

Modulhandbuch

für das Studienfach

Physik

als 1-Fach-Bachelor mit dem Abschluss "Bachelor of Science" (Erwerb von 180 ECTS-Punkten)

Prüfungsordnungsversion: 2015 verantwortlich: Fakultät für Physik und Astronomie

Inhaltsverzeichnis

Bereichsgliederung des Stud		5
Qualifikationsziele / Kompe	tenzen	6
Verwendete Abkürzungen, K	onventionen, Anmerkungen, Satzungsbezug	8
Pflichtbereich		10
Modulgruppe Experimente	lle Physik	11
Klassische Physik		12
Klassische Physik 1 (Mechanik)		13
Klassische Physik 2 (Wärmelehr	e und Elektromagnetismus)	16
Optik und Quantenphysik	:1	19
Optik und Quantenphysik		20
Optik und Quantenphysik	; II	23
Optik und Wellen - Übungen		24
Atome und Quanten - Übungen		25
Struktur der Materie		26
Einführung in die Festkörperphy Kern- und Elementarteilchenphy		27
		29
Modulgruppe Theoretische	•	31
Mechanik und Quantenm	ecnanik	32
Theoretische Mechanik Quantenmechanik		33
Statistische Physik und E	lektrodynamik l	35
Statistische Physik und Elektroc	· · · · · · · · · · · · · · · · · · ·	37 38
Statistische Physik und E		ر 40
Statistische Physik - Übungen	ickirodynamik n	40
Elektrodynamik - Übungen		42
Modulgruppe Mathematik		43
Mathematik 1 und 2		44
	er Physik und Nanostrukturtechnik	45
	er Physik und Nanostrukturtechnik	46
Mathematik 3 und 4		47
	er Physik und verwandter Fächer (Differentialgleichungen)	48
	er Physik und verwandter Fächer (Funktionentheorie)	50
Modulgruppe Physikalisch		52
Physikalisches Praktikum		53
•	chanik, Wärme, Elektromagnetismus)	54
· ·	ssische Physik, Elektrik, Schaltungen) praktikum C (Moderne Physik, Computergestützte Experimente	56
Wahlpflichtbereich	ipraktikum C (moderne Priysik, Computergestutzte Experimente) 57 58
•	rmatik Mathamatik	
Modulgruppe Chemie, Info	illialik, Malliellialik	59 60
•	ische Chemie für Studierende der Naturwissenschaften	65
,	de der Medizin, Biomedizin, Zahnmedizin und Naturwissenscha	_
Einführung in die Informatik für S		77
Computerorientierte Mathematik		78
Numerische Mathematik 1 für Stu Numerische Mathematik 2 für Stu		80
	der Mathematik und anderer Fächer	82 83
Modellierung und Wissenschaftli		85
Gruppentheorie		86
1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 • PO-Datensatz Bachelor (180 ECTS) Physik - 2015	Seite 2 / 164

Programmierpraktikum für Studierende der Naturwissenschaften	87
Grundlagen der Programmierung	88
Modulgruppe Angewandte Physik	90
Computational Physics	91
Elektronische Schaltungen	93
Labor- und Messtechnik	95
Einführung in Labview	97
Labor- und Messtechnik in der Biophysik Grundlagen der zwei- und dreidimensionalen Röntgenbildgebung	99
Bildgebende Methoden am Synchrotron	101 103
Methoden der zerstörungsfreien Material- und Bauteilcharakterisierung	105
Abbildende Sensoren im Infraroten	107
Einführung in die Bildverarbeitung	109
Grundlagen der Klassifikation von Mustern	111
Statistik, Datenanalyse und Computerphysik	112
Modulgruppe Astrophysik	114
Astrophysik	115
Astrophysikalisches Praktikum	117
Modulgruppe Teilchenphysik	118
Teilchenphysik (Standardmodell)	119
Detektoren für Teilchenstrahlung	121
Relativitätstheorie	122
Modulgruppe Halbleiterphysik	124
Halbleiterlaser und Photonik	125
Grundlagen der Halbleiterphysik	127
Physik der Halbleiterbauelemente	129
Kristallwachstum, dünne Schichten und Lithographie	131
Modulgruppe Festkörper- und Nanostrukturphysik	132
Nanoanalytik	133
Einführung in die Energietechnik	135
Modulgruppe Aktuelle Themen der Physik	137
Aktuelle Themen der Experimentellen Physik	138
Aktuelle Themen der Experimentellen Physik Aktuelle Themen der Experimentellen Physik	139
Aktuelle Themen der Experimenteiten Physik Aktuelle Themen der Theoretischen Physik	140 141
Aktuelle Themen der Theoretischen Physik	142
Aktuelle Themen der Theoretischen Physik	143
Ausgewählte Kapitel der Astrophysik	144
Ausgewählte Kapitel der Teilchenphysik	145
Ausgewählte Kapitel der Festkörperphysik	146
Ausgewählte Kapitel der Theoretischen Physik	147
Schlüsselqualifikationsbereich	148
Allgemeine Schlüsselqualifikationen	149
Allgemeine Schlüsselqualifikationen (fachspezifisch)	150
Einführungskurs Mathematik	151
Fit for Industry	153
Projektmanagement in der Praxis	154
Allgemeine Kompetenzen für Physiker und Physikerinnen	155
Fachspezifische Schlüsselqualifikationen	156
Mathematische Rechenmethoden Physik	157
Hauptseminar Experimentelle/Theoretische Physik	159
Auswertung von Messungen: Fehlerrechnung	160
Fortgeschrittene Fehlerrechnung und computergestütztes Arbeiten	162
Abschlussbereich	163

