Additional information:

Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes):

§ 43 (1) 2. b) Deutsch Deutsche Sprachwissenschaft (Nebengebiet)
§ 63 (1) 2. b) Deutsch Deutsche Sprachwissenschaft (Nebengebiet)
Module title: Level Two Module Grammatical Structures of German
Abbreviation: 04-DtLA-AM-SW1-092-m01

Module coordinator: holder of the Chair of German Linguistics
Module offered by: Institute of German Studies

ECTS: 5
Method of grading: numerical grade
Only after succ. compl. of module(s): --

Duration: 1 semester
Module level: undergraduate
Other prerequisites: Admission prerequisite to assessment: regular attendance (a maximum of 2 incidents of unexcused absence) of courses (lectures excluded).

Contents:
Within the lecture, this module aims to provide an overview of the German syntax with focus on the valency grammatical sentence analysis, e.g. determining clauses by the use of grammatical samples, determining valency depending and non-depending clauses, syntactical function and semantics of relative clauses, formal description of the structure of complex sentences. During this module, which is a part of the seminar, students will practise the analytical and description methods, covered during the lecture, by authentic sentences. This module will start with the analysis of simple sentences, then goes over to levels of clauses and will continue with the analysis of difficult sentences up to sub-levels. The tutorial, which is a part of the module, provides further practise and students will be confident with the covered description and analytical methods.

Intended learning outcomes:
Students possess solid knowledge of the sub-area syntax with focus on valency grammar, they are able to identify and determine syntactic structures and are acquainted with the description and analysis of linguistic units up to the sentence level assuredly.

Courses:
T + V + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment:
written examination (approx. 60 minutes)

Allocation of places:
--

Additional information:
Additional information on module duration: 1 to 2 semesters.

Referred to in LPO I (examination regulations for teaching-degree programmes):
§ 43 (1) 2. b) Deutsch Deutsche Sprachwissenschaft (Nebengebiet)
§ 63 (1) 2. b) Deutsch Deutsche Sprachwissenschaft (Nebengebiet)
Medicine
(max. 10 ECTS credits)
Module title	Abbreviation
Medical decision making | 03-M-MEI-072-m01

Module coordinator | Module offered by
Dean of Studies Medizin (Medicine) | Faculty of Medicine

ECTS | Method of grading | Only after succ. compl. of module(s)
10 | numerical grade | --

Duration | Module level | Other prerequisites
1 semester | undergraduate | --

Contents
This module will acquaint students with the fundamental principles of medical diagnostics and treatment and will apply these principles to the most important internal diseases. Students will work on casuistries presented on the computer in the form of virtual patients. The module will discuss the principles of medical word formation as well as the history and development of the language of medicine. It will explain medical word elements (prefixes, suffixes, genitive nouns, adjectives etc.) and will acquaint students with medical terminology. The course will also include exercises.

Intended learning outcomes
Students have developed a knowledge of fundamental medical terminology and medical decision making and are able to apply this knowledge to the example of internal medicine.

Courses (type, number of weekly contact hours, language — if other than German)
V + Ü + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
written examination (60 minutes) or oral examination (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--
Geography
(max. 10 ECTS credits)
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing</td>
<td>09-FERN-072-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>holder of the Chair of Remote Sensing</td>
<td>Institute of Geography and Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Introduction to "Geographical Remote Sensing", applications of "Remote Sensing" to Geography.

Intended learning outcomes

Students possess the following skills: theoretical principles of the Remote Sensing System, knowledge of current geographical fields of application of cross-sectional methodology, remote sensing in the light of different sensor and platform specifications.

Courses (type, number of weekly contact hours, language — if other than German)

This module comprises 2 module components. Information on courses will be listed separately for each module component.

- 09-FERN-1-072: V + T (no information on SWS (weekly contact hours) and course language available)
- 09-FERN-2-072: V + T (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Assessment in this module comprises the assessments in the individual module components as specified below. Unless stated otherwise, successful completion of the module will require successful completion of all individual assessments.

Assessment in module component 09-FERN-1-072: Introduction to Geographical Remote Sensing

- 5 ECTS, Method of grading: numerical grade
- written examination (45 minutes)

Assessment in module component 09-FERN-2-072: Application of Remote Sensing in Geography

- 5 ECTS, Method of grading: numerical grade
- written examination (45 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
Thesis
(12 ECTS credits)
Module title

Bachelor-Thesis

Abbreviation

10-I-BA-072-m01

Module coordinator

Dean of Studies Informatik (Computer Science)

Module offered by

Institute of Computer Science

ECTS

12

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

Undergraduate

Other prerequisites

Registration for assessment: as specified.

Contents

Largely independently researching and writing on an experimental or theoretical topic in computer science, using known methods and adhering to the principles of good scientific practice.

Intended learning outcomes

The students are able to largely independently research and write on an experimental or theoretical topic in computer science, applying known methods and adhering to the principles of good scientific practice, and to write a Bachelor's thesis.

Courses

No courses assigned

Method of assessment

Written thesis

Language of assessment: German or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)
Subject-specific Key Skills

(12 ECTS credits)
Module Catalogue for the Subject
Bachelor's with 1 major, 180 ECTS credits

Module: Seminar 1

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar 1</td>
<td>10-I-SEM1-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Informatik (Computer Science)

Module offered by
Institute of Computer Science

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
Undergraduate

Other prerequisites

Contents
Independent review of a current topic in computer science on the basis of literature and, where applicable, software with written and oral presentation. The topics in modules 10-I-SEM1 and 10-I-SEM2 must come from different areas (this usually means that they are assigned by different lecturers).

Intended learning outcomes
The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses
S (no information on SWS (weekly contact hours) and course language available)

Method of assessment
Type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus

Written elaboration and oral presentation with subsequent discussion on a topic from the field of computer science (type and length to be specified by the lecturer at the beginning of the course)

Language of assessment: German, English if required by the examination candidate

Allocation of places

Additional information

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Bachelor's with 1 major Computer Science (2010)
Module Catalogue for the Subject Computer Science

Bachelor’s with 1 major, 180 ECTS credits

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar 2</td>
<td>10-I-SEM2-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
- Dean of Studies Informatik (Computer Science)
- Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>Institute of Computer Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Independent review of a current topic in computer science on the basis of literature and, where applicable, software with written and oral presentation. The topics in modules 10-I-SEM1 and 10-I-SEM2 must come from different areas (this usually means that they are assigned by different lecturers).

Intended learning outcomes

The students are able to independently review a current topic in computer science, to summarise the main aspects in written form and to orally present these in an appropriate way.

Courses

S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language</th>
<th>Examination offered</th>
<th>Module creditable for bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>written elaboration and oral presentation with subsequent discussion on a topic from the field of computer science (type and length to be specified by the lecturer at the beginning of the course)</td>
<td></td>
<td>German, English if required by the examination candidate</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Allocation of places

--

Additional information

--

Referred to in LPO 1

(examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor-Kolloquium</td>
<td>10-I-BK-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator: Dean of Studies Informatik (Computer Science)

Module offered by: Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Presentation and defence of the results of the Bachelor's thesis in an open discussion.

Intended learning outcomes

The students are able to present the results of their Bachelor's theses and defend them in a discussion.

Courses

K (no information on SWS (weekly contact hours) and course language available)

Method of assessment

Oral presentation (talk maximum 30 minutes, approx. 30 to 40 minutes total) with subsequent discussion of Bachelor's thesis and adjacent fields

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--