

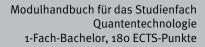
Modulhandbuch

für das Studienfach

Quantentechnologie

als 1-Fach-Bachelor mit dem Abschluss "Bachelor of Science" (Erwerb von 180 ECTS-Punkten)

Prüfungsordnungsversion: 2021 verantwortlich: Fakultät für Physik und Astronomie



Inhaltsverzeichnis

Bereichsgliederung des Stud	dienfachs	5
Qualifikationsziele / Kompe	tenzen	6
Verwendete Abkürzungen, K	onventionen, Anmerkungen, Satzungsbezug	8
Pflichtbereich		9
Quantentechnologie		10
Einführung in die Quantentechno	ologie	11
Industriepraktikum Quantentechi	nologie	12
Experimentalchemie		13
=	ische Chemie für Studierende der Naturwissenschaften	18
_	de der Medizin, Biomedizin, Zahnmedizin und Naturwissenscha	-
Klassische Physik Klassische Physik 1 (Mechanik)		31
Klassische Physik 2 (Wärmelehre	und Flektromagnetismus)	32 35
Optik und Quantenphysik		38
Optik und Quantenphysik	•	39
Optik und Quantenphysik	II	42
Optik und Wellen - Übungen		43
Atome und Moleküle - Übungen		44
Festkörperphysik		45
Einführung in die Festkörperphys	iik	46
Theoretische Physik I		48
Quantenmechanik und Statistisc	he Physik	49
Theoretische Physik II		51
Quantenmechanik - Übungen		52
Statistische Physik - Übungen		54
Mathematik		55
	r Physik und Quantentechnologie	56
	r Physik und Quantentechnologie r Physik und verwandter Fächer (Differentialgleichungen)	57 58
Physikalisches Praktikum	Trilysik und verwandter racher (binerentialgleichungen)	60
•	hanik, Wärme, Elektromagnetismus)	61
	itentechnologie (Klassische Physik, Elektrik, Schaltungen)	63
	praktikum C Quantentechnologie (Moderne Physik, Computerge:	
rimente)		64
Wahlpflichtbereich		65
Halbleiterelektronik		66
Elektronische Schaltungen		67
Physik der Halbleiterbauelement	e	68
Halbleiterlaser und Photonik		70
Grundlagen der Halbleiterphysik Kristallwachstum, dünne Schicht	en und Lithographie	72 73
Aktuelle Themen der Halbleiterel		73 74
Materialwissenschaften		75 75
Nanoanalytik		76
Festkörperphysik 2		78
Einführung in die Energietechnik		80
Nanotechnologie in der Energiefo		82
Praktikum Physikalische Technol	=	84
Molekulare Materialien (Vorlesur	ichtmaterialien aus der Gasphase 19	8 ₅ 86
1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da- tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	Seite 2 / 170

Chemische und biologisch-inspirierte Nanotechnologie für die Materialsynthese Nanoskalige Materialien	87 88
Materialwissenschaften 1 (Einführung in die Grundlagen)	90
Materialwissenschaften 2 (Die großen Werkstoffgruppen)	92
Chemische Nanotechnologie: Analytik und Applikationen	94
Methoden der zerstörungsfreien Material- und Bauteilcharakterisierung	95
Life Sciences	96
Membranbiologie der Pflanzen für Fortgeschrittene	97
Apparative Methoden der Biotechnologie	99
Molekulare Biotechnologie	101
Spezielle Bioinformatik 1	103
Mikroskopie	105
Spezielle Biotechnologie 2	107
Labor- und Messtechnik in der Biophysik	109
Mathematik, Theorie und Computergestütztes Arbeiten	111
Einführung in Quantencomputer und Quanteninformation	112
Einführung in die relativistische Physik und klassische Feldtheorie	114
Statistik, Datenanalyse und Computerphysik Numerische Mathematik 1 für Studierende anderer Fächer	116
Numerische Mathematik 1 für Studierende anderer Fächer	117
Programmierkurs für Studierende der Mathematik und anderer Fächer	119 120
Computerorientierte Mathematik	120
Mathematik 4 für Studierende der Physik und verwandter Fächer (Funktionentheorie)	124
Theoretische Mechanik	126
Elektrodynamik	128
Angewandte Physik	130
Grundlagen der zwei- und dreidimensionalen Röntgenbildgebung	131
Bildgebende Methoden am Synchrotron	133
Abbildende Sensoren im Infraroten	135
Einführung in die Bildverarbeitung	136
Labor- und Messtechnik	137
Einführung in Labview	139
Elektrochemische Energiespeicher und -wandler	141
Aktuelle Themen der Quantentechnologie	142
Aktuelle Themen der Quantentechnologie	143
Aktuelle Themen der Quantentechnologie	144
Aktuelle Themen der Quantentechnologie	145
Aktuelle Themen der Physik	146
Aktuelle Themen der Physik	147
Aktuelle Themen der Physik Ausgewählte Kapitel der Quantentechnologie	148
Ausgewählte Kapitel der Guantentechnologie Ausgewählte Kapitel der Festkörperphysik	149 150
Ausgewählte Kapitel der Energie- und Materialforschung	151
Neuartige Transportphänomene	152
Schlüsselgualifikationsbereich	153
Allgemeine Schlüsselqualifikationen	
·	154
Allgemeine Schlüsselqualifikationen (fachspezifisch)	155
MINT Vorkurs Rechenmethoden der Physik	156
Fit for Industry	158
Projektmanagement in der Praxis Riotochnologie und gesellschaftliche Akzentanz	159
Biotechnologie und gesellschaftliche Akzeptanz Allgemeine Kompetenzen für Studierende der Quantentechnologie	160 162
Fachspezifische Schlüsselqualifikationen	163
Mathematische Rechenmethoden Physik	164 165
Hauptseminar Quantentechnologie	165

Auswertung von Messungen: Fehlerrechnung	166
Fortgeschrittene Fehlerrechnung und computergestütztes Arbeiten	168
Abschlussbereich	169
Bachelorarbeit Quantentechnologie	170

Bereichsgliederung des Studienfachs

Bereich / Unterbereich	ECTS-Punkte	ab Seite
Pflichtbereich	118	9
Quantentechnologie	27	10
Klassische Physik	16	31
Optik und Quantenphysik I	6	38
Optik und Quantenphysik II	10	42
Festkörperphysik	8	45
Theoretische Physik I	6	48
Theoretische Physik II	10	51
Mathematik	24	55
Physikalisches Praktikum	11	60
Wahlpflichtbereich	32	65
Halbleiterelektronik	min. 6	66
Materialwissenschaften		75
Life Sciences		96
Mathematik, Theorie und Computergestütztes Arbeiten		111
Angewandte Physik		130
Aktuelle Themen der Quantentechnologie		142
Schlüsselqualifikationsbereich	20	153
Allgemeine Schlüsselqualifikationen	5	154
Allgemeine Schlüsselqualifikationen (fachspezifisch)		155
Fachspezifische Schlüsselqualifikationen	15	163
Abschlussbereich	10	169

Qualifikationsziele / Kompetenzen

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen verstehen die mathematischen, theoretischen und experimentellen Grundlagen der Quantentechnologie und können diese anwenden.
- Die Absolventinnen und Absolventen können unter Anleitung Experimente durchführen, analysieren und die erhaltenen Ergebnisse darstellen und bewerten.
- Die Absolventinnen und Absolventen setzen die erlernten die theoretischen und experimentellen Methoden unter Anleitung zur Erlangung neuer Erkenntnisse in der Quantentechnologie um.
- Die Absolventinnen und Absolventen sind in der Lage, Probleme mit wissenschaftlicher Arbeitsweise und unter Beachtung der Regeln guter wissenschaftlicher Praxis (Dokumentation, Fehleranalyse) zu bearbeiten.
- Die Absolventinnen und Absolventen k\u00f6nnen ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegen\u00fcber darstellen und vertreten.
- Die Absolventinnen und Absolventen k\u00f6nnen ein breites Grundlagenwissen aus den wichtigsten Teilgebieten der Quantentechnologie sowie tiefergehende Kenntnisse in mindestens einem Teilgebiet abrufen.
- Die Absolventinnen und Absolventen verstehen die wesentlichen Zusammenhänge und Konzepte der einzelnen Teilgebiete der Quantentechnologie.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten, sowie physikalische und technische Methoden weitgehend selbstständig auf konkrete Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem heterogenen Team zusammenzuarbeiten, unterschiedliche und abweichende Ansichten produktiv zur Zielerreichung zu nutzen und auftretende Konflikte zu lösen.
- Die Absolventinnen und Absolventen können ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in international zusammengesetzten Teams anwenden.
- Die Absolventinnen und Absolventen sind in der Lage, Probleme und deren Lösungen zielgruppengerecht und auch in einer Fremdsprache aufzubereiten und darzustellen.
- Die Absolventinnen und Absolventen können physikalische und technische Methoden weitgehend selbstständig auf konkrete Aufgabenstellungen der Quantentechnologie anwenden, Lösungswege entwickeln und die Ergebnisse bewerten und interpretieren.
- Die Absolventinnen und Absolventen kennen die wichtigsten Anforderungen und Arbeitsweisen im industriellen Umfeld der Quantentechnologie.
- Die Absolventinnen und Absolventen kennen die wichtigsten Anforderungen und Arbeitsweisen in Forschung und Entwicklung.
- Die Absolventinnen und Absolventen sind befähigt, komplexe Probleme zu analysieren und zu lösen und sich sehr schnell auch in weniger vertraute Themenkomplexe einzuarbeiten.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Die Absolventinnen und Absolventen sind in der Lage, ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darzustellen und zu vertreten.

Befähigung zum gesellschaftlichen Engagement

- Die Absolventinnen und Absolventen können naturwissenschaftliche Entwicklungen kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt erfassen (Technikfolgenabschätzung).
- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, naturwissenschaftlicher, kultureller etc. Fragestellungen erweitert und können begründet Position beziehen.
- Die Absolventinnen und Absolventen haben die Bereitschaft und Fähigkeit entwickelt, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Verwendete Abkürzungen

Veranstaltungsarten: **E** = Exkursion, **K** = Kolloquium, **O** = Konversatorium, **P** = Praktikum, **R** = Projekt, **S** = Seminar, **T** = Tutorium, **Ü** = Übung, **V** = Vorlesung

Semester: **SS** = Sommersemester, **WS** = Wintersemester

Bewertungsarten: **NUM** = numerische Notenvergabe, **B/NB** = bestanden / nicht bestanden

Satzungen: **(L)ASPO** = Allgemeine Studien- und Prüfungsordnung (für Lehramtsstudiengänge), **FSB** = Fachspezifische Bestimmungen, **SFB** = Studienfachbeschreibung

Sonstiges: **A** = Abschlussarbeit, **LV** = Lehrveranstaltung(en), **PL** = Prüfungsleistung(en), **TN** = Teilnehmende, **VL** = Vorleistung(en)

Konventionen

Sofern nichts anderes angegeben ist, ist die Lehrveranstaltungs- und Prüfungssprache Deutsch, der Prüfungsturnus ist semesterweise, es besteht keine Bonusfähigkeit der Prüfungsleistung.

Anmerkungen

Gibt es eine Auswahl an Prüfungsarten, so legt die Dozentin oder der Dozent in Absprache mit der/dem Modulverantwortlichen bis spätestens zwei Wochen nach LV-Beginn fest, welche Form für die Erfolgsüberprüfung im aktuellen Semester zutreffend ist und gibt dies ortsüblich bekannt.

Bei mehreren benoteten Prüfungsleistung innerhalb eines Moduls werden diese jeweils gleichgewichtet, sofern nachfolgend nichts anderes angegeben ist.

Besteht die Erfolgsüberprüfung aus mehreren Einzelleistungen, so ist die Prüfung nur bestanden, wenn jede der Einzelleistungen erfolgreich bestanden ist.

Satzungsbezug

Muttersatzung des hier beschriebenen Studienfachs:

ASP02015

zugehörige amtliche Veröffentlichungen (FSB/SFB):

28.04.2021 (2021-54)

Dieses Modulhandbuch versucht die prüfungsordnungsrelevanten Daten des Studienfachs möglichst genau wiederzugeben. Rechtlich verbindlich ist aber nur die offizielle amtliche Veröffentlichung der FSB/SFB. Insbesondere gelten im Zweifelsfall die dort angegebenen Beschreibungen der Modulprüfungen.

Pflichtbereich

(118 ECTS-Punkte)

Quantentechnologie

(27 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Einführung in die Quantentechnologie					11-N-EIN-212-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalisch			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewertungsart zuvor bestandene		zuvor bestandene N	Module	
7	nume	rische Notenvergabe			
Moduldauer Niveau			weitere Voraussetzi	ungen	
2 Semester grundständig		Vorleistung: Regelmäßige Teilnahme (mind. 85% der Termine).			
Inhalte	Inhalte				

Einführung in die Grundlagen zur Herstellung, Charakterisierung und Anwendung in der Quantentechnologie

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über das Verständnis der fundamentalen Eigenschaften, Technologien, Charakterisierungsmethoden und Funktion in der Quantentechnologie

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Vortrag (30-45 Min.) mit Diskussion und
- b) Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

210 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Modulstudium (Bachelor) Orientierungsstudien (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (1-Fach-Bachelor, 180 ECTS-Punkte			
Modulbezeichnung Kurzbezeichnung						
		tikum Quantentechnolog		11-N-IP-212-m01		
Modulverantwortung anbietende Einrichtung					htung	
Geschä	iftsfüh	rende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	/odule		
10	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetzungen			
1 Seme	ester	grundständig				
Inhalte)					
		lustrielle Vorgehensweis Ilung der geleisteten Erfal			sverfahren sowie zusammenfas- /ortrag	
Qualifi	kations	sziele / Kompetenzen				
Der/Die Studierende verfügt über das Verständnis und praktische Erfahrungen im Umgang mit diversen industriellen Technologien mit Relevanz zur Quantentechnologie und kann die Erfahrungen in einem Bericht zusammenfassend darstellen sowie mündlich im Vortrag präsentieren.						
Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)						
P (o) + S (1)						
Erfolgs	überpr	"üfung (Art, Umfang, Sprache sc	ofern nicht Deutsch / Turnus	sofern nicht semesterwei	se / Bonusfähigkeit sofern möglich)	
a) Praktikumsbericht (ca. 15 S.) und b) Referat/Vortrag (ca. 45 Min.) Gewichtung: 1:4						

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Prüfungssprache: Deutsch und/oder Englisch

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung			Kurzbezeichnung		
Experimentalchemie					o8-AC-ExChem-152-mo1
Modulverantwortung				anbietende Einrich	tung
Dozent/-in der Vorlesung "Experimenta		alchemie"	iie" Institut für Anorganische Chemie		
ECTS	CTS Bewertungsart zuvor bestandene M		Module		
5	nume	rische Notenvergabe	abe		
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
In halta	Inhalta				

Inhalte

Das Modul bietet einen Überblick über die elementaren Grundkenntnisse der Chemie. Schwerpunkte sind die Stoff- und Teilchenebene, Metalle, Säure-Base-Reaktionen, das Periodensystem, chemisches Gleichgewicht und Komplexometrie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende versteht die Prinzipien des Periodensystems und kann daraus Informationen gewinnen. Er/sie beherrscht grundlegende Modelle des Aufbaus der Materie und kann diese fachgerecht beschreiben. Chemische Reaktionen kann er/sie mit chemietypischer Formelsprache darstellen und durch Identifikation des Reaktionstyps interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

Lehrturnus: jährlich, WS

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2011)

Bachelor (1 Hauptfach) Physik (2012)

Bachelor (1 Hauptfach) Psychologie (2010)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2012)

Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2011)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2012)

Bachelor (1 Hauptfach, 1 Nebenfach) Iberoromanische Philologie (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2010)


```
Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2008)
Bachelor (1 Hauptfach, 1 Nebenfach) Galloromanische Philologie (2010)
Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2013)
Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2010)
Bachelor (1 Hauptfach, 1 Nebenfach) Italoromanische Philologie (2010)
Bachelor (2 Hauptfächer) Klassische Archäologie (2013)
Bachelor (2 Hauptfächer) Pädagogik (2013)
Bachelor (2 Hauptfächer) Philosophie (2013)
Bachelor (2 Hauptfächer) Sonderpädagogik (2009)
Bachelor (2 Hauptfächer) Digital Humanities (2012)
Bachelor (2 Hauptfächer) Political and Social Studies (2011)
Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2012)
Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2013)
Magister Theologiae Katholische Theologie (2013)
Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2009)
Bachelor (2 Hauptfächer) Germanistik (2013)
Bachelor (1 Hauptfach) Geographie (2015)
Bachelor (1 Hauptfach) Mathematik (2015)
Bachelor (1 Hauptfach) Musikwissenschaft (2015)
Bachelor (1 Hauptfach) Physik (2015)
Bachelor (1 Hauptfach) Psychologie (2015)
Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2015)
Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)
Bachelor (1 Hauptfach) Biomedizin (2015)
Bachelor (1 Hauptfach) Musikpädagogik (2015)
Bachelor (1 Hauptfach) Computational Mathematics (2015)
Bachelor (1 Hauptfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)
Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2015)
Bachelor (1 Hauptfach) Indologie/Südasienstudien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Ägyptologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Musikwissenschaft (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie und Religion (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2015)
Bachelor (2 Hauptfächer) Ägyptologie (2015)
Bachelor (2 Hauptfächer) Pädagogik (2015)
Bachelor (2 Hauptfächer) Evangelische Theologie (2015)
Bachelor (2 Hauptfächer) Musikwissenschaft (2015)
Bachelor (2 Hauptfächer) Philosophie (2015)
Bachelor (2 Hauptfächer) Sonderpädagogik (2015)
Bachelor (2 Hauptfächer) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (2 Hauptfächer) Lateinische Philologie (2015)
Bachelor (2 Hauptfächer) Musikpädagogik (2015)
Bachelor (2 Hauptfächer) Philosophie und Religion (2015)
```



```
Bachelor (2 Hauptfächer) Theologische Studien (2015)
Bachelor (2 Hauptfächer) Digital Humanities (2015)
Bachelor (2 Hauptfächer) Political and Social Studies (2015)
Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2015)
Bachelor (2 Hauptfächer) Griechische Philologie (2015)
Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2015)
Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2015)
Bachelor (2 Hauptfächer) Altorientalistik (2015)
Bachelor (2 Hauptfächer) Geographie (2015)
Bachelor (2 Hauptfächer) Französisch (2015)
Bachelor (2 Hauptfächer) Geschichte (2015)
Bachelor (2 Hauptfächer) Sportwissenschaft mit dem Schwerpunkt Gesundheit und Bewegungspädagogik (2015)
Bachelor (2 Hauptfächer) Germanistik (2015)
Bachelor (1 Hauptfach) Mathematische Physik (2016)
Bachelor (2 Hauptfächer) Theologische Studien / Theological Studies (2011)
Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2016)
Bachelor (2 Hauptfächer) Französisch (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Italienisch (2016)
Bachelor (2 Hauptfächer) Italienisch (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Spanisch (2016)
Bachelor (2 Hauptfächer) Spanisch (2016)
Bachelor (1 Hauptfach) Romanistik (Französisch/Italienisch) (2016)
Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2016)
Bachelor (1 Hauptfach) Romanistik (Italienisch/Spanisch) (2016)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2016)
Bachelor (1 Hauptfach) Games Engineering (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2016)
Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2016)
Bachelor (1 Hauptfach) Medienkommunikation (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2016)
Bachelor (1 Hauptfach) Biologie (2017)
Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2017)
Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2017)
Bachelor (2 Hauptfächer) Kunstgeschichte (2017)
Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2017)
Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)
Bachelor (1 Hauptfach) Modern China (2017)
Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2017)
Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)
Bachelor (1 Hauptfach) Games Engineering (2017)
Bachelor (1 Hauptfach) Informatik (2017)
Bachelor (1 Hauptfach) Medienkommunikation (2018)
Bachelor (1 Hauptfach) Biomedizin (2018)
Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2018)
Bachelor (2 Hauptfächer) Klassische Archäologie (2018)
Bachelor (1 Hauptfach, 1 Nebenfach) Klassische Archäologie (2018)
Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2018)
Bachelor (2 Hauptfächer) Digital Humanities (2018)
Bachelor (1 Hauptfach) Informatik (2019)
Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2019)
Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2019)
Bachelor (1 Hauptfach) Indologie/Südasienstudien (2019)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2019)
```



```
Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2019)
Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2019)
Bachelor (1 Hauptfach) Modern China (2019)
Bachelor (1 Hauptfach) Biomedizin (2020)
Bachelor (1 Hauptfach) Pädagogik (2020)
Bachelor (1 Hauptfach) Political and Social Studies (2020)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2020)
Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2020)
Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2020)
Bachelor (2 Hauptfächer) Political and Social Studies (2020)
Bachelor (2 Hauptfächer) Sonderpädagogik (2020)
Bachelor (1 Hauptfach) Physik (2020)
Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)
Bachelor (1 Hauptfach) Mathematische Physik (2020)
Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)
Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2020)
Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2020)
Bachelor (2 Hauptfächer) Pädagogik (2020)
Bachelor (1 Hauptfach) Psychologie (2020)
Bachelor (1 Hauptfach) Biologie (2021)
Magister Theologiae Katholische Theologie (2021)
Bachelor (2 Hauptfächer) Geschichte (2021)
Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2021)
Bachelor (1 Hauptfach) Medienkommunikation (2021)
Bachelor (2 Hauptfächer) Theologische Studien (2021)
Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2021)
Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2021)
Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2021)
Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)
Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)
Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2021)
Bachelor (1 Hauptfach) Quantentechnologie (2021)
Bachelor (2 Hauptfächer) Sonderpädagogik (2021)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2021)
Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)
Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2021)
Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2022)
Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2022)
Bachelor (1 Hauptfach) Biologie (2022)
Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)
Bachelor (1 Hauptfach) Mathematical Data Science (2022)
Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)
Bachelor (2 Hauptfächer) Vorderasiatische Archäologie (2022)
Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2022)
Bachelor (2 Hauptfächer) Altorientalistik (2022)
Bachelor (1 Hauptfach) Deutsch-Französische Studien: Sprache, Kultur, digitale Kompetenz (2022)
Bachelor (1 Hauptfach) Hebammenwissenschaft (2022)
Bachelor (1 Hauptfach) Europäisches Recht (2023)
Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2023)
Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2023)
Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)
Bachelor (1 Hauptfach) Mathematik (2023)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2023)
```


Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Sonderpädagogik (2023)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2023)

Bachelor (1 Hauptfach) Geographie (2023)

Bachelor (2 Hauptfächer) Geographie (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2023)

Bachelor (2 Hauptfächer) Europäische Ethnologie/Empirische Kulturwissenschaft (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (2 Hauptfächer) Germanistik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2024)

Bachelor (1 Hauptfach) Musikpädagogik (2024)

Bachelor (2 Hauptfächer) Musikpädagogik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2024)

Bachelor (1 Hauptfach) Indologie/Südasienstudien (2024)

Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2024)

Bachelor (2 Hauptfächer) Digital Humanities (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2024)

Bachelor (1 Hauptfach) Hebammenwissenschaft (2024)

Bachelor (2 Hauptfächer) Griechische Philologie (2024)

Bachelor (2 Hauptfächer) Lateinische Philologie (2024)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2024)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Bachelor (1 Hauptfach) Human-Computer-Interaction (2024)

Modul	bezeich	nnung	Kurzbezeichnung		
Praktikum Allgemeine und Analytische Chemie für Studierende der Naturwissenschaften					08-ACP-NF-152-m01
Modulverantwortung anbietende Eine				anbietende Einrich	tung
Inhaber/-in des Lehrstuhls für Anorganische			ische Chemie	Institut für Anorganische Chemie	
ECTS	S Bewertungsart zuvor bestandene M		lodule		
2	bestanden / nicht bestanden o8-AC-ExChem				
Moduldauer Niveau weit		weitere Voraussetzi	ıngen		
1 Semester grundständig					
Inhalte					

Das Modul bietet die Möglichkeit, das Wissen der Grundvorlesung(en) praktisch anzuwenden. Nach einer Sicherheitseinweisung experimentieren die Studierenden selbstständig im Labor. Schwerpunkte sind Sicherheit im Labor, einfache Labortechniken, Synthese von einfachen Stoffen sowie Analysen eines unbekannten Stoffes.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, grundlegende chemische Fragestellungen zu identifizieren und kann diese experimentell lösen. Hierfür kann er/sie die notwendigen stöchiometrischen Rechnungen durchführen und die chemischen Vorgänge fachgerecht schriftlich und verbal darstellen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortestate/Nachtestate (Prüfungsgespräche jeweils ca. 15 Min., Protokoll jeweils ca. 5-10 S.) und Bewertung der praktischen Leistungen (2-4 Stichproben)

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

60 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung	Kurzbezeichnung
Organische Chemie für Studierende der Medizin, Biomedizin, Zahnmedizin	08-OC-NF-152-m01
und Naturwissenschaften	

Modulverantwortung	anbietende Einrichtung
Dozent/-in der Vorlesung "Organische Chemie für Studie- rende der Medizin, Biomedizin, Zahnmedizin, Ingenieur- und Naturwissenschaften"	Institut für Organische Chemie

ECTS Bewertungsart		zuvor bestandene Module
numerische Notenvergabe		
Moduldauer Niveau		weitere Voraussetzungen
ster	grundständig	
	nume auer	numerische Notenvergabe auer Niveau

Inhalte

Das Modul bietet einen Überblick über die theoretischen Grundlagen der Organischen Chemie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegendes Wissen im Bereich der Organischen Chemie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2012)

Bachelor (1 Hauptfach) Psychologie (2010)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2012)

Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2011)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2012)

Bachelor (1 Hauptfach, 1 Nebenfach) Iberoromanische Philologie (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2008)

Bachelor (1 Hauptfach, 1 Nebenfach) Galloromanische Philologie (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2010) Bachelor (1 Hauptfach, 1 Nebenfach) Italoromanische Philologie (2010) Bachelor (2 Hauptfächer) Klassische Archäologie (2013) Bachelor (2 Hauptfächer) Pädagogik (2013) Bachelor (2 Hauptfächer) Philosophie (2013) Bachelor (2 Hauptfächer) Sonderpädagogik (2009) Bachelor (2 Hauptfächer) Digital Humanities (2012) Bachelor (2 Hauptfächer) Political and Social Studies (2011) Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2012) Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2013) Magister Theologiae Katholische Theologie (2013) Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Biologie (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Chemie (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Evangelische Theologie (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Sozialkunde (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Sport (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Englisch (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Biologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Chemie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Geographie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Evangelische Theologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Deutsch (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Geschichte (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Sozialkunde (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Sport (2009) Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Biologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Chemie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Evangelische Theologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2009) Erste Staatsprüfung für das Lehramt an Realschulen Informatik (2012) Erste Staatsprüfung für das Lehramt an Realschulen Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Sport (2009)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2009)


```
Erste Staatsprüfung für das Lehramt an Gymnasien Biologie (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Chemie (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Katholische Theologie (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2012)
Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Musik (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Sozialkunde (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Sport (2009)
Erste Staatsprüfung für das Lehramt an Gymnasien Musik, Doppelfach (2009)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik Hauptschuldidaktik (2009)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2009)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Sozialkunde (2013)
Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2013)
Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2009)
Bachelor (2 Hauptfächer) Germanistik (2013)
Bachelor (1 Hauptfach) Geographie (2015)
Bachelor (1 Hauptfach) Mathematik (2015)
Bachelor (1 Hauptfach) Musikwissenschaft (2015)
Bachelor (1 Hauptfach) Physik (2015)
Bachelor (1 Hauptfach) Psychologie (2015)
Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2015)
Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)
Bachelor (1 Hauptfach) Biomedizin (2015)
Bachelor (1 Hauptfach) Musikpädagogik (2015)
Bachelor (1 Hauptfach) Computational Mathematics (2015)
Bachelor (1 Hauptfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2015)
Bachelor (1 Hauptfach) Indologie/Südasienstudien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Ägyptologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2015)
```

Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2015)


```
Bachelor (1 Hauptfach, 1 Nebenfach) Musikwissenschaft (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie und Religion (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2015)
Bachelor (2 Hauptfächer) Ägyptologie (2015)
Bachelor (2 Hauptfächer) Pädagogik (2015)
Bachelor (2 Hauptfächer) Evangelische Theologie (2015)
Bachelor (2 Hauptfächer) Musikwissenschaft (2015)
Bachelor (2 Hauptfächer) Philosophie (2015)
Bachelor (2 Hauptfächer) Sonderpädagogik (2015)
Bachelor (2 Hauptfächer) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (2 Hauptfächer) Lateinische Philologie (2015)
Bachelor (2 Hauptfächer) Musikpädagogik (2015)
Bachelor (2 Hauptfächer) Philosophie und Religion (2015)
Bachelor (2 Hauptfächer) Theologische Studien (2015)
Bachelor (2 Hauptfächer) Digital Humanities (2015)
Bachelor (2 Hauptfächer) Political and Social Studies (2015)
Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2015)
Bachelor (2 Hauptfächer) Griechische Philologie (2015)
Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2015)
Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2015)
Bachelor (2 Hauptfächer) Altorientalistik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Biologie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Chemie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Katholische Theologie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Mathematik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Grundschuldidaktik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Sozialkunde (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Biologie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Chemie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geographie (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Deutsch (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geschichte (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Katholische Religionslehre (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Kunst (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Sport (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Mathematik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Musik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Sozialkunde (2015)
Erste Staatsprüfung für das Lehramt an Grundschulen Sport (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2015)
```



```
Erste Staatsprüfung für das Lehramt an Realschulen Biologie (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Chemie (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Evangelische Theologie (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Informatik (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Katholische Theologie (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Mathematik (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)
Erste Staatsprüfung für das Lehramt an Realschulen Sport (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Biologie (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Chemie (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Katholische Theologie (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Sozialkunde (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2015)
Erste Staatsprüfung für das Lehramt an Gymnasien Sport (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Katholische Religionslehre (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Kunst (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Sport (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Mathematik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Arbeitslehre (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Biologie (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Chemie (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geographie (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Evangelische Religionslehre (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Katholische Religionslehre (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Kunst (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sport (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Mathematik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sozialkunde (2015)
Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2015)
```


Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Sozialkunde (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Arbeitslehre (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Biologie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Chemie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geographie (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Evangelische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Katholische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Kunst (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sport (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Mathematik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sozialkunde (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Mittelschuldidaktik (2015)

Bachelor (2 Hauptfächer) Geographie (2015)

Bachelor (2 Hauptfächer) Französisch (2015)

Bachelor (2 Hauptfächer) Geschichte (2015)

Bachelor (2 Hauptfächer) Sportwissenschaft mit dem Schwerpunkt Gesundheit und Bewegungspädagogik (2015)

Bachelor (2 Hauptfächer) Germanistik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (2 Hauptfächer) Theologische Studien / Theological Studies (2011)

Erste Staatsprüfung für das Lehramt an Grundschulen Evangelische Theologie (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Musik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Evangelische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Musik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Musik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Musik, Doppelfach (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Evangelische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Musik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2016)

Bachelor (2 Hauptfächer) Französisch (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Italienisch (2016)

Bachelor (2 Hauptfächer) Italienisch (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Spanisch (2016)

Bachelor (2 Hauptfächer) Spanisch (2016)

Bachelor (1 Hauptfach) Romanistik (Französisch/Italienisch) (2016)

Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2016)

Bachelor (1 Hauptfach) Romanistik (Italienisch/Spanisch) (2016)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2016)

Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2016)

Bachelor (1 Hauptfach) Games Engineering (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2016)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2016)

Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2016)

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2016)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2016)

Bachelor (1 Hauptfach) Medienkommunikation (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2017)

Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2017)

Bachelor (2 Hauptfächer) Kunstgeschichte (2017)

Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2017)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Modern China (2017)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2017)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Bachelor (1 Hauptfach) Games Engineering (2017)

Bachelor (1 Hauptfach) Informatik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2018)

Bachelor (1 Hauptfach) Medienkommunikation (2018)

Bachelor (1 Hauptfach) Biomedizin (2018)

Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2018)

Bachelor (2 Hauptfächer) Klassische Archäologie (2018)

Bachelor (1 Hauptfach, 1 Nebenfach) Klassische Archäologie (2018)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2018)

Bachelor (2 Hauptfächer) Digital Humanities (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Bachelor (1 Hauptfach) Informatik (2019)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2019)

Modulstudium (Bachelor) Chemie (2019)

Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2019)

Bachelor (1 Hauptfach) Indologie/Südasienstudien (2019)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2019)

Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2019)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2019)

Bachelor (1 Hauptfach) Modern China (2019)

Modulstudium (Bachelor) Orientierungsstudien (2020)

Bachelor (1 Hauptfach) Biomedizin (2020)

Bachelor (1 Hauptfach) Pädagogik (2020)

Bachelor (1 Hauptfach) Political and Social Studies (2020)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2020)

Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2020)

Bachelor (2 Hauptfächer) Political and Social Studies (2020)

Bachelor (2 Hauptfächer) Sonderpädagogik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Chemie (2020 (Prüfungsordnungsversion

Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2020 (Prüfungsordnungsversion 2016))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2020 (Prüfungsordnungsversion 2016))

Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2020 (Prüfungsordnungsversion

Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Mathematik (2020 (Prüfungsordnungsversion

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Mittelschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2020 (Prüfungsordnungsversion

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Chemie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2020)

Bachelor (2 Hauptfächer) Pädagogik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Beruf und Wirtschaft (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Beruf und Wirtschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Politik und Gesellschaft (2020)

Bachelor (1 Hauptfach) Psychologie (2020)

Magister Theologiae Katholische Theologie (2021)

Bachelor (2 Hauptfächer) Geschichte (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2021)

Bachelor (1 Hauptfach) Medienkommunikation (2021)

Bachelor (2 Hauptfächer) Theologische Studien (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2021)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2021)

Erste Staatsprüfung für das Lehramt an Grundschulen Grundschuldidaktik (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Philosophie / Ethik (2021)

Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)

Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (2 Hauptfächer) Sonderpädagogik (2021)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2021)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2021)

Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2022)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2022)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)

Erste Staatsprüfung für das Lehramt an Gymnasien Philosophie / Ethik (2022)

Bachelor (2 Hauptfächer) Vorderasiatische Archäologie (2022)

Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2022)

Bachelor (2 Hauptfächer) Altorientalistik (2022)

Bachelor (1 Hauptfach) Deutsch-Französische Studien: Sprache, Kultur, digitale Kompetenz (2022)

Bachelor (1 Hauptfach) Hebammenwissenschaft (2022)

Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2023)

Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2023)

Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2023)

Bachelor (1 Hauptfach) Europäisches Recht (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2023)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2023)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Sonderpädagogik (2023)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2023)

Bachelor (1 Hauptfach) Geographie (2023)

Bachelor (2 Hauptfächer) Geographie (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2023)

Bachelor (2 Hauptfächer) Europäische Ethnologie/Empirische Kulturwissenschaft (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2024)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (2 Hauptfächer) Germanistik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2024)

Bachelor (1 Hauptfach) Musikpädagogik (2024)

Bachelor (2 Hauptfächer) Musikpädagogik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2024)

Bachelor (1 Hauptfach) Indologie/Südasienstudien (2024)

Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2024)

Bachelor (2 Hauptfächer) Digital Humanities (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2024)

Bachelor (1 Hauptfach) Hebammenwissenschaft (2024)

Bachelor (2 Hauptfächer) Griechische Philologie (2024)

Bachelor (2 Hauptfächer) Lateinische Philologie (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2024)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2024)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Beruf und Wirtschaft (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Beruf und Wirtschaft (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2024)

Bachelor (1 Hauptfach) Human-Computer-Interaction (2024)

Klassische Physik

(16 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Klassische Physik 1 (Mechanik)					11-E-M-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen In			alischen Instituts	Fakultät für Physik	und Astronomie
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ster	grundständig	Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Auf gaben erfolgreich bearbeitet wurden. Details werden vom Dozenten bzw. der Dozentin zu Semesterbeginn bekanntgegeben.		
Inhalte					

- 1. Grundlagen: Physikalische Größen, Vorfaktoren, abgeleitete Größen, Dimensionsanalyse, Zeit/Länge/Masse (Definition, Messverfahren, SI), Bedeutung der Metrologie;
- 2. Punktmechanik: Kinematik, Bewegung in 2D und 3D/Vektoren, Spezialfälle: gleichförmige und konstant beschleunigte Bewegung, freier Fall, schiefer Wurf; Kreisbewegung in Polarkoordinaten
- 3. Newtonsche Axiome: Kräfte und Impulsdefinition, Gewicht vs. Masse, Kräfte am Pendel, Kräfte auf atomarer Skala, isotrope und anisotrope Reibung. Aufstellung von Bewegungsgleichungen und Lösungsansätze
- 4. Arbeit & Energie: (kinetische), Leistung, Beispiele
- 5. Elastischer, inelastischer und superelastischer Stoß: Energie- und Impulserhaltung, Stöße im Massenmittelpunkts- und Schwerpunktssystem, Raketengleichung
- 6. Konservative und nicht-konservative Kraftfelder: Potential, potentielle Energie; Gravitationsgesetz, -waage, -feldstärke, -potenzial (allgemeine Relationen)
- 7. Drehbewegung: Drehimpuls, Winkelgeschwindigkeit, Drehmoment, Rotationsenergie, Trägheitsmoment, Analogien zur linearen Translation, Anwendungen, Satelliten (geostationäre und interstellare), Fluchtgeschwindigkeiten, Bahnkurven im Zentralpotential
- 8. Gezeitenkräfte: Inertialsystem, Bezugssysteme, Scheinkräfte, Foucault-Pendel, Coriolis-Kraft, Zentrifugalkraft 9. Galilei-Transformation: kurzer Exkurs in Maxwell-Gleichungen, Äther, Michelson-Interferometer, Einstein-Postulate, Problem der Gleichzeitigkeit, Lorentz-Transformation, Zeitdilatation und Längenkontraktion, relativistischer Impuls
- 10. Starrer Körper und Kreisel: Bestimmung Massenmittelpunkt, Trägheitstensor und -ellipsoid, Hauptträgheitsachsen und deren Stabilität, Tensor am Beispiel des Elastizitätstensors, Physik des Fahrrades; Kreisel: Präzession und Nutation, die Erde als Kreisel
- 11. Reibung: Haft- und Gleitreibung, Stick-Slip-Bewegung, Rollreibung, viskose Reibung, laminare Strömung, Wirbelbildung
- 12. Schwingungen: Darstellung auch mittels komplexer e-Funktion, Bewegungsgleichung (DGL) über Kräfte-, Drehmoment- und Energieansatz, Taylor-Entwicklung, harmonische Näherung; Feder- und Fadenpendel, physikalisches Pendel, gedämpfte Schwingung (Schwingfall, Kriechfall, aperiodischer Grenzfall), erzwungene Schwingung, Fourieranalyse
- 13. Gekoppelte Schwingungen: Eigenwerte und Eigenfunktionen, Doppelpendel, deterministische vs. chaotische Bewegung, nichtlineare Dynamik und Chaos
- 14. Wellen: Wellengleichung, transversale und longitudinale Wellen, Polarisation, Superpositionsprinzip, Reflexion am offenen und geschlossenen Ende, Schallgeschwindigkeit; Interferenz, Doppler-Effekt; Phasen und Gruppengeschwindigkeit, Dispersionsrelation
- 15. Elastische Verformungen von festen Körpern: Elastizitätsmodul, allgemeines Hookesches Gesetz, elastische Wellen
- 16. Fluide: Schweredruck und Auftrieb, Oberflächenspannung und Kontaktwinkel, Kapillarkräfte, stationäre Strömungen, Bernoulli-Gleichung; Boyle-Mariotte, Gasgesetze, barometrische Höhenformel, Luftdruck, Kompressibilität und Kompressionsmodul
- 17. Kinetische Gastheorie: ideales und reales Gas, Mittelwerte, Verteilungsfunktionen, Gleichverteilungssatz, Brownsche Molekularbewegung, Stoßquerschnitt, mittlere freie Weglänge, Diffusion und Osmose, Freiheitsgrade, spezifische Wärme

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Grundlagen und Zusammenhänge in der Mechanik, Schwingungen und Wellen sowie der kinetischen Gastheorie. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

__

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021) Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023) Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung
Klassische Physik 2 (Wärmelehre und Elektromagnetismus))	11-E-E-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts				Fakultät für Physik und Astronomie	
ECTS	Bewe	ewertungsart zuvor bestandene Module			
8	nume	merische Notenvergabe			
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		grundständig	Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Aufgaben erfolgreich bearbeitet wurden. Details werden vom Dozenten bzw. der Dozentin zu Semesterbeginn bekanntgegeben.		
Inhalto					

Inhalte

- 1. Wärmelehre (Anknüpfung an 11-E-M); Temperatur und Wärmemenge, Thermometer, Kelvinskala
- 2. Wärmeleitung, Wärmetransport, Diffusion, Konvektion, Strahlungswärme
- 3. Hauptsätze der Thermodynamik, Entropie, Irreversibilität, maxwellscher Dämon
- 4. Wärmekraftmaschinen, Arbeitsdiagramme, Wirkungsgrad, Beispiel: Stirlingmotor
- 5. Reale Gase und Flüssigkeiten, Aggregatzustände (auch Festkörper), van der Waals, kritischer Punkt, Phasenübergänge, kritische Phänomene (Opaleszenz), Koexistenzbereich, Joule-Thomson
- 6. Elektrostatik, Grundbegriffe: elektrische Ladung, Kräfte; elektrisches Feld, Wdh. Feldbegriff, Feldlinien, Feld einer Punktladung
- 7. Gaußscher Satz, Bezug zum Coulomb-Gesetz, Definition "Fluss"; Gaußsche Fläche, Gaußscher Integralsatz; besondere Symmetrien; Divergenz und GS in differentieller Form
- 8. Elektrisches Potenzial, Arbeit im E-Feld, elektr. Potenzial, Potenzialdifferenz, Spannung; Potenzialgleichung, Äquipotenzialflächen; verschiedene wichtige Beispiele: Kugel, Hohlkugel, Kondensatorplatten, elektrischer Dipol; Spitzeneffekte, Segnerrad
- 9. Materie im E-Feld, Ladung im homogenen Feld, Millikan-Versuch, Braunsche Röhre; Elektron: Feldemission, Glühemission, Dipol im homogenen und inhomogenen Feld; Influenz, Faradayscher Käfig
- 10. Kondensator, Spiegelladung, Definition, Kapazität; Platten-, Kugelkodensator; Kombination von Kondensatoren; Medien im Kondensator; Elektrische Polarisation, Verschiebungs- und Orientierungspolarisation, mikroskopisches Bild; dielektrische Verschiebung; Elektrolytkondensator; Piezoeffekt
- 11. Elektrischer Strom, Einführung, Stromdichte, Driftgeschwindigkeit, Leitungsmechanismen
- 12. Widerstand und Leitwert, spezifischer Widerstand, Temperaturabhängigkeit; ohmsches Gesetz; Realisierungen (ohmsch und nichtohmsch, NTC, PTC)
- 13. Stromkreise, elektrische Netzwerke, Kirchhoffsche Regeln (Maschen, Knoten); Innenwiderstand einer Spannungsquelle, Messgeräte; Wheatstone-Brücke
- 14. Leistung und Energie im Stromkreis; Kondensatorladung; galvanisches Element; Thermospannung
- 15. Leitungsmechanismen, Leitung in Festkörpern: Bändermodell, Halbleiter; Leitung in Flüssigkeiten und Gasen
- 16. Magnetostatik, Grundlagen; Permanentmagnet, Feldeigenschaften, Definitionen und Einheiten; Erdmagnetfeld; Amperesches Gesetz, Analogie zu E-Feld, magn. Fluss, Wirbel
- 17. Vektorpotenzial, formale Herleitung, Analogie zum elektrischen Skalarpotenzial; Berechnung von Feldern, Beispiele, Helmholtzspulen
- 18. Bewegte Ladung im statischen Magnetfeld, Stromwaage, Lorentz-Kraft, Rechte-Hand-Regel, Elektromotor; Dipol im Feld; Bewegungsbahnen, Massenspektrometer, Wien-Filter, Hall-Effekt; Elektron: e/m-Bestimmung
- 19. Materie im Magnetfeld, Auswirkungen des Feldes auf Materie, relative Permeabilität, Suszeptibilität; Para-, Dia-, Ferromagnetismus; magn. Moment des Elektrons, Verhalten an Grenzflächen
- 20. Induktion, Faradaysches Induktionsgesetz, Lenzsche Regel, Flussänderung; elektrisches Wirbelfeld; Waltenhofensches Pendel; Induktivität, Selbstinduktion; Anwendungen: Transformator, Generator
- 21. Maxwellscher Verschiebungsstrom, Wahl der Integrationsfläche, Verschiebungsstrom; Maxwellsche Erweiterung, Wellengleichung; Maxwell-Gleichungen
- 22. Wechselstrom: Grundlagen, sinusförmige Schwingungen, Amplitude, Periode und Phase; Leistung und Effektivwert, Ohmscher Widerstand; kapazitiver & induktiver Widerstand, Kondensator und Spule, Phasenverschiebung und Frequenzabhängigkeit; Impedanz: komplexer Widerstand; Leistung beim Wechselstrom

Seite 36 / 170

- 23. Schwingkreise, Kombinationen von RLC; Serien- und Parallelschwingkreis; erzwungene Schwingung, gedämpfter harmonischer Oszillator (Bezug zu 11-E-M)
- 24: Hertzscher Dipol, Charakteristika der Abstrahlung, Nahfeld, Fernfeld; Rayleigh-Streuung; beschleunigte Ladung, Synchrotronstrahlung, Röntgenstrahlung;
- 25. Elektromagnetische Wellen: Grundlagen, Maxwells Feststellung zum Elektromagnetismus, Strahlungsdruck (Poyntingscher Vektor, Strahlungsdruck)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Grundlagen und Zusammenhänge in der Wärmelehre, Elektrizitätslehre und Magnetismus. Sie kennen die einschlägigen Experimente, mit denen diese beobachtet und gemessen werden. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Optik und Quantenphysik I

(6 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung	
Optik und Quantenphysik					11-E-OAV-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Physikalisch			alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
2 Seme	2 Semester grundständig					
Inhalte	Inhalte					

- A. Optik und Quanten
- 1. Licht: (Anknüpfung an 11-E-E), Grundbegriffe, Lichtgeschwindigkeit, Huygenssches Prinzip, Reflexion, Brechung.
- 2. Licht in Materie: Ausbreitungsgeschwindigkeit im Medium, Dispersion, komplexe und frequenzabhängige Dielektrizitätszahl, Absorption, Kramers-Kronig, Grenzflächen, Fresnelsche Formeln, Polarisation, Erzeugung durch Absorption, Doppelbrechung, optische Aktivität (Dipolstrahlung).
- 3. Strahlenoptik: Grundlegende Konzepte der geometrischen Optik, Fermatsches Prinzip, optischer Weg Gauß'sche Strahlenoptik, Reflexion, Refraktion, ebene Grenzflächen, Snellius, Totalreflexion, optisches Tunneln, evaneszente Wellen, Prisma, normale, anomale Dispersion, gekrümmte Grenzflächen, dünne und dicke Linse, Linsensysteme, Linsenschleiferformel, Aberrationen, Abbildungsfehler.
- 4. Optische Instrumente: Kenngrößen, Kamera, Auge, Lupe, Mikroskop, Teleskoptypen, Bündelstrahlengang vs. Bildkonstruktion (Elektronenlinsen, Elektronenmikroskop), Konfokalmikroskopie.
- 5. Wellenoptik: räumliche und zeitliche Kohärenz, Doppelspalt, Youngsches Experiment, Interferenzmuster (Intensitätsverlauf), dünne Schichten, parallele Schichten, keilförmige Schichten, Phasensprung, Newtonringe, Interferometer (Michelson, Mach-Zehnder, Fabry-Perot).
- 6. Beugung im Fernfeld: Fraunhoferbeugung, Beugung im Nah- und Fernfeld, Einzelspalt, Intensitätsverteilung, Aperturen, Auflösungsvermögen: Rayleigh- & Abbé-Kriterium, Fourieroptik, Optisches Gitter, N-fach-Spalt, Intensitätsverteilung, Gitterspektrograph, Auflösungsvermögen, Beugung an atomaren Gittern, Faltungssatz.
- 7. Beugung im Nahfeld: Fresnelbeugung, Nahfeldbeugung an kreisförmiger Blende/Scheibchen, Fresnelsche Zonenplatte, Nahfeldmikroskopie, Holographie, Konzept nach Huygens-Fresnel, Weißlichthologramm.
- 8. Versagen der klassischen Physik I von der Lichtwelle zum Photon: Schwarzer Strahler, Strahlungsgesetze, Photoeffekt, Comptoneffekt, Welle-Teilchen-Dualismus, Photonen, Quantenstruktur der Natur.
- 9. Versagen der klassischen Physik II Teilchen als Materiewellen: Konzept der de Broglie'schen Materiewelle, Beugung von Teilchenstrahlen (Davisson-Germer-Experiment, Doppelspalt).
- 10. Wellenmechanik: Wellenpakete, Phasen- und Gruppengeschwindigkeit (Wdh. von 11-E-M), Unschärferelation, Nyquist-Shannon-Theorem, Wellenfunktion als Wahrscheinlichkeitsamplitude, Aufenthaltswahrscheinlichkeit, Messprozess in der Quantenmechanik (Doppelspaltexperiment & welche-Weg-Information, Kollaps der Wellenfunktion, Schrödingers Katze).
- 11. Mathematische Konzepte der Quantenmechanik: Schrödingergleichung als Wellengleichung, Konzeptvergleich mit der Wellenoptik, freies Teilchen und Teilchen im Potential, zeitunabh. Schrödinger-Gleichung als Eigenwertgleichung, einfache Beispiele in 1D (Potentialstufe, Potentialbarriere und Tunneleffekt, Potentialkasten und Energiequantisierung, harmonischer Oszillator), mehrdim. Potentialkasten und Entartung, formale Theorie der QM (Zustände, Operatoren und Observablen).
- B. Atom- und Molekülphysik
- 1. Aufbau der Atome: Experimentelle Hinweise auf die Existenz von Atomen, Größenbestimmung, Ladungen und Massen im Atom, Isotopie, innere Struktur, Rutherford-Streuexperiment, Instabilität des "klassischen" Rutherford-Atoms.
- 2. Quantenmechanische Grundlagen der Atomphysik (kurze Wiederholung aus Teil A): Licht als Teilchen, Teilchen als Wellen, Wellenfunktion und Aufenthaltswahrscheinlichkeit, Unschärferelation und Stabilität des Atoms,

Energiequantisierung im Atom, Franck-Hertz-Versuch, Atomspektren, Bohrsches Atommodell und seine Grenzen, nicht-relativistische Schrödinger-Gleichung

- 3. Das nicht-relativistische Wasserstoffatom: Wasserstoff und wasserstoffähnliche Atome, Zentralpotential und Drehimpuls in der QM, Schrödinger-Gleichung des H-Atoms, Atomorbitale: Radial- und Winkelwellenfunktionen, Quantenzahlen und Energieeigenwerte.
- 4. Atome in äußeren Feldern: magnetisches Bahnmoment und gyromagnetisches Verhältnis, magnetische Felder: normaler Zeeman-Effekt, elektrische Felder: Stark-Effekt.
- 5. Fein- und Hyperfeinstruktur: Spin des Elektrons und magnetisches Spin-Moment, Stern-Gerlach-Versuch, Einstein-de Haas-Effekt, Ausblick auf die Dirac-Gleichung (Spin als relativistisches Phänomen und Existenz von Antimaterie), Elektron-Spin-Resonanz (ESR), Spin-Bahn-Wechselwirkung, relativistische Feinstruktur, Lamb-Shift (Quantenelektrodynamik), Kernspin und Hyperfeinstruktur.
- 6. Mehrelektronenatome: Heliumatom als einfachstes Beispiel, Ununterscheidbarkeit quantenmechanischer Teilchen, (Anti) Symmtrie gegenüber Teilchenvertauschung, Fermionen und Bosonen, Zusammenhang mit dem Spin, Pauli-Prinzip, Bahn- und Spinwellenfunktion von Zweiteilchensystemen (Spin-Singlets und -Triplets), LS- und jj-Kopplung, Periodensystem der Elemente, Aufbauprinzip der elektronischen Zustände (inkl. Hund'sche Regeln).
- 7. Licht-Materie-Wechselwirkung: zeitabhängige Störungstheorie (Fermis Goldene Regel) und optische Übergänge, Matrixelemente und Dipolnäherung, Auswahlregeln und Symmetrie, Linienverbreiterungen (Lebensdauer, Dopplereffekt, Stoßverbreiterung), Atomspektroskopie.
- 8. Der Laser: optische Elementarprozesse (Absorption, spontane und stimulierte Emission), stimulierte Emission als Lichtverstärkung, Einstein'sche Ratengleichungen, thermisches Gleichgewicht, Nicht-Gleichgewicht beim Laser: Bilanzgleichung, Besetzungsinversion, und Laserbedingung, prinzipieller Aufbau eines Lasers, optisches Pumpen, 2-, 3- und 4-Niveau-Laser, Beispiele (Rubin-Laser, He-Ne-Laser, Halbleiterlaser).
- 9. Innerschalen-Anregungen und Röntgenphysik: Entstehung von Röntgenstrahlung, Bremsstrahlung und charakteristisches Spektrum, Röntgenemission zur Analytik (EDX), Röntgenabsorption und Kontrastbildung bei Röntgenaufnahmen, Röntgenphotoemission, nicht-strahlende Auger-Prozesse, Synchrotronstrahlung, Anwendungsbeispiele.
- 10. Moleküle und chemische Bindung: Wasserstoff-Molekülion (H2+) als einfachstes Beispiel: Näherung des starren Moleküls und LCAO-Ansatz, bindende und antibindende Molekülorbitale, Wasserstoff-Molekül (H2): Molekülorbitalnäherung vs. Heitler-London-Näherung, 2-atomige heteronukleare Moleküle: kovalente vs. ionische Bindung, van der Waals-Bindung und Lennard-Jones-Potential, (evt. konjugierte Moleküle).
- 11. Molekül-Rotationen und Schwingungen: Born-Oppenheimer-Näherung, Energieniveaus des starren Rotators (symmetrische und unsymmetrische Moleküle), Zentrifugalaufweitung, Molekül als (an)harmonischer Oszillator, Morse-Potential, Normalschwingungen, Schwingungs-Rotations-Wechselwirkung.
- 12. Molekülspektroskopie: Übergangsmatrixelemente, Schwingungsspektroskopie: Infrarotspektroskopie und Raman-Effekt, Schwingungs-Rotations-Übergänge: Fortrat-Diagramm, elektronische Übergänge: Franck-Condon-Prinzip.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Strahlen-, Wellen und Quantenoptik sowie Grundlagen von Quantenphänomenen, der Atom- und der Molekülphysik. Sie verstehen die theoretischen Konzepte und kennen Aufbau und Anwendung wichtiger optischer Instrumente und Messmethoden. Sie verstehen die Ideen und Konzepte der Quantentheorie und der Atomphysik und die einschlägigen Experimente, mit denen Quantenphänomene beobachtet und gemessen werden. Sie sind in der Lage, ihre Kenntnisse in einen größeren Zusammenhang einzuordnen und zu diskutieren.

Lehrveranstaltung	gen (Art,	SWS, S	Sprache	sofern	nicht [Deutsch)
-------------------	-----------	--------	---------	--------	---------	----------

V(4) + V(4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

mündliche Einzelprüfung (ca. 30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Optik und Quantenphysik II

(10 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Optik und Wellen - Übungen					11-E-OA-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	äftsfühi	rende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart zuvor bestandene		Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester grundständig				
Inhalte	Inhalte				

Übungen zur den in 11-E-OAV vermittelten Kenntnissen in Optik. U.a. Grundbegriffe, Fermatsches Prinzip, optischer Weg, Licht in Materie, Polarisation, Geometrische Optik, Optische Instrumente, Wellenoptik, Interferenz, Dünne Schichten, Interferometer, Fraunhoferbeugung Optisches Gitter, Fresnelbeugung, Holographie, Wellenpakete, Wellengleichung & Schrödingergleichung, Quantenstruktur der Natur, usw.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Strahlen-, Wellen und Quantenoptik. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung				Kurzbezeichnung		
Atome und Moleküle - Übungen					11-E-AA-202-m01	
Modulverantwortung				anbietende Einrichtung		
Geschä	Geschäftsführende Leitung des Physikalisch			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module			
5	nume	rische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	ester	grundständig				
Inhalte	Inhalte					

Atome in äußeren Feldern, Mehrelektronenatome, Optische Übergänge und Spektroskopie, Laser, Moleküle und chemische Bindung, Molekül-Rotationen und Schwingungen, usw.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen von Quantenphänomenen, der Atom- und der Molekülphysik. Sie sind in der Lage, physikalische Zusammenhänge der Atom- und Quantenphysik mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathema-

Übungen zu den in 11-E-OAV vermittelten Kenntnissen in Atom- und Quantenphysik. U.a. Aufbau der Atome, Experimentelle Grundlagen der Quantenphysik, Schrödingergleichung, Quantenmechanik des Wasserstoffatoms,

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

tisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Ü (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Festkörperphysik

(8 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Einführung in die Festkörperphysik					11-E-F-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	äftsfühi	rende Leitung des Physik	alischen Instituts	Instituts Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester grundständig				
Inhalte	Inhalte				

- 1. Das Freie-Elektronen-Gas (FEG), freie Elektronen; Zustandsdichte; Pauli-Prinzip; Fermi-Dirac-Statistik; spez. Wärme, Sommerfeld-Koeffizient; Elektronen in Feldern: Drude-Sommerfeld-Lorentz; elektrische und thermische Leitfähigkeit, Wiedemann-Franz-Gesetz; Hall-Effekt; Grenzen des Modells
- 2. Kristallstruktur, periodisches Gitter; Gittertypen; Bravais-Gitter; Miller-Indizes; einfache Kristallstrukturen; Gitterfehler; Polykristalle; amorphe Festkörper; gruppentheoretische Ansätze, Bedeutung der Symmetrie für elektronische Eigenschaften
- 3. Das reziproke Gitter (RG), Motivation: Beugung; Bragg-Bedingung; Definition; Brillouinzonen; Beugungstheorie: Streuung; Ewald-Konstruktion; Bragg-Gleichung; Laue-Gleichung; Struktur- und Formfaktor
- 4. Strukturbestimmung, Sonden: Röntgen, Elektronen, Neutronen; Verfahren: Laue, Debye-Scherrer, Drehkristall; Elektronenbeugung, LEED
- 5. Gitterschwingungen (Phononen), Bewegungsgleichungen; Dispersion; Gruppengeschwindigkeit; zweiatomige Basis: optischer, akustischer Zweig; Quantisierung: Phononenimpuls; optische Eigenschaften im IR; dielektrische Funktion (Lorentz-Modell); Beispiele für Dispersionskurven (Wdh. Kramers-Kronig), Messmethoden
- 6. Thermische Eigenschaften von Isolatoren, Einstein- und Debye-Modell; Phononenzustandsdichte; Anharmonizitäten und Wärmeausdehnung; Wärmeleitfähigkeit; Umklapp-Prozesse; Kristallfehler
- 7. Elektronen im periodischen Potential, Bloch-Theorem; Bandstruktur; Näherung fast freier Elektronen (NFE); stark gebundene Elektronen (tight binding, LCAO); Beispiele für Bandstrukturen, Fermi-Flächen, Spin-Bahn-Wechselwirkung
- 8. Supraleitung, BCS-Theorie, Paarbildung, Vernüpfung bosonischer- und fermionischer Moden, Bandstruktur, Vielteilchenaspekte (Quasiteilchenkonzept)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Fest-körperphysik (Bindung und Struktur, Gitterdynamik, thermische Eigenschaften, Grundlagen der elektronischen Eigenschaften [freies Elektronengas]). Sie verstehen den Aufbau von Festkörpern und kennen die experimentellen Methoden der Festkörperphysik sowie die theoretischen Modelle zur Beschreibung festkörperphysikalischer Phänomene. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 46 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Theoretische Physik I

(6 ECTS-Punkte)

Modulbezeichnung				Kurzbezeichnung		
Quantenmechanik und Statistische Physik					11-T-QS-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Instituts fü Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
2 Semester grundständig						
Inhalta	Inhalta					

Inhalte

A. Quantenmechanik

- 1. Historie und Grundlagen: Grenzen der klassischen Physik; Historisch grundlegende Experimente; Von der klassischen Physik zur Quantenmechanik (QM)
- 2. Wellenfunktion und Schrödinger-Gleichung (SG): SG für freie Teilchen; Superposition; Wahrscheinlichkeitsverteilung für Impulsmessung; Korrespondenzprinzip; Postulate der QM; Ehrenfest-Theorem; Kontinuitätsgleichung; Stationäre Lösungen der SG
- 3. Formalisierung der QM: Eigenwertgleichungen; Physikalische Bedeutung der Eigenwerte eines Operators; Zustandsraum und Dirac-Schreibweise; Darstellungen im Zustandsraum; Tensorprodukte von Zustandsräumen
- 4. Postulate der QM (und deren Deutung); Zustand; Messung; zeitliche Entwicklung; Energie-Zeit-Unschärfe
- 5. Eindimensionale Probleme: Der harmonische Oszillator; Potentialstufe; Potentialschwelle; Potentialtopf; Symmetrieeigenschaften
- 6. Spin-1/2-Systeme I: Theoretische Beschreibung in Dirac-Schreibweise; Spin 1/2 im homogenen Magnetfeld; Zwei-Niveau-Systeme (Qubits)
- 7. Drehimpuls: Vertauschungsrelationen und Drehungen; Eigenwerte von Drehimpulsoperatoren (abstrakt); Lösung der Eigenwertgleichung in Polarkoordinaten (konkret)
- 8. Zentralpotential -- Wasserstoffatom: Bindungszustände in 3D; Coulomb-Potential
- 9. Bewegung im elektromagnetischen Feld, Hamilton-Operator; Normaler Zeeman-Effekt; Kanonischer und kinetischer Impuls; Eichtransformation; Aharonov-Bohm-Effekt; Schrödinger-, Heisenberg- und Wechselwirkungs-Darstellung; Bewegung eines freien Elektrons im Magnetfeld
- 10. Spin-1/2-Systeme II: Formulierung mittels Drehimpulsalgebra
- 11. Addition von Drehimpulsen
- 12. Näherungsmethoden: Stationäre Störungstheorie (mit Beispielen); Variationsmethode; WKB-Methode; Zeitabhängige Störungstheorie
- 13. Atome mit mehreren Elektronen: Identische Teilchen; Helium-Atom; Hartree- und Hartree-Fock-Näherung; Atomaufbau und Hundsche Regeln
- B. Statistische Physik und Thermodynamik
- o. Grundlagen der Statistik: Elemente der Statistik (zentraler Grenzwertsatz und Statistik der Extreme); Mikround Makrozustände; Wahrscheinlichkeitsraum (bedingte Wahrscheinlichkeit, statistische Unabhängigkeit);
- 1. Statistische Physik: Entropie und Wahrscheinlichkeitstheorie; Entropie in der klassischen Physik; Thermodynamisches Gleichgewicht in abgeschlossenen und offenen Systemen (mit Energie- und/oder Teilchenaustausch)
- 2. Ideale Systeme: Spinsysteme; Lineare Oszillatoren; Ideales Gas
- 3. Statistische Physik und Thermodynamik: Der 1. Hauptsatz; Quasistatische Prozesse; Entropie und Temperatur; Verallgemeinerte Kräfte; Der 2. und 3. Hauptsatz; Reversibilität; Übergang von der Statistischen Physik zur Thermodynamik
- 4. Thermodynamik: Thermodynamische Fundamentalbeziehung; Thermodynamische Potentiale; Zustandsänderungen; Thermodynamische Maschinen (Carnot-Maschine und Wirkungsgrad); Chemisches Potential
- 5. Ideale Systeme II, Quantenstatistik: Systeme identischer Teilchen; Ideales Fermigas; Ideales Bosegas und Bose-Einstein-Kondensation; Gitter- und Normalschwingungen: Phononen
- 6. Systeme wechselwirkender Teilchen, Näherungsmethoden (Mean-Field-Theorie, Sommerfeld-Entwicklung); Computer-Simulation (Monte-Carlo-Methode); Wechselwirkende Phononen (Debye-Näherung); Ising-Modelle (Besonderheiten in 1 und 2 Dimensionen); Yang-Lee-Theoreme; Van der Waals-Gleichung für reale wechselwirkende Gase

7. Kritische Phänomene: Skalengesetze, critical slowing down, schnelle Variable als Bad (Elektron-Phonon-Wechselwirkung und BCS-Supraleitung); Magnetismus (Quantenkritikalität bei tiefen Temperaturen, Quantenphasenübergänge bei T=o); Probleme des thermodynamischen Limes

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse der Methoden der theoretischen Physik. Sie beherrschen die Grundlagen der Quantenmechanik und Statistischen Physik und Thermodynamik. Sie können die erlernten theoretischen Konzepte und in größere physikalische Zusammenhänge einordnen und diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + V(4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

mündliche Einzelprüfung (ca. 30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Theoretische Physik II

(10 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Quantenmechanik - Übungen					11-T-QA-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Institut Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
5	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Semester		grundständig	bearbeiten. Die Vor gaben erfolgreich b	leistung ist erbracht,	ester sind ca. 13 Übungsblätter zu wenn ca. 50% der gestellten Auf- tails werden vom Dozenten bzw. ntgegeben.

Inhalte

Aufgaben zur Quantenmechanik entsprechend den in 11-T-QSV vermittelten Inhalte. U.a. Wellenfunktion und Schrödinger-Gleichung (SG), Formalisierung der QM, Eigenwertgleichungen, Postulate der QM, Eindimensionale Probleme, Spin-1/2-Systeme, Drehimpuls, Zentralpotential, Wasserstoffatom, Bewegung im elektromagnetischen Feld, Addition von Drehimpulsen, Näherungsmethoden, Atome mit mehreren Elektronen usw.

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den mathematischen Methoden der Quantenmechanik vertraut und in der Lage, sie selbstständig zur Beschreibung und Lösung von Problemen der Quantentheorie anzuwenden und die Ergebnisse physikalisch zu interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Ü (2)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung	
Statistische Physik - Übungen					11-T-SA-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Institu Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Aufgaben zur statistischen Physik und theoretischen Thermodynamik entsprechend den in 11-T-SEV vermittelten Inhalte. U.a. Grundlagen der Statistik, Statistische Physik, Ideale Systeme, Hauptsätze, Thermodynamische Potentiale, Quantenstatistik, Fermi- und Bosegas, Systeme wechelswirkender Teilchen, Näherungsmethoden, Ising-Modelle, Kritische Phänomene usw.

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den mathematischen Methoden der theoretischen Thermodynamik und statistischen Physik vertraut und in der Lage, sie selbstständig zur Beschreibung und Lösung von Problemen der statistischen Physik anzuwenden und die Ergebnisse physikalisch zu interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Ü (2)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Mathematik

(24 ECTS-Punkte)

Modulbezeichnung	Modulbezeichnung Kurzbezeichnung					
Mathematik 1 für Studierende der Ph	10-M-PHY1-212-m01					
Modulverantwortung		anbietende E	inrichtung			
Studiendekan/-in Mathematik		Institut für M	athematik			
ECTS Bewertungsart	zuvor bestandene N	Nodule				
8 numerische Notenvergabe						
Moduldauer Niveau	weitere Voraussetz	ungen				
1 Semester grundständig						
Inhalte						
Grundlagen über Zahlen und Funktior derlichen, Vektorräume, einfache Diff		n, Differential-	und Integralrechnung in einer Verän-			
Qualifikationsziele / Kompetenzen						
bei erlernten Methoden auf einfache i den Bereichen Physik und Quantente	natur- und ingenieurw chnologie, anzuwende	issenschaftlic	n. Er/Sie erwirbt die Fähigkeit, die hier- he Fragestellungen, insbesondere aus ebnisse zu interpretieren.			
Lehrveranstaltungen (Art, SWS, Sprache so	ofern nicht Deutsch)					
V (5) + Ü (2) Übungen in: Deutsch oder Englisch						
Erfolgsüberprüfung (Art, Umfang, Sprache s	sofern nicht Deutsch / Turnus	sofern nicht seme	sterweise / Bonusfähigkeit sofern möglich)			
a) Klausur (Regelfall, ca. 90-120 Min.) b) mündliche Einzelprüfung (ca. 20 M c) mündliche Gruppenprüfung (2 TN, j Prüfungssprache: Deutsch und/oder I Bonusfähig	in.) oder e ca. 15 Min.)					
Platzvergabe						
weitere Angaben						
Arbeitsaufwand						
240 h						
Lehrturnus						
k. A.						
Bezug zur LPO I						
Verwendung des Moduls in Studienfä	ichern	_				

Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Mathematik (2023)

Modulbezeichnung Kur					Kurzbezeichnung	
Mathematik 2 für Studierende der Physik und Quantentechnologie				inologie	10-M-PHY2-212-m01	
Moduly	verantv	vortung		anbietende Einrich	ntung	
Studie	ndekan	/-in Mathematik		Institut für Mathen	natik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
8	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ester	grundständig				
Inhalte)					
		dungen und Gleichungss eren Veränderlichen, Diff			e, Differential- und Integralrech-	
Qualifi	kations	sziele / Kompetenzen				
die hie	rbei erl		tur- und ingenieurwis	senschaftliche Frage	nnen. Er/Sie erwirbt die Fähigkeit, estellungen, insbesondere aus se zu interpretieren.	
Lehrve	ranstal	tungen (Art, SWS, Sprache so	fern nicht Deutsch)			
V (5) + Übunge		eutsch oder Englisch				
Erfolgs	überpr	üfung (Art, Umfang, Sprache s	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	se / Bonusfähigkeit sofern möglich)	
b) mün c) mün	dliche dliche gssprad	gelfall, ca. 90-120 Min.) Einzelprüfung (ca. 20 Mi Gruppenprüfung (2 TN, jo Che: Deutsch und/oder E	n.) oder e ca. 15 Min.)			
Platzve	ergabe					
weitere	e Angal	oen				
Arbeits	aufwai	nd				
240 h						
Lehrtu	Lehrturnus					
k. A.						
Bezug	zur LPC) I				
Verwer	ndung	des Moduls in Studienfä	chern			
		auptfach) Quantentechn	_			
Exchan	ige Aus	tauschprogramm Mathe	matik (2023)			

Modulbezeichnung	Kurzbezeichnung
Mathematik 3 für Studierende der Physik und verwandter Fächer (Differential-	11-M-D-152-mo1
gleichungen)	

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

1 1195110	Thysik and Astrophysik					
ECTS	Bewe	rtungsart	zuvor bestandene Module			
8	nume	rische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzungen			
1 Semester		grundständig				

Inhalte

Grundlagen der gewöhnlichen Differentialgleichungen der Physik.

Gewöhnliche Differentialgleichungen und Systeme von Differentialgleichungen.

Grundlagen der Funktionentheorie.

- 1. Gewöhnliche Differentialgleichungen
- 1.1 Lösungsmethoden
- 1.2 Existenz- und Eindeutigkeitssatz
- 1.3 Systeme von Differentialgleichungen
- 1.4 Greens-Funktion für inhomogene Probleme
- 1.5 Hermitsche DGL, Legendre DGL
- 2. Funktionentheorie
- 2.1 Komplexe Funktionen
- 2.2 Differentiation, holomorphe Funktionen
- 2.3 Singularitäten im Komplexen
- 2.4 Komplexe Integration und der Cauchy Integralsatz
- 2.5 Laurent-Reihen, Residuensatz, Fourier-Transformation
- 2.6 Analytische Fortsetzung, meromorphe Funktionen, ganze Funktionen
- 2.7 Gamma-, Beta-, hypergeometrische Funktionen, Sätze von Weierstraß und Mittag-Leffler
- 2.8 Differentialgleichungen im Komplexen, Besselsche Differentialgleichung
- 2.9 Sattelpunktsmethode
- 3. (Quasi)Lineare Differentialgleichungen 1. Ordnung

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegende Mathematikkenntnisse zum Verständnis der dynamischen Gleichungen und Kenntnisse über Lösungsmethoden für gewöhnliche Differentialgleichungen sowie der Theorie der Funktionen einer komplexen Variablen und beherrscht die benötigten Rechentechniken.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

..

weitere Angaben

--

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 58 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Physikalisches Praktikum

(11 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung	
Physik	alische	es Praktikum A (Mechanil	k, Wärme, Elektroma	gnetismus)	11-P-PA-152-m01	
Modul	Modulverantwortung an				anbietende Einrichtung	
Gesch	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
3	besta	nden / nicht bestanden				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig						

Inhalte

Messaufgaben zur Mechanik, Thermodynamik und Elektrizitätslehre. z.B.: Messung von Spannungen und Strömen, Wärmekapazität, Kalorimetrie, Dichte von Körpern, dynamische Viskosität, Elastizität, Oberflächenspannung, Federkonstante, Abfassung von graphischen Darstellungen und Abfassung von Messprotokollen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kenntnisse und Beherrschung von physikalischen Messgeräten und Experimentiertechniken. Er/Sie ist in der Lage, Experimente selbstständig zu planen und durchzuführen, auch in Kooperation mit anderen, und die Messergebnisse in einem Messprotokoll zu dokumentieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

praktische Leistung mit Vortrag (ca. 30 Min.)

Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

WÜRZBURG 15 83 83					Quantentechnologie 1-Fach-Bachelor, 180 ECTS-Punkte			
Modulb	Modulbezeichnung Kurzbezeichnung							
	Physikalisches Praktikum B Quantentechnologie (Klassische Physik, Elektrik, Schaltungen) 11-P-NB-212-m01							
Moduly	Modulverantwortung anbietende Einrichtung							
Geschä	iftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie			
ECTS	Bewe	rtungsart	zuvor bestandene M	Module				
4	besta	nden / nicht bestanden						
Modulo	lauer	Niveau	weitere Voraussetz	ungen				
1 Seme	ster	grundständig	Es wird dringend en zu absolvieren.	npfohlen, die Module	e 11-P-PA und 11-P-FR1 vor 11-P-NB			
Inhalte	!							
		Grundgesetze der Optik, en Bauelementen.	der Schwingungen ι	ınd Wellen, der Elekt	rizitätslehre und zu Schaltungen			
Qualifil	kations	sziele / Kompetenzen						
mentie operati die Fäh	rtechni on mit igkeit,	ken. Er/Sie ist in der Lag anderen, und die Messe	e, Experimente selbs rgebnisse in einem <i>N</i> er Verwendung von Fe	tständig zu planen u Iessprotokoll zu dok ehlerfortpflanzung u	chen Messgeräten und Experi- and durchzuführen, auch in Ko- umentieren. Er/Sie verfügt über and den Grundlagen der Statistik zu diskutieren.			
Lehrvei	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)					
P (2)			-					
Erfolgs	überpr	üfung (Art, Umfang, Sprache sc	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)			
Praktische Leistung mit Vortrag (ca. 30 Min.) Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.								
Platzve	rgabe							

weitere Angaben

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

W	ÜRZBU	JRG 1	5 (100) 8	33 0 2 6	1-Fach-Bachelor, 180 ECTS-Punkte		
Moduli	Modulbezeichnung Kurzbezeichnung						
	Physikalisches Fortgeschrittenenpraktikum C Quantentechnologie (Moderne Physik, Computergestützte Experimente)						
Moduly	erantv	vortung		anbietende Einrich	tung		
Geschä	iftsfühı	rende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule			
4	besta	nden / nicht bestanden					
Modulo	dauer	Niveau	weitere Voraussetzungen				
1 Semester grundständig Es wird dren.		_	Es wird dringend empfohlen, das Modul 11-P-NB vor 11-P-NC zu absolvie- en.				
Inhalte							
den un	Physikalische Grundgesetze der Wellenoptik, der Atom-, Molekül- und Kernphysik sowie moderne Messmethoden unter Verwendung von computergesteuerten, speziellen Messgeräten an Beispielen aus der Optik und Festkörperphysik.						
Qualifikationsziele / Kompetenzen							
schritte struktu verfügt Form ei	Der/Die Studierende verfügt über die Fähigkeit zum Aufbau und weitgehend selbständigen Betrieb von fortgeschrittenen Versuchsaufbauten. Er/Sie ist in der Lage auch bei massivem Datenaufkommen die Messergebnisse strukturiert zu protokollieren und unter Verwendung von Fehlerfortpflanzung und Statistik zu analysieren. Er/Sie verfügt über die Fähigkeit, die Ergebnisse zu bewerten und Schlussfolgerungen daraus zu ziehen, sowie diese in Form eines wissenschaftlichen Aufsatzes und einer Präsentation darzustellen und zu diskutieren.						

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Praktische Leistung mit Vortrag (ca. 30 Min.)

Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Wahlpflichtbereich

(32 ECTS-Punkte)

Halbleiterelektronik

(min. 6 ECTS-Punkte)

Modul	bezeich	inung		Kurzbezeichnung		
Elektro	onische	Schaltungen			11-EL-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschä	äftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Inhalte

Grundlagen elektronischer Bauelemente und Schaltungen. Analoge Schaltungstechnik: Passive (Widerstände, Kondensatoren, Spulen und Dioden) und aktive Bauelemente (Bipolar- und Feldeffktransistoren sowie Operationsverstärker). Digitalen Schaltungen: unterschiedliche Gatter-Typen und CMOS-Schaltungen. Mikrokontroller

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über das Verständnis und die Kenntnisse des praktischen Aufbaus elektronischer Schaltungen aus dem Bereich analoger und digitaler Schaltungstechnik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Moduli	Modulbezeichnung				Kurzbezeichnung	
Physik	der Ha	lbleiterbauelemente			11-SPD-152-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule		
6	nume	rische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzungen			
1 Semester grundständig						
Inhalte	Inhalte					

Aufbauend auf den Grundlagen der Halbleiterphysik, gibt die Vorlesung einen Einblick in Halbleiter-Schlüsseltechnologien und diskutiert beispielhaft die wichtigsten Bauelemente aus den Bereichen Elektronik und Photonik. Im Grundlagenteil werden die Kristallstrukturen und die Band- und die Phononendispersionen der technologisch relevanten Halbleiter vorgestellt. Basierend auf der Ladungsträgerdichte im thermischen Gleichgewicht werden dann die Grundlagen des Ladungstransports unter Einbeziehung von Nichtgleichgewichtseffekten entwickelt. Der Technologieteil gibt einen Einblick in die Methoden zur Herstellung von Halbleitermaterialien und stellt die wichtigsten Verfahren der Planartechnologie vor. Gegliedert nach Volumen- und Grenzflächenbauelementen und unterschiedlichen Einsatzbereichen wird beispielhaft auf die Funktionsweise folgender Bauelemente eingegangen: Gleichrichterdioden, Zenerdioden, Varistor, Varaktor, Tunneldioden, Impatt-, Baritt- und Gunn-Dioden, Fotodiode, Solarzelle, Leuchtdiode, Halbleiter-Injektionslaser, Transistor , JFET, Thyristor, Diac, Triac, Schottky-Diode, MOSFET, MESFET, HFET. Die Bedeutung niedrigdimensionaler Ladungsträgersysteme für die Technik und die Grundlagenforschung wird hervorgehoben und neuere Entwicklungen auf dem Bauelemente-Sektor werden vorgestellt.

Qualifikationsziele / Kompetenzen

Die Studierenden

- sind mit den Eigenschaften von Halbleitern verstraut, sie haben einen Überblick über die elektronischen und phononischen Bandstrukturen wichtiger Halbleiter und den daraus ableitbaren elektronischen, optischen und thermischen Eigenschaften
- kennen die Grundlagen des Ladungstransports und können die Poisson-, Boltzmann- und Kontinuitätsgleichung bei der Lösung von Fragestellungen anwenden
- haben einen Einblick in die Methoden der Halbleiterherstellung und sind mit den Ansätzen der Planartechnologie und neueren Entwicklungen auf diesem Sektor vertraut, sie haben ein grundlegendes Verständnis für die Bauelementeherstellung
- verstehen den Aufbau und die Funktionsweise der wichtigsten Bauelemente aus der Elektronik (Diode, Transistor, FET, Thyristor, Diac, Triac), dem Bereich Mikrowellenanwendungen (Tunnel-, Impatt-, Barittund Gunn-Diode) und der Optoelektronik (Fotodiode, Solarzelle, Leuchtdiode, Halbleiter-Injektionslaser)
- kennen die Realisierungsmöglichkeiten von niedrigdimensionalen Ladungsträgersystemen auf Halbleiterbasis und ihre technologische Relevanz
- sind mit neueren Entwicklungen auf dem Bauelementesektor vertraut

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Modul	Modulbezeichnung Kurzbezeichnung					
Halblei	terlase	er und Photonik			11-HLF-152-m01	
Moduly	/erantv	vortung	anbietende Einrichtung			
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau			weitere Voraussetzungen			
1 Semester weiterführend						
Inhalte	Inhalte					

Die Vorlesung vermittelt die Grundlagen der Laserphysik am Beispiel von Halbleiterlasern und geht auf aktuelle Bauelemententwicklungen ein. Die Grundlagen von Lasern werden zunächst anhand eines allgemeinen Lasermodells beschrieben, das dann um spezielle Aspekte von Halbleiterlasern erweitert wird. Grundlegende Begriffe wie z.B. Schwellenbedingung, Kennlinie und Lasereffizienz werden anhand von gekoppelten Ratengleichungen für Ladungsträger und Photonen hergeleitet. Weitere Themen der Vorlesung sind optische Prozesse in Halbleitern, Schicht- und Stegwellenleiter, Laserresonatoren, Modenselektion, dynamische Eigenschaften sowie Technologie zur Herstellung von Halbleiterlasern. Den Abschluss der Vorlesung bilden aktuelle Themen der Laserforschung wie z.B. Quantenpunktlaser, Quantenkaskadenlaser, THz -- Laser oder Hochleistungslaser.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in den Grundalgen der Physik von Halbleiterlasern. Er/Sie ist in der Lage, diese auf moderne Fragestellungen anzuwenden und kennt die Anwendungen in der aktuellen Entwicklung von Bauelementen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Grundl	lagen d	er Halbleiterphysik			11-HLP-152-m01
Modul	verantv	vortung		anbietende Einrichtung	
Gesch	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau			weitere Voraussetzungen		
1 Semester grundständig					

Inhalte

- 1. Symmetrie-Eigenschaften
- 2. Kristallbindung und elektronische Bandstruktur
- 3. Optische Anregungen und deren Kopplungseffekte
- 4. Elektron-Phonon-Kopplung
- 5. Temperaturabhängige Transporteigenschaften
- 6. (semi-)magnetische Halbleiter

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den Grundlagen der Halbleiterphysik vertraut. Sie verstehen den Aufbau von Halbleitern und können ihre physikalischen Eigenschaften und Effekte erklären. Sie kennen wichtige Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung	
Kristal	lwachs	tum, dünne Schichten u	nd Lithographie		11-KDS-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Kristallwachstum, dünne Schichten, Lithographie.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse des Kristallwachstums und die Techniken und Methoden, mit denen dieses im Labor kontrolliert werden kann. Sie verfügen über Methodenkenntnisse der Herstellung und Untersuchung dünner Schichten und kennen Techniken und Anwendungen der Lithographie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modult	Modulbezeichnung Kurzbezeichnung						
Aktuell	e Then	nen der Halbleiterelektro	nik		11-BXN6A-152-m01		
Moduly	erantv	vortung		anbietende Einrich	tung		
		chussvorsitzende/-r		Fakultät für Physik	und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule			
6	nume	rische Notenvergabe					
Modulo	lauer	Niveau	weitere Voraussetzi	ıngen			
1 Seme	ster	unbekannt	Genehmigung des P	rüfungsausschusses	s erforderlich.		
Inhalte			•				
keine Iı	nhaltsa	ngabe verfügbar					
Qualifil	kations	sziele / Kompetenzen					
keine K	ompet	enzbeschreibung verfügt	par				
Lehrvei	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)				
V (3) +	R (1)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)		
fung ge der Doz	ändert zentin l		ens vier Wochen vor kündigen.		liche Einzel- bzw. Gruppenprü- stgesetzten Klausurtermin von		
Platzve	rgabe						
weitere	Angal	en					
Arbeits	aufwai	nd					
180 h							
Lehrtur	Lehrturnus						
k. A.							
Bezug zur LPO I							
							
Verwendung des Moduls in Studienfächern							
	Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)						
	Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)						
Bachel	Bachelor (1 Hauptfach) Quantentechnologie (2021)						

Materialwissenschaften

(ECTS-Punkte)

Modul	bezeich	nung			Kurzbezeichnung
Nanoa	nalytik				11-NAN-152-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				

Grundlagen der analytischen Verfahren im Bereich der Nanostrukturphysik, bildgebende Verfahren zur Mikroskopie bis zur atomaren Skala, Untersuchung der chemischen Komposition, Spektroskopie der elektronischen Eigenschaften, Nutzung von Röntgenmethoden. - Physik und Materialsysteme auf der Nanoskala. - Rastersonden: Rasterkraftmikroskopie. Rastertunnelmikroskopie. - Elektronensonden: Rasterelektronenmikroskop. Transmissions-Elektronenmikroskop. - Sekundärionen-Massenspektrometrie. - Röntgenmethoden: Synchrotron-Spektroskopie. Photoemission. Röntgenabsorption

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über wesentliche Kenntnisse über moderne Untersuchungsmethoden für verschiedene Nanostrukturen bis hinunter zur atomaren Skala. Sie kennen Mikroskopieverfahren, die in der Labor- und Industriepraxis verwendet werden und spektroskopische Methoden zur Bestimmung von elektronischen Eigenschaften. Sie sind in der Lage, die Leistungsfähigkeit verschiedener Untersuchungsmethoden zu beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Festkö	rperph	ysik 2			11-FK2B-202-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	rende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester grundständig				
Inhalte	•		,		

- 1. Elektronen im periodischen Potential die Bandstruktur
- a. Transport von Elektrizität und Wärme
- b. Bloch Theorem
- c. Stark gebundene Elektronen
- 2. Dynamik im semiklassichen Modell
- a. Elektrischer Transport im vollständig und teilweise gefüllte Bänder
- b. Fermi-Flächen und ihre experimentelle Bestimmung
- c. Elektrischer Transport in externen Magnetfeldern
- d. Boltzmann-Transportgleichung
- 3. Dielektrische Eigenschaften und Ferroelektrika
- a. Makroskopische Elektrodynamik und mikroskopische Theorie
- b. Polarisierbarkeit der Atome und von Festkörpern, des Gitters, der Valenzelektronen, freier Elektronen, optische Phononen, Polaritonen, Plasmonen, Interbandübergänge, Wannier-Mott-Exzitonen
- c. Ferroelektrika
- 4. Halbleiter
- a. Typisierung
- b. Intrinsische Halbleiter
- c. Dotierte Halbleiter
- d. Physik und Anwendung der p-n-Übergangs
- e. Heterostrukturen
- 5. Magnetismus
- a. Atomarer Dia- und Paramagnetismus
- b. Dia- und Paramagnetismus in Metallen
- c. Ferromagnetismus
- 6. Supraleitung
- a. Phänomene
- b. Modelle zur Beschreibung der Supraleitung
- c. Tunnelexperimente und Anwendungen

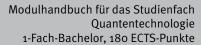
Qualifikationsziele / Kompetenzen

Die Studierenden kennen Effekte, Konzepte und Modelle der fortgeschrittenen Festkörperphysik. Sie sind mit den theoretischen Grundlagen und den Anwendungen experimenteller Methoden vertraut.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch


Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Exchange Austauschprogramm Physik (2023)

Platzvergabe
-
weitere Angaben
Arbeitsaufwand
240 h
Lehrturnus
k. A.
Bezug zur LPO I
Verwendung des Moduls in Studienfächern
Bachelor (1 Hauptfach) Physik (2020)
Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)
Bachelor (1 Hauntfach) Quantentechnologie (2021)

Modul	Modulbezeichnung				Kurzbezeichnung	
Einfüh	rung in	die Energietechnik			11-ENT-152-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Gesch	äftsfühı	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend					

Physikalische Grundlagen von Energiekonservierung und Energiewandlung, Energietransport und -Speicherung sowie der regenerativen Energiequellen. Dabei werden auch Aspekte der Materialoptimierung (z.B. nanostrukturierte Dämmstoffe, selektive Schichten, hochaktivierte Kohlenstoffe) behandelt. Die Veranstaltung ist insbesondere auch für Lehramtsstudenten geeignet. Energy Conservation via Thermal Insulation. Thermodynamic Energy Efficiency. Fossil Fired Energy Converters. Nuclear Power Plants. Hydroelectricity. Wind Turbines. Photovoltaics. Solar Thermal: Heat. Solar Thermal: Electricity. Biomass. Geothermal Energy. Energy Storage. Energy Transport.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die Grundlagen verschiedener Methoden der Energietechnik, insbesondere Energieumwandlung, -transport und Speicherung. Er/Sie überblickt den Aufbau der entsprechenden Anlagen und kann sie vergleichend beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 | Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Nanotechnologie in der Energieforschung					11-NTE-152-mo1
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	rende Leitung des Physil	kalischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Die Nanotechnologie ist im Bereich der Energieforschung von großer Bedeutung. Durch spezielle Funktionsmaterialien ist es möglich die Energieeffizienz in zahlreichen Prozessen oder Anwendungen zu erhöhen. In diesem Modul werden speziell Materialien, Oberflächen und Strukturen betrachtet, die aufgrund nanotechnologischer Effekte optimierte Eigenschaften aufweisen. Dabei werden die zugrunde liegenden physikalischen Zusammenhänge erläutert. Die Betrachtungen finden am Beispiel konkreter Materialien und Komponenten statt, wie beispielsweise Wärmedämmstoffe, Wärmespeicher, funktionelle nanoskalige Schicht- und Teilchensysteme mit spektral selektiven Eigenschaften, nanoporöse Vakuumisolationen sowie Elektrodenmaterialien.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches und vertieftes Wissen über die Anwendung der Nanotechnologie in der Energieforschung. Er/Sie kennt Methoden, mit denen die Eigenschaften von Materialien durch Nanotechnologie beeinflusst werden können und die Anwendungen dieser Technologie. Es/sie ist in der Lage, dieses Wissen auf spezielle Fragestellungen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Moduli	Modulbezeichnung				Kurzbezeichnung	
Praktikum Physikalische Technologie der Materialsynthese				e	11-PPT-212-m01	
Moduly	verantv	vortung		anbietende Einrich	tung	
Geschä	iftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
5	besta	nden / nicht bestanden				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ester	grundständig	Für Studierende des P-FR1 empfohlen	BA Funktionswerks	toffe wird das Absolvieren von 11-	
Inhalte	·					
		Werkstoffeigenschaften, erungstechnologien.	Wachstums- und Be	schichtungsverfahre	en, Charakterisierungsmethoden	
Qualifi	kations	sziele / Kompetenzen				
		erende verfügt über Kenn n Technologie der Materi		en Grundlagen der M	aterialcharakterisierung und der	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
		ssprache: Deutsch oder l	_	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Min.). I 8 S.) ar Die Tei legt wo Prüfuns	Die erfo nzuferti lmodul orden si gsturnu	olgreiche Durchführung un Igen. Beide Prüfungsbest prüfung ist erst bestande	nd Auswertung der V andteile können je e en, wenn beide Prüfu	ersuche wird testiert inmalig im jeweiliger	or dem Versuch testiert (ca. 15 . Es ist ein Versuchsprotokoll (ca. 1 Semester wiederholt werden. inem Semester erfolgreich abge-	
Platzve		, , , , , , , , , , , , , , , , , , , ,				
weitere	e Angal	pen				
Arbeits	saufwai	nd				
150 h						
Lehrtu	Lehrturnus					
k. A.						
Bezug	Bezug zur LPO I					
Verwer	Verwendung des Moduls in Studienfächern					
Bachel	Bachelor (1 Hauptfach) Funktionswerkstoffe (2021) Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)					

Moduli	bezeich	nnung	Kurzbezeichnung			
Beschi	chtung	sverfahren und Schichtn	asphase	11-BVG-202-m01		
Modul	verantv	vortung		anbietende Einrichtung		
Geschä	Geschäftsführende Leitung des Physikalischen Institut			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module			
5	nume	rische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Physikalisch-technische Grundlagen zu PVD- und CVD-Anlagen und --Prozessen. Schichtabscheidung und Schichtcharakterisierung. Anwendung von Schichtmaterialien im industriellen Maßstab

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse auf dem Gebiet der Schichtabscheidungsprozesse aus der Gasphase und erhält Einblicke in deren industrielle Bedeutung und Vielfalt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Bonusfähig

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Molekulare Materialien (Vorlesung)					o8-FU-MoMaV-152-mo1
Modulverantwortung				anbietende Einrichtung	
Studie	nfachve	erantwortliche/-r Funktio	nswerkstoffe	Institut für Funktionsmaterialien und Biofabrikation	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester grundständig				
Inhalte	•				

Chemische Bindungen und molekulare Wechselwirkungen, Supramolekulare Chemie, molekulare Materialien, Kolloide, Nanopartikel, dünne Filme.

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben grundlegende Kenntnisse über den Zusammenhang physikalischer, chemischer und technologischer Eigenschaften von Materialien und deren Struktur. Sie kennen die Bedeutung verschiedener inter- und intramolekularer Wechselwirkungen und wie sie die Eigenschaften molekularer Materialien bestimmen. Sie lernen, sich in ein wissenschaftliches Thema durch Recherche einzuarbeiten, und in Form eines Vortrages vorzustellen, zu diskutieren als auch Feedback zu geben und entgegenzunehmen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + S(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

[a) Klausur (ca. 90-180 Min.) oder b) mündliche Einzelprüfung (20-30 Min.) oder c) mündliche Gruppenprüfung (max. 3 TN, ca. 15 Min. je TN) oder d) Protokoll (ca. 20 S.) oder e) Referat (ca. 30 Min.)] und Vortrag (ca. 30 Min.); Gewichtung 3:1

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Master (1 Hauptfach) Chemie (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Chemie (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Chemie (2024)

Modul	bezeich	nnung	Kurzbezeichnung			
Chemi	sche ur	nd biologisch-inspirierte	die Materialsyn-	08-FU-NT-152-m01		
these				_		
Modul	verantv	vortung		anbietende Einrichtung		
Studie	nfachv	erantwortliche/-r Funktio	nswerkstoffe	Institut für Funktionsmaterialien und Biofabrikation		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
5	nume	rische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen			
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Synthesemethoden und -parameter der Sol-Gel Chemie sowie Charakterisierungsverfahren und Einsatzgebiete der erzeugten Materialien. Grundprinzipien der Biomineralisation, Struktur von Biomaterialien, Einführung in die biologisch inspirierte Materialsynthese.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fundierte Kenntnisse in den Bereichen der Sol-Gel Chemie und der Biomineralisati-

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-180 Min.) oder b) mündliche Einzelprüfung (20-30 Min.) oder c) mündliche Gruppenprüfung (max. 3 TN, ca. 15 Min. je TN) oder d) Protokoll (ca. 20 S.) oder e) Referat (ca. 30 Min.) Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Master (1 Hauptfach) Chemie (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Chemie (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Chemie (2024)

Modulbezeichnung					Kurzbezeichnung
Nanoskalige Materialien					08-PCM3-161-m01
Modulverantwortung				anbietende Einrichtung	
Dozent	t/-in de	s Seminars "Nanoskalige	Materialien"	Institut für Physikalische und Theoretische Chemie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				
Inhalte	Inhalto				

Das Modul behandelt spezielle Themen von Nanoskaligen Materialien. Schwerpunkte sind Struktur, Eigenschaften, Herstellung, moderne Charakterisierungsmethoden und Anwendungsgebiete nanoskaliger Materialien.

Qualifikationsziele / Kompetenzen

Die Studierenden sind in der Lage, nanoskalige Materialien zu charakterisieren. Er/Sie kann Analysenmethoden sowie Anwendungsgebiete nanoskaliger Materialien anführen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $S(2) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90 Min.) oder b) mündliche Einzelprüfung (ca. 20 Min.) oder c) Vortrag (ca. 30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Chemie (2016)

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Chemie (2018)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Chemie (2024)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Modulbezeichnung					Kurzbezeichnung
Materialwissenschaften 1 (Einführung in die Grundlagen)					08-FU-MaWi1-212-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Chemische Techno Materialsynthese		he Technologie der	Institut für Funktior	nsmaterialien und Biofabrikation	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
5	nume	rische Notenvergabe			
Moduldauer Niveau weit		weitere Voraussetzungen			
2 Semester grundständig					
Inhalte	Inhalte				

Teil A Struktur von Werkstoffen

Die Studierenden lernen die atomare Struktur des Festkörpers kennen.

Teil B Metallische Werkstoffe

Die Studierenden erhalten einen Einblick in die Struktur metallischer Werkstoffe und deren mechanische Eigenschaften, wie das Verformungsverhalten und Bruchverhalten sowie die Bestimmung mechanischer Eigenschaften. Es folgt eine Einführung über das Korrosionsverhalten metallischer Werkstoffe und den Korrosionsschutz.

Teil C Numerische Methoden

Die Studierenden erhalten eine Einführung in die Finite-Elemente-Methode (FEM) sowie der Monte-Carlo-Simulation.

Qualifikationsziele / Kompetenzen

Die Studierenden kennen den Aufbau und die Struktur von Festkörpern, thermodynamische Begriffe wie Enthalpie und Entropie, die Gesetze der Diffusion auf Basis atomare Gitterbaufehler. Sie sind vertraut mit Verformungs-mechanismen und Korrosionsvorgängen in Metallen. Die Studierenden verfügen über grundlegende Kompetenzen in den thermodynamischen Eigenschaften der Festkörper. Sie wissen was Phasenübergänge, Legierungsbildung und Entmischung in Metallen bedeutet. Sie sind in der Lage das Verformungsverhalten metallischer Werkstoffe und deren Verfestigung auf der Basis der Bewegung und Behinderung von Versetzungen zu erklären. Die Studierenden können FEM-Rechnungen auf einfache Probleme anwenden und sind in der Lage, Simulationsrechnungen auf der Basis von computergenerierten Zufallszahlen (Monte-Carlo-Codes) durchzuführen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(1) + V(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-180 Min.) oder b) mündliche Einzelprüfung (20-30 Min.) oder c) mündliche Gruppenprüfung (max. 3 TN, ca. 15 Min. je TN) oder d) Protokoll (ca. 20 S.) oder e) Referat (ca. 30 Min.) Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 90 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021) Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Chemie (2024)

Modulbezeichnung		Kurzbezeichnung
Materialwissenschaften 2 (Die großen Werkstoffgruppen)		08-FU-MaWi2-152-m01
Modulverantwortung	anbietende Einrich	tung

Inhaber/-in des Lehrstuhls für Chemische Technologie der Materialsynthese

Institut für Funktionsmaterialien und Biofabrikation

ECTS	Bewertungsart		zuvor bestandene Module
5	numerische Notenvergabe		
Modulo	Moduldauer Niveau		weitere Voraussetzungen
1 Seme	ster	grundständig	

Inhalte

Herstellung und Eigenschaften der großen Werkstoffgruppen. Metalle: Strukturen, Gefüge, Phasenumwandlungen und Eigenschaften; Thermomechanische Behandlungen; Martensitische Umwandlung; Duktilität und Festigkeit; Formgedächtnislegierungen. Keramiken: oxidische und nicht-oxidische Strukturkeramiken; elektrische und magnetische Eigenschaften von Funktionskeramiken; Gläser. Polymerwerkstoffe: Thermoplaste, Duromere, Elastomere. Verbundwerkstoffe.

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben grundlegende Kenntnisse der Herstellung und Eigenschaften der großen Werkstoffgruppen und können diese auf wissenschaftliche Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-180 Min.) oder b) mündliche Einzelprüfung (20-30 Min.) oder c) mündliche Gruppenprüfung (max. 3 TN, ca. 15 Min. je TN) oder d) Protokoll (ca. 20 S.) oder e) Referat (ca. 30 Min.) Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Master (1 Hauptfach) Chemie (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Chemie (2018)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 92 / 170
	tensatz Bachelor (180 ECTS) Ouantentechnologie - 2021	

Master (1 Hauptfach) Chemie (2024)

Moduli	bezeich	nnung			Kurzbezeichnung
Chemische Nanotechnologie: Analytik und Applikationen					08-FU-NT-AA-152-m01
Modulverantwortung				anbietende Einrichtung	
Studier	nfachve	erantwortliche/-r Funktion	nswerkstoffe	Institut für Funktior	nsmaterialien und Biofabrikation
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
5	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzi	ungen	
1 Seme	ster	weiterführend			
Inhalte)				
					oden. Thermoanalyse, rheologinin Industrie und Technik.
Qualifi	kations	sziele / Kompetenzen			
Der/Die Nanom		_	efte Kenntnisse im Be	ereich der Charakteri	isierung und Anwendung von
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)		
V (4)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)
(max. 3	3 TN, ca	. 90-180 Min.) oder b) mü . 15 Min. je TN) oder d) Pr che: Deutsch und/oder Ei	otokoll (ca. 20 S.) od		c) mündliche Gruppenprüfung Min.)
Platzve	ergabe				
weitere	e Angal	pen			
Arbeits	aufwa	nd			
150 h					
Lehrtui	rnus				
k. A.					
Bezug	zur LP() I			
Verwendung des Moduls in Studienfächern					
Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)					
Master (1 Hauptfach) Funktionswerkstoffe (2016)					
		auptfach) Nanostrukturte			
		auptfach) Quantentechno	_		
Master	Master (1 Hauptfach) Funktionswerkstoffe (2022)				

Modul	bezeich	inung	Kurzbezeichnung		
Methoden der zerstörungsfreien Material- und Bauteilcharakterisierung					11-ZMB-152-m01
Modulverantwortung anbietende Einrichtung					tung
Gesch	Geschäftsführende Leitung des Physikalischen			Fakultät für Physik und Astronomie	
ECTS	ECTS Bewertungsart zuvor bestan		zuvor bestandene M	Module	
4	4 numerische Notenvergabe				
Moduldauer Niveau			weitere Voraussetzungen		
1 Semester grundständig					

Grundlagen der zerstörungsfreien Werkstoff- und Bauteilprüfung. Thermographie. Neutronenradiographie. Röntgenprüfung. Ultraschall. Optische Prüfung, Laser. Bildverarbeitung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Grundlagenkenntnisse zur Erzeugung und zu den Wechselwirkungsmechanismen verschiedener Strahlungsarten (Wärme, Röntgen, Terahertz), Teilchen (Neutronen) oder Ultraschallwellen mit Werkstoffen. Er/Sie kennt die dazu angewandten Methoden zur Detektion der Strahlungsarten, Teilchen und Ultraschallwellen und kann sie auf grundlegende Probleme der Werkstoffprüfung und -charakterisierung anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Life Sciences

(ECTS-Punkte)

Modulbezeichnung				Kurzbezeichnung	
Membranbiologie der Pflanzen für Fortgeschrittene					07-4BFPS2-152-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Pflanzenphysic Biophysik			nphysiologie und	Fakultät für Biologie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalto					

Das Modul vermittelt die allgemeinen Grundlagen des Stofftransports über pflanzliche Membranen und zu den biophysikalischen Methoden, mit denen dieser charakterisiert werden kann. Dazu werden moderne Methoden der Molekularbiologie, Bildgebung, Datenerhebung und -analyse vermittelt.

Qualifikationsziele / Kompetenzen

Die Studierenden sind qualifiziert, grundlegende Vorgänge beim Membrantransport zu verstehen und die experimentellen Ansätze an intakten Pflanzen, an isolierten Pflanzenzellen sowie in tierischen Expressionssystemen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (1) + Ü (5)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 45-60 Min.) oder b) Protokoll (ca. 10-20 S.) oder c) mündliche Einzelprüfung (ca. 30 Min.) oder d) mündliche Gruppenprüfung (max. 3 TN, ca. 20 Min. je TN) oder e) Referat (ca. 20-30 Min.) oder f) praktische Prüfung (durchschnittliche Dauer ca. 2 Std., abhängig vom Fachgebiet kann die Bearbeitungszeit auch kürzer oder länger - max. aber 4 Std. - sein)

Prüfungsart und -umfang werden vor der Veranstaltungsbeginn bekannt gegeben. bonusfähig

Platzvergabe

16 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach

der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Modull	bezeich	nung			Kurzbezeichnung	
Apparative Methoden der Biotechnologie					07-4S1AMB-152-m01	
Modulverantwortung				anbietende Einrichtung		
Inhaber/-in des Lehrstuhls für Biotechnologie und Biophy sik			nologie und Biophy-	Fakultät für Biologie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
5	nume	rische Notenvergabe				
Moduldauer Niveau weitere			weitere Voraussetz	ungen		
1 Semester grundständig						
مغامطسا	Inhalfa					

Das Modul (Vorlesung und Seminar) vermittelt den Studierenden einen Überblick über apparative Methoden in der Biotechnologie und Biomedizin und deren physikalische Grundlagen. Die vorgestellten Methoden umfassen moderne Verfahren zur Untersuchung biologischer Materie auf molekularer und zellulärer Ebene. Dazu zählen z.B. bildgebende Lichtmikroskopie, Fluoreszenzspektroskopie, Elektronenmikroskopie, Rasterkraftmikroskopie, Durchflusszytometrie, Mikrofluidik.

Qualifikationsziele / Kompetenzen

Die Studierenden erhalten einen Überblick über wichtige, biotechnologisch relevante Methoden einschließlich ihrer Vor- und Nachteile. Sie lernen abzuwägen, welche Methode zur Bearbeitung einer bestimmten Fragestellung am besten geeignet ist.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 30-60 Min.)

bonusfähig

Platzvergabe

25 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerberberücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze

wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Bachelor (1 Hauptfach) Mathematik (2023)

Modull	bezeich	nnung			Kurzbezeichnung	
Molekulare Biotechnologie					07-4S1MOLB-152-m01	
Modulverantwortung				anbietende Einrichtung		
Inhaber/-in des Lehrstuhls für Biotechnologie und sik			nologie und Biophy-	Fakultät für Biologie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Moduldauer Niveau v			weitere Voraussetzungen			
1 Semester grundständig						
Inhalte	Inhalte					

Grundlagen der "weißen" Biotechnologie, Bioreaktoren, Biokatalyse, Immobilisierung von Zellen und Enzymen, Produktion von Biomolekülen, Molekularbiologie, Rekombinante DNA Technologie, Protein Engineering, Design von Biosensoren, Drug-Design, Drug-Targeting, molekulare Diagnostik, rekombinante Antikörper, Hybridomatechnologie, Elektromanipulation von Zellen.

Qualifikationsziele / Kompetenzen

Die Studierenden erhalten einen Überblick über klassische und moderne biotechnologische Verfahren einschließlich ihrer Vor- und Nachteile. Sie lernen abzuwägen, welches Verfahren zur Bearbeitung einer bestimmten Fragestellung am besten geeignet ist. Die Studierenden werden mit den grundlegenden biotechnologischen Techniken soweit vertraut gemacht, dass sie einschlägige weiterführende Literatur selbständig studieren können, über ein ausreichendes quantitatives Verständnis von relevanten Mechanismen verfügen oder sich dieses bei Bedarf erarbeiten können.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + S(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 30-60 Min.) bonusfähig

Platzvergabe

25 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach

der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Bachelor (1 Hauptfach) Mathematik (2023)

Modulbezeichnung					Kurzbezeichnung
Spezielle Bioinformatik 1					07-4S1MZ6-152-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Bioinform			rmatik	Fakultät für Biologie	
ECTS	Bewe	rtungsart	zuvor bestandene I	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalto					

Grundlagen zum "Tree of Life" Grundlagen der Phylogenetik (Methoden und Marker) Grundlagen der Evolutionsbiologie (Begriffe und Konzepte) Sequenzanalyse RNA-Strukturvorhersage Stammbaumrekonstruktion.

Qualifikationsziele / Kompetenzen

Die Studierenden besitzen die Kompetenz, mit Computerprogrammen und Datenbanken Sequenzen zu analysieren, RNA-Strukturen vorherzusagen und Stammbäume zu rekonstruieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (1) + Ü (5)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Protokoll (ca. 10-20 S.)

Prüfungssprache: Deutsch oder Englisch

bonusfähig

Platzvergabe

20 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der

jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2015)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Bachelor (1 Hauptfach) Mathematik (2023)

Modulbezeichnung		Kurzbezeichnung
Mikroskopie		07-4S1MZ1-152-m01
Modulverantwortung	anbietende Einrich	tung

Leiter/-in der zentralen Abteilung für Elektronenmikroskopie
pie

ECTS	Bewertungsart		zuvor bestandene Module		
5	numerische Notenvergabe		-		
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		grundständig	-		

Inhalte

Grundlagen der konfokalen Laser-Scanning-Mikroskopie und Elektronenmikroskopie.

Qualifikationsziele / Kompetenzen

Die Studierenden besitzen Qualifikationen in Theorie und Praxis der Licht- und Elektronen-Mikroskopie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (1) + Ü (5)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 30-60 Min.)

bonusfähig

Platzvergabe

18 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2015)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Biologie (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Modull	bezeich	nnung		Kurzbezeichnung				
Spezie	lle Biot	technologie 2			07-5S2MZ4-152-m01			
Modul	verantv	vortung		anbietende Einrichtung				
Inhaber/-in des Lehrstuhls für Biotechnologie und Biophysik				Fakultät für Biologie				
ECTS	Bewe	rtungsart zuvor bestandene M		Nodule				
10	nume	nerische Notenvergabe						
Moduldauer		Niveau	weitere Voraussetzungen					
1 Semester		grundständig						
Inhalto								

Die Studierenden erhalten in diesem forschungsnahen Praktikum einen Einblick in unterschiedliche biotechnologische und biophysikalische Themen. Es werden ausgewählte Versuche zu folgenden Bereichen unter fachkundiger Anleitung durchgeführt: zelluläre und molekulare Biotechnologie, Nano- und Mikrosystem-Biotechnologie, Biomaterialien und Biosensorik, hochauflösende bildgebende Fluoreszenzmikroskopie, Fluoreszenzspektroskopie, sowie elektrische Analyse und Manipulation von Zellen.

Qualifikationsziele / Kompetenzen

Die Studierenden werden mit den grundlegenden biotechnologischen und biophysikalischen Techniken soweit vertraut gemacht, dass sie einschlägige weiterführende Literatur selbständig studieren können, über ein ausreichendes quantitatives Verständnis von biophysikalischen Mechanismen verfügen oder sich dieses bei Bedarf erarbeiten können. Sie sammeln praktische Erfahrung bei der Durchführung von experimentellen Arbeiten mit verschiedenen wissenschaftlichen Instrumenten. Im Seminar erwerben die Studierenden ein detailliertes theoretisches Wissen zu o.g. Experimenten und geben eine kurze Präsentation (15 min-Referat) über einen der durchgeführten Versuche.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $\ddot{U}(7) + S(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 45-60 Min.) oder b) Protokoll (ca. 10-20 S.) oder c) mündliche Einzelprüfung (ca. 30 Min.) oder d) mündliche Gruppenprüfung (max. 3 TN, ca. 20 Min. je TN) oder e) Referat (ca. 20-30 Min.) oder f) praktische Prüfung (durchschnittliche Dauer ca. 2 Std., abhängig vom Fachgebiet kann die Bearbeitungszeit auch kürzer oder länger - max. aber 4 Std. - sein)

Prüfungsart und -umfang werden vor der Veranstaltungsbeginn bekannt gegeben.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

18 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewer-

berinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Biologie (2017)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Biologie (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Biologie (2022)

Exchange Austauschprogramm Biowissenschaften (2022)

Modul	bezeich	nnung	Kurzbezeichnung		
Labor-	Labor- und Messtechnik in der Biophysik				11-LMB-152-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	Geschäftsführende Leitung des Physikalischen			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart zuvor bestandene		Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Gegenstand der Vorlesung sind relevante Grundlagen der Molekular- und Zellbiologie sowie die physikalischen Grundlagen biophysikalischer Verfahren zur Untersuchung und Manipulation von biologischen Systemen. Schwerpunkte bilden optische Messtechniken und Sensorik, Verfahren der Einzelteilchendetektion, spezielle Mikroskopietechniken, sowie Verfahren zur Strukturaufklärung von Biomolekülen.

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Grundlagen der Molekular- und Zellbiologie sowie die physikalischen Grundlagen biophysikalischer Verfahren zur Untersuchung und Manipulation von biologischen Systemen. Sie verfügen über Kenntnisse optischer Messtechniken und deren Anwendungen und sind in der Lage, die Verfahren der Strukturaufklärung auf einfache Biomoleküle anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Mathematik, Theorie und Computergestütztes Arbeiten

(ECTS-Punkte)

Modull	bezeich	nnung		Kurzbezeichnung		
Einfühi	rung in	Quantencomputer und Q	Quanteninformation		11-QUI-202-m01	
Moduly	Modulverantwortung			anbietende Einrichtung		
		rende Leitung des Institut strophysik	ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig						
Inhalte	Inhalte					

Grundbegriffe der Quantentheorie und Statistik. Qubits und die Darstellung quantenmechanischer Zuständen mit Dichteoperatoren. Theorie des Messprozesses. Von-Neumann-Entropie, bipartite Systeme, Verschränkung und Verschränkungsmaße. Quantenkanäle, Kraus-Operatoren und Stinespring-Theorem. Dekohärenz von Quantenzuständen. Einführung in die Quantenteleportation und Quantenkryptographie. Erste Schritte in der Theorie des Quantencomputings und der Fehlerkorrektur.

Qualifikationsziele / Kompetenzen

Vermittlung grundlegender Kenntnisse in der Quanteninformationstheorie und deren Anwendung. Vertieftes Verständnis spezifischer Eigenschaften

von Quantensystemen wie z.B Verschränkung. Überblick über die wichtigsten Theoreme und mögliche Anwendungen der Quanteninformationstheorie. Die Studierenden sollen mit diesem Kurs auf weiterführende Wahlpflichtveranstaltungen zu diesem Thema im Masterstudium vorbereitet werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023) Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung	
Einführung in die relativistische Physik und klassische Feldtheorie				dtheorie	11-RRF-202-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
1	Geschäftsführende Leitung des Instituts für Theoretisch Physik und Astrophysik			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig						
Inhalte	Inhalto					

Grundlagen der speziellen Relativitätstheorie, relativistische Mechanik, koviariante Formulierung im Minkowski-Raum, grundlegende Konzepte der klassischen Feldtheorie am Beispiel des skalaren Feldes. Elektrodynamik als relativistische Feldtheorie, Erhaltungsgrößen, Ströme und Noether-Theorem. Elemente der relativistischen Hydrodynamik sowie elementare Grundlagen der Allgemeinen Relativitätstheorie für spezielle Metriken, z.B. schwarze Löcher

Qualifikationsziele / Kompetenzen

Beherrschung der Grundlagen der speziellen Relativitätstheorie und der Standardmethoden zur Lösung klassischer relativistischer Probleme in kovarianter Darstellung. Sicherer Umgang mit klassischen relativistischen Feldtheorien sowie ein grober Überblick über die Grundlagen der allgemeinen Relativitätstheorie. Die Studierenden sollen mit diesem Kurs auf weiterführende Wahlpflichtveranstaltungen der Theoretischen Physik im Master vorbereitet werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023) Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung
Statist	ik, Date	enanalyse und Compute		11-SDC-152-m01	
Modul	verantv	vortung		anbietende Einrich	tung
Geschä	äftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	vertungsart zuvor bestandene		Module	
4	nume	rische Notenvergabe			
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester weiterführend				

Statistik, Datenanalyse und Computerphysik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches, vertieftes Wissen im Fachgebiet Statistik, Datenanalyse und Computerphysik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modul	bezeich	nnung			Kurzbezeichnung
Numer	Numerische Mathematik 1 für Studierende anderer Fächer				10-M-NUM1af-152-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau		Niveau	weitere Voraussetzungen		
1 Semester grundständig		grundständig			

Lösung von linearen Gleichungssystemen und Ausgleichsproblemen, nichtlineare Gleichungen und Gleichungssysteme, Interpolation mit Polynomen, Splines und trigonometrischen Funktionen, numerische Integration.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt grundlegende Konzepte und Verfahren der numerischen Mathematik, testet selbige an praktischen Beispielen und weiß um typische Einsatzgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-180 Min., Regelfall) oder b) mündliche Einzelprüfung (15-30 Min.) oder c) mündliche Gruppenprüfung (2 TN, 10-15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Informatik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Informatik (2017)

Bachelor (1 Hauptfach) Informatik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022) Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023) Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Moduli	bezeich	nnung	Kurzbezeichnung			
Numeri	ische N	Nathematik 2 für Studier	10-M-NUM2af-152-m01			
Modulverantwortung				anbietende Einrich	tung	
Studiendekan/-in Mathematik				Institut für Mathem	atik	
ECTS	Bewe	rtungsart	zuvor bestandene Module			
10	nume	rische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzi	ungen		
1 Seme	ester	grundständig				
Inhalte	•					
_	Eigenwertprobleme, lineare Programme, Verfahren für Anfangswertaufgaben bei gewöhnlichen Differentialglei- chungen, Randwertprobleme					

Qualifikationsziele / Kompetenzen

Der/Die Studierende kann die vorgestellten Konzepte der numerischen Mathematik gegeneinander abgrenzen und kennt ihre Stärken und Schwächen in Hinblick auf ihre Einsatzmöglichkeiten in verschiedenen Bereichen der Natur- und Ingenieur- und Wirtschaftswissenschaften.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-180 Min., Regelfall) oder b) mündliche Einzelprüfung (15-30 Min.) oder c) mündliche Gruppenprüfung (2 TN, 10-15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung			Kurzbezeichnung	
Programmierkurs für Studierende der Mathematik und anderer Fächer			10-M-PRG-152-m01	
Modul	verantwortung		anbietende Einrichtung	
Studiendekan/-in Mathematik			Institut für Mathematik	
FCTC	CTS Development Support Suppor			

ECTS	Bewei	rtungsart	zuvor bestandene Module
3	besta	nden / nicht bestanden	
Modulo	lauer	Niveau	weitere Voraussetzungen
1 Seme	ster	grundständig	

Grundlagen der Programmierung in C oder einer verwandten Programmiersprache

Qualifikationsziele / Kompetenzen

Der/Die Studierende kann kleinere Programmieraufgaben und Standardprogrammierprobleme der Mathematik selbständig bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektarbeit in Form von Programmieraufgaben (ca. 20-25 Std.)

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Exchange Austauschprogramm Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Moduli	Modulbezeichnung				Kurzbezeichnung
Computerorientierte Mathematik					10-M-COM-152-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
4	besta	nden / nicht bestanden			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
list also					

Einführung in moderne mathematische Software-Pakete zur symbolischen Mathematik wie Mathematica oder Maple und zur numerischen Mathematik wie Matlab, begleitend und ergänzend zu den Modulen 10-M-ANA-G und 10-M-LNA-G. Computergestützte Lösung von Aufgaben aus den Bereichen Lineare Algebra, Geometrie, Analysis, insbesondere Differential- und Integralrechnung, Visualisierung von Funktionen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende erlernt den Umgang mit höher entwickelten mathematischen Software-Paketen und vermag deren Einsatzmöglichkeiten bei der Lösung mathematischer Probleme einzuschätzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(1) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektarbeit in Form von Programmieraufgaben (ca. 20-25 Std.)

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Exchange Austauschprogramm Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Modulbezeichnung	Kurzbezeichnung	
Mathematik 4 für Studierende der Physik und verwandter theorie)	11-M-F-152-m01	
Modulverantwortung	anbietende Einrich	tung
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik	Fakultät für Physik	und Astronomie

, , ,				
ECTS	ECTS Bewertungsart		zuvor bestandene Module	
8	8 numerische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzungen	
1 Seme	ster	grundständig		

Grundkenntnisse der Funktionalanalysis, die im Kurs Quantenmechanik I benötigt werden.

Die Definition des Hilbertraums erschließt Verständnis für quantenmechanischer Zustände als Vektoren. Die darstellungsfreie Form der Quantenmechanik und die durch Basiszustände erzeugte Darstellung als Wellenfunktion bilden mit dem sog. Bracket-Formalismus von Dirac ein wichtiges Element des formalen Gerüstes der Ouantenmechanik.

Grundlagen der partiellen Differentialgleichungen der Physik und Systeme von Differentialgleichungen.

Teil I: Funktionalanalysis

- 1.1 Lineare Vektorräume
- 1.2 Metrische, normierte Räume
- 1.3 Lineare Operatoren
- 1.4 Funktionenraum, Vervollständigung, Lebesgue-Integral, Hilbertraum
- 1.5 Lineare Operatoren auf dem Hilbertraum
- 1.6 Matrixdarstellung von Operatoren
- 1.8 Die Diracsche Delta-Funktion und ihre unterschiedlichen Darstellungen
- 2. Partielle Differentialgleichungen
- 2.1 Lineare partielle Differentialgleichungen 2. Ordnung
- 2.2 1D und 3D Wellengleichung
- 2.3 Helmholtz-Gleichung und Potentialtheorie
- 2.4 Parabolische Differentialgleichungen

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegende Mathematikkenntnisse und über grundlegende Kenntnisse der Mathematik des Hilbertraumes sowie über Kenntnisse über Lösungsmethoden für partielle Differentialgleichungen und beherrscht die benötigten Rechentechniken.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 124 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modul	ezeich	nnung			Kurzbezeichnung
Theore	tische	Mechanik			11-T-M-152-m01
Moduly	Modulverantwortung			anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für Theoretisch Physik und Astrophysik			ts für Theoretische	Fakultät für Physik	und Astronomie
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Semester grundständig		Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Aufgaben erfolgreich bearbeitet wurden. Details werden vom Dozenten bzw. der Dozentin zu Semesterbeginn bekanntgegeben.			

- 1. Newtonsche Formulierung: Inertialsysteme, Newtonsche Gesetze, Bewegungsgleichungen; Eindimensionale Bewegung, Energieerhaltung; Harmonischer Oszillator; Bewegung im Anschauungsraum, konservative Kräfte
- 2. Lagrangesche Formulierung: Variationsprinzipien, Euler-Lagrange-Gleichung; Nebenbedingungen; Koordinatentransformationen, Mechanische Eichtransformation; Symmetrien, Noether-Theorem, Zyklische Koordinaten; Beschleunigte Bezugssysteme und Scheinkräfte
- 3. Hamiltonsche Formulierung: Legendre-Transformation, Phasenraum; Hamilton-Funktion, kanonische Gleichungen; Poisson-Klammern, kanonische Transformationen; Erzeugende von Symmetrien, Erhaltungssätze; minimale Kopplung; Liouville-Theorem; Hamilton-Jacobi-Formulierung [optional]
- 4. Anwendungen: Zentralkraftprobleme; Mechanische Ähnlichkeit, Virialsatz; Kleine Schwingungen; Teilchen im elektromagnetischen Feld; Starre Körper, Drehmoment und Trägheitstensor, Kreisel und Euler-Gleichungen [optional]; Streuung, Wirkungsquerschnitt [optional]
- 5. Relativistische Dynamik: Lorentz-Transformation; Minkowski-Raum; Bewegungsgleichungen
- 6. Nichtlineare Dynamik: Stabilitätstheorie; KAM-Theorie [optional]; Deterministisches Chaos [optional]

Qualifikationsziele / Kompetenzen

Die Studierenden haben erste Erfahrungen in der Arbeitsweise der theoretischen Physik erworben. Sie sind mit den Prinzipien der theoretischen Mechanik und ihren verschiedenen Formulierungen vertraut. Sie sind in der Lage, die erlernten mathematischen Methoden und Verfahren selbstständig auf einfache Probleme der theoretischen Physik anzuwenden und die Resultate zu interpretieren. Insbesondere haben sie sich grundlegende mathematische Konzepte angeeignet.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulb	Modulbezeichnung				Kurzbezeichnung
Elektro	dynam	ik			11-T-E-152-m01
Moduly	erantv/	vortung		anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik			ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Semester grundständig					
Inhalte	Inhalte				
o Math	o Mathematische Werkzeuge: Gradient Divergenz Rotation: Kurven- Flächen- Volumenintegrale: Stokesscher				

- o. Mathematische Werkzeuge: Gradient, Divergenz, Rotation; Kurven-, Flächen-, Volumenintegrale; Stokesscher und Gaußscher Satz; Delta-Funktion; Fourier-Transformation; Vollständige Funktionensysteme; Lösen partieller Differentialgleichungen
- 1. Maxwell-Gleichungen
- 2. Elektrostatik: Coulombgesetz; elektrostatisches Potential; geladene Grenzfläche; elektrostatische Feldenergie (Kondensator); Multipolentwicklung; Randwertprobleme; numerische Lösung; Bildladungen; Green'sche Funktionen; Entwicklung nach orthogonalen Funktionen
- 3. Magnetostatik: Stromdichte; Kontinuitätsgleichung; Vektorpotential; Biot-Savart-Gesetz; magnetisches Moment; Analogien zur Elektrostatik
- 4. Maxwell-Gleichungen in Materie: Elektrische und magnetische Suszeptibilität; Grenzflächen
- 5. Dynamik elektromagnetischer Felder: Faraday-Induktion; RCL-Kreise; Feldenergie und -impuls; Potentiale; ebene Wellen; Wellenpakete; ebene Wellen in Materie; Hohlraumresonatoren und Wellenleiter; inhomogene Wellengleichung; zeitlich oszillierende Quellen und Dipolstrahlung; beschleunigte Punktladungen
- 6. Spezielle Relativitätstheorie: Lorentz-Transformation; Gleichzeitigkeit; Längenkontraktion und Zeitdilatation; Lichtkegel; Wirkung, Energie und Impuls; ko- und kontravariante Tensoren; kovariante klassische Mechanik;
- 7. Kovariante Elektrodynamik: Feldstärketensor und Maxwell-Gleichungen; Transformation der Felder; Doppler-Effekt; Lorentz-Kraft

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse der Methoden der theoretischen Physik. Sie beherrschen die Grundlagen der theoretischen Elektrodynamik. Sie sind mit den mathematischen Methoden vertraut und in der Lage, sie selbstständig zur Beschreibung und Lösung von Problemen aus diesen Bereichen anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 128 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Angewandte Physik

(ECTS-Punkte)

Modul	Modulbezeichnung				Kurzbezeichnung
Grundl	lagen d	er zwei- und dreidimens	ionalen Röntgenbildş	gebung	11-ZDR-152-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	rende Leitung des Physik	calischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					

Physik der Röntgenstrahlerzeugung (Röntgenröhren, Synchrotron). Physik der Wechselwirkung von Röntgenstrahlung und Materie (Phototabsorption, Streuung), Physik der Röntgenstrahldetektion. Mathematik der Rekonstruktionsalgorithmen (Gefilterte Rückprojektion, Fourierrekonstruktion, Iterative Methoden). Bildverarbeitung (Bilddatenvorverarbeitung, Merkmalsextraktion, Visualisierung, ...). Anwendungen der Röntgenbildgebung in der Industrie (Bauteilprüfung, Materialcharakterisierung, Metrologie, Biologie, ...). Strahlenschutz und biologische Strahlenwirkung (Dosis, ...).

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Grundlagen der Erzeugung von Röntgenstrahlung und ihrer Wechselwirkung mit Materie. Sie kennen bildgebende Verfahren unter Verwendung von Röntgenstrahlung und Methoden zur Bildverarbeitung sowie die Anwendungsgebiete dieser Methoden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023)

Modull	Modulbezeichnung				Kurzbezeichnung
Bildgel	bende l	Methoden am Synchrotro	on		11-BMS-152-m01
Modul	verantv	vortung		anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalte				

Periodische und aperiodische Signale. Grundlagen der diskreten und exakten Fourier-Transformation. Grundlagen der digitalen Signal- und Bildverarbeitung. Diskretisierung von Signalen/Abtasttheorem (Shannon). Homogene und lineare Filter, das Faltungsprodukt. Fensterfunktionen und Interpolation von Bildern. Das Parsival-Theorem, Korrelation und energetische Betrachtung. Statistische Signale, Bildrauschen, Momente, stationäre Signale. Tomographie: Hankel- und Radon-Transformation.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist mit den Grundlagen der digitalen Bild- und Signalverarbeitung vertraut. Er/Sie kennt die Funktionsweisen und Anwendungen verschiedener Bildverarbeitungsmethoden und ist in der Lage, sie in der Praxis anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Modul	bezeich	nnung			Kurzbezeichnung
Abbildende Sensoren im Infraroten					11-ASI-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			kalischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene l	Module	
3	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalto					

Infrarotkameras sind wichtige experimentelle und technische Hilfsmittel, zum Beispiel für Messungen von Temperaturen. Der Spektralbereich des Infraroten liegt zwischen dem Sichtbaren, wo als natürliche Lichtquelle die Sonne dominiert, und den Mikrowellen bis Radiowellen mit künstlichen Strahlern. Im Infraroten gibt es deutliche und zum Teil dominierende Abstrahlung von Körpern mit Umgebungstemperatur. Die Vorlesung führt in die physikalische Optik dieses Spektralbereichs ein und behandelt: Besonderheiten von Infrarot-Kameras und Wärmebildern, verschiedene Sensortypen (Bolometer, Quantentrog, Supergitter), bis hin zur Bewertung solcher Sensoren mit neurophysiologischen Aspekten.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches, vertieftes Wissen im Fachgebiet Abbildende Sensoren im Infraroten. Er/Sie kennt die verschiedenen Technologien und Detektorstrukturen und ihre Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modull	bezeich	inung			Kurzbezeichnung
Einfühi	rung in	die Bildverarbeitung			11-EBV-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen Insti			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
3	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalte				

Einführung in die Bildverarbeitung. Bilder als zweidimensionale Signale; Digitalisierung. Zweidimensionale Fouriertransformation. Punktoperationen (z.B. Bildaufhellung) und Nachbarschaftsoperationen (z.B. Rauschminderung). Automatische Bilderkennung: Segmentierung, Klassifizierung. Technische Bilderzeugung. Anwendungen (z.B. Bewegungsverfolgung). Dreidimensionale Bilder.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches und vertieftes Wissen im Fachgebiet Bildverarbeitung. Er kennt die Grundlagen und Theorie der Signalverarbeitung für Bilder und dazu notwendige Kenntnisse der Bilderzeugung. Er kann selbständig Fachliteratur erarbeiten, versteht die Charakteristik der Bildverarbeitung mit kommerzieller Software, und kann eigene Bildverarbeitung erstellen für die Analyse von Experimenten mit bildgebenden Messverfahren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulb	oezeich	inung			Kurzbezeichnung
Labor-	und Mo	esstechnik			11-LMT-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalisc			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalte				

Einführung in elektronische und optische Messverfahren in der physikalischen Messtechnik sowie Vakuum- und Kryotechnik, Tieftemperaturtechnik, Lichtquellen, spektroskopische Verfahren und die Messwerterfassung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kompetenzen in elektronischen und optischen Messverfahren in der physikalischen Messtechnik sowie Vakuum- und Kryotechnik, Tieftemperaturtechnik, Lichtquellen, spektroskopische Verfahren und die Messwerterfassung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Modulbezeichnung Kurz				Kurzbezeichnung	
Einführ	ung in	Labview			11-LVW-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalische			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Das Studienmodul beinhaltet einen Grundlagenbereich und einen Aufbaubereich. Der Grundlagenbereich "NI LabVIEW Basic 1" ist die erste Stufe jeder LabVIEW-Lernphase. LabVIEW Basic führt Sie systematisch in die Funktionen und Einsatzmöglichkeiten der Entwicklungsumgebung LabVIEW ein. Sie lernen das Prinzip der Datenflussprogrammierung sowie gängige LabVIEW-Architekturen kennen. Sie werden lernen, LabVIEW-Anwendungen für vielfältigste Einsatzbereiche zu entwickeln, angefangen bei Prüf- und Mess-anwendungen bis hin zur Datenerfassung, Gerätesteuerung, Datenprotokollierung und Messwertanalyse. Im Aufbaubereich "NI LabVIEW Core 2" erlernen Sie die Entwicklung vollständiger Stand-alone-Anwendungen mit der grafischen Entwicklungsumgebung LabVIEW. Dieser Kurs ist der Aufbaukurs zu LabVIEW Basic 1 und führt Sie in die gängigsten Entwicklungstechniken ein, um LabVIEW-Anwendungen für die unterschiedlichsten Einsatzbereiche erfolgreich zu implementieren und zu verteilen. Behandelte Themen sind u. a. Techniken und Verfahren zur Verbesserung der Anwendungsleistung, z.B. durch eine optimierte Wiederverwendung bestehenden Codes, die Verwendung von Datei-I/O-Funktionen, Grundlagen der Datenverwaltung, Ereignisprogrammierung sowie Praktiken zur Fehlerbehandlung. Nach Kursende sind Sie in der Lage, LabVIEW-Funktionen gezielt für Ihre individuellen Anforderungen einzusetzen, wodurch eine zügige und produktive Anwendungsentwicklung ermöglicht wird.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches und vertieftes Wissen in der Anwendung von LabVIEW. Er/Sie ist beherrscht die Grundlagen der Arbeit mit LabView und ist in der Lage, Anwendungen z.B. zur Erfassung und Analyse von Messdaten zu entwickeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, WS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 139 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung		Kurzbezeichnung
Elektrochemische Energiespeicher und -wandler		08-FU-EEW-152-m01
Modulverantwortung	anbietende Einrich	tung

Inhaber/-in des Lehrstuhls für Chemische Technologie der Materialsynthese

Institut für Funktionsmaterialien und Biofabrikation

ECTS	CTS Bewertungsart		zuvor bestandene Module
5	numerische Notenvergabe		
Modulo	dauer	Niveau	weitere Voraussetzungen
1 Seme	ster	grundständig	

Inhalte

Chemie und Anwendungen von: Batteriesystemen (wässrige und nichtwässrige Systeme wie Blei-, Nickel-Cadmium- und Nickelmetallhydrid-, Natrium-Schwefel-, Natrium-Nickelchlorid, Lithium-Ionen- Akkus), elektrochemischen Doppelschichtkondensatoren, Redox-Flow-Batterie, Brennstoffzellensystemen (AFC, PEMFC, DMFC, PAFC, SOFC), Solarzellen (Si, CIS, CIGS, GaAs, organische und Farbstoffsolarzelle), Thermoelektrika.

Qualifikationsziele / Kompetenzen

Die Studierenden erwerben vertiefte Kenntnisse auf dem Gebiet der elektrochemischen Energiespeicherung und -wandlung und kann diese auf wissenschaftliche Fragestellungen anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + P(1) + E(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Prüfung und b) Vortestate/Nachtestate (Prüfungsgespräche jeweils ca. 15 Min., Protokoll jeweils ca. 5-10 S.) und Bewertung der praktischen Leistungen (2-4 Stichproben); Gewichtung 7:3

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Physics International (2020)

Master (1 Hauptfach) Quantum Engineering (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Quantentechnologie (2021)

Aktuelle Themen der Quantentechnologie

(ECTS-Punkte)

Moduli	bezeich	nnung			Kurzbezeichnung		
Aktuel	le Then	nen der Quantentechnolo	ogie		11-BXN5-212-m01		
Modul	verantv	vortung		anbietende Einrichtung			
Geschäftsführende Leitung des Physikalischen Instituts				Fakultät für Physik und Astronomie			
ECTS	Bewe	rtungsart	zuvor bestandene Module				
5	nume	rische Notenvergabe					
Moduldauer		Niveau	weitere Voraussetzungen				
1 Semester		grundständig					
1.1.14.							

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Quantentechnologie im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Quantentechnologie bzw. Nanowissenschaften und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021) Modulstudium (Bachelor) Quantentechnologie (2021)

Modul	bezeich	nnung			Kurzbezeichnung		
Aktuel	le Then	nen der Quantentechnol	ogie		11-BXN6-212-m01		
Modul	verantv	vortung		anbietende Einrichtung			
Geschäftsführende Leitung des Physikalischen Instituts				Fakultät für Physik und Astronomie			
ECTS	Bewe	ertungsart zuvor bestanden		Module			
6	nume	erische Notenvergabe					
Moduldauer		Niveau	weitere Voraussetzungen				
1 Semester		grundständig					
Lab alla							

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Quantentechnologie im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Quantentechnologie bzw. Nanowissenschaften und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulstudium (Bachelor) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Aktuel	Aktuelle Themen der Quantentechnologie				11-BXN8-212-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalta				

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Quantentechnologie im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Quantentechnologie bzw. Nanowissenschaften und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung				Kurzbezeichnung	
Aktuelle Themen der Physik					11-BXP8-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weit		weitere Voraussetzungen			
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.			
	L.LIt.				

Aktuelle Themen der Experimentellen oder Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen oder Theoretischen Physik im Bachelorstudiengang Nanostrukturtechnik entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Physik und das Verständnis der Mess- und/oder Rechenmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung				Kurzbezeichnung	
Aktuelle Themen der Physik					11-BXP6-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfungsausschussvorsitzende/-r				Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weit		weitere Voraussetzungen			
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.			
	L.L. It.				

Aktuelle Themen der Experimentellen oder Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen oder Theoretischen Physik im Bachelorstudiengang Nanostrukturtechnik entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Physik und das Verständnis der Mess- und/oder Rechenmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Aktuelle Themen der Physik					11-BXP5-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Module	dauer	Niveau	weitere Voraussetzungen		
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.			
Inhalte	Inhalte				

Aktuelle Themen der Experimentellen oder Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen oder Theoretischen Physik im Bachelorstudiengang Nanostrukturtechnik entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Physik und das Verständnis der Mess- und/oder Rechenmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Ausge	Ausgewählte Kapitel der Quantentechnologie				11-CSN6-212-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Geschä	äftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Quantentechnologie im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Quantentechnologie bzw. Nanowissenschaften und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modul	Modulbezeichnung				Kurzbezeichnung
Ausgev	vählte	Kapitel der Festkörperpl	hysik		11-CSF6-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfung	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere			weitere Voraussetz	ungen	
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.			
Inhalte	Inhalte				

Ausgewählte Kapitel der Festkörperphysik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Grundlagenkenntnisse in einem Spezialgebiet der Festkörperphysik und Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Modulstudium (Master) Physik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Moduli	bezeich	nung			Kurzbezeichnung	
Ausgev	wählte	Kapitel der Energie- und	Materialforschung		11-CSEM6-152-m01	
Modul	verantw	ortung		anbietende Einrich	itung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewei	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ester	grundständig	Genehmigung des F	Prüfungsausschusse	s erforderlich.	
Inhalte)					
Ausgev	vählte I	Kapitel der Energie- und I	Materialforschung.			
		sziele / Kompetenzen	_			
der Me	ss- und		oden, die zu deren E	rwerb notwendig sin	aterialforschung und Verständnis id. Er/Sie kann das Erlernte in die	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
V (3) +	R (1)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	se / Bonusfähigkeit sofern möglich)	
Sofern fung ge der Do	eine Kl eändert zentin l		estgelegt wurde, kan ens vier Wochen vor kündigen.	n diese in eine mün	.). dliche Einzel- bzw. Gruppenprü- estgesetzten Klausurtermin von	
Platzve	ergabe					
weitere	e Angab	oen				
Arbeits	aufwar	nd				
180 h	180 h					
Lehrtu	Lehrturnus					
k. A.						
Bezug zur LPO I						
Verwer	Verwendung des Moduls in Studienfächern					
		auptfach) Nanostrukturte	=			
Bachel	-	auptfach) Nanostrukturte				
Dachal	Pachalar (4 Hauntfach) Quantontachnologia (2004)					

Bachelor (1 Hauptfach) Quantentechnologie (2021) Modulstudium (Master) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Neuartige Transportphänomene					11-NTP-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalisch			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
6	nume	rische Notenvergabe			
Module	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester grundständig				
Inhalte	Inhalte				

Aktuelle Forschungsergebnisse und Anwendungen neuartiger Transportphänomene.

Qualifikationsziele / Kompetenzen

Der / die Studierende verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Nanostrukturtechnik bzw. Nanowissenschaften, insbesondere im Bereich neuartiger Transportphänomene, und das Verständnis der Messund/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er / sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Schlüsselqualifikationsbereich

(20 ECTS-Punkte)

Allgemeine Schlüsselqualifikationen

(5 ECTS-Punkte)

Neben den nachfolgend aufgeführten Modulen können auch Module aus dem von der JMU angebotenen Pool der allgemeinen Schlüsselqualifikationen (ASQ-Pool) belegt werden.

Allgemeine Schlüsselqualifikationen (fachspezifisch)

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
MINT Vorkurs Rechenmethoden der Physik	11-P-VKM-202-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitungen des Physikalischen Instituts
und des Instituts für Theoretische Physik und AstrophysikFakultät für Physik und Astronomie

ewertungsart	zuvor bestandene Module
estanden / nicht bestanden	
uer Niveau	weitere Voraussetzungen
er grundständig	
L	estanden / nicht bestanden uer Niveau

Inhalte

Grundlagen der Mathematik und elementare Rechenmethoden aus dem Schulstoff und teilweise weiterführend, insbesondere zur Einführung und Vorbereitung auf die Module der Experimentellen und Theoretischen Physik.

1. Grundlegende Geometrie und Algebra, 2. Differentialrechnung und Reihen, 3. Integralrechnung, 4. Vektoren – gerichtete Größen, 5. Koordinatensysteme, 6. komplexe Zahlen

Qualifikationsziele / Kompetenzen

Studierende verfügen über die Kenntnisse der Grundlagen der Mathematik und die Fertigkeiten in den elementaren Rechentechniken, welche zum erfolgreichen Studieneinstieg in der Experimentellen und Theoretischen Physik benötigt werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(1) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Übungsaufgaben (erfolgreiche Bearbeitung von ca. 50% von ca. 6 Übungsblättern) oder b) Vortrag (ca. 15 Min.)

Prüfungsturnus: jährlich WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

Lehrturnus: jährlich, WS

Bezug zur LPO I

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020) Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung
Fit for Industry					11-FFl-202-m01
Modulverantwortung				anbietende Einrich	tung
Geschä	Geschäftsführende Leitung des Physikalischen Ins			Fakultät für Physik und Astronomie	
ECTS	Bewertungsart zuvor bestandene		zuvor bestandene M	Module	
3	besta	nden / nicht bestanden			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					

Physiker im Beruf. Tätigkeiten in der Industrie und an der Universität. Orientierung im industriellen Umfeld. Produktentstehung. Verdienstmöglichkeiten. Projektmanagement. Marketing, Unternehmensstrategie und Management. Führungsaufgaben und Soft Skills

Qualifikationsziele / Kompetenzen

Die Studierenden sind sich über die Anforderungen an eine berufliche Tätigkeit in der Industrie bewusst und können aufgrund ihrer Kenntnisse eine Entscheidung über ihre eigene berufliche Zukunft treffen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(1) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden.

Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Projektmanagement in der Praxis					11-PMP-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen In			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
3	besta	nden / nicht bestanden			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester weiterführend					
Inhalte	Inhalte				

Technisches Projektmanagement in der Praxis, Inhalte: Definitionen, Begriffe, Kardinalfehler im Projektmanagement, Projektablauf, Kick-Off und Stakeholder, Teams und Resources, Meilensteine und Planung, Visualisierung und Reporting, Konflikte, Erfolgsfaktoren, Technisches und wirtschaftliches Controlling, Zielvereinbarungen, Balanced Score Cards, Erarbeiten der Fallbeispiele.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kenntnisse des Technischen Projektmanagements. Er/Sie ist mir verschiedenen Methoden und Erfolgsfaktoren vertraut und in der Lage, ein Projekt zu definieren, den Ablauf zu planen und es erfolgreich durchzuführen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(1) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: im Semester der LV und im Folgesemester

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung					Kurzbezeichnung
Biotechnologie und gesellschaftliche Akzeptanz					07-SQF-BGA-152-m01
Modul	verantv	vortung		anbietende Einrichtung	
Inhabe Biophy	•	es Lehrstuhls für Pflanze	nphysiologie und	Fakultät für Biologie	
ECTS	Bewe	rtungsart	zuvor bestandene l	Module	
3	3 numerische Notenvergabe				
Modul	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	1 Semester grundständig				
Inhalte					

Anwendungen der grünen Biotechnologie; biologischer Hintergrund, wirtschaftliche Interessen, ökologische Gefahren, gesellschaftliche Akzeptanz.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kompetenz bei der Aufarbeitung/Beurteilung von Fragen aus der Gesellschaft zu biotechnologischen Anwendungen. Sie haben Kenntnisse zur Literaturrecherche, zur kritischen Betrachtung/Bearbeitung der gesellschaftlichen und wissenschaftlichen Veröffentlichungen. Sie haben ihre und Fähigkeiten zu mündlichen und schriftlichen Präsentationsformen und deren Anwendung zwecks Darstellung der gesammelten Daten verbessert.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(1) + S(2)

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Hausarbeit bzw. Erarbeitung von Lehrmaterialien (ca. 5-10 S.)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

20 Plätze.

Für den Fall, dass die Zahl der Bewerbungen die Zahl der verfügbaren Plätze übersteigt, erfolgt die Verteilung der Teilnahmeplätze nach folgender Maßgabe:

Das Modul steht primär Studierenden des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten zur Verfügung. Findet das Modul im Rahmen sonstiger Studienfächer Verwendung, werden zwei Kontingente gebildet. Dabei sind 95% der Plätze für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 180 ECTS-Punkten und 5% der Plätze (insgesamt mindestens ein Teilnehmer bzw. eine Teilnehmerin) für Studierende des Bachelor-Studienfachs Biologie in der Ausprägung von 60 ECTS-Punkten sowie für Studierende der Bachelor-Studienfächer Computational Mathematics und Mathematik jeweils in der Ausprägung von 180 ECTS-Punkten im Rahmen des integrierten Anwendungsfachs Biologie (sowie für eventuell weitere "importierende" Studienfächer) vorgesehen. Soweit die für ein Kontingent vorgesehenen Plätze auf Grund mangelnder Nachfrage nicht benötigt werden, so werden diese an das jeweils andere Kontingent abgegeben. Sofern innerhalb eines Teilmoduls mehrere Lehrveranstaltungen eine beschränkte Aufnahmekapazität haben, ist diese für die Lehrveranstaltungen eines Teilmoduls einheitlich bestimmt. In diesem Fall wird für sämtliche betroffenen Lehrveranstaltungen eines Teilmoduls ein einheitliches Verfahren durchgeführt. Dabei werden zunächst Bewerberinnen bzw. Bewerber berücksichtigt, welche bereits mindestens ein anderes Teilmodul des betreffenden Moduls bestanden haben.

Für nachträglich freiwerdende Plätze werden Nachrückverfahren durchgeführt.

Auswahlverfahren der 1. Gruppe (95%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt vorrangig nach den Vorleistungen der Studierenden. Hierzu wird zum Zeitpunkt der Bewerbung eine Rangliste aus den ECTS-Punkten und der Durchschnittsnote aller im Rahmen des Studiums erbrachten Prüfungsleistungen bzw. Teilmodule aus der Biologie (ohne Chemie, Physik, Mathematik) folgendermaßen erstellt: Zunächst werden eine erste Rangliste nach dem nach ECTS-Punkten gewichteten Notenschnitt (qualitativer Rang), eine zweite Rangliste nach der Summe der erreichten ECTS (quantitativer Rang) gebildet. Aus der Summe dieser beiden Ranglistenplätze

1-Fach-Bachelor Quantentechnologie (2021)	JMU Würzburg • Erzeugungsdatum 30.03.2024 • PO-Da-	Seite 160 / 170
	tensatz Bachelor (180 ECTS) Quantentechnologie - 2021	

wird eine dritte Rangliste erstellt, die zur Platzvergabe herangezogen wird. Bei Rang-Gleichheit entscheidet der bessere Notenrang, ansonsten das Los.

Auswahlverfahren der 2. Gruppe (5%): Die Auswahl der Teilnehmerinnen bzw. Teilnehmer erfolgt nach folgenden Quoten: 1. Quote (50 % der Plätze): Summe der bisher erreichten ECTS-Punkte aus Modulen/Teilmodulen der Fakultät für Biologie; im Falle des Gleichrangs wird gelost. 2. Quote (25 % der Plätze): Anzahl der Fachsemester der jeweiligen Bewerberin bzw. des jeweiligen Bewerbers; im Falle des Gleichrangs wird gelost. 3. Quote (25 % der Plätze): Losverfahren.

Findet das Modul nur im Bachelor-Studienfach Biologie (Erwerb von 180 ECTS-Punkten) Verwendung, erfolgt die Vergabe der Plätze entsprechend dem Auswahlverfahren der 1. Gruppe.

weitere Angaben

__

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

W	URZBU	JRG P	5623 238	33 0 25	1-Fach-Bachelor, 180 ECTS-Punkte		
Modull	Modulbezeichnung Kurzbezeichnung						
Allgemeine Kompetenzen für Studierende der Quantentechnologie 11-NASQ5-212-m01					11-NASQ5-212-m01		
Modulverantwortung anbietende Einrichtung					chtung		
Geschä	iftsfühı	rende Leitung des Physik	alischen Instituts	Fakultät für Phys	ik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module			
5	nume	rische Notenvergabe					
Module	dauer	Niveau	weitere Voraussetz	ungen			
1 Seme	ster	grundständig					
Inhalte	!						
Allgem	eine Ko	ompetenzen für Studierer	nde der Quantentech	nologie.			
Qualifi	kations	sziele / Kompetenzen					
nologie Quante	Der/Die Studierende besitzt allgemeine Kompetenzen, die den Anforderungen an ein Modul der Quantentechnologie im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Quantentechnologie und das Verständnis, das zu seinem Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.						
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)				
V (2) +	R (2)						
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterw	veise / Bonusfähigkeit sofern möglich)		
ca. 30 l Sofern fung ge der Doz	Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich) Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.). Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen. Prüfungssprache: Deutsch und/oder Englisch						

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Fachspezifische Schlüsselqualifikationen

(15 ECTS-Punkte)

Vurshassichnung

A4 - J. 11 - - - ! - | - - - - -

Modulbezeichnung					Lkurzbezeichnung
Mathematische Rechenmethoden Physik					11-M-MR-202-m01
Modulverantwortung				anbietende Einrichtung	
	Geschäftsführende Leitung des Instituts für TI Physik und Astrophysik			Fakultät für Physik und Astronomie	
ECTS	ECTS Bewertungsart		zuvor bestandene Module		
6 bestanden / nicht bestanden					
Module	Moduldauer Niveau		weitere Voraussetzungen		

Inhalte

2 Semester

Grundlagen der Mathematik und elementare Rechenmethoden jenseits des Schulstoffes, insbesondere zur Einführung und Vorbereitung auf die Module der Theoretischen Physik und der Klassischen bzw. Experimentellen Physik.

Qualifikationsziele / Kompetenzen

grundständig

Der/Die Studierende verfügt über die Kenntnisse der Grundlagen der Mathematik und der elementaren Rechentechniken, welche in der Theoretischen Physik und der Experimentellen Physik benötigt werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2) + V(2) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Übungsaufgaben (erfolgreiche Bearbeitung von ca. 50% von ca. 13 Übungsblättern) oder Vortrag (ca. 15 Min.)

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung	Kurzbezeichnung
Hauptseminar Quantentechnologie	11-N-HS-212-m01

 Modulverantwortung
 anbietende Einrichtung

 Geschäftsführende Leitungen des Physikalischen Instituts
 Fakultät für Physik und Astronomie

Geschäftsführende Leitungen des Physikalischen Instituts | Fakultät für Physik und des Instituts für Theoretische Physik und Astrophysik

ECTS Bewertungsart		rtungsart	zuvor bestandene Module
5 numerische Notenvergabe		rische Notenvergabe	
Modulo	dauer	Niveau	weitere Voraussetzungen
1 Semester		grundständig	Vorleistung: Regelmäßige Teilnahme (mind. 85% der Termine).
			•

Inhalte

Aktuelle Fragestellungen zu fortgeschrittenen Themen der Quantentechnologie.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse in einem Spezialgebiet der fortgeschrittenen Quantentechnologie. Sie sind in der Lage, sich diese Kenntnisse selbstständig anzueignen, zusammenzufassen und in einem Vortrag verständlich darzustellen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Vortrag (30-45 Min.) mit Diskussion und b) Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Auswertung von Messungen: Fehlerrechnung					11-P-FR1-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	iftsfüh	rende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie
ECTS	Bewertungsart zuvor bestandene			Module	
2	besta	anden / nicht bestanden			
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Semester		grundständig	bearbeiten. Die Vorl gaben erfolgreich be	leistung ist erbracht,	ester sind ca. 13 Übungsblätter zu wenn ca. 50% der gestellten Auf- tails werden vom Dozenten bzw. ntgegeben.
Inhalto	Inhalto				

Fehlerarten, Fehlerabschätzung und -fortpflanzung, graphische Darstellungen, lineare Regression, Mittelwerte und Standardabweichung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über die Fähigkeit, Messergebnisse unter Verwendung von Fehlerfortpflanzung und den Grundlagen der Statistik auszuwerten, Schlussfolgerungen daraus zu ziehen und diese darzustellen und zu diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(1) + \ddot{U}(1)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch den Studierenden oder die Studierende einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

60 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 c)

§ 77 | Nr. 1 d)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulb	ezeich	nung			Kurzbezeichnung	
Fortges	Fortgeschrittene Fehlerrechnung und computergestütztes Arbeiten 11-P-FR2-152-mo1					
Modulverantwortung anbietende Einri					nrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewei	rtungsart	zuvor bestandene M			
2	besta	nden / nicht bestanden				
Modulo	lauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ster	grundständig	Es wird dringend en ren.	npfohlen das M	odul 11-P-FR1 vor 11-P-FR2 zu absolvie	
Inhalte						
		ne Methoden der Datena omputergestützte Datena		hnung. Verteilu	ngsfunktionen, Signifikanztests, Mo-	
Qualifil	kations	ziele / Kompetenzen	,			
nung. E	r/Sie b		computergestützten	Datenanalyse i	se von Messdaten und der Fehlerrech- und besitzt die Fähigkeiten, diese auf :ieren.	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
V (1) + (Ü (1)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache sc	ofern nicht Deutsch / Turnus	sofern nicht semest	erweise / Bonusfähigkeit sofern möglich)	
_	_	oen (erfolgreiche Bearbei is: jährlich, SS	itung von ca. 50% vo	n ca. 10 Übungs	sblättern)	
Platzve	rgabe					
			-			
weitere	Angal	oen				
Arbeits	aufwai	nd				
60 h						
Lehrtur	nus					
k. A.						
Bezug	zur LPC) I				
Verwen	dung	les Moduls in Studienfäc	hern			
Bachel	or (1 Ha	auptfach) Physik (2015)				
Bachel	or (1 Ha	auptfach) Nanostrukturte	chnik (2015)			
Bachel	Bachelor (1 Hauptfach) Mathematische Physik (2015)					
Bachel	or (1 Ha	auptfach) Mathematische	Physik (2016)			
		auptfach) Physik (2020)				
Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)						
	Bachelor (1 Hauptfach) Mathematische Physik (2020)					
Bachel	achelor (1 Hauptfach) Funktionswerkstoffe (2021)					
Dachal	scholor (4 Hauptfach) Quantontochnologia (2024)					

Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Abschlussbereich

(10 ECTS-Punkte)

Modulbez	Modulbezeichnung Kurzbezeichnung				
Bachelorarbeit Quantentechnologie 11-BA-N-212-m01					
Modulver	antwortung		anbietende Einrichtung		
Prüfungsausschussvorsitzende/-r			Fakultät für Physik	und Astronomie	
ECTS B	ewertungsart	zuvor bestandene M	Module		
10 n	umerische Notenvergabe				
Moduldaı	uer Niveau	weitere Voraussetz	ungen		
1 Semeste	er grundständig				
Inhalte					
Aufgabe a		unter Anleitung, insb	esondere nach beka	oder ingenieurwissenschaftlichen Innten Verfahren und wissen-	
Qualifikat	tionsziele / Kompetenzen				
ten Verfal zusamme		Gesichtspunkten zu		hnik insbesondere nach bekann- ner schriftlichen Abschlussarbeit	
	zugeordnet	,			
Erfolgsüb	erprüfung (Art, Umfang, Sprache s	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	se / Bonusfähigkeit sofern möglich)	
Bachelor-	Thesis (ca. 25 S.) sprache: Deutsch oder Englis				
Platzverg	abe				
weitere A	ngaben	_			
Bearbeitungszeit: 12 Wochen					
Arbeitsaufwand					
300 h					
Lehrturnus					
k. A.					
Bezug zur LPO I					

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Quantentechnologie (2021)