Bachelor-Thesis Physik 164

Bereichsgliederung des Studienfachs

Bereich / Unterbereich	ECTS-Punkte	ab Seite
Pflichtbereich	129	10
Modulgruppe Experimentelle Physik		11
Klassische Physik	16	12
Optik und Quantenphysik I	6	19
Optik und Quantenphysik II	10	23
Struktur der Materie	14	26
Modulgruppe Theoretische Physik		31
Mechanik und Quantenmechanik	16	32
Statistische Physik und Elektrodynamik I	6	37
Statistische Physik und Elektrodynamik II	10	40
Modulgruppe Mathematik		43
Mathematik 1 und 2	16	44
Mathematik 3 und 4	16	47
Modulgruppe Physikalisches Praktikum		52
Physikalisches Praktikum	19	53
Wahlpflichtbereich	21	58
Modulgruppe Chemie, Informatik, Mathematik		59
Modulgruppe Angewandte Physik		90
Modulgruppe Astrophysik		114
Modulgruppe Teilchenphysik		118
Modulgruppe Halbleiterphysik		124
Modulgruppe Festkörper- und Nanostrukturphysik		132
Modulgruppe Aktuelle Themen der Physik		137
Schlüsselqualifikationsbereich	20	148
Allgemeine Schlüsselqualifikationen	5	149
Allgemeine Schlüsselqualifikationen (fachspezifisch)		150
Fachspezifische Schlüsselqualifikationen	15	156
Abschlussbereich	10	163

Qualifikationsziele / Kompetenzen

Nach erfolgreichem Abschluss des Studiums verfügen die Absolventinnen und Absolventen über die folgenden Kompetenzen:

- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.
- Sie verstehen die Grundlagen und Zusammenhänge der Physik.
- Sie verfügen über Kenntnisse der mathematischen und theoretischen Grundlagen der Physik sowie über die theoretischen und experimentellen Methoden zur Erlangung neuer Erkenntnisse.
- Sie verfügen über ein breites Grundlagenwissen aus den wichtigsten Teilgebieten der Physik sowie tiefergehende Kenntnisse in mindestens einem Teilgebiet.
- Sie sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten, physikalische und mathematische Methoden unter Anleitung auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Absolventinnen und Absolventen kennen die wissenschaftliche Arbeitsweise und sind in der Lage, physikalische Probleme unter Beachtung der Regeln guter wissenschaftlicher Praxis zu bearbeiten.
- Sie sind in der Lage, ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darzustellen und zu vertreten.

Wissenschaftliche Befähigung

- Die Absolventinnen und Absolventen verstehen die mathematischen, theoretischen und experimentellen Grundlagen der Physik und können diese anwenden.
- Die Absolventinnen und Absolventen können unter Anleitung Experimente durchführen, analysieren und die erhaltenen Ergebnisse darstellen und bewerten.
- Die Absolventinnen und Absolventen setzen die erlernten theoretischen und experimentellen Methoden unter Anleitung zur Erlangung neuer Erkenntnisse ein.
- Die Absolventinnen und Absolventen sind in der Lage, physikalische Probleme durch Anwendung der wissenschaftlichen Arbeitsweise und unter Beachtung der Regeln guter wissenschaftlicher Praxis (Dokumentation, Fehleranalyse) zu bearbeiten.
- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen können ein breites Grundlagenwissen aus den wichtigsten Teilgebieten der Physik sowie tiefergehende Kenntnisse in mindestens einem Teilgebiet abrufen.
- Die Absolventinnen und Absolventen verstehen die wesentlichen Zusammenhänge und Konzepte der einzelnen Teilgebiete der Physik.
- Die Absolventinnen und Absolventen sind in der Lage, sich mit Hilfe von Fachliteratur in neue Aufgabengebiete einzuarbeiten, physikalische und mathematische Methoden unter Anleitung auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen besitzen Abstraktionsvermögen, analytisches Denken, Problemlösungskompetenz und die Fähigkeit, komplexe Zusammenhänge zu strukturieren.

Befähigung zur Aufnahme einer Erwerbstätigkeit

- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.
- Die Absolventinnen und Absolventen sind in der Lage, konstruktiv und zielorientiert in einem heterogenen Team zusammenzuarbeiten, unterschiedliche und abweichen-de Ansichten produktiv zur Zielerreichung zu nutzen und auftretende Konflikte zu lösen (Teamfähigkeit).

- Die Absolventinnen und Absolventen können ihre erworbenen Kompetenzen in unterschiedlichen interkulturellen Kontexten und in internationale zusammengesetzten Teams anwenden.
- Die Absolventinnen und Absolventen sind in der Lage, Probleme und deren Lösungen zielgruppengerecht und auch in einer Fremdsprache aufzubereiten und darzustellen.
- Die Absolventinnen und Absolventen sind in der Lage physikalische und mathematische Methoden unter Anleitung auf konkrete experimentelle oder theoretische physikalische Aufgabenstellungen anzuwenden, Lösungswege zu entwickeln und die Ergebnisse zu interpretieren und zu bewerten.
- Die Absolventinnen und Absolventen kennen die wichtigsten Anforderungen und Arbeitsweisen im industriellen Umfeld sowie in Forschung und Entwicklung.
- Die Absolventinnen und Absolventen sind befähigt, komplexere Probleme zu analysieren und zu lösen und sich sehr schnell auch in weniger vertraute Themenkomplexe einzuarbeiten.

Persönlichkeitsentwicklung

- Die Absolventinnen und Absolventen kennen die Regeln guter wissenschaftlicher Praxis und beachten sie.
- Die Absolventinnen und Absolventen können ihr Wissen und ihre Erkenntnisse einem Fachpublikum gegenüber darstellen und vertreten.

Befähigung zum gesellschaftlichen Engagement

- Die Absolventinnen und Absolventen können naturwissenschaftliche Entwicklungen kritisch reflektieren und deren Auswirkungen auf die Wirtschaft, Gesellschaft und die Umwelt in Ansätzen erfassen (Technikfolgenabschätzung).
- Die Absolventinnen und Absolventen haben ihr Wissen bezüglich wirtschaftlicher, gesellschaftlicher, naturwissenschaftlicher, kultureller etc. Fragestellungen erweitert und können begründet Position beziehen.
- Die Absolventinnen und Absolventen entwickeln die Bereitschaft und Fähigkeit, ihre Kompetenzen in partizipative Prozesse einzubringen und aktiv an Entscheidungen mitzuwirken.

Verwendete Abkürzungen

Veranstaltungsarten: **E** = Exkursion, **K** = Kolloquium, **O** = Konversatorium, **P** = Praktikum, **R** = Projekt, **S** = Seminar, **T** = Tutorium, **Ü** = Übung, **V** = Vorlesung

Semester: **SS** = Sommersemester, **WS** = Wintersemester

Bewertungsarten: **NUM** = numerische Notenvergabe, **B/NB** = bestanden / nicht bestanden

Satzungen: **(L)ASPO** = Allgemeine Studien- und Prüfungsordnung (für Lehramtsstudiengänge), **FSB** = Fachspezifische Bestimmungen, **SFB** = Studienfachbeschreibung

Sonstiges: **A** = Abschlussarbeit, **LV** = Lehrveranstaltung(en), **PL** = Prüfungsleistung(en), **TN** = Teilnehmende, **VL** = Vorleistung(en)

Konventionen

Sofern nichts anderes angegeben ist, ist die Lehrveranstaltungs- und Prüfungssprache Deutsch, der Prüfungsturnus ist semesterweise, es besteht keine Bonusfähigkeit der Prüfungsleistung.

Anmerkungen

Gibt es eine Auswahl an Prüfungsarten, so legt die Dozentin oder der Dozent in Absprache mit der/dem Modulverantwortlichen bis spätestens zwei Wochen nach LV-Beginn fest, welche Form für die Erfolgsüberprüfung im aktuellen Semester zutreffend ist und gibt dies ortsüblich bekannt.

Bei mehreren benoteten Prüfungsleistung innerhalb eines Moduls werden diese jeweils gleichgewichtet, sofern nachfolgend nichts anderes angegeben ist.

Besteht die Erfolgsüberprüfung aus mehreren Einzelleistungen, so ist die Prüfung nur bestanden, wenn jede der Einzelleistungen erfolgreich bestanden ist.

Satzungsbezug

Muttersatzung des hier beschriebenen Studienfachs:

ASP02015

zugehörige amtliche Veröffentlichungen (FSB/SFB):

22.07.2015 (2015-40) bis auf späte im Fast-Track eingefügtes Wahlpflichtmodul 10-KDS-152

14.03.2018 (2018-16)

12.12.2018 (2018-63)

12.06.2024 (2024-73)

Dieses Modulhandbuch versucht die prüfungsordnungsrelevanten Daten des Studienfachs möglichst genau wiederzugeben. Rechtlich verbindlich ist aber nur die offizielle amtliche Veröffentlichung der

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 8 / 164
	DO Deterant Dechalor (40a ECTC) Physik and	

FSB/SFB. Insbesondere gelten im Zweifelsfall die dort angegebenen Beschreibungen der Modulprüfungen.

Pflichtbereich

(129 ECTS-Punkte)

Modulgruppe Experimentelle Physik

(ECTS-Punkte)

Klassische Physik

(16 ECTS-Punkte)

Modul	bezeicl	nung			Kurzbezeichnung	
Klassis	sche Ph	nysik 1 (Mechanik)			11-E-M-152-m01	
Modulverantwortung				anbietende Einrich	tung	
Geschä	aftsfüh	rende Leitung des Physik	alischen Instituts	ischen Instituts Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module			
8	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Semester grundständig Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsbl zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gest Aufgaben erfolgreich bearbeitet wurden. Details werden von der Dbzw. dem Dozenten zu Semesterbeginn bekanntgegeben.			cht, wenn ca. 50% der gestellten . Details werden von der Dozentin			
Inhalte	•					

- 1. Grundlagen: Physikalische Größen, Vorfaktoren, abgeleitete Größen, Dimensionsanalyse, Zeit/Länge/Masse (Definition, Messverfahren, SI), Bedeutung der Metrologie;
- 2. Punktmechanik: Kinematik, Bewegung in 2D und 3D/Vektoren, Spezialfälle: gleichförmige und konstant beschleunigte Bewegung, freier Fall, schiefer Wurf; Kreisbewegung in Polarkoordinaten
- 3. Newtonsche Axiome: Kräfte und Impulsdefinition, Gewicht vs. Masse, Kräfte am Pendel, Kräfte auf atomarer Skala, isotrope und anisotrope Reibung. Aufstellung von Bewegungsgleichungen und Lösungsansätze
- 4. Arbeit & Energie: (kinetische), Leistung, Beispiele
- 5. Elastischer, inelastischer und superelastischer Stoß: Energie- und Impulserhaltung, Stöße im Massenmittelpunkts- und Schwerpunktssystem, Raketengleichung
- 6. Konservative und nicht-konservative Kraftfelder: Potential, potentielle Energie; Gravitationsgesetz, -waage, -feldstärke, -potenzial (allgemeine Relationen)
- 7. Drehbewegung: Drehimpuls, Winkelgeschwindigkeit, Drehmoment, Rotationsenergie, Trägheitsmoment, Analogien zur linearen Translation, Anwendungen, Satelliten (geostationäre und interstellare), Fluchtgeschwindigkeiten, Bahnkurven im Zentralpotential
- 8. Gezeitenkräfte: Inertialsystem, Bezugssysteme, Scheinkräfte, Foucault-Pendel, Coriolis-Kraft, Zentrifugalkraft 9. Galilei-Transformation: kurzer Exkurs in Maxwell-Gleichungen, Äther, Michelson-Interferometer, Einstein-Postulate, Problem der Gleichzeitigkeit, Lorentz-Transformation, Zeitdilatation und Längenkontraktion, relativistischer Impuls
- 10. Starrer Körper und Kreisel: Bestimmung Massenmittelpunkt, Trägheitstensor und -ellipsoid, Hauptträgheitsachsen und deren Stabilität, Tensor am Beispiel des Elastizitätstensors, Physik des Fahrrades; Kreisel: Präzession und Nutation, die Erde als Kreisel
- 11. Reibung: Haft- und Gleitreibung, Stick-Slip-Bewegung, Rollreibung, viskose Reibung, laminare Strömung, Wirbelbildung
- 12. Schwingungen: Darstellung auch mittels komplexer e-Funktion, Bewegungsgleichung (DGL) über Kräfte-, Drehmoment- und Energieansatz, Taylor-Entwicklung, harmonische Näherung; Feder- und Fadenpendel, physikalisches Pendel, gedämpfte Schwingung (Schwingfall, Kriechfall, aperiodischer Grenzfall), erzwungene Schwingung, Fourieranalyse
- 13. Gekoppelte Schwingungen: Eigenwerte und Eigenfunktionen, Doppelpendel, deterministische vs. chaotische Bewegung, nichtlineare Dynamik und Chaos
- 14. Wellen: Wellengleichung, transversale und longitudinale Wellen, Polarisation, Superpositionsprinzip, Reflexion am offenen und geschlossenen Ende, Schallgeschwindigkeit; Interferenz, Doppler-Effekt; Phasen und Gruppengeschwindigkeit, Dispersionsrelation
- 15. Elastische Verformungen von festen Körpern: Elastizitätsmodul, allgemeines Hookesches Gesetz, elastische Wellen
- 16. Fluide: Schweredruck und Auftrieb, Oberflächenspannung und Kontaktwinkel, Kapillarkräfte, stationäre Strömungen, Bernoulli-Gleichung; Boyle-Mariotte, Gasgesetze, barometrische Höhenformel, Luftdruck, Kompressibilität und Kompressionsmodul
- 17. Kinetische Gastheorie: ideales und reales Gas, Mittelwerte, Verteilungsfunktionen, Gleichverteilungssatz, Brownsche Molekularbewegung, Stoßquerschnitt, mittlere freie Weglänge, Diffusion und Osmose, Freiheitsgrade, spezifische Wärme

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Grundlagen und Zusammenhänge in der Mechanik, Schwingungen und Wellen sowie der kinetischen Gastheorie. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung			Kurzbezeichnung		
Klassische Physik 2 (Wärmelehre und Elektromagnetismus))	11-E-E-152-m01	
Modulverantwortung				anbietende Einrich	tung
Geschä	Geschäftsführende Leitung des Physikalischen Instituts Fakultät für Physik und Astronomie			und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ster	grundständig Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellte Aufgaben erfolgreich bearbeitet wurden. Details werden von der Dozen bzw. dem Dozenten zu Semesterbeginn bekanntgegeben.			ht, wenn ca. 50% der gestellten . Details werden von der Dozentin
Inhalte			•		

- 1. Wärmelehre (Anknüpfung an 11-E-M); Temperatur und Wärmemenge, Thermometer, Kelvinskala
- 2. Wärmeleitung, Wärmetransport, Diffusion, Konvektion, Strahlungswärme
- 3. Hauptsätze der Thermodynamik, Entropie, Irreversibilität, maxwellscher Dämon
- 4. Wärmekraftmaschinen, Arbeitsdiagramme, Wirkungsgrad, Beispiel: Stirlingmotor
- 5. Reale Gase und Flüssigkeiten, Aggregatzustände (auch Festkörper), van der Waals, kritischer Punkt, Phasenübergänge, kritische Phänomene (Opaleszenz), Koexistenzbereich, Joule-Thomson
- 6. Elektrostatik, Grundbegriffe: elektrische Ladung, Kräfte; elektrisches Feld, Wdh. Feldbegriff, Feldlinien, Feld einer Punktladung
- 7. Gaußscher Satz, Bezug zum Coulomb-Gesetz, Definition "Fluss"; Gaußsche Fläche, Gaußscher Integralsatz; besondere Symmetrien; Divergenz und GS in differentieller Form
- 8. Elektