

Modulhandbuch

für das Studienfach

Mathematische Physik

als 1-Fach-Master mit dem Abschluss "Master of Science" (Erwerb von 120 ECTS-Punkten)

Prüfungsordnungsversion: 2016 verantwortlich: Fakultät für Mathematik und Informatik verantwortlich: Fakultät für Physik und Astronomie

Inhaltsverzeichnis

Bereichsgliederung des Studienfachs	5
Qualifikationsziele / Kompetenzen	6
Verwendete Abkürzungen, Konventionen, Anmerkungen, Satzungsbezug	8
Pflichtbereich	9
Analysis und Geometrie von klassischen Systemen	10
Algebra und Dynamik von Quantensystemen	12
Wahlpflichtbereich	14
Unterbereich Mathematik	15
Angewandte Analysis	16
Aspekte der Algebra	18
Differentialgeometrie	20
Funktionentheorie	22
Geometrische Strukturen	24
Industrielle Statistik 1	26
Lie-Theorie	28
Numerik großer Gleichungssysteme Grundlagen der Optimierung	30
Regelungstheorie	32 34
Stochastische Modelle des Risikomanagements	34 36
Stochastische Prozesse	38
Topologie	40
Zeitreihenanalyse 1	42
Zahlentheorie	44
Giovanni Prodi Lecture (Master)	46
Ausgewählte Themen der Analysis	48
Algebraische Topologie	50
Gruppen und ihre Darstellungen	52
Geometrische Mechanik	54
Industrielle Statistik 2 Körperarithmetik	56 58
Numerik partieller Differentialgleichungen	60
Ausgewählte Themen der Optimierung	62
Statistische Analysis	64
Zeitreihenanalyse 2	66
Diskrete Mathematik	67
Dynamische Systeme	69
Aspekte der Geometrie	71
Mathematische Kontinuumsmechanik	73
Mathematische Bildverarbeitung	75
Ausgewählte Themen der Mathematischen Physik	77
Ausgewählte Themen der Regelungstheorie Inverse Probleme	79
Modultheorie	81 83
Nichtlineare Analysis	8 ₅
Optimale Steuerung	87
Vernetzte Systeme	89
Komplexe Geometrie	91
Partielle Differentialgleichungen der Mathematischen Physik	93
Pseudo-Riemannsche und Riemannsche Geometrie	95
Funktionalanalysis	97
Angewandte Differentialgeometrie	99
Giovanni Prodi Lecture Selected Topics (Master)	101
Giovanni Prodi Lecture Advanced Topics (Master)	103

Giovanni Prodi Lecture Modern Topics (Master)	105
Seminar Algebra	107
Seminar Dynamische Systeme und Regelungstheorie	109
Seminar Funktionentheorie	111
Seminar Angewandte Differentialgeometrie Seminar Geometrie und Topologie	113
Giovanni Prodi Seminar (Master)	115
Interdisziplinäres Seminar	117 119
Seminar Mathematik in den Naturwissenschaften	121
Seminar Numerische Mathematik und Angewandte Analysis	123
Seminar Optimierung	125
Seminar Statistik	127
Seminar Nichtlineare Analysis	129
Learning by Teaching 1	131
Unterbereich Physik	132
Modulgruppe Allgemeine Theoretische Physik	133
Quantenmechanik II	134
Theoretische Quantenoptik	136
Relativitätstheorie	138
Vielteilchenphysik (Feldtheorie)	140
Renormierungsgruppenmethoden in der Feldtheorie	142
Physik komplexer Systeme	144
Quanteninformation und Quantencomputer	146
Schwarze Löcher	148
Astrophysik	150
Atmosphärenphysik	152
Offene Quantensysteme	154
Modulgruppe Theoretische Festkörperphysik	155
Theoretische Festkörperphysik	156
Theoretische Festkörperphysik 2	158
Feldtheorie in der Festkörperphysik	160
Topologische Ordnung	162
Topologie in der Festkörperphysik Theorie der Supraleitung	164 166
Computational Materials Science (DFT)	168
Konforme Feldtheorie	170
Konforme Feldtheorie 2	172
Magnetismus und Spinflüssigkeiten	-, - 174
Topologische Quantenphysik	176
Renormierungsgruppe und Kritische Phänomene	178
Bosonisierung und Wechselwirkungen in einer Dimension	180
Eichtheorien	182
Dualitäten zwischen Eich- und Gravitationstheorien	184
Einführung in die fraktionelle Quantisierung	187
Topologische Effekte in elektronischen Systemen	189
Feldtheoretische Aspekte der Festkörperphysik	191
Modulgruppe Astrophysik	193
Kosmologie	194
Theoretische Astrophysik	196
Einführung in die Plasmaphysik	198
Hochenergie-Astrophysik	200
Computational Astrophysics	202
Modulgruppe Theoretische Elementarteilchenphysik	204
Relativistische Quantenfeldtheorie	205
Quantenfeldtheorie II	207
Theoretische Elementarteilchenphysik	209

Ausgewählte Kapitel der Theoretischen Elementarteilchenphysik	211
Modelle jenseits des Standardmodells der Elementarteilchenphysik	213
Modulgruppe Aktuelle Themen	215
Aktuelle Themen der Mathematischen Physik	216
Aktuelle Themen der Mathematischen Physik	217
Aktuelle Themen der Mathematischen Physik	218
Aktuelle Themen der Mathematischen Physik	219
Unterbereich Arbeitsgemeinschaften	220
Arbeitsgemeinschaft Algebra	221
Arbeitsgemeinschaft Diskrete Mathematik	223
Arbeitsgemeinschaft Dynamische Systeme und Regelungstheorie	225
Arbeitsgemeinschaft Funktionentheorie	227
Arbeitsgemeinschaft Geometrie und Topologie	229
Arbeitsgemeinschaft Mathematik im Kontext	231
Arbeitsgemeinschaft Mathematik in den Naturwissenschaften	233
Arbeitsgemeinschaft Maß und Integral	235
Arbeitsgemeinschaft Numerische Mathematik und Angewandte Analysis	237
Arbeitsgemeinschaft Robotik, Optimierung und Kontrolltheorie	239
Arbeitsgemeinschaft Zeitreihenanalyse	241
Arbeitsgemeinschaft Statistik	243
Arbeitsgemeinschaft Zahlentheorie	245
Arbeitsgemeinschaft Kontrolltheorie quantenmechanischer Systeme	247
Arbeitsgemeinschaft Differentialgeometrie	248
Arbeitsgemeinschaft Deformationsquantisierung	250
Arbeitsgemeinschaft Nichtlineare Analysis	252
Arbeitsgemeinschaft Operatoralgebren	254
Arbeitsgemeinschaft Moderne Differentialgeometrie	256
Arbeitsgemeinschaft Symplektische und Poisson-Geometrie	257
Arbeitsgemeinschaft Operatoralgebren und Darstellungstheorie	258
Arbeitsgemeinschaft Hopf-Algebren	259
Arbeitsgemeinschaft Konforme Feldtheorie	260
Arbeitsgemeinschaft Statistische Mechanik	261
Arbeitsgemeinschaft Quantenfeldtheorie	262
Arbeitsgemeinschaft Riemannsche Geometrie	263
Arbeitsgemeinschaft Mathematische Physik	264
Abschlussbereich	265
Fachliche Spezialisierung Mathematische Physik	266
Methodenkenntnis und Projektplanung Mathematische Physik	267
Master-Thesis Mathematische Physik	268

Bereichsgliederung des Studienfachs

Bereich / Unterbereich	ECTS-Punkte	ab Seite
Pflichtbereich	20	9
Wahlpflichtbereich	50	14
Unterbereich Mathematik	8	15
Unterbereich Physik	8	132
Modulgruppe Allgemeine Theoretische Physik		133
Modulgruppe Theoretische Festkörperphysik		155
Modulgruppe Astrophysik		193
Modulgruppe Theoretische Elementarteilchenphysik		204
Modulgruppe Aktuelle Themen		215
Unterbereich Arbeitsgemeinschaften	10	220
Abschlussbereich	50	265

Qualifikationsziele / Kompetenzen

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, sich selbständig mithilfe von, auch fremdsprachiger, Fachliteratur in aktuelle Forschungsgebiete der Mathematischen Physik einzuarbeiten.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen zu komplexen Sachverhalten einem Fachpublikum gegenüber verständlich zu präsentieren.
- Die Absolventinnen und Absolventen besitzen vertiefte Kenntnisse der mathematischen Grundlagen der klassischen und Quantenphysik.
- Die Absolventinnen und Absolventen besitzen die für selbstständiges wissenschaftliches Arbeiten, insbesondere für ein Promotionsstudium erforderlichen Fach- und Methodenkenntnisse, sowie Denk- und Arbeitsweisen.
- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und sind in der Lage, sie bei umfangreichen Arbeiten zu beachten.
- Die Absolventinnen und Absolventen besitzen weiterführende Kenntnisse aktueller Gebiete der Mathematischen Physik und können sicher mit fortgeschrittenen Methoden dieser Gebiete umgehen.
- Die Absolventinnen und Absolventen besitzen vertiefte Kenntnisse und Überblick über die aktuelle Forschung in mindestens einem Teilgebiet der Mathematischen Physik.
- Die Absolventinnen und Absolventen sind in der Lage, mit internationalen Fachvertretern und
 -vertreterinnen auf dem aktuellen Stand der Forschung Fragestellungen der Mathematischen
 Physik zu diskutieren.
- Die Absolventinnen und Absolventen kennen angrenzende Gebiete der Mathematik und Physik, und erkennen interdisziplinäre Zusammenhänge.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, ihre Kenntnisse, Ideen und Problemlösungen zielgruppenorientiert verständlich zu formulieren und zu präsentieren.
- Die Absolventinnen und Absolventen sind in der Lage, komplexe Probleme aus anderen Gebieten zu erkennen, strukturieren und modellieren, mit mathematischen und physikalischen Methoden Lösungswege zu entwickeln und diese Ergebnisse zu interpretieren und bewerten.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in internationalen, interdisziplinär zusammengesetzten Teams zu arbeiten und hierbei Verantwortung zu tragen.
- Die Absolventinnen und Absolventen sind in der Lage, sich neue Wissensgebiete und aktuelle Entwicklungen selbständig, effizient und systematisch zu erschließen.
- Die Absolventinnen und Absolventen sind in der Lage, auch bei unvollständig vorliegenden Informationen mathematisch-physikalische Probleme wissenschaftlich und unter Beachtung der Regeln guter wissenschaftlicher Praxis selbstständig zu bearbeiten und die Ergebnisse und Folgen ihrer Arbeit darzustellen, zu bewerten und zu vertreten.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen sind geschult in analytischem Denken, besitzen ein stark ausgeprägtes Abstraktionsvermögen, universell einsetzbare Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Die Absolventinnen und Absolventen sind in der Lage, in partizipativen Prozessen gestaltend mitzuwirken.
- Die Absolventinnen und Absolventen besitzen ein ausgeprägtes Durchhaltevermögen bei der Lösung komplexer Probleme.
- Die Absolventinnen und Absolventen sind in der Lage, komplexe Ideen und Lösungsvorschläge allgemeinverständlich zu formulieren und professionell zu präsentieren.

Verwendete Abkürzungen

Veranstaltungsarten: **E** = Exkursion, **K** = Kolloquium, **O** = Konversatorium, **P** = Praktikum, **R** = Projekt, **S** = Seminar, **T** = Tutorium, **Ü** = Übung, **V** = Vorlesung

Semester: **SS** = Sommersemester, **WS** = Wintersemester

Bewertungsarten: **NUM** = numerische Notenvergabe, **B/NB** = bestanden / nicht bestanden

Satzungen: **(L)ASPO** = Allgemeine Studien- und Prüfungsordnung (für Lehramtsstudiengänge), **FSB** = Fachspezifische Bestimmungen, **SFB** = Studienfachbeschreibung

Sonstiges: **A** = Abschlussarbeit, **LV** = Lehrveranstaltung(en), **PL** = Prüfungsleistung(en), **TN** = Teilnehmende, **VL** = Vorleistung(en)

Konventionen

Sofern nichts anderes angegeben ist, ist die Lehrveranstaltungs- und Prüfungssprache Deutsch, der Prüfungsturnus ist semesterweise, es besteht keine Bonusfähigkeit der Prüfungsleistung.

Anmerkungen

Gibt es eine Auswahl an Prüfungsarten, so legt die Dozentin oder der Dozent in Absprache mit der/dem Modulverantwortlichen bis spätestens zwei Wochen nach LV-Beginn fest, welche Form für die Erfolgsüberprüfung im aktuellen Semester zutreffend ist und gibt dies ortsüblich bekannt.

Bei mehreren benoteten Prüfungsleistung innerhalb eines Moduls werden diese jeweils gleichgewichtet, sofern nachfolgend nichts anderes angegeben ist.

Besteht die Erfolgsüberprüfung aus mehreren Einzelleistungen, so ist die Prüfung nur bestanden, wenn jede der Einzelleistungen erfolgreich bestanden ist.

Satzungsbezug

Muttersatzung des hier beschriebenen Studienfachs:

ASP02015

zugehörige amtliche Veröffentlichungen (FSB/SFB):

04.04.2016 (2016-52) 12.06.2024 (2024-77) 14.11.2024 (2024-98)

Dieses Modulhandbuch versucht die prüfungsordnungsrelevanten Daten des Studienfachs möglichst genau wiederzugeben. Rechtlich verbindlich ist aber nur die offizielle amtliche Veröffentlichung der FSB/SFB. Insbesondere gelten im Zweifelsfall die dort angegebenen Beschreibungen der Modulprüfungen.

Pflichtbereich

(20 ECTS-Punkte)

Modulbezeichnung				Kurzbezeichnung	
Analysis und Geometrie von klassischen Systemen			10-M=MP1-161-m01		
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik Institut für Mathematik		atik			
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	erische Notenvergabe			
Moduldauer Niveau weitere Voraussetzun		ungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Moderne analytische Methoden (wie partielle Differentialgleichungen) und geometrische Methoden (wie Differentialgeometrie) zur Beschreibung der klassischen Physik. Beispiele sind Bewegung von deformierbaren Körpern als Reaktion auf äußere Belastungen (Deformation von elastischen Körpern, das Fließen einer Flüssigkeit, das Strömen eines Gases). Weitere Beispiele sind geometrische Mechanik und symplektische Geometrie, klassische Feldtheorie und klassische Eichtheorien, allgemeine Relativitätstheorie.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Differentialgeometrie", "Einführung in die Topologie" und "Geometrische Analysis". Weiterhin sind Grundkenntnisse der klassischen Feldtheorie nützlich.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat Einblick in moderne mathematische Methoden, die in der klassischen Physik zum Einsatz kommen. Er/Sie beherrscht fortgeschrittene Techniken in diesen Bereichen und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung	
Algebra und Dynamik von Quantensystemen				10-M=MP2-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	dekan/-in Mathematik Institut für Mathema		atik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Moderne algebraische Methoden zur Dynamik von Quantensystemen wie beispielsweise Operatoralgebren mit Anwendungen in der algebraischen Quantenfeldtheorie, Spektraltheorie, Symmetrien und Darstellungstheorie.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Funktionalanalysis", "Einführung in die Topologie" und "Einführung in die Funktionentheorie". Weiterhin sind Grundkenntnisse der Quantenmechanik nützlich.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat Einblick in moderne mathematische Methoden, die in der Quantenphysik zum Einsatz kommen. Er/Sie beherrscht fortgeschrittene Techniken in diesen Bereichen und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Wahlpflichtbereich

(50 ECTS-Punkte)

Unterbereich Mathematik

(8 ECTS-Punkte)

Modulbezeichnung			Kurzbezeichnung		
Angewandte Analysis				10-M=AAAN-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik		Institut für Mathematik			
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte					

iiiialle

Vertieftes Studium der Funktionalanalysis und Operatortheorie, Sobolevräume und partielle Differentialgleichungen, Hilbertraumtheorie und Fourieranalysis, Spektraltheorie und Quantenmechanik, numerische Methoden (insbesondere FEM-Methoden). Prinzipien der Funktionalanalysis, Funktionenräume, Einbettungssätze, Kompaktheit. Theorie elliptischer, parabolischer und hyperbolischer partieller Differentialgleichungen mit Methoden der Funktionalanalysis.

Empfohlene Vorkenntnisse:

Vertrautheit mit den Inhalten des Moduls "Funktionalanalysis" wird dringend empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Methoden und Ergebnisse der höheren Analysis. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Physik und anderen Natur- und Ingenieurwissenschaften.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Aspekte der Algebra			10-M=AALG-161-m01		
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik		Institut für Mathematik		atik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	dauer	auer Niveau weitere Voraussetzungen			
1 Seme	ester	weiterführend			
Inhalte					

Aktuelle Themen der Algebra, wie zum Beispiel Kodierungstheorie, Elliptische Kurven, Algebraische Kombinatorik oder Computeralgebra.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt grundlegende Konzepte und Methoden eines aktuellen Gebiets der Algebra und ist in der Lage, diese auf komplexe Fragestellungen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4) + Ü (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 18 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung			Kurzbezeichnung		
Differentialgeometrie			10-M=ADGM-161-m01		
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik		Institut für Mathematik		atik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte					

Zentrale und weiterführende Ergebnisse der Differentialgeometrie, insbesondere über differenzierbare Mannigfaltigkeiten und Riemannsche Mannigfaltigkeiten.

Empfohlene Vorkenntnisse:

Empfohlen werden grundlegende Kenntnisse aus den Modulen "Einführung in die Differentialgeometrie", "Einführung in die Topologie" und "Geometrische Analysis".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt Konzepte und Methoden zur Behandlung differenzierbarer oder Riemannscher Mannigfaltigkeiten, kann selbige anwenden und weiß um das Zusammenspiel lokaler und globaler Methoden in der Differentialgeometrie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung			Kurzbezeichnung		
Funktionentheorie					10-M=AFTH-161-m01
Modulverantwortung				anbietende Einrich	tung
Studiendekan/-in Mathematik		Institut für Mathematik		atik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Vertieftes Studium der Abbildungseigenschaften analytischer Funktionen und deren Verallgemeinerungen mit modernen analytischen und geometrischen Methoden. Strukturelle Eigenschaften von Familien holomorpher und meromorpher Funktionen. Spezielle Funktionen (z.B. elliptische Funktionen).

Empfohlene Vorkenntnisse:

Empfohlen werden grundlegende Kenntnisse der Inhalte des Moduls "Einführung in die Funktionentheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Methoden und Ergebnisse der höheren Funktionentheorie und besitzt insbesondere eine Vertrautheit mit den (geometrischen) Abbildungseigenschaften holomorpher Funktionen. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung			Kurzbezeichnung		
Geometrische Strukturen				10-M=AGMS-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik		Institut für Mathematik			
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau weitere Voraussetzungen				
1 Semester weiterführend					
Inhalte					

Tits-Gebäude, verallgemeinerte Polygone oder verwandte geometrische Strukturen, Automorphismen, BN-Paare in Gruppen, Moufang-Bedingungen, Klassifikationsergebnisse.

Empfohlene Vorkenntnisse:

Empfohlen werden grundlegende Kenntnisse aus den Modulen "Einführung in die Differentialgeometrie" und "Einführung in die Topologie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Methoden und Ergebnisse, welche einen Typ von geometrischen Strukturen betreffen, kann diese Ergebnisse in umfassendere Theorien einordnen und lernt die Zusammenhänge der Geometrie mit anderen Teilen der Mathematik kennen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Industrielle Statistik 1					10-M=AIST-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart zuvor bestandene M		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester weiterführend		weiterführend			
		·	· · · · · · · · · · · · · · · · · · ·	•	

Inhalte

Theorie der Parameter- und Bereichsschätzung, Testen statistischer Hypothesen, Verteilungsmodelle, empirische Verteilungsanalyse, komparative Analyse, statistische Produktprüfung, Survey Sampling, Audit Sampling.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die grundlegenden statistischen Verfahren für industrielle Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Lie-Theorie					10-M=ALTH-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart zuvor bestandene Module		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	•				

Lineare Lie-Gruppen und ihre Lie-Algebren, Exponentialfunktion, Struktur und Klassifikation von Lie-Algebren, klassische Beispiele, Anwendungen etwa in der Physik oder Kontrolltheorie.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Inhalte der Module "Funktionalanalysis" und "Einführung in die Topologie". Weiterhin sind grundlegende Kenntnisse der Inhalte des Moduls "Einführung in die Differentialgeometrie" nützlich.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Ergebnisse, Sätze und Methoden der Lie-Theorie, kann selbige in Standard-Situationen einsetzen und weiß um das Zusammenspiel von Gruppentheorie, Analysis, Topologie und Linearer Algebra.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Numerik großer Gleichungssysteme					10-M=ANGG-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	•				

Diskretisierung elliptischer Differentialgleichungen, klassische Iterationsverfahren, Vorkonditionierer, Mehrgitterverfahren

Empfohlene Vorkenntnisse:

Vorausgesetzt werden grundlegende Kenntnisse der Numerischen Mathematik, wie sie etwa in den Modulen "Numerische Mathematik 1" und "Numerische Mathematik 2" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die wichtigen Verfahren zur Lösung großer Gleichungssysteme und weiß, wie ein vorgegebenes Gleichungssystem am effektivsten gelöst werden kann.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Grundlagen der Optimierung					10-M=AOPT-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	ertungsart zuvor bestandene M		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
Inhalte	`				

Grundlegende Methoden und Verfahren der kontinuierlichen Optimierung, unrestringierte Optimierung, Optimalitätsbedingungen, restringierte Optimierung, Beispiele und Anwendungen in Natur-, Ingenieur- und Wirtschaftswissenschaften.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Methoden und Verfahren der kontinuierlichen Optimierung, kann ihre Stärken und Schwächen abwiegen und beurteilen, welches Verfahren für welche Anwendung geeignet ist.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nung			Kurzbezeichnung
Regelungstheorie					10-M=ARTH-161-m01
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					

Inhalte

Einführung in die mathematische Systemtheorie: Stabilität, Kontrollierbarkeit und Beobachtbarkeit, Zustandsrückführung und Stabilisierung, Grundlagen der optimalen Steuerung.

Empfohlene Vorkenntnisse:

Grundlegende Kenntnisse der Inhalte des Moduls "Gewöhnliche Differentialgleichungen" sind nützlich.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die Grundbegriffe und Methoden der Regelungstheorie. Er/Sie kann grundlegende Techniken der Regelungstheorie zur Analyse und Regelung technischer Systeme einsetzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Modul	bezeich	nnung			Kurzbezeichnung
Stocha	Stochastische Modelle des Risikomanagements				10-M=ASMR-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
			<u> </u>	•	·

Inhalte

Meßtheorie, Risikodiagramm, Failure Mode and Effects Analysis, Risikobewertung in der Wirtschaftsprüfung, Shortfallmaße, Value at Risk, Conditional Value at Risk, Axiomatik von Risikomaßen, Modellierung von Abhängigkeiten, Copula, Modellierung von funktionalen Zusammenhängen, Regressionsmodelle, Grundlagen der Zeitreihenmodellierung, aggregierte Verluste, Schätzen von Shortfallmaßen, Schätzen des Value at Risk und Conditional Value at Risk, Grundlagen der empirischen Zeitreihenanalyse, Methoden des Exponential Smoothing, Vorhersagen und Vorhersagebereiche, Schätzen des Value at Risk in Zeitreihen, elementare empirische Regressionsanalyse, Simulationsmethoden.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die grundlegenden Methoden des stochastischen Risikobewertung und Risikoanalyse.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 36 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung	
Stochastische Prozesse					10-M=ASTP-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekan	/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Markoff-Ketten, Warteschlangen, Stochastische Prozesse in C[o,1], Brownsche Bewegung, Donsker-Theorem, projektiver Limes

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die Grundbegriffe und grundlegenden Methoden der stochastischen Prozesse und kann sie in Anwendungssituationen zum Einsatz bringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Topologie					10-M=ATOP-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Mengentheoretische Topologie, toplogische Invarianten (z.B. Fundamentalgruppen, Zusammenhang), Konstruktion topologischer Räume, Überlagerungstheorie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Sätze und Methoden der Topologie und kann diese in Standardsituationen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Zeitreihenanalyse 1					10-M=AZRA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	n/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	erische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester weiterführend		weiterführend			
Inhalte					

Additives Modell, Lineare Filter, Autokorrelation, Moving Average, Autoregressive Prozesse, Box-Jenkins-Methode

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Methoden und Verfahren der Zeitreihenanalyse und kann selbige in Anwendungssituationen einsetzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Master (1 Hauptfach) Mathematische Physik (2020)

Modul	bezeich	nnung			Kurzbezeichnung
Zahlentheorie					10-M=AZTH-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Zahlentheoretische Funktionen und assoziierte Dirichlet-Reihen bzw. Euler-Produkte, analytische Theorie derselben mit Anwendungen auf die Primzahlverteilung und diophantische Gleichungen; Diskussion der Riemannschen Vermutung; Überblick über die Entwicklung der modernen Zahlentheorie

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra und der Zahlentheorie vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra", "Einführung in die Zahlentheorie" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die wichtigen Methoden im Bereich der analytischen Zahlentheorie, vermag algebraische Strukturen im Bereich der Zahlentheorie zu behandeln und kennt Lösungsstrategien für diophantische Gleichungen. Er/Sie hat einen Überblick über moderne Entwicklungen in der Zahlentheorie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Giovan	ıni Proc	li Lecture (Master)			10-M=AGPCin-152-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Einführung in ein Spezialgebiet der Mathematik durch einen internationalen Experten oder eine internationale Expertin.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Konzepte und Methoden eines aktuellen Forschungsgebiets der Mathematik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematics International (2015)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematics International (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Mathematics International (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Mathematics International (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung					Kurzbezeichnung
Ausgewählte Themen der Analysis					10-M=VANA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Vertiefte Behandlung eines speziellen Themas der Analysis unter Berücksichtigung von aktuellen Entwicklungen und Querverbindungen zu anderen mathematischen Konzepten.

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in einem ausgewählten Teilbereich der Analysis und ist in der Lage, diese Kenntnisse auf komplexe Fragestellungen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung					Kurzbezeichnung
Algebraische Topologie					10-M=VATP-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalta				

Homologie, Homotopieinvarianz, exakte Sequenzen, Kohomologie, Anwendung auf die Topologie euklidischer Räume

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Topologie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Einführung in die Topologie" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse im Bereich der Algebraischen Topologie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 50 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung		
Gruppen und ihre Darstellungen					10-M=VGDS-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte					

Endliche Permutationsgruppen und Charaktertheorie der endlichen Gruppen zusammen mit deren Querverbindungen und spezielleren Techniken wie zum Beispiel die S-Ringe von Schur.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht fortgeschrittene algebraische Konzepte und Methoden. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen der Gruppentheorie und der Darstellungstheorie zu beschäftigen, und kann seine/ihre Kenntnisse auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 52 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modulbezeichnung					Kurzbezeichnung
Geometrische Mechanik					10-M=VGEM-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	n/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend		weiterführend			
Inhalte					

Das Modul baut auf den Inhalten von 10-M=ADGM auf und vertieft und erweitert sie: Symplektische Geometrie, Kotangentenbündel und andere Beispiele von symplektischen Mannigfaltigkeiten, Symmetrien und Noether-Theorem, Phasenraumreduktion, Normalformen, Einführung in die Poisson-Geometrie.

Empfohlene Vorkenntnisse:

Es werden weiterführende Kenntnisse der Differentialgeometrie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Differentialgeometrie" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte der Module "Einführung in die Topologie". Weiterhin können Kenntnisse der Theoretischen Mechanik nützlich sein.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat fortgeschrittene Kenntnisse in Anwendungen differentialgeometrischer Konzepte in der geometrischen Mechanik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Physik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Industrielle Statistik 2					10-M=VIST-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend		weiterführend			
	11.6				

lineare Modelle, Regressionsanalyse, nichtlineare Regression, experimentelles Design, Grundlagen der Zeitreihenmodellierung, Grundlagen der empirischen Zeitreihenanalyse, Methoden des Exponential Smoothing, Vorhersagen und Vorhersagebereiche, statistische Prozessüberwachung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht fortgeschrittene statistische Verfahren für industrielle Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	Modulbezeichnung				Kurzbezeichnung
Körperarithmetik					10-M=VKAR-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart zuvor bestandene N		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Kombination von Galoistheorie, Gruppentheorie und Theorie der Funktionenkörper mit dem Ziel zahlentheoretischer Anwendungen, wie etwa Themen aus dem Umfeld des Hilbertschen Irreduzibilitätssatzes, der Permutationspolynome (z.B. Carlitz-Wan-Vermutung) und dem Umkehrproblem der Galoistheorie.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht fortgeschrittene algebraische Konzepte und Methoden. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen der Algebra zu beschäftigen, und kann seine/ihre Kenntnisse auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4) + Ü (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 58 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modull	bezeich	nnung		Kurzbezeichnung	
Numer	Numerik partieller Differentialgleichungen				10-M=VNPE-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik		Institut für Mathematik		atik
ECTS	Bewe	rtungsart	zuvor bestandene Module		
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Typen partieller Differentialgleichungen, qualitative Eigenschaften, finite Differenzen, finite Elemente, Fehlerabschätzungen. [Numerische Methoden elliptischer, parabolischer und hyperbolischer partieller Differentialgleichungen: finite Elemente Methode, discontinuous Galerkin finite Elemente Methode, finite Differenzen und finite Volumen Methode.]

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Funktionalanalysis und zu partiellen Differentialgleichungen, wie sie beispielsweise in den Modulen "Einführung in die Funktionalanalysis" und "Angewandte Analysis" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kann eine gegebene partielle Differentialgleichung sachgerecht diskretisieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	Modulbezeichnung				Kurzbezeichnung
Ausge	Ausgewählte Themen der Optimierung				10-M=VOPT-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	ertungsart zuvor bestandene M		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ungen		
1 Semester weiterführend					
India de					

Ausgewählte Kapitel aus der Optimierung wie z.B. Innere-Punkte-Methoden, semidefinite Programme, nichtglatte Optimierung, Spieltheorie, Optimierung mit Differentialgleichungen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat vertiefte Kenntnisse im Bereich der stetigen Optimierung. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen im Bereich der stetigen Optimierung zu beschäftigen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4) + Ü (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modull	bezeich	nnung			Kurzbezeichnung
Statist	Statistische Analysis				10-M=VSTA-161-m01
Modulverantwortung			anbietende Einrichtung		tung
Studie	Studiendekan/-in Mathematik		Institut für Mathematik		atik
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Kontingenztafeln, Kategoriale Regression, einfaktorielle Varianzanalyse, zweifaktorielle Varianzanalyse, Diskriminanzanalyse, Clusteranalyse, Hauptkomponentenanalyse, Faktorenanalyse

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Methoden und Verfahren der statistischen Analysis und kann selbige in Anwendungssituationen einsetzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 64 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020) Master (1 Hauptfach) Mathematische Physik (2020)

Modulbezeichnung					Kurzbezeichnung
Zeitreihenanalyse 2					10-M=VZRA-161-m01
Modulverantwortung			anbietende Einrichtung		tung
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	Bewertungsart zuvor bestandene M		Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

State-Space-Modelle, Kalman-Filter, Frequenzraum, Fourier-Analyse, Periodogramm, Charakterisierung von Auto-kovarianzfunktionen

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat vertiefte Kenntnisse im Bereich der Zeitreihenanalyse. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen in diesem Bereich auseinanderzusetzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Modulbezeichnung					Kurzbezeichnung
Diskrete Mathematik					10-M=VDIM-161-m01
Modulverantwortung			anbietende Einrichtung		tung
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewei	rtungsart	zuvor bestandene N	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Weiterführende Methoden und Ergebnisse eines ausgewählten Teilgebiets der Diskreten Mathematik (etwa Kodierungstheorie, Kryptographie, Graphentheorie oder Kombinatorik).

Empfohlene Vorkenntnisse:

Vorausgesetzt werden grundlegende Kenntnisse der Inhalte des Moduls "Einführung in die Diskrete Mathematik".

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in einem Teilbereich der Diskreten Mathematik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

1-Fach-Master Mathematische Physik (2016) JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Datensatz Master (120 ECTS) Mathematische Physik - 2016

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nung			Kurzbezeichnung
Dynamische Systeme					10-M=VDSY-161-m01
Modul	verantw	ortung		anbietende Einrich	tung
Studie	udiendekan/-in Mathematik Institut für Mathematik		atik		
ECTS	Bewei	tungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetz	ungen	

1 Semester

Grundlagen dynamischer Systeme, wie z.B. Stabilitätstheorie, Ergodentheorie, Hamiltonsche Systeme.

Empfohlene Vorkenntnisse:

Grundlegende Kenntnisse der Inhalte des Moduls "Gewöhnliche Differentialgleichungen" sind nützlich.

Qualifikationsziele / Kompetenzen

weiterführend

Der/Die Studierende beherrscht die mathematischen Methoden der Theorie dynamischer Systeme und ist in der Lage, selbige qualitativ zu analysieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (3) + Ü (1)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modull	bezeich	nnung			Kurzbezeichnung
Aspekte der Geometrie					10-M=VGEO-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik		Institut für Mathematik		atik
ECTS	Bewe	rtungsart	tungsart zuvor bestandene Modul		
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Vertiefte Behandlung eines speziellen Typs von Geometrien unter Berücksichtigung von aktuellen Entwicklungen und Querverbindungen zu anderen mathematischen Strukturen (etwa topologische Geometrien, Diagramm-Geometrien).

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Differentialgeometrie" und "Einführung in die Topologie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in einem ausgewählten Teilbereich der Geometrie und ist in der Lage, diese Kenntnisse auf komplexe Fragestellungen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 71 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Moduli	bezeich	nnung	Kurzbezeichnung			
Mathe	matiscl	he Kontinuumsmechani	k		10-M=VKOM-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau w		weitere Voraussetzungen				
1 Semester weiterführend						
Inhalte	Inhalte					

Partielle Differentialgleichungen und/oder variationelle Methoden im Kontext der Kontinuumsmechanik.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Gewöhnliche Differentialgleichungen" und "Einführung in Partielle Differentialgleichungen", sowie Grundkenntnisse der Funktionalanalysis.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die mathematischen Methoden der mathematischen Kontinuumsmechanik und kennt deren Hauptanwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Mathematische Bildverarbeitung					10-M=VMBV-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalto					

Mathematische Grundlagen der Bildverarbeitung und Computer Vision, wie elementare projektive Geometrie, Kameramodelle und Kamerakalibrierung, starre/nichtstarre Registrierung, Rekonstruktion von 3D Objekten aus Kamerabildern; Algorithmen; evtl. Einführung in geometrische Methoden und Tomographie.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Funktionalanalysis, wie sie beispielsweise im Modul "Funktionalanalysis" vermittelt werden.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die mathematischen Methoden der Theorie der Bildverarbeitung und kennt deren Hauptanwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Ausge	wählte	Themen der Mathemati	ischen Physik		10-M=VMPH-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalto					

Inhalte

Ausgewählte Kapitel der Mathematischen Physik, wie zum Beispiel Kontinuumsmechanik, Fluiddynamik, mathematische Materialwissenschaften, geometrische Feldtheorie, fortgeschrittene Themen der Quantentheorie.

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat Kenntnisse in einem fortgeschrittenen Teilgebiet der Mathematischen Physik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Physik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modull	bezeich	nung		Kurzbezeichnung		
Ausgev	wählte	Themen der Regelungst	heorie		10-M=VTRT-161-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	ndekan	/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	ester	weiterführend				
Inhalte	Inhalte					

Ausgewählte Themen der linearen und nichtlinearen Regelungstheorie, wie z.B. vernetzte lineare Kontrollsysteme, Kontrollierbarkeit bilinearer Systeme.

Empfohlene Vorkenntnisse:

Vorausgesetzt werden Kenntnisse der Inhalte des Moduls "Mathematische Kontrolltheorie" bzw. "Regelungstheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich Kontrolltheorie. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwen-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 79 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Modul	bezeich	nnung		Kurzbezeichnung	
Inverse Probleme					10-M=VIPR-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
Inhalte	Inhalta				

Inhalte

Lineare Operatorgleichungen, schlecht gestellte Probleme, Regularisierungstheorie, Tikhonov Regularisierung, iterative Regularisierungsverfahren, Beispiele schlecht gestellter Probleme.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Funktionalanalysis, wie sie beispielsweise im Modul "Funktionalanalysis" vermittelt werden.

Qualifikationsziele / Kompetenzen

Die Studierenden können gegebene Probleme hinsichtlich Gut- oder Schlechtgestelltheit beurteilen. Sie haben die Fähigkeit Regularisierungsverfahren anzuwenden und hinsichtlich Stabilität und Konvergenz zu untersuchen. Sie erwerben vertiefte Kenntnisse im Bereich ausgewählter inverser Probleme.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 81 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Modul	bezeich	nnung			Kurzbezeichnung	
Modultheorie					10-M=VMTH-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekan	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Grundlagen der Modultheorie: Module und Modulräume, kanonische Zerlegungen und Darstellungen, einfache, halbeinfache und komplexe Module, Modulbäume und ihre Zerfaserungen, Verzerrungssätze, Reduktionssätze.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die mathematischen Methoden der Modultheorie und ist in der Lage, selbige qualitativ zu analysieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Nichtli	neare A	Analysis			10-M=VNAN-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau we			weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Methoden der nichtlinearen Analysis (z.B. topologische Methoden, Monotonie- und Variationsmethoden) mit Anwendungen

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Funktionalanalysis und zu partiellen Differentialgleichungen, wie sie beispielsweise in den Modulen "Einführung in die Funktionalanalysis" und "Angewandte Analysis" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die Konzepte der nichtlinearen Analysis, kann selbige gegeneinander abwägen und vermag ihre Anwendbarkeit auf Anwendungsprobleme zu beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 85 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Optimale Steuerung					10-M=VOST-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
1 Semester weiterführend -					
Inhalte					

Grundlagen der optimalen Steuerung gewöhnlicher und partieller Differentialgleichungen, Theorie der optimalen Steuerung, Optimalitätsbedingungen, Methoden zur numerischen Lösung.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Funktionalanalysis und zu gewöhnlichen Differentialgleichungen, wie sie beispielsweise in den Modulen "Einführung in die Funktionalanalysis" und "Gewöhnliche Differentialgleichungen" erworben werden können. Weiterhin können Kenntnisse der Inhalte des Moduls "Grundlagen der Optimierung" nützlich sein.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat vertiefte Kenntnisse im Bereich der optimalen Steuerung. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen im Bereich der optimalen Steuerung zu beschäftigen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung	
Vernetzte Systeme					10-M=VVSY-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Aktuelle Themen der vernetzten linearen und nicht-linearen dynamischen Systeme (homogene und inhomogene Systeme); Untersuchung kontrolltheoretischer Aspekte (Kontrollierbarkeit, Akzessibilität, etc.)

Empfohlene Vorkenntnisse:

Grundlegende Kenntnisse der Inhalte des Moduls "Gewöhnliche Differentialgleichungen" sind nützlich.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat vertiefte Kenntnisse im Bereich der vernetzten Systeme. Er/Sie erwirbt die Fähigkeit, sich mit aktuellen Forschungsfragen im Bereich der vernetzten Systeme auseinanderzusetzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Mathematische Physik (2016) JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-Seite 89 / 268 tensatz Master (120 ECTS) Mathematische Physik - 2016

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Komplexe Geometrie					10-M=VKGE-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Moduldauer Niveau weitere Voraussetz			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Das Modul baut auf den Inhalten von 10-M=ADGM auf und vertieft und erweitert sie: Wirtinger Kalkül, komplexe Strukturen und komplexe Mannigfaltigkeiten, Metriken auf komplexen Mannigfaltigkeiten (z.B. konforme, hermitesche, Kähler), Differentialoperatoren auf komplexen Manigfaltigkeiten, Klassifikation komplexer Mannigfaltigkeiten.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Inhalte der Module "Einführung in die Funktionentheorie", sowie "Funktionentheorie" oder "Geometrische Funktionentheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt und beherrscht fortgeschrittene Methoden und Begriffe der komplexen Differentialgeometrie. Er/Sie kennt die zentralen Konzepte in diesem Bereich und kann die grundlegenden Beweismethoden selbstständig anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Partielle Differentialgleichungen der Mathematischen Physik				sik	10-M=VPDP-161-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau weitere Voraussetz			ungen		
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Elliptische, parabolische und hyperbolische Gleichungen; Laplace Gleichung, Wärmeleitungsgleichung und Wellengleichung als Standardbeispiele; Anfangswert- und Randwertprobleme; gut und schlecht gestellte Probleme; Lösungsmethoden; Erweiterungen und Verallgemeinerungen; Hilbertraummethoden; Sobolevräume und Fouriertransformationen.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Gewöhnliche Differentialgleichungen" und "Einführung in Partielle Differentialgleichungen", sowie Grundkenntnisse der Funktionalanalysis.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Lösungsmethoden und Ergebnisse der Theorie partieller Differentialgleichungen, sowie Standardbeispiele aus der Mathematischen Physik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Phy-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Pseudo-Riemannsche und Riemannsche Geometrie					10-M=VPRG-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Moduldauer Niveau weitere Voraussetz			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Das Modul baut auf den Inhalten von 10-M=ADGM auf und vertieft und erweitert sie: Riemannsche und Pseudo-Riemannsche Mannigfaltigkeiten, Levi-Civita Zusammenhang und Krümmung, Geodäten und Exponentialabbildung, Jacobi-Felder, Vergleichssätze der Riemannschen Geometrie, Untermannigfaltigkeiten, Integration und d'Alembert-Operator/Laplace-Operator, kausale Struktur von Lorentz-Mannigfaltigkeiten, Einstein-Gleichungen und Anwendungen in allgemeiner Relativitätstheorie.

Empfohlene Vorkenntnisse:

Es werden weiterführende Kenntnisse der Differentialgeometrie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Differentialgeometrie" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte der Module "Einführung in die Topologie", "Geometrische Mechanik" und Lietheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat fortgeschrittene Kenntnisse in Differentialgeometrie auf Riemannschen und Pseudo-Riemannschen Mannigfaltigkeiten. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Physik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Funktionalanalysis					10-M=AFAN-161-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewei	rtungsart	zuvor bestandene N	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Inhalte

Banach- und Hilbert-Räume, beschränkte Operatoren, Prinzipien der Funktionalanalysis, ausgewählte aktuelle Themen der Funktionalanalysis und Anwendungen in anderen Bereichen der Mathematik.

Empfohlene Vorkenntnisse:

Vertrautheit mit den Inhalten des Moduls "Vertiefung Analysis" wird dringend empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt grundlegende Konzepte und Methoden eines aktuellen Gebiets der Funktionalanalysis und ist in der Lage, diese auf komplexe Fragestellungen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Angewandte Differentialgeometrie					10-M=VADG-161-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene N	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau weitere Vorausse		weitere Voraussetz	ungen		
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Das Modul baut auf den Inhalten von 10-M=ADGM auf und behandelt ausgewählte Anwendungen differentialgeometrischer Konzepte, beispielsweise an der Schnittstelle zwischen Kontrolltheorie und Mechanik (subriemannsche Geometrie), in der glatten Optimierung auf Mannigfaltigkeiten oder Anwendungen in der Physik.

Empfohlene Vorkenntnisse:

Es werden weiterführende Kenntnisse der Differentialgeometrie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Differentialgeometrie" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte der Module "Angewandte Differentialgeometrie", "Geometrische Mechanik", "Pseudo-Riemannsche und Riemannsche Geometrie" und "Lietheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat fortgeschrittene Kenntnisse in ausgewählten Anwendungen differentialgeometrischer Konzepte. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und mit Fragestellungen in der Physik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Giovan	ıni Proc	li Lecture Selected Topi	cs (Master)		10-M=VGPSin-152-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau wei		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Einführung in ein Spezialgebiet der Mathematik durch einen internationalen Experten oder eine internationale Expertin.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Konzepte und Methoden eines aktuellen Forschungsgebiets der Mathematik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematics International (2015)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematics International (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Mathematics International (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Mathematics International (2025)

Modulbezeichnung					Kurzbezeichnung	
Giovanni Prodi Lecture Advanced Topics (Master)					10-M=VGPAin-152-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Moduldauer Niveau weite		weitere Voraussetz	ungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalto					

Inhalte

Einführung in ein Spezialgebiet der Mathematik durch einen internationalen Experten oder eine internationale Expertin.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Konzepte und Methoden eines aktuellen Forschungsgebiets der Mathematik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematics International (2015)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematics International (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Mathematics International (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Mathematics International (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Giovan	ıni Proc	li Lecture Modern Topic	s (Master)		10-M=VGPMin-152-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau weite			ungen		
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Einführung in ein Spezialgebiet der Mathematik durch einen internationalen Experten oder eine internationale Expertin.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Konzepte und Methoden eines aktuellen Forschungsgebiets der Mathematik. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematics International (2015)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematics International (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Mathematics International (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Mathematics International (2025)

Modulbezeichnung					Kurzbezeichnung	
Seminar Algebra					10-M=SALG-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau weitere Vora			weitere Voraussetz	ungen		
1 Semester weiterführend						
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich der Algebra

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Semina	Seminar Dynamische Systeme und Regelungstheorie				10-M=SDSC-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich Dynamische Systeme und Regelung

Empfohlene Vorkenntnisse:

Vorausgesetzt werden Kenntnisse der Inhalte des Moduls "Mathematische Kontrolltheorie" bzw. "Regelungstheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Modulbezeichnung					Kurzbezeichnung	
Semina	ar Funk	tionentheorie			10-M=SCOA-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich der Funktionentheorie

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse der Inhalte der Module "Einführung in die Funktionentheorie" und "Funktionentheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Semin	ar Ange	ewandte Differentialgeo	metrie		10-M=SADG-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich der Angewandten Differentialgeometrie.

Empfohlene Vorkenntnisse:

Es werden weiterführende Kenntnisse der Differentialgeometrie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Differentialgeometrie" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte der Module "Angewandte Differentialgeometrie", "Geometrische Mechanik", "Pseudo-Riemannsche und Riemannsche Geometrie" und "Lietheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Semina	ar Geor	netrie und Topologie			10-M=SGTO-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus den Bereichen Geometrie und Topologie.

Empfohlene Vorkenntnisse:

Empfohlen werden grundlegende Kenntnisse der Inhalte der Module "Einführung in die Differentialgeometrie" und "Einführung in die Topologie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Giovanni Prodi Seminar (Master)					10-M=SGPCin-152-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				

Inhalte

Ein aktuelles Thema aus dem Forschungsbereich des jeweiligen Inhabers bzw. der jeweiligen Inhaberin der Giovanni-Prodi-Professur.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.) Prüfungssprache: Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematics International (2015)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematics International (2021)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Mathematics International (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

Master (1 Hauptfach) Mathematics International (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Interdisziplinäres Seminar					10-M=SIDC-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
In halfa	lubalta.				

Inhalte

Ein aktuelles Thema aus dem Bereich der Mathematik mit interdisziplinärem Bezug.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung				Kurzbezeichnung	
Seminar Mathematik in den Naturwissenschaften					10-M=SMSC-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester weiterführend -					
Inhalte					

Ein aktuelles Thema aus dem Bereich Mathematik in den Naturwissenschaften.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Gewöhnliche Differentialgleichungen" und "Einführung in Partielle Differentialgleichungen", sowie Grundkenntnisse der Funktionalanalysis.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modull	bezeich	nnung	Kurzbezeichnung			
Semina	Seminar Numerische Mathematik und Angewandte Analysis				10-M=SNMA-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich der Numerischen Mathematik oder Angewandten Analysis.

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis und/oder der numerischen Mathematik vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Seminar Optimierung					10-M=SOPT-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
					·

Inhalte

Ein aktuelles Thema aus dem Bereich der Optimierung

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Seminar Statistik					10-M=SSTA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte					

Ein aktuelles Thema aus dem Bereich der Statistik

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2". Je nach inhaltlicher Ausrichtung können auch weitere Vorkenntnisse hilfreich sein, Absprache mit der Dozentin oder dem Dozenten wird empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 127 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung	
Seminar Nichtlineare Analysis					10-M=SNLA-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich Nichtlineare Analysis.

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, sich in ein aktuelles Forschungsthema einzuarbeiten. Dies beinhaltet die Erarbeitung und Aufteilung eines vorgegebenen Stoffgebiets und der dazu vorhandenen Literatur, die Vorbereitung eines eigenen Vortrags, sowie die Fähigkeit, sich aktiv in eine wissenschaftliche Diskussion einzubringen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung	
Learning by Teaching 1					10-M=ELT1-161-m01	
Modulverantwortung anbietende					tung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathem	atik	
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule		
5	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzi	ıngen		
1 Seme	ester	weiterführend				
Inhalte	e		,			
		er Übungs- oder Tutoriun er entsprechenden Doze		rstudium unter Anle	itung des entsprechenden Do-	
Qualifi	ikations	sziele / Kompetenzen				
		erende erwirbt erste Erfal didaktische Methoden d			ılmathematik. Er/Sie kennt axis um.	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
T (o)						
Erfolgs	süberpr	"üfung (Art, Umfang, Sprache sc	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
		er Tätigkeit als Tutor oder rrichtseinheiten)	Tutorin durch die be	treuenden Dozenter	n/-innen bzw. Übungsleiter/-in-	
Platzv	ergabe					
weiter	e Angal	ben				
Arbeitsaufwand						
150 h	150 h					
Lehrtu	rnus					
k. A.						
D 1001						

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Bezug zur LPO I

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Unterbereich Physik

(8 ECTS-Punkte)

Modulgruppe Allgemeine Theoretische Physik

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Quantenmechanik II	11-QM2-161-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

_	, , ,			
	ECTS Bewertungsart		rtungsart	zuvor bestandene Module
	8 numerische Notenvergabe		rische Notenvergabe	
	Moduldauer		Niveau	weitere Voraussetzungen
	1 Semester		grundständig	

Inhalte

Da diese Vorlesung den Kurs "Quantenmechanik I" des Bachelor Programms fortsetzt, hängt der genaue Inhalt von den dort bereits behandelten Themen ab. Eine mögliche Aufteilung der Themen könnte sein: für QM I:

- 1 Historische Einführung
- 2 Einteilchenzustände in einem Zentralpotential
- 3 Prinzipien der Quantenmechanik
- 4 Spin und Drehimpuls
- 5 Näherungen für Energieeigenwerte
- 6 Näherungen für zeitabhängige Probleme

für QM II:

- 7 Zweite Quantisierung
- 8 Potentialstreuung
- 9 Allgemeine Streutheorie
- 10 Der kanonische Formalismus
- 11 Geladene Teilchen in elektromagnetischen Feldern
- 12 Die Quantentheorie der Strahlung
- 13 Quantenverschränkung

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben vertiefte Kenntnisse der fortgeschrittenen Quantenmechanik. Diese sind für die meisten im Master-Programm angebotenen Theoriekurse in Astrophysik, Teilchenphysik oder in der Physik der kondensierten Materie von großer Bedeutung. Der Kurs wird allen Studierenden mit Nachdruck empfohlen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 134 / 268
	toposts Master (100 ECTC) Mathematicals Dhysile 2016	

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Physik und Astrophysik

Modulbezeichnung	Kurzbezeichnung	
Theoretische Quantenoptik		11-TQO-221-m01
Modulverantwortung	anbietende Einrich	tung
Geschäftsführende Leitung des Instituts für Theoretische	Fakultät für Physik	und Astronomie

, -		· · · · · · · · · · · · · · · · · · ·	
ECTS Bewertungsart		rtungsart	zuvor bestandene Module
8	8 numerische Notenvergabe		
Module	dauer	Niveau	weitere Voraussetzungen
1 Seme	ester	weiterführend	

Inhalte

- 1. Semi-klassische Atom-Feld-Wechselwirkung
- 2. Wechselwirkung von Atomen mit quantisierten Lichtfeldern und das "Dressed-Atom" Modell
- 3. Master-Gleichung und Theorie der offenen Systeme
- 4. Kohärenz-und Interferenzeffekte
- 5. Kohärente Licht-Propagation in resonanten atomaren Medien
- 6. Photonen-Statistik und -Korrelationen
- 7. Quantenoptik der Vielteilchen-Systeme

Qualifikationsziele / Kompetenzen

Die Studierenden machen sich mit der Wechselwirkung von Licht mit Atomen auf der mikroskopischen Ebene vertraut. Sie erlernen den sicheren Umgang mit dem Dichte-Matrix-Formalismus für Quantensysteme und die nötigen mathematischen Konzepte dafür. Ein Schwerpunkt der Vorlesung sind die Quanteneigenschaften des Lichts, Photonenstatistik und Korrelationen, sowie deren experimentelle Signatur. Ein anderer Schwerpunkt bildet die Theorie der offenen Systeme. Die Studierenden lernen die Master-Gleichung mit Lindblad--Superoperatoren kennen. Des Weiteren machen sie sich mit der Modellierung von Kohärenz- und Interferenz-Effekte in der Propagation von Licht durch atomare Medien vertraut. Ein weiteres Ziel ist das Verständnis der kollektiven Effekte in Vielteilchen-Systeme: Superradianz, Subradianz und Energie--Verschiebungen, und deren Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung		Kurzbezeichnung
Relativitätstheorie		11-RTT-161-m01
Modulverantwortung	anhietende Finrich	tung

Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik

Auf Dietende Einrichtung

Fakultät für Physik und Astronomie

,	, , , , , , , , , , , , , , , , , , , ,					
ECTS Bewertungsart		rtungsart	zuvor bestandene Module			
6	numerische Notenvergabe					
Modulo	dauer	Niveau	weitere Voraussetzungen			
1 Semester		weiterführend				

Inhalte

- 1. Mathematische Grundlagen
- 2. Differentialformen
- 3. Kurze Zusammenfassung der speziellen Relativitätstheorie
- 4. Elemente der Differentialgeometrie
- 5. Elektrodynamik als Beispiel einer relativistischen Eichtheorie
- 6. Feldgleichungen der Allgemeinen Relativitätstheorie
- 7. Sterngleichgewichtsmodelle
- 8. Einführung in die Kosmologie

Qualifikationsziele / Kompetenzen

Die Studierenden werden mit den grundlegenden physikalischen und mathematischen Konzepten der allgemeinen Relativitätstheorie vertraut gemacht. Ein Schwerpunkt ist dabei eine moderne Formulierung mit Hilfe von Differentialformen. Außerdem wird die formale Ähnlichkeit zwischen der Elektrodynamik als Eichtheorie und der Allgemeinen Relativitätstheorie betont. Die Studierenden lernen, die Theorie auf einfache Sterngleichgewichtsmodelle anzuwenden und kommen mit grundlegenden Elementen der Kosmologie in Kontakt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 138 / 26
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Vieltei	lchenp	hysik (Feldtheorie)			11-QVTP-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
	Geschäftsführende Leitung des Instituts für The Physik und Astrophysik			Fakultät für Physik und Astronomie	
ECTS	ECTS Bewertungsart zuvor bestandene			Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetz	ussetzungen		
1 Semester weiterführend					

Inhalte

Das Thema der Vorlesung wird die Quantenphysik von Vielteilchensystemen sein, die hier mit den störungstheoretischen Methoden der Greenschen Funktionen eingeführt wird. Ein mögilcher Syllabus wäre:

- 1. Greensche Einteilchenfunktion
- 2. Zweite Quantisierung
- 3. Störungstheorie mit Greenschen Funktionen bei Temperatur T=o
- 4. Störungstheorie für endliche Temperaturen
- 5. Die Landausche Theorie der Fermi-Flüssigkeiten
- 6. Supraleitung
- 7. Eindimensionale Systeme und Bosonisierung

Qualifikationsziele / Kompetenzen

Die Studierenden erlernen die störungstechnischen Methoden der (nicht-relativstischen) Quantenfeldtheorie. Diese Kenntnisse ermöglichen es Ihnen, Eigenschaften von Fermi-Flüssigkeiten (sowie bosonische Systeme) über das Einteilchenbild hinaus zu untersuchen und Phänomene wie Supraleitung oder den Kondo-Effekt zu verstehen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 140 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modul	Modulbezeichnung Kurzbezeichnung				
Renorr	nierung	gsgruppenmethoden in d	er Feldtheorie		11-RMFT-161-m01
Modulverantwortung anbietende Einrichtung					tung
Geschäftsführende Leitung des Instituts für Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
8	nume	rische Notenvergabe	otenvergabe		
Moduldauer Niveau			weitere Voraussetz	ungen	
1 Semester weiterführend					
Inhalte	Inhalte				

In Ergänzung zu der Vorlesung "Renormierungsgruppe und Kritische Phänomene" (11-CRP) konzentriert sich dieser Kurs auf die diagrammatische Formulierung von Renormierungsgruppen-Flussgleichungen und deren Verknüpfung mit der diagrammatischen Störungstheorie. Für wechselwirkenden Fermie-Systeme beinhaltet dies im Besonderen die funktionale Renormierungsgruppe (FRG). Eine Themenauswahl könnte sich wie folgt darstellen:

- 1. Dle Wilsonsche Renormierungsgruppe (RG)
- 2. Pfadintegrale für wechselwirkende Fermisysteme
- 3. Bethe-Salpeter-Gleichung
- 4. Flussgleichungen für den 1-Teilchen und den 2-Teilchen-Vertex (FRG)
- 5. Vergleich mit alternativen Resummierungsschemata (wie zum Beispiel die "random phase approximation")
- 6. RG Flussgleichungen für Spinsysteme.

Qualifikationsziele / Kompetenzen

Der Kurs macht die Teilnehmenden mit der diagrammbasierten Beschreibung von Vielteilchensystemen vertraut. Dies bildet die Grundlage und den theoretischen Rahmen dafür, Phänomene wie Supraleitung, Ladungs/Spin-Dichtewellen sowie nematische Instabilitäten zu untersuchen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 142 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	ĺ

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung		Kurzbezeichnung
Physik komplexer Systeme		11-PKS-161-m01
	Ĭ	·

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

, , ,				
ECTS	Bewertungsart		zuvor bestandene Module	
6	numerische Notenvergabe			
Modulo	lauer	Niveau	weitere Voraussetzungen	
1 Semester		weiterführend		
· · · · · · · · · · · · · · · · · · ·				

Inhalte

- 1. Kurze Zusammenführung der Theorie kritischer Phänomene im Gleichgewicht
- 2. Einführung in die Physik der Nichtgleichgewichtssysteme
- 3. Entropieproduktion und Fluktuationstheoreme
- 4. Phasenübergänge fernab vom Gleichgewicht und das Konzept der Universalität
- 6. Spingläser
- 7. Einführung in die Theorie neuronaler Netzwerke

Qualifikationsziele / Kompetenzen

Ziel dieser Vorlesung ist es, die Studierenden mit einer großen Vielfalt von Konzepten und Methoden vertraut zu machen, mit denen es möglich ist, kooperative Phänomene in komplexen Vielteilchensystemen zu verstehen. Der Schwerpunkt liegt dabei unter anderem in Verständnis von Entropie und Entropieproduktion, dem Konzept der Universalität und der zentralen Bedeutung von Symmetrien. Mit der Vorlesung sollen die Studierenden auf eine Forschungstätigkeit in verschiedenen Bereichen der Physik komplexer Systeme vorbereitet werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung		Kurzbezeichnung
Quanteninformation und Quantencomputer		11-QIC-161-m01
Modulverantwortung	anhietende Finrich	tung

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

ECTS	Bewe	rtungsart	zuvor bestandene Module
6	numerische Notenvergabe		11-QM2 oder 11-TFK
Modulo	lauer	Niveau	weitere Voraussetzungen
1 Seme	ster	weiterführend	

Inhalte

- 1. Kurze Zusammenfassung der klassischen Informationstheorie
- 2. Quantentheorie aus der Perspektive der Informationstheorie gesehen
- 3. Zusammengesetzte Systeme und die Schmidt-Zerlegung
- 4. Verschränkungsmaße
- 5. Quantenoperationen, POVMs und die Theoreme von Kraus und Stinespring
- 6. Quantengatter und Quantencomputer
- 7. Elemente der Dekohärenztheorie

Qualifikationsziele / Kompetenzen

Die Studierenden überwinden in dieser Vorlesung die Lehrbuchinterpretation von Quantenzuständen als Hilbertraumvektoren und ersetzen diese durch ein umfassendes Verständnis von Dichtematrizen. Sie erlernen den sicheren Umgang mit Tensorprodukten und multipartiten Quantensystemen. Ein Schwerpunkt der Vorlesung sind die grundlegenden mathematischen Konzepte der Quanteninformationstheorie und ein Verständnis der Grenzen des Quantencomputing, die durch Dekohärenz entstehen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 146 / 268
	tongatz Mastar (400 ECTS) Mathematics he Dhysik, 2046	

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modull	bezeich	nnung			Kurzbezeichnung
Schwarze Löcher			11-SLQ-232-m01		
Modul	verantv	vortung		anbietende Einrich	tung
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik		Fakultät für Physik und Astronomie			
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		ungen			
1 Semester weiterführend					
Inhalte	<u> </u>				

TEIL 1 - Klassische Lösungen

- 1. Vakuumlösungen der Einstein'schen Gleichung Schwarzschild-Lösung, Birkhoff-Theorem, Eddington-Finkelstein-Koordinaten, Kruskal-Erweiterung und ewige schwarze Löcher, Penrose-Diagramm, konforme Kompaktifizierung und Carter-Penrose-Diagramm
- 2. Gravitationskollaps die Oppenheimer-Snyder-Lösung
- 3. Geladene und rotierende Schwarze Löcher Cauchy-Horizonte, Ergosphäre
- 4. ADM-Formalismus Energie und Drehimpuls
- 5. Thermodynamik Schwarzer Löcher

TEIL 2 - Astrophysikalische Beobachtung Schwarzer Löcher

- 1. Messung von Spin und Masse
- 2. Elektromagnetismus Schwarzer Löcher
- 3. Gravitationswellen und ihre Messung

TEIL 3 – Quanteneigenschaften Schwarzer Löcher

- 1. Einführung in die QFT auf gekrümmter Raumzeit: Rindler-Raumzeit, Unruh-Effekt
- 2. Herleitung der Hawking-Strahlung
- 3. Hawkings ursprüngliche Formulierung des Informationsparadoxons
- 4. Die "Holographie der Information" Informationsparadoxon in AdS/CFT, die Page-Kurve und Inseln
- 5. Firewall, Fuzzball, Komplementarität mögliche Lösungen des Informationsparadoxons
- 6. Wurmlöcher und das Faktorisierungsproblem.

Qualifikationsziele / Kompetenzen

Dieser Kurs hat eine Brückenfunktion zwischen den Grundlagen der Allgemeinen Relativitätstheorie (Veranstaltung GR I) und den aktiven Forschungsrichtungen auf den Gebieten der Astronomie, Astrophysik, Allgemeinen Relativitätstheorie, der Stringtheorie und der AdS-CFT-Korrespondenz.

Es wird erwartet, dass die Studierenden nach dem Besuch dieses Kurses die Anwendungen der Allgemeinen Relativitätstheorie in Verbindung mit den Forschungsrichtungen in diesen Bereichen beherrschen. Dies biete ihnen insbesondere die Möglichkeit, eine Karriere als Forscher*in in den oben genannten Richtungen anzustreben und ihnen dabei helfen, durch Master-/Doktorarbeiten reibungslos in diesen Prozess einzusteigen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 148 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	ĺ

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung	
Astrophysik	11-APM-242-m01	
	11.	

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

,			
ECTS	Bewertungsart		zuvor bestandene Module
6	numerische Notenvergabe		
Modulo	lauer	Niveau	weitere Voraussetzungen
1 Seme	ster	weiterführend	

Inhalte

Geschichte der Astronomie, Koordinaten und Zeitmessung, das Sonnensystem, Exoplaneten, Astronomische Größenskalen, Teleskope und Detektoren, Sternaufbau und Sternatmosphären, Entwicklung und Endstadien von Sternen, Interstellares Medium, Molekülwolken, Aufbau der Milchstraße, Lokales Universum, Expandierende Raumzeit, Galaxien, Aktive Galaxienkerne, großskalige Strukturen, Kosmologie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende hat ein vertieftes Verständnis des modernen Weltbilds der Astrophysik erreicht. Er/Sie ist vertraut mit den Methoden und Geräten, mit denen astrophysikalische Beobachtungen gemacht und ausgewertet werden. Er/Sie ist in der Lage, Ergebnisse astrophysikalischer Beobachtungen verschiedener Objektklassen vor dem Hintergrund theoretischer astrophysikalischer Modelle zu interpretieren und in den aktuellen Stand der Forschung einzuordnen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Modull	bezeich	nnung			Kurzbezeichnung
Atmosphärenphysik			11-ATP-242-m01		
Modul	Modulverantwortung		anbietende Einrichtung		
Geschäftsführende Leitung des Instituts für Theore Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vo		weitere Voraussetz	ungen		
1 Semester weiterführend					

Inhalte

Entstehung von Atmosphären. Planetenatmosphären im Sonnensystem: Chemische Zusammensetzung und Thermodynamik. Strahlungstransport und Strahlungsbilanz. Strömungsmechanik. Treibhauseffekt. Klimamodelle: Gleichgewicht und Runaway. Physik der Wolken. Elektrische und magnetische Felder. Sonnenwind und interplanetares Medium. Meteorite, Asteroide, Planetenringe. Kosmische Strahlung. Atmosphären von Exoplaneten

Qualifikationsziele / Kompetenzen

Die Studierenden haben Kenntnisse über die Physik von Planetenatmosphären, insbesondere der Erdatmosphäre und des erdnahen Weltraumes. Sie sind in der Lage, die erworbenen Kenntnisse bei der Planung von Weltraummissionen und bei der Erforschung von Exoplaneten einzusetzen. Sie können die physikalischen Mechanismen des terrestrischen Klimas modellieren und die Effekte der globalen Erwärmung interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022) Exchange Austauschprogramm Physik (2023)

Modulbezeichnung	Kurzbezeichnung	
Offene Quantensysteme	11-0QS-242-m01	

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

, -					
ECTS	Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzungen		
1 Seme	ster	weiterführend			

Inhalte

Dichtematrixtheorie, Stochastische Prozesse im Hilbertraum, Nicht-Markovsche Prozesse, Relativistische Quantenprozesse

Qualifikationsziele / Kompetenzen

Entwicklung eines theoretischen Verständnisses von Quantensystemen, die an ihre Umgebung koppeln

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Modulgruppe Theoretische Festkörperphysik

(ECTS-Punkte)

Moduli	bezeich	nnung			Kurzbezeichnung
Theoretische Festkörperphysik			11-TFK-161-m01		
Modul	verantv	vortung		anbietende Einrich	tung
Geschäftsführende Leitung des Instituts für Theore Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vo		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalta					

Inhalte

Der Inhalt dieser zweisemestrigen Vorlesung wird zu einem gewissen Grad von den Dozierenden abhängen und kann Themen enthalten, die alternative auch als "Quantum Vielteilchenphysik" angeboten werden können. Ein möglicher Syllabus wäre:

- 1. Bandstrukturen (Sommerfeld Theorie der Metalle, Bloch-Therem, k.p Ansatz und effektive Hamiltonoperatoren für topologische Isolatoren (TI), Bulk-Oberfläche Korrespondenz, allgemeine Eigenschaften von TIs)
- 2- Elektron-Elektron Wechselwirkungen in Festkörpern (Methode der Pfadintegral für schwach wechselwirkende Fermi-Systeme, Molekularfeldtheorie, Random-Phase-Approximation (RPA), Dichefunktionaltheorie)
- 3. Anwendungen der Molekularfeldtheorie und der RPA auf magnetische Systeme
- 4. Die BCS-Theorie der Supraleitung

Qualifikationsziele / Kompetenzen

Während der zweisemestrigen Vorlesung erwerben die Studierenden ein Grundverständnis vieler Themen der Festkörperphysik, die in den klassischen Lehrbüchern behandelt werden, und vertiefen somit ihr Verständnis der zugrunde liegenden Konzepte und der zur Beschreibung zur Verfügung stehenden Methoden. Die Vorlesung baut auf die Kurse "Experimentelle Physik der kondensierten Materie" und "Quantum Mechanik" auf.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 156 / 26
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung
Theoretische Festkörperphysik 2	11-TFK2-161-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

	, , ,				
ECTS	Bewertungsart		zuvor bestandene Module		
8	numerische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Seme	ster	weiterführend			

Inhalte

Eine mögliche Fortsetzung des Syllabus des ersten Semesters (11-TFK) wäre:

- 5. weitere Themen der Supraleitung (Bogoliubov-de Gennes-Gleichungen, effektive Feldtheorie, Higgs-Mechanismus im elektromagnetischen Feld)
- 6. unkonventionelle Supraleiter (z.B. CUO-Supraleiter)
- 7. Die Methode der Greenschen Funktionen und Feynman-Diagramme
- 8. Der Kondo-Effekt (Andersons "poor mans scaling", Renormierungsgruppe)

Qualifikationsziele / Kompetenzen

Während der zweisemestrigen Vorlesung erwerben die Studierenden ein Grundverständnis vieler Themen der Festkörperphysik, die in den klassischen Lehrbüchern behandelt werden, und vertiefen somit ihr Verständnis der zugrunde liegenden Konzepte und der zur Beschreibung zur Verfügung stehenden Methoden. Die Vorlesung baut auf die Kurse "Experimentelle Physik der kondensierten Materie" und "Quantum Mechanik" auf.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

__

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 158 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung	
Feldtheorie in der Festkörperphysik					11-FTFK-161-m01
Modulverantwortung anbietende				anbietende Einrich	tung
Geschäftsführende Leitung des Instituts Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vora		weitere Voraussetz	ungen		
1 Semester weiterführend					

Inhalte

Das Thema des Kurses wird in der Regel die quantenmechanische Beschreibung von Vielteilchensystemen mit der Methode der Funktionalintegrale sein. Ein möglicher Syllabus ist:

- 1. Zweite Quantisierung und kohärente Zustände
- 2. Der Formalismus der Funktionalintegrale bei endlichen Temperaturen T
- 3. Störungstheorie bei T = o
- 4. Ordnungsparameter und gebrochene Symmetrie
- 5. Greensche Funktionen
- 6. Die Landau-Theorie der Fermi-Flüssigkeiten
- 7. weitere Entwicklungen

Qualifikationsziele / Kompetenzen

Die Studierenden werden die modernen Methoden der Pfad- und Funktionalintegrale auf Quantenvielteilchensysteme anwenden können. Dieser Zugang ergänzt den traditionellen Zugang mit Greenschen Funktionen und Feynman-Diagrammen

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 160 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung				Kurzbezeichnung	
Topologische Ordnung					11-TOPO-161-mo1
Modulverantwortung				anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vorausse		weitere Voraussetz	ungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Topologisch geordnete Phasen besitzen keine Ordnung im herkömmlichen Sinn (d.h., keine gebrochene Symmetrie und keinen lokalen Ordnungsparameter), sondern sind durch topologische Quantenzahlen charakterisiert. In der Vorlesung werden die allgemeinen Konzepte anhand konkreter Beispiele veranschaulicht. Mögliche Themen sind

- 1. fraktionelle Ladung und Statistik in Quantenhallflüssigkeiten
- 2. Spin-Ladungs-Trennung in Spinketten und chirale Spinnflüssigkeiten
- 3. Nicht-Abelsche Statistik von fraktionalen Anregungen
- 4. Majorana-Null-Moden in p-Wellen-Supraleiter
- 5. Topologische Entartungen auf Flächen mit Geschlecht g>1 (z.B. Torus-Geometrie)
- 6. Spinone und Visionen in Kitaev-Modellen

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben ein tiefes Verständnis für topologische Ordnung in Quantenkondensaten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 162 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung				Kurzbezeichnung	
Topologie in der Festkörperphysik					11-TFP-161-m01
Modulverantwortung				anbietende Einrich	tung
Geschäftsführende Leitung des Physikalischen Instituts Fakultät fü			Fakultät für Physik	für Physik und Astronomie	
ECTS	TS Bewertungsart zuvor bestandene I		zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzungen					
1 Semester weiterführend					

Inhalte

- 1. Geometrische Phasen in der Quantenmechanik
- 2. Mathematische Grundlagen der Topologie
- 3. Zeitumkehrsymmetrie
- 4. Hall Leitfähigkeit und Chernzahl
- 5. Volumen-Rand-Korrespondenz
- 6. Graphen (als topologischer Isolator)
- 7. Quanten Spin Hall Isolatoren
- 8. Z2 Invarianten
- 9. Topologische Supraleiter

Qualifikationsziele / Kompetenzen

Die Studenten/Studentinnen werden ein theoretisches Verständnis von topologischen Konzepten in der modernen Festkörperphysik erlangen. Diese Konzepte dienen als Basis vieler Forschungsaktivitäten an der Fakultät für Physik und Astronomie der Universität Würzburg.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 164 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung Kurzbezeichnung				Kurzbezeichnung	
Theorie der Supraleitung					11-TSL-161-m01
Modulverantwortung a				anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vorausse			weitere Voraussetz	zungen	
1 Semester weiterführend					
Inhalto					

Überblick über die Phänomenologie von konventioneller unkonventioneller Supraleitung. Empirische Matthias-Regel für Supraleitung. Rekapitulation der BCS-Theorie und kritische Analyse der Anwendbarkeit auf verschiedene Klassen von Supraleitern.

Erweiterung der phänomenologischen Ginzburg-Landau Theorie zu einer quantenfeldtheoretischen Beschreibung mithilfe von Feynman-Diagrammen und Funktionalintegralen. Ward-Identitäten und Antwortfunktionen Goldstone-Moden, Phasenfluktuationen und Kopplung zum elektromagnetischen Feld. Interpretation des Meissner-Effekts mithilfe des Higgs-Mechanismus. Wechselwirkung von Magnetismus und konventioneller/unkonventioneller Supraleitung. Diskussion von Problemen an der Front der aktuellen Forschung und Ausblick zu Supraleitung bei Raumtemperatur.

Qualifikationsziele / Kompetenzen

Schwerpunkt dieser Vorlesung ist die Vermittlung des Verständnisses von unkonventioneller Supraleitung und der Wechselwirkung mit Magnetismus im aktuellen Forschungskontext. Im ersten Teil der Vorlesung wird auf die konventionelle Molekularfeldtheorie der Supraleitung (BCS-Theorie) eingegangen, welche bei Anwendung auf neue Materialklassen wie Hochtemperatursupraleiter versagt. Anschließend werden die quantenfeldtheoretischen Werkzeuge eingeführt, die notwendig sind, um die BCS-Theorie zu erweitern. Insbesondere werden dabei Meissner-Effekt und der Higgs-Mechanismus behandelt. Im letzten Teil der Vorlesung werden aktuelle Fortschritte in der Beschreibung und Analyse von unkonventionellen Supraleitern und ihre faszinierende Verbindung mit konkurrierenden magnetischen Phasen diskutiert.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 166 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung				Kurzbezeichnung	
Computational Materials Science (DFT)					11-CMS-161-mo1
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Instituts fü Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzungen		ungen			
1 Seme	ster	weiterführend			

Inhalte

- 1. Dichtefunktionaltheorie (DFT)
- 2. Wannierfunktionen und lokalisierte Basissysteme
- 3. Numerische Auswertung topologischer Invarianzen
- 4. Hartree-Fock und statische Molekularfeldtheorie
- 5. Vielteilchen-Rechenmethoden für Festkörpertheorien
- 6. Das Anderson-Impurity-Modell (AIM) und Kondo-Physik
- 7. Dynamische Molekularfeldtheorie (DMFT)
- 8. DFT + DMFT Methoden zur realistischen Behandlung von Festkörpern
- 9. Stark korrelierte Elektronensysteme

Qualifikationsziele / Kompetenzen

Neben der theoretischen Behandlung dieser Themen finden "hands-on" Übungen im CIP-Pool statt. Die Teilnehmer werden in die Benutzung von DFT-Softwarepaketen wie z.B. VASP oder Wienzk eingeführt, sowie der Konstruktion maximal lokalisierter Wannierfunktionen durch Projektion der DFT-Ergebnisse auf Atomorbitale mit der Software wanniergo. Die Studenten lernen außerdem, wie man Vielteilchen-Lösungen des AIMs erstellt und betrachten dessen Grenzfälle, wie z.B. ds Kondo-Regime. Impurity-Solver wie exakte Diagonalisierung oder Continous-time Quantum Monte Carlo werden benutzt, um die Selbstkonsistenzgleichungen der dynamischen Molekularfeldtheorie (DMFT) zu lösen. Diese Schritte sind notwendig, um den Höhepunkt der Vorlesung zu erreichen: eine DFT-DFMT Rechnung eines stark korrelierten Übergangsmetalloxids, wie SrVO3.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modull	Modulbezeichnung Kurzbezeichnung				Kurzbezeichnung
Konfor	me Fel	dtheorie			11-KFT-161-m01
Modulverantwortung				anbietende Einrichtung	
	Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalta					

Inhalte

Konformale Feldtheorie (KFT) wurde in den 1980er Jahren entwickelt, und fand unmittelbare Anwendungen in der Stringtheorie und der statistischen Mechanik. Insbesondere konnten die kritischen Exponenten und die Korrelationsfunktionen vieler zweidimensionaler Modelle (Ising, trikritischer Ising, 3-Zustand Potts, etc.) exakt berechnet werden. Die physikalische Idee ist, dass sich das Prinzip der Skalenvarianz von einer globalen auf eine lokale Invarianz erweitern lässt, die dann aus Konsistenzgründen der konformen Invarianz entspricht. Diese bringt eine reiche und faszinierende mathematische Struktur für zweidimensionale Systeme (entweder zwei Raum- oder eine Zeit- und eine Raumdimension) mit sich.

In den folgenden Jahren wurde die KFT in vielen Bereichen der Festkörperphysik relevant. Dazu zählen die Abelsche und die nicht-Abelsche Bosonisierung, Quantenhallzustände (die durch konforme Korrelatoren und deren Randzustände durch 1+1 dimensionale KFTen beschrieben werden), der Zwei-Kanal-Kondo-Effekt, fraktionelle topologische Isolatoren, und fehlertolerante, topologische Quantencomputer (Ising und Fibonacci Anyonen verdanken beispielsweise ihre Namen den "fusions rules" der asoziierten, konformen Feldern).

Ein potentieller Lehrplan für das erste Semester des Kurses ist:

- o. Einleitung
- 1. Konforme Theorien in D Dimensionen
- 2. Konforme Theorien in D=2
- 3. Die zentrale Ladung und die Virasoro Algebra
- 4. Kac-Determinante und Unitäritiät

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben praktische und konzeptionelle Vertrautheit mit den Methoden der konformen Feldtheorie. Da der Kurs nur "Quantenmechanik II" (11-QM2) voraussetzt, erwerben sie auch ein Grundverständnis der kritischen Phänomene, der Quantenfeldtheorie und der Funktionalintegrale. Der Kurs richtet sich vor allem an Studierende der theoretischen Physik, und möchten deren allgemeines Niveau durch Erlernen eines anspruchsvollen Teilgebietes mit Anwendungen in vielen Teilgebieten der Physik der kondensierten Materie anheben.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung
Konforme Feldtheorie 2	11-KFT2-161-m01
	 ·

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

, , , , , , , , , , , , , , , , , , , ,				
5 Bewertungsart		zuvor bestandene Module		
numerische Notenvergabe				
lauer	Niveau	weitere Voraussetzungen		
ster	weiterführend			
	nume lauer	numerische Notenvergabe lauer Niveau		

Inhalte

- 5. Minimale Modelle
- 6. Freie Bosonen und Fermionen
- 7. Freie Fermionen auf dem Torus
- 8. Freie Bosonen auf dem Torus

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben praktische und konzeptionelle Vertrautheit mit den Methoden der konformen Feldtheorie. Da der Kurs nur "Quantenmechanik II" (11-QM2) voraussetzt, erwerben sie auch ein Grundverständnis der kritischen Phänomene, der Quantenfeldtheorie und der Funktionalintegrale. Der Kurs richtet sich vor allem an Studierende der theoretischen Physik, und möchten deren allgemeines Niveau durch Erlernen eines anspruchsvollen Teilgebietes mit Anwendungen in vielen Teilgebieten der Physik der kondensierten Materie anheben.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

__

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 172 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Magne	tismus	und Spinflüssigkeiten			11-MSF-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
	Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	erische Notenvergabe			
Moduldauer Niveau weitere Vora			weitere Voraussetz	tzungen	
1 Semester weiterführend					
Inhalte	Inhalte				

Der Themenkreis des Kurses variiert von Jahr zu Jahr von magnetischer Ordnung und Spinwellentheorie zu Spinketten. Spinleitern und Spinflüssigkeiten mit topologischer Ordnung. Abhängig vom Dozenten kann der Schwerpunkt auf magnetisch geordneten Systemen oder auf Spinflüssigkeiten liegen.

Mögliche Themen sind:

- 1. Grundlagen des Magnetismus ferromagnetischer und antiferromagenetischer Austausch, Super-Exchange, Hubbard und t-j-Modelle, Heisenberg-Modell)
- 2. Magnetische Ordnung (Holstein-Primakoff-Bosonen und Spinwellentheorie)
- 3. Valence-Bond-Solids in Spinketten (Majumdar-Gosh und AKLT Modelle, Spinon-Confinement und die Haldanesche Energielücke)
- 4. Kritische Spin-1/2-Ketten (Spinoanregungen im Haldane-Shastry-Modell, Holonanregungen im Kuramoto-Yokohama-Modell)
- 5. gekoppelte Spinketten und Spinleitern
- 6. Chirale Spinflüssigkeiten (Abelsch und eventuell auch nichtabelsch)
- 7. Kitaev's Toric-Code-Modell (Spinon- und Vison-Anregungen)
- 8. Kitaev's Honigwabengitter-Modell (nichtabelsche Statistik)

Qualifikationsziele / Kompetenzen

Die Studierenden entwickeln ein Verständnis für die elektronischen Ursachen des Magnetismus, für die Beschreibung von Spektren magnetisch geordneten Phasen durch Spinwellentheorie, für Spin-Ladungs-Trennung in Spinketten und für Spinflüssigkeiten als Beispiele von Systemen mit topologischer Ordnung in zwei Dimensio-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 174 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung					Kurzbezeichnung
Topolo	gische	Quantenphysik			11-TQP-161-m01
Modul	verantv	vortung		anbietende Einrichtung	
I	Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vor			weitere Voraussetz	Voraussetzungen	
1 Semester weiterführend					
Inhalte	Inhalte				

iiiiaile

Der Kurs richtet sich sowohl an Studierende, die eine experimentelle Master-Arbeit anstreben, als auch an Studierende, die eine theoretische Master-Arbeit anstreben. Das Ziel des Kurses ist es, topologische Supraleiter und topologische Isolatoren mit nur "Quantenmechanik II" (11-QM23) als Voraussetzung einzuführen.

Ein möglicher Syllabus wäre:

- 1. Einführung in die Supraleitung (einschließlich der BCS-Theorie)
- 2. Majorana-Fermionen und topologische Supraleiter in 1D (Kitaev Drähte)
- 3. Topologische Supraleiter in zwei Dimensionen (2D) (einschließlich Majorana-Randzustände und nicht-Abelscher Statistik)
- 4. Der ganzzahlige Quantenhalleffekt und Chern Isolatoren (Haldan-Modell, Jackiw-Rebbi Solitonen und Randzustände)
- 5. Die Berry-Phase und Chern-Invarianten
- 6. Zeitumkehrsymmetrie und topologische Isolatoren in 2D
- 7. Topologische Isolatoren in 3D

Qualifikationsziele / Kompetenzen

Die Studierenden erlernen die topologischen Konzepte in der Quantenphysik, die für die gegenwärtige Forschung in verschiedenen Gruppen der Festkörperphysik an der Universität Würzburg relevant sind.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

._

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung		Kurzbezeichnung
Renormierungsgruppe und Kritische Phänomene		11-CRP-161-m01
Madulianantinantinan	ambiatanda Fimulah	· •

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

ECTS	TS Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzungen		
1 Semester		weiterführend			

Inhalte

- 1. Phasenübergänge
- 2. Molekularfeldtheorie
- 3.Das Konzept der Renomierungsgruppe (RG)
- 4. Phasendiagramme und Fixpunkte
- 5. Störungstheoretische RG
- 6. Niedrigdimensionale Systeme
- 7. Konforme Symmetrie

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben ein Verständnis für das Prinzip der Skaleninvarianz und der Renomierungsgruppe (RG) in der statistischen Physik. Das Konzept des RG Flusses vertieft das Verständnis der effektiven Theorie in der statistischen sowie der Quantenfeldtheorie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

._

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 178 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung	
Bosoni	sierun	g und Wechselwirkunger		11-BWW-161-m01		
Modul	Modulverantwortung				anbietende Einrichtung	
1	Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
6	nume	rische Notenvergabe				
Moduldauer Niveau we		weitere Voraussetzungen				
1 Seme	1 Semester weiterführend					
Inhalta						

Inhalte

- 1. Instabilitäten von Fermi-Systemen in einer Dimension(1D)
- 2. Abelsche Bosonisierung und Luttinger-Flüssigkeiten (spinlose Fermionen, Korrelationsfunktionen, Modelle mit Spin, Renormierungsgruppe und das sine-Gordon-Modell)

Eine Auswahl der folgenden Themen wird in verschiedenen Jahren angeboten:

- 3. Wechselwirkende Fermionen auf dem Gitter (Hubbard-Modell, t/J-Modell, Transporteigenschaften
- 4. Bethe-Ansatz
- 5. Spin 1/2 Ketten
- 6. Ungeordnete Systeme
- 7. Nicht-Abelsche Bosonisierung und das WZW-Modell (kac-Moody-Algebren, Sugawara-Konstruktion, Knizhnik-Zamolodchikov Gleichung, Anwendungen der WZW-Modell)

Qualifikationsziele / Kompetenzen

Die Studierenden werden mit den Besonderheiten eindimensionaler (1D) Elektronensysteme vertraut gemacht und sie erlernen die theoretischen Methoden, um experimentell relevante Phänomene wie Unordnungseffekte und Transporteigenschaften in 1D zu verstehen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Eichtheorien					11-EIT-161-m01
Modulverantwortung anbietende Einrichtung					tung
Geschäftsführende Leitung des Instituts Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	ster	weiterführend			

Inhalte

Der Schwerpunkt der Vorlesung werden im Regelfall Gittereichtheorien sein. Die Konzepte lassen sich besonders anschaulich an dem Beispiel von Gittereichtheorien in Spinsystemen lehren. Ein möglicher Syllabus ist:

- 1. Einführung in Gittereichtheorien für Spinsysteme
- 2. Phasenübergänge
- 3. Die Transfermatrix
- 4. Das zweidimensionale (2D) Ising-Modell
- 5. Die Gittereichtheorie des Ising-Modells
- 6. Abelsche Gittereichtheorien
- 7. Das planare Heisenberg (XY) Modell in 2D (Kosterlitz-Thouless Übergang)
- 8. Nicht-Abelsche Gittereichtheorien

Qualifikationsziele / Kompetenzen

Durch das Studium der Gittereichtheorien vertiefen die Studierenden ihr Verständnis von Eichtheorien in der klassischen und der Quantenphysik. Mögliche Anwendungen auf Spin-Systeme, soweit im Syllabus vorhanden, veranschaulichen das Zusammenspiel zwischen mikroskopischen Modellen und feldtheoretischen Beschreibungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Moduli	Modulbezeichnung Kurzbezeichnung					
Dualitäten zwischen Eich- und Gravitationstheorien					11-GGD-161-mo1	
Modul	Modulverantwortung anbietende Einrichtung					
Geschäftsführende Leitung des Instituts fü Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	zuvor bestandene Module				
8	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester weiterführend						
Inhalto	Inhalto					

- 1. Überblick Quantenfeldtheorie:
 - Quantisierung des freien Feldes
 - Wechselwirkungen
 - Eichtheorien
 - Konforme Symmetrie
 - Entwicklung für große N und t Hooft-Limes
 - Supersymmetrie
- 2. Überblick Allgemeine Relativitätstheorie
 - Mannigfaltigkeiten, Koordinaten-Kovarianz, Metrik
 - Riemannscher Krümmungstensor
 - Maximal symmetrische Raumzeiten
 - Schwarze Löcher
- 3. Überblick String-Theorie
 - Offene und geschlossene Strings
 - Strings in Hintergrundfeldern
 - Typ IIB String-Theorie
 - D-Branen
- 4. Die AdS/CFT-Korrespondenz
 - Formulierung der Korrespondenz
 - D3-Bran-Metrik nahe des Horizonts
 - Feld-Operator-Korrespondenz
 - Tests der Korrespondenz: Korrelationsfunktionen
 - Tests der Korrespondenz: Konforme Anomalie
 - Holographisches Prinzip
- 5. Erweiterungen auf nicht-konforme Feldtheorien
 - Holographische Renormierungsgruppe
 - Holographisches C-Theorem
- 6. Anwendungen I: Thermo- und Hydrodynamik
 - Quantenfeldtheorie bei endlicher Temperatur
 - Schwarze Löcher
 - Holographische lineare Antwort
 - Transportkoeffizienten: Scherviskosität und Leitfähigkeiten
- 7. Anwendungen II: Physik der kondensierten Materie
 - Ladungsdichte und Reissner-Nordström schwarze Löcher
 - Quantenkritisches Verhalten
 - Holographische Fermionen
 - Holographische Supraleiter
 - Verschränkungsentropie
- 8. Anwendungen III: Elementarteilchenphysik
 - Gravitations dual von confinement
 - Gravitionsdual der chiralen Symmetriebrechung
 - Quark-Gluon-Plasma

Qualifikationsziele / Kompetenzen

Die Studierenden werden ein eingehendes Verständnis des Fachgebiets erwerben und einfache Tests und wesentliche Anwendungen der Dualität beherrschen.

In Abhängigkeit der Vorkenntnisse und Interessen der Studierenden wird eine Auswahl aus den oben genannten Themen getroffen.

Kenntnisse der Quantenmechanik und der klassischen Elektrodynamik sind Voraussetzung. Kenntnisse in Quantenfeldtheorie und der allgemeinen Relativitätstheorie sind hilfreich, aber nicht Voraussetzung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Einführung in die fraktionelle Quantisierung					11-EFQ-161-m01
Modul	Modulverantwortung anbietende Einrichtung				
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
I m la a l t a	lubalta.				

Inhalte

In der Vorlesung werden die Mechanismen der fraktionellen Quantisierung anhand von Beispielen erklärt, wie sie in der folgenden Liste enthalten sind:

- 1. Zustände innerhalb der Energielücke in Polyacetylen
- 2. Abelsche Quantenhallzustände (Laughlin Zustände, fraktionelle Ladung und Quantenstatistik, die Hierachie der Quantenhallzustände, effektive Beschreibung durch die Chern-Simons-Theorie)
- 3. Nicht-Abelsche Quanten-Hall-Zustände (Pfaffian-Zustände, Majorana-Fermionen, nicht-Abelsche Statistik, Read-Rezayi-Zustände) Spinketten (Haldane-Shastry Modell, Spinon-Anregungen, Holon-Anregungen im Kuramoto-Yokoyama Modell, Yangian Symmetrie)
- 5. Chirale Spinnflüssigkeiten (Abelsch und nicht-Abelsch)
- 6. Kitaev-Modelle (Toric-Code-Modell, Honigwabengitter-Modell)

Qualifikationsziele / Kompetenzen

Durch das Studium spezifischer Beispiele von Quantenkondensaten (Quantenflüssigkeiten) mit fraktionell quantisierten Anregungen werden die Studierenden mit sogenannten "entstehenden Phänomenen" ("emergent phenomena") in Vielteilchensystemen und somit mit Anderson's philosophischem Prinzip "More is different" vertraut gemacht.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 187 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulb	oezeich	inung	Kurzbezeichnung			
Topologische Effekte in elektronischen Systemen					11-TEF-161-m01	
Moduly	Modulverantwortung anbietende Einrichtung					
Geschäftsführende Leitung des Instituts fü Physik und Astrophysik			s für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module			
6	numerische Notenvergabe					
Moduldauer Niveau		weitere Voraussetzungen				
1 Seme	ster	weiterführend				

Inhalte

Die intensive, gegenwärtige Forschung auf dem Gebiet der topologischen Phasen (einschließlich topologischer Isolatoren, Supraleitern und Spinflüssigkeiten) erfordert eine kontinuierliche Anpassung des Master-Programms. Die Vorlesung zielt darauf ab, das Verständnis der Studierenden im Hinblick auf diese Forschung zu vertiefen. Die spezifische Auswahl der Themen wird mit den Dozierenden von Jahr zu Jahr variieren.

Qualifikationsziele / Kompetenzen

Der Kurs wird es den Studierenden ermöglichen, sich Fachwissen über Themen von unmittelbarer Relevanz für die Forschung an der Universität Würzburg anzueignen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016) Master (1 Hauptfach) Computational Mathematics (2019) Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung					Kurzbezeichnung
Feldtheoretische Aspekte der Festkörperphysik					11-FTAS-161-m01
Modulverantwortung anbietende Einrichtung					tung
Geschäftsführende Leitung des Instituts für Theoretis Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalta	Inhalto				

Inhalte

Der Inhalt der Vorlesung wird von Jahr zu Jahr variieren, und könnte folgende Themen enthalten: die effektive Beschreibung von Supraleitern nichtlineare Sigma Modelle für Spinketten, Chern-Simons und Axion-Theorien als effektive Feldtheorien für Quantenhallflüssigkeiten und topologische Isolatoren: das SU (2) Niveau k Wess-Zumino-Witten-Modell als Beispiel einer konformen Feldtheorie mit einer Symmetriegruppe (oder Algebra) jenseits der Virasoro-Algebra.

Qualifikationsziele / Kompetenzen

Unabhängig von Wahl der spezifisch gelesenen Themen wird die Vorlesung das Verständnis der Feldtheorie vertiefen und die Bedeutung der Feldtheorie in nahezu allen Bereichen der Festkörperphysik illustrieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 191 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016) Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016) Master (1 Hauptfach) Computational Mathematics (2019) Master (1 Hauptfach) Mathematik (2019)

Modulgruppe Astrophysik

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Kosmologie	11-AKM-161-m01

,	, , , , , , , , , , , , , , , , , , , ,					
ECTS	Bewei	rtungsart	zuvor bestandene Module			
6	numerische Notenvergabe					
Modulo	lauer	Niveau	weitere Voraussetzungen			
1 Seme	ster	weiterführend				

Inhalte

Expandierende Raumzeit, Friedmann Kosmologie, Grundlagen der Allgemeinen Relativitätstheorie, Frühes Universum, Inflation, Dunkelmaterie, Primordiale Nukleosynthese, Mikrowellenhintergrund, Strukturbildung, Galaxien und Galaxienhaufen, Intergalaktisches Medium, Kosmologische Parameter

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegende Kenntnisse der Kosmologie. Er/Sie beherrscht die theoretischen Methoden der Kosmologie und kann den Zusammenhang mit Beobachtungen herstellen. Er/Sie hat Einblick in aktuelle Forschungsthemen und ist befähigt, wissenschaftliche Fragestellungen zu bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung
Theoretische Astrophysik	11-AST-161-m01
	*

,	,						
ECTS	Bewertungsart		zuvor bestandene Module				
6	numerische Notenvergabe						
Modulo	dauer	Niveau	weitere Voraussetzungen				
1 Seme	ster	weiterführend					

Inhalte

Themen aus der Theoretischen Astrophysik wie beispielsweise Weiße Zwerge, Neutronenstern und Schwarze Löcher, Supernovae, Pulsare, Akkretion und Jets, Stosswellen, Strahlungstransport, Gravitationslinseneffekt

Qualifikationsziele / Kompetenzen

Kenntnisse grundlegender Prozesse und Methoden der Theoretischen Astrophysik. Ausbildung von Fähigkeiten zur Formulierung theoretischer Modelle

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Fakultät für Physik und Astronomie

Modulbezeichnung	Kurzbezeichnung	
Einführung in die Plasmaphysik		11-EPP-161-m01
Modulverantwortung	anbietende Einrich	tung

Physik	und As	trophysik			
ECTS	Bewei	tungsart	zuvor bestandene Module		
6	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzu	ngen	
1 Semester		weiterführend			

Inhalte

Plasma-Astrophysik: Bewegung geladener Teilchen in elektrischen und magnetischen Feldern; Magnetho-Hydrodynamik, Transportgleichungen für energetische Teilchen; Eigenschaften magnetischer Turbulenz, Ausbreitung solarer Teilchen im Sonnenwind, Teilchenbeschleunigung durch Stoßwellen und durch Wechselwirkung mit Plasmaturbulenz, Teilchenbeschleunigung und Transport in der Galaxis und anderen astrophysikalischen Objekten, kosmische Strahlung.

Qualifikationsziele / Kompetenzen

Kenntnisse in grundlegenden Prozessen der Plasma-Astrophysik

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Geschäftsführende Leitung des Instituts für Theoretische

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung
Hochenergie-Astrophysik	11-APL-161-m01
	 •

,	,				
ECTS	ECTS Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	ster	weiterführend			

Inhalte

Strahlungsprozesse, Wechselwirkung von Licht mit Materie, Teilchenbeschleunigungsprozesse, Paarbildung, nukleare Prozesse, Pionenerzeugung, astrophysikalische Stoßwellen, kinetische Gleichungen

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben Kenntnisse in grundlegenden Prozessen der Hochenergie-Astrophysik wie der Teilchenbeschleunigung und der nicht-thermischen Strahlungsprozesse in astrophysikalischen Objekten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung	
Computational Astrophysics					11-NMA-161-m01
Modulverantwortung ar				anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	ECTS Bewertungsart zuvor bestandene			Module	
6	nume	erische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Inhalte

Verschiedene Methoden, die in astrophysikalischen Simulationen Anwendung finden mit besonderem Augenmerk auf die Anwendung dieser Methoden. N-Body-Algorithmen (Tree- und Polynomcodes). Particle-Mesh-Methoden (Particle-in-Cell Methoden). Vlasow-Methoden (u.a. Lattice-Boltzmann). Hyperbolische Erhaltungssätze (Fluiddynamik, Finite-Differenzen, Rieman-Solver, ENO-Verfahren). Methoden des High-Performance Computing. Message-Passing Interface (MPI). GPGPU-Programmierung (OPENCL).

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, typische Probleme und Gleichungen, wie sie in der Astrophysik aber auch anderen Teilbereichen der Physik vorkommen, mit Hilfe numerischer Simulationen zu lösen. Er/Sie ist insbesondere befähigt, eine adäquate Lösungsstrategie zu wählen und ihre Ergebnisse zu validieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 202 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulgruppe Theoretische Elementarteilchenphysik

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Relativistische Quantenfeldtheorie	11-RQFT-161-m01

ECTS Bewertungsart		zuvor bestandene Module			
numerische Notenvergabe					
Moduldauer Niveau		weitere Voraussetzungen			
ster	weiterführend				
	nume lauer	numerische Notenvergabe lauer Niveau			

Inhalte

- 1. Symmetrien
- 2. Relativistische Einteilchenzustände
- 3. Langrangeformalismus für Felder
- 4. Feldquantisierung
- 5. Streutheorie und S-Matrix
- 6. Eichprinzip und Wechselwirkung
- 7. Störungstheorie
- 8. Feynman-Regeln
- 9. Quantenelektrodynamische Prozesse in Born-Näherung
- 10. Strahlungskorrekturen (optional)
- 11. Renormierung (optional)

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Prinzipien und mathematischen Grundlagen von relativistischen Quantenfeldtheorien und beherrschen die Anwendung von Störungstheorie und Feymanregeln. Sie sind in der Lage, Grundprozesse der Quantenelektrodynamik und der Elementarteilchenphysik in führenden Ordnungen quantitativ zu behandeln. Zudem verstehen sie das Konzept von Strahlungskorrekturen und der Renormierung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 205 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Modulbezeichnung	Kurzbezeichnung
Quantenfeldtheorie II	11-QFT2-161-m01

,		1 /	
ECTS	ECTS Bewertungsart		zuvor bestandene Module
8	numerische Notenvergabe		
Modulo	Moduldauer Niveau		weitere Voraussetzungen
1 Seme	ster	weiterführend	

Inhalte

- 1. Erzeugende Funktionale
- 2. Pfadintegral
- 3. Renormierung
- 4. Renormierungsgruppe
- 5. Eichtheorien
- 6. Spontane Symmetrieberechnung
- 7. Effektive Feldtheorie (optional)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse der Methoden und Konzepte der Quantenfeldtheorie. Sie beherrschen insbesondere die Prinzipien der Renormierung und der Eichtheorien. Sie sind in der Lage, Probleme der Quantenfeldtheorie zu formulieren und mit Hilfe der erlernten Rechenmethoden zu lösen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 207 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung		Kurzbezeichnung
Theoretische Elementarteilchenphysik		11-TEP-161-m01
Modulyarantwartung	anhiatanda Einricht	tuna

, , ,				
Bewertungsart		zuvor bestandene Module		
numerische Notenvergabe				
lauer	Niveau	weitere Voraussetzungen		
ster	weiterführend			
	nume lauer	numerische Notenvergabe lauer Niveau		

Inhalte

- 1. Fundamentale Teilchen und Kräfte
- 2. Symmetrien und Gruppen
- 3. Quarkmodell der Hadronen
- 4. Quark-Parton Modell und tiefinelastische Streuung
- 5. Grundlagen der Quantenfeldtheorie
- 6. Eichtheorien
- 7. Spontane Symmetriebrechung
- 8. Elektroschwaches Standardmodell
- 9. Quantenchromodynamik
- 10. Erweiterungen des Standardmodells

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die mathematischen Methoden zur Beschreibung von Phänomenen der Elementarteilchenphysik. Sie verstehen den Aufbau des Standardmodells basierend auf Symmetrieprinzipien einerseits und den beobachteten Teilchen und Wechselwirkungen andererseits. Sie beherrschen Rechenmethoden zur Behandlung von einfachen Problemstellungen und Prozessen der Elementarteilchenphysik. Sie kennen die Tests und die Grenzen des Standardmodells und die Grundzüge erweiterter Theorien.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung	Kurzbezeichnung	
Ausgewählte Kapitel der Theoretischen Elementarteilchen	11-ATTP-161-m01	
Modulyorantwortung	anhiotondo Einrich	tuna

, , , , , , , , , , , , , , , , , , , ,				
CTS Bewertungsart		zuvor bestandene Module		
numerische Notenvergabe				
lauer	Niveau	weitere Voraussetzungen		
ster	weiterführend			
	nume lauer	numerische Notenvergabe dauer Niveau		

Inhalte

Eine Auswahl aus folgenden Themengebieten wird in verschiedenen Jahren behandelt:

- 1. Fortgeschrittene Techniken zur Präzisionsberechnung von Streuamplituden
- 2. Phänomenologie an Teilchenbeschleunigern
- 3. Higgsphysik
- 4. Physik des Top-Quarks

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen vertiefte Techniken und Methoden, die zur Berechnung und zur Beschreibung teilchenphysikalischer Phänomene benötigt werden. Die Studierenden sind mit aktuellen Entwicklungen in der Teilchenphänomenologie vertraut.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung		
Modelle jenseits des Standardmodells der Elementarteilchenphy				enphysik	11-BSM-161-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Instituts für Theoretisc Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	gsart zuvor bestandene M		Module	
6	nume	rische Notenvergabe	che Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester weiterführend						

Inhalte

- 1. Grundlagen des Standardmodells der Elementarteilchenphysik
- 2. Tests des Standardmodells in Niederenergieexperimenten und an Hochenergiebeschleunigern
- 3. Neutrinophysik
- 4. Higgsphysik

Eine Auswahl der folgenden Themen wird in verschiedenen Jahren behandelt:

- LHC Phänomenologie
- Teilchenkosmologie
- erweiterte Eichtheorien
- Modelle mit erweiterten Higgssektoren
- Supersymmetrie
- Modelle mit zusätzlichen Raumzeitdimensionen

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Tests und die Grenzen des Standardmodells der Teilchenphysik, der Higgsphysik und der Neutrinophysik. Sie sind in der Lage Erweiterungen des Standardmodells zu formulieren. Weiter verstehen sie, wie man diese Erweiterungen in Niederenergieexperimenten, an Hochenergiebeschleunigern und in der Kosmologie testen kann.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

..

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulgruppe Aktuelle Themen

(ECTS-Punkte)

Modulbezeichnung				Kurzbezeichnung	
Aktuelle Themen der Mathematischen Physik					11-EXMP5-161-m01
Modulverantwortung				anbietende Einrichtung	
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie	
ECTS	Bewe	ertungsart zuvor bestandene		Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester weiterführend		weiterführend	Genehmigung des Prüfungsausschusses erforderlich.		
Inhalte					

Aktuelle Themen der Mathematischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Mathematischen Physik im Masterstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Mathematischen Physik und das Verständnis der Methoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)

Modull	bezeich	nnung	Kurzbezeichnung		
Aktuell	le Then	nen der Mathematische	n Physik		11-EXMP6-161-m01
Modulverantwortung				anbietende Einrichtung	
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Module	Moduldauer Niveau we		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend Genehmigung des			Prüfungsausschusse	s erforderlich.
Inhalte	Inhalte				

Inhalte

Aktuelle Themen der Mathematischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Mathematischen Physik im Masterstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Mathematischen Physik und das Verständnis der Methoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2020)

Moduli	bezeich	nnung		Kurzbezeichnung			
Aktuel	Aktuelle Themen der Mathematischen Physik				11-EXMP7-161-m01		
Modul	verantv	vortung		anbietende Einrich	tung		
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie			
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule			
7	nume	rische Notenvergabe					
Module	dauer	Niveau	weitere Voraussetz	ungen			
1 Seme	ester	weiterführend	Genehmigung des Prüfungsausschusses erforderlich.				
Inhalte	Inhalte						
Aktuelle Themen der Mathematischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.							

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Mathematischen Physik im Masterstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Mathematischen Physik und das Verständnis der Methoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

210 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2020)

Modulbezeichnung					Kurzbezeichnung	
Aktuell	e Then	nen der Mathematische	n Physik		11-EXMP8-161-m01	
Modulverantwortung				anbietende Einrichtung		
Prüfung	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
8	nume	rische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetz	ungen		
1 Semester weiterführend Genehmigung de		Genehmigung des F	Prüfungsausschusse	s erforderlich.		
Inhalte	Inhalte					

Aktuelle Themen der Mathematischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Mathematischen Physik im Masterstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Mathematischen Physik und das Verständnis der Methoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2020)

Unterbereich Arbeitsgemeinschaften

(10 ECTS-Punkte)

Modul	bezeicl	nnung		Kurzbezeichnung	
Arbeits	Arbeitsgemeinschaft Algebra				10-M=GALG-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Ausgewählte und aktuelle Themen der Algebra (z.B. Ringtheorie, Kommutative Algebra, Differentialalgebra, lokale Körper, Computeralgebra, Algebren, Schiefkörper, quadratische Formen)

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Algebra. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Arbeitsgemeinschaft Diskrete Mathematik					10-M=GDIM-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					

Inhalte

Ausgewählte und aktuelle Themen aus dem Bereich Diskrete Mathematik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Diskreten Mathematik. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Moduli	bezeich	nnung	Kurzbezeichnung			
Arbeits	sgemei	nschaft Dynamische Sy	steme und Regelungs	theorie	10-M=GDSC-161-m01	
Modulverantwortung				anbietende Einrich	anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ausgewählte und aktuelle Themen aus dem Bereich Dynamischen Systeme und Regelung.

Empfohlene Vorkenntnisse:

Vorausgesetzt werden Kenntnisse der Inhalte des Moduls "Mathematische Kontrolltheorie" bzw. "Regelungstheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich Dynamische Systeme und Regelung. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Modull	bezeich	nnung	Kurzbezeichnung		
Arbeits	gemei	nschaft Funktionentheo	rie		10-M=GCOA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalte				

Empfohlene Vorkenntnisse: Je nach aktueller Ausrichtung der Lehrveranstaltung werden Kenntnisse aus unterschiedlichen Bereichen der Analysis vorausgesetzt. Eine Absprache mit der Dozentin oder dem Dozenten zu Veranstaltungsbeginn wird empfohlen.

Ausgewählte und aktuelle Themen der Funktionentheorie (z.B. aus den Bereichen Approximationstheorie, Poten-

tialtheorie, komplexe Dynamik, geometrische komplexe Analysis, Wertverteilungstheorie).

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Funktionentheorie. Er/Sie beherrscht fortgeschrittene Techniken der Funktionentheorie und kann sie auf schwierige Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Arbeits	sgemei	nschaft Geometrie und [.]	Гороlogie		10-M=GGMT-161-m01	
Modulverantwortung				anbietende Einrich	anbietende Einrichtung	
Studie	ndekan	ı/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend						

Inhalte

Ausgewählte und aktuelle Themen aus den Bereichen Geometrie und Topologie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Geometrie und Topologie. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung		Kurzbezeichnung	
Arbeits	sgemei	nschaft Mathematik im	Kontext		10-M=GMCX-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester weiterführend					

Inhalte

Reflexion über Mathematik in einem kulturellen Kontext, etwa durch Behandlung eines Teils der Mathematikgeschichte, welcher durch eine zeitliche Epoche, eine geographische Region oder durch ein Teilgebiet der Mathematik gegeben ist. Weitere Möglichkeiten ergeben sich durch die Beziehungen zwischen Mathematik und Literatur, Sprache, Musik, Kunst oder Medien.

Qualifikationsziele / Kompetenzen

Der/Die Studierende erkennt die kulturelle Dimension der Mathematik und ihre Beziehungen zu anderen Teilgebieten der Kultur.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modull	bezeich	nnung	Kurzbezeichnung			
Arbeits	Arbeitsgemeinschaft Mathematik in den Naturwissenschaften				10-M=GMSC-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ein aktuelles Thema aus dem Bereich Mathematik in den Naturwissenschaften.

Empfohlene Vorkenntnisse:

Empfohlen werden Grundkenntnisse aus den Modulen "Gewöhnliche Differentialgleichungen" und "Einführung in Partielle Differentialgleichungen", sowie Grundkenntnisse der Funktionalanalysis.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Mathematik in den Naturwissenschaften. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2) + S (2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Arbeits	sgemei	nschaft Maß und Integr	al		10-M=GMAI-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Aspekte der Maß- und Integrationstheorie: Sigma-Algebren und Borel-Mengen, Inhalte und Maße, messbare Funktionen und das Lebesgue-Integral. Ausgewählte Anwendungen wie z.B. Produktmaße (mit dem Satz von Fubini und der Tranformationsformel), Lp-Räume und absolute Stetigkeit, Maße auf topologischen Räumen

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Maß- und Integrationstheorie. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nnung	Kurzbezeichnung			
Arbeits	sgemei	nschaft Numerische Ma	ndte Analysis	10-M=GNMA-161-m01		
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ausgewählte Themen aus dem Bereich der Numerischen Mathematik, Angewandten Analysis oder des wissenschaftlichen Rechnens

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis und/oder der numerischen Mathematik vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in ein aktuelles Thema der Numerischen Mathematik oder der Angewandten Analysis. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 237 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Arbeits	Arbeitsgemeinschaft Robotik, Optimierung und Kontrolltheorie				10-M=GROC-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzun		ungen			
1 Semester weiterführend					
Inhalte					

Ausgewählte und aktuelle Themen der Robotik, Optimierung und Kontrolltheorie.

Empfohlene Vorkenntnisse:

Vorausgesetzt werden Kenntnisse der Inhalte des Moduls "Mathematische Kontrolltheorie" bzw. "Regelungstheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Robotik, Optimierung und Kontrolltheorie. Er/Sie beherrscht fortgeschrittene Techniken in diesen Bereichen und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Arbeitsgemeinschaft Zeitreihenanalyse				10-M=GTSA-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetze		ungen			
1 Semester weiterführend					
Inhalte					

Ausgewählte und aktuelle Themen der Zeitreihenanalyse.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Zeitreihenanalyse. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 241 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung			Kurzbezeichnung		
Arbeitsgemeinschaft Statistik					10-M=GSTA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		ungen			
1 Seme	ester	weiterführend	end		
Inhalte					

Ausgewählte und aktuelle Themen der Statistik.

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Stochastik vorausgesetzt, wie sie etwa im Rahmen des Moduls "Stochastik 1" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte des Moduls "Stochastik 2". Je nach inhaltlicher Ausrichtung können auch weitere Vorkenntnisse hilfreich sein, Absprache mit der Dozentin oder dem Dozenten wird empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Statistik. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Master (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Arbeits	Arbeitsgemeinschaft Zahlentheorie				10-M=GNTH-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		weitere Voraussetz	ungen		
1 Seme	1 Semester weiterführend				
Inhalte					

Ausgewählte und aktuelle Themen der Zahlentheorie (z.B. Algebraische Zahlentheorie, Modulformen, Diophantische Analysis).

Empfohlene Vorkenntnisse:

Es werden grundlegende Kenntnisse der Algebra und der Zahlentheorie vorausgesetzt, wie sie etwa im Rahmen der Module "Einführung in die Algebra", "Einführung in die Zahlentheorie" und "Angewandte Algebra" erworben werden können.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen der Zahlentheorie. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modul	bezeich	nung	Kurzbezeichnung		
Arbeitsgemeinschaft Kontrolltheorie quantenmechanischer System				er Systeme	10-M=GCQS-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		ungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Ausgewählte und aktuelle Themen aus dem Bereich Kontrolltheorie quantenmechanischer Systeme.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich Kontrolltheorie quantenmechanischer Systeme. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

$\textbf{Erfolgs\"{u}berpr\"{u}fung} \ (Art, \ Umfang, \ Sprache \ sofern \ nicht \ Deutsch \ / \ Turnus \ sofern \ nicht \ semesterweis\underline{e} \ / \ Bonusf\"{a}higkeit \ sofern \ m\"{o}glich)$

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Modulbezeichnung				Kurzbezeichnung	
Arbeitsgemeinschaft Differentialgeometrie			metrie		10-M=GDGE-161-m01
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		ungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Ausgewählte und aktuelle Themen aus dem Bereich Differentialgeometrie.

Empfohlene Vorkenntnisse:

Es werden weiterführende Kenntnisse der Differentialgeometrie vorausgesetzt, wie sie etwa im Rahmen des Moduls "Differentialgeometrie" erworben werden können. Empfehlenswert sind auch Kenntnisse der Inhalte der Module "Angewandte Differentialgeometrie", "Geometrische Mechanik", "Pseudo-Riemannsche und Riemannsche Geometrie" und "Lietheorie".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich der Differentialgeometrie. Er/ Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

1-Fach-Master Mathematische Physik (2016)	JMU Würzburg • Erzeugungsdatum 19.04.2025 • PO-Da-	Seite 248 / 268
	tensatz Master (120 ECTS) Mathematische Physik - 2016	

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung				Kurzbezeichnung	
Arbeitsgemeinschaft Deformationsquantisierung				10-M=GDFQ-161-m01	
Modulverantwortung				anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Ausgewählte und aktuelle Themen aus dem Bereich Deformation Quantisierung.

Empfohlene Vorkenntnisse:

Empfehlenswert sind Kenntnisse der Inhalte der Module "Differentialgeometrie" und "Geometrische Mechanik".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich Deformation Quantisierung. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung					Kurzbezeichnung
Arbeits	gemei	nschaft Nichtlineare An	alysis		10-M=GNLA-161-m01
Modulverantwortung				anbietende Einrichtung	
Studier	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vorausse		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Ausgewählte und aktuelle Themen aus dem Bereich Nichtlineare Analysis.

Empfohlene Vorkenntnisse:

Je nach inhaltlicher Ausrichtung werden grundlegende und weiterführende Kenntnisse aus unterschiedlichen Gebieten der Analysis vorausgesetzt. Im Zweifelsfall wird eine Absprache mit der Dozentin oder dem Dozenten empfohlen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich der Nichtlinearen Analysis. Er/ Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Master (1 Hauptfach) Mathematical Data Science (2025)

Modull	bezeich	nnung	Kurzbezeichnung			
Arbeits	Arbeitsgemeinschaft Operatoralgebren				10-M=GOPA-161-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					
Inhalte	Inhalte					

Ausgewählte und aktuelle Themen aus dem Bereich Operatoralgebren.

Empfohlene Vorkenntnisse:

Empfohlen werden Kenntnisse der Inhalte der Module "Funktionalanalysis" und "Algebra und Dynamik von Quantensystemen".

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt Einblick in aktuelle Fragestellungen aus dem Bereich der Operatoralgebren. Er/Sie beherrscht fortgeschrittene Techniken in diesem Bereich und kann selbige auf komplexe Fragestellungen anwen-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag (60-120 Min.)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2025)

Modulbezeichnung Kurzbezeichnung					Kurzbezeichnung	
Arbeits	gemei	nschaft Moderne Differer	ntialgeometrie		11-AG-MDG-161-m01	
Moduly	verantv	vortung		anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Module		
10	nume	rische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzi	ungen		
1 Seme	ester	weiterführend				
Inhalte)					
	sterarb				algeometrie zur Vorbereitung ei- irundlagenthemen in einem Se-	
Qualifi	kations	sziele / Kompetenzen				
	k in akt	uelle Forschungsthemen			nen Differentialgeometrie und usammenfassend in einem Vor-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfun	gsspra	eo Min.) che: Deutsch und/oder E us: im Semester der LV ur				
Platzve	ergabe		 			
weitere	e Angal	pen				
Arbeits	saufwai	nd				
300 h						
Lehrtui	rnus					
k. A.	k. A.					
Bezug	Bezug zur LPO I					
						
Verwer	Verwendung des Moduls in Studienfächern					
Master	Master (1 Hauptfach) Mathematische Physik (2016) Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022)					

Modulbezeichnung					Kurzbezeichnung	
Arbeits	gemei	nschaft Symplektische u	nd Poisson-Geometri	ie	11-AG-SPG-161-m01	
Moduly	/erantw	vortung		anbietende Einrich	tung	
Prüfung	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewei	rtungsart	zuvor bestandene M	lodule		
10	nume	rische Notenvergabe	-			
Modulo	dauer	Niveau	weitere Voraussetzı	ıngen		
1 Seme	ster	weiterführend				
Inhalte	!					
bereitu einem S	ng eine Semina	er Masterarbeit auf diese arvortrag			der Poisson-Geometrie zur Vor- orderlichen Grundlagenthemen in	
Qualifil	kations	ziele / Kompetenzen				
metrie	und Eir				ktischen und der Poisson-Geo- enntnisse zusammenfassend in	
Lehrvei	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
	gssprad	o Min.) che: Deutsch und/oder Ei s: im Semester der LV ur				
Platzve	ergabe					
weitere	Angab	pen				
Arbeits	aufwai	nd				
300 h						
Lehrtur	rnus					
k. A.	k. A.					
Bezug	Bezug zur LPO I					
	-					
Verwen	Verwendung des Moduls in Studienfächern					
Master	Master (1 Hauptfach) Mathematische Physik (2016) Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022)					

Modult	Modulbezeichnung Kurzbezeichnung					
Arbeits	gemei	nschaft Operatoralgebre	n und Darstellungsth	ieorie	11-AG-OAD-161-m01	
Moduly	erantv	vortung		anbietende Einrich	tung	
Prüfung	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
10	nume	rische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ster	weiterführend				
Inhalte						
					r Vorbereitung einer Masterarbeit n in einem Seminarvortrag	
Qualifil	kations	sziele / Kompetenzen				
					oralgebren und Einblick in aktu- end in einem Vortrag zu vermit-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfung	gsspra	eo Min.) che: Deutsch und/oder Ei is: im Semester der LV ur				
Platzve	rgabe					
weitere	Angal	oen				
Arbeits	aufwai	nd				
300 h						
Lehrtur	nus					
k. A.	k. A.					
Bezug zur LPO I						
Verwendung des Moduls in Studienfächern						
Master (1 Hauptfach) Mathematische Physik (2016)						
	Master (1 Hauptfach) Mathematische Physik (2020)					
Master	Master (1 Hauptfach) Mathematische Physik (2022)					

Modulbezeichnung Kurzbezeichnung					Kurzbezeichnung	
Arbeits	Arbeitsgemeinschaft Hopf-Algebren 11-AG-HAL-161-m01					
Moduly	erantw	ortung		anbietende Einrich	tung	
Prüfung	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewei	rtungsart	zuvor bestandene M	lodule		
10	nume	rische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzı	ıngen		
1 Seme	ster	weiterführend				
Inhalte						
		aktuelle Fragestellungen t und Zusammenfassung			orbereitung einer Masterarbeit auf einem Seminarvortrag.	
Qualifil	kations	sziele / Kompetenzen				
					lgebren und Einblick in aktuelle n einem Vortrag zu vermitteln.	
Lehrvei	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
	gssprac	o Min.) che: Deutsch und/oder Er ss: im Semester der LV ur				
Platzve	rgabe					
weitere	Angal	pen				
Arbeitsaufwand						
300 h						
Lehrturnus						
k. A.						
Bezug	zur LPC) I				
_						

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016) Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022)

Modull	Modulbezeichnung Kurzbezeichnung					
Arbeits	gemei	nschaft Konforme Feldtho	eorie		11-AG-KFT-161-m01	
Modul	verantv	vortung		anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule		
10	nume	rische Notenvergabe	-			
Module	dauer	Niveau	weitere Voraussetzi	ıngen		
1 Seme	ester	weiterführend	-			
Inhalte)					
					ie zur Vorbereitung einer Master- themen in einem Seminarvortrag	
Qualifi	kations	sziele / Kompetenzen				
	e Forsc				men Feldtheorie und Einblick in assend in einem Vortrag zu ver-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder I	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfun	gssprad	o Min.) che: Deutsch und/oder Er is: im Semester der LV un				
Platzve	ergabe					
weiter	e Angal	pen				
Arbeits	saufwai	nd				
300 h						
Lehrtu	rnus					
k. A.	k. A.					
Bezug zur LPO I						
Verwendung des Moduls in Studienfächern						
	Master (1 Hauptfach) Mathematische Physik (2016)					
	Master (1 Hauptfach) Mathematische Physik (2020)					
Master	Master (1 Hauptfach) Mathematische Physik (2022)					

Modulbezeichnung					Kurzbezeichnung	
Arbeitsgemeinschaft Statistische Mechanik					11-AG-STM-161-m01	
Modul	verantv	vortung		anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule		
10	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzi	ıngen		
1 Seme	ester	weiterführend				
Inhalte	9					
					nik zur Vorbereitung einer Master- themen in einem Seminarvortrag	
Qualifi	ikations	sziele / Kompetenzen				
	le Forsc				schen Mechanik und Einblick in assend in einem Vortrag zu ver-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)			
S (4) Verans	staltung	ssprache: Deutsch oder l	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfun	gsspra	o Min.) che: Deutsch und/oder Ei is: im Semester der LV un				
Platzv	ergabe					
weiter	e Angal	oen				
Arbeits	saufwa	nd				
300 h						
Lehrturnus						
k. A						
Bezug zur LPO I						
<u></u>						
Verwendung des Moduls in Studienfächern						
Master (1 Hauptfach) Mathematische Physik (2016)						
Master	Master (1 Hauptfach) Mathematische Physik (2020)					

Master (1 Hauptfach) Mathematische Physik (2022)

Modulbezeichnung					Kurzbezeichnung
Arbeitsgemeinschaft Quantenfeldtheorie 11-AG-QFT-161-mo1					11-AG-QFT-161-m01
Modulverantwortung				anbietende Einrich	tung
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie
ECTS	Bewei	rtungsart	zuvor bestandene M	lodule	
10	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetzu	ıngen	
1 Seme	ester	weiterführend			
Inhalte	e				
					rur Vorbereitung einer Masterar- emen in einem Seminarvortrag
Qualifi	ikations	sziele / Kompetenzen			
					enfeldtheorie und Einblick in aksend in einem Vortrag zu vermit
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)		
S (4) Verans	staltung	ssprache: Deutsch oder I	Englisch		
Erfolgs	süberpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)
Prüfun		o Min.) che: Deutsch und/oder Er ss: im Semester der LV un			
Platzv	ergabe				
weiter	e Angal	pen			
Arbeits	saufwai	nd			
300 h					
Lehrtu	Lehrturnus				
k. A.					
Bezug zur LPO I					
Verwendung des Moduls in Studienfächern					
Master (1 Hauptfach) Mathematische Physik (2016)					
Maste	Master (1 Hauptfach) Mathematische Physik (2020)				

Master (1 Hauptfach) Mathematische Physik (2022)

Moduli	Modulbezeichnung Kurzbezeichnung					
Arbeits	Arbeitsgemeinschaft Riemannsche Geometrie 11-AG-RGE-161-mo1					
Moduly	verantv	vortung		anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ester	weiterführend				
Inhalte	;					
sterarb trag.	eit auf	diesem Gebiet und Zusa			netrie zur Vorbereitung einer Ma- genthemen in einem Seminarvor-	
Die Stu in aktu vermitt	ıdieren elle Foi teln.	rschungsthemen. Sie sin	d in der Lage, diese K		nnschen Geometrie und Einblick enfassend in einem Vortrag zu	
	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	taltung	ssprache: Deutsch oder	Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfun	gsspra	20 Min.) che: Deutsch und/oder E us: im Semester der LV ui				
Platzve	ergabe					
			-			
weitere	e Angal	ben				
Arbeits	aufwa	nd				
300 h						
Lehrtu	rnus					
k. A.						
Bezug zur LPO I						
-						
Verwendung des Moduls in Studienfächern						
Master	Master (1 Hauptfach) Mathematische Physik (2016) Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022)					

Modulbezeichnung					Kurzbezeichnung	
Arbeits	sgemei	nschaft Mathematische I	Physik		11-AG-MPH-161-m01	
Modul	verantv	vortung		anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule		
10	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ester	weiterführend				
Inhalte	e					
sterark trag	peit auf	diesem Gebiet und Zusa			rsik zur Vorbereitung einer Magenthemen in einem Seminarvor-	
		sziele / Kompetenzen	St. Kanadai S.	or Cabiat d	matical an Dhanil 1811 1811	
	le Forsc				matischen Physik und Einblick in assend in einem Vortrag zu ver-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
S (4) Verans	staltung	ssprache: Deutsch oder	Englisch			
Erfolgs	süberpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Prüfun	gsspra	o Min.) che: Deutsch und/oder E us: im Semester der LV ur				
Platzv	ergabe					
weiter	e Angal	pen				
Arbeits	saufwa	nd				
300 h						
Lehrtu	Lehrturnus					
k. A.	k. A.					
Bezug	Bezug zur LPO I					
Verwe	Verwendung des Moduls in Studienfächern					
Maste	Master (1 Hauptfach) Mathematische Physik (2016) Master (1 Hauptfach) Mathematische Physik (2020) Master (4 Hauptfach) Mathematische Physik (2022)					
Maste	Master (1 Hauptfach) Mathematische Physik (2022)					

Abschlussbereich

(50 ECTS-Punkte)

Moduli	Modulbezeichnung Kurzbezeichnung						
Fachlic	he Spe	zialisierung Mathematis	che Physik		11-FS-MP-161-m01		
Moduly	verantw	vortung		anbietende Einrich	tung		
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie		
ECTS	Bewei	rtungsart	zuvor bestandene M	Nodule			
10	besta	nden / nicht bestanden					
Module		Niveau	weitere Voraussetz	ungen			
1 Seme	ester	weiterführend					
Inhalte)		·				
vanz zı	ım ang				en Physik mit besonderer Rele- orderlichen Grundlagenthemen in		
Qualifi	kations	sziele / Kompetenzen					
derer R	elevan		na der Masterarbeit.	Er/Sie kennt den akt	athematischen Physik mit beson- wellen Stand der Forschung in n Vortrag zu vermitteln.		
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)				
S (2) Verans	taltung	ssprache: Deutsch oder l	Englisch				
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)		
		o Min.) che: Deutsch und/oder Er	nglisch				
Platzve	ergabe						
weitere	e Angab	pen	•				
Arbeits	aufwai	nd					
300 h	-		•				
Lehrtu	Lehrturnus						
k. A.	k. A.						
Bezug zur LPO I							
Verwendung des Moduls in Studienfächern							
Master	Master (1 Hauptfach) Mathematische Physik (2016)						
	Master (1 Hauptfach) Mathematische Physik (2020)						
Master	Master (1 Hauptfach) Mathematische Physik (2022)						

Modul	bezeich	inung			Kurzbezeichnung
Metho	denken	ntnis und Projektplanun	g Mathematische Ph	ysik	11-MP-MP-161-m01
Modul	verantv	vortung		anbietende Einrich	tung
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
10	besta	nden / nicht bestanden			
Module	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ester	weiterführend			
Inhalte	•				
planun	ig und A		lungen der Mathema		ing von Methoden der Projekt- e Erstellung eines wissenschaftli-
Qualifi	kations	sziele / Kompetenzen			
schen Master fügt üb	Physik arbeit z er die I	mit besonderer Relevanz zugrunde liegenden Proje Kompetenz, sein/ihr Proje	zum angestrebten Thektplan zu erstellen u ekt in einem Vortrag	nema der Masterarb nd die erforderliche	ellen Teilgebiet der Mathematieit. Er/Sie ist in der Lage, den der n Arbeiten zu planen. Er/Sie verdarzustellen.
	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)		
R (6) Verans	taltung	ssprache: Deutsch oder	Englisch		
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)
-		eo Min.) che: Deutsch und/oder Ei	nglisch		
Platzve	ergabe				
	_,				
weiter	e Angal	oen			
	_				
Arbeits	saufwai	nd			
300 h					
Lehrturnus					
k. A.					
Bezug zur LPO I					
Verwer	ndung d	les Moduls in Studienfäc	hern		
Master (1 Hauptfach) Mathematische Physik (2016)					
Mactor (4 Hauntfach) Mathematische Dhusik (2020)					

Master (1 Hauptfach) Mathematische Physik (2020) Master (1 Hauptfach) Mathematische Physik (2022)

Modulbezeichnung					Kurzbezeichnung
Master-Thesis Mathematische Physik				11-MA-MP-161-m01	
Modulverantwortung				anbietende Einrichtung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	dene Module	
30	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester		weiterführend	Die Zuteilung des Themas kann durch die Betreuerin oder den Betreuer vom Nachweis der erfolgreichen Teilnahme an bestimmten, für das jewe lige Thema einschlägigen, Modulen abhängig gemacht werden.		
Inhalte	e				
	_	d selbstständige Bearb erfahren und wissensch			chen Physik, insbesondere nach g der Abschlussarbeit.
Qualifi	ikations	sziele / Kompetenzen			

Die Studierenden sind in der Lage, weitestgehend selbstständig eine Aufgabe aus der Mathematischen Physik insbesondere nach bekannten Verfahren und wissenschaftlichen Gesichtspunkten zu bearbeiten und in einer schriftlichen Abschlussarbeit zusammenfassend zu diskutieren und darzustellen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

keine LV zugeordnet

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Master-Thesis (Gesamtumfang 750-900 Std.)

Prüfungsanmeldung und Themenvergabe in Absprache mit der betreuenden Dozentin oder dem betreuenden Dozenten.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Bearbeitungszeit: 6 Monate

Arbeitsaufwand

900 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2022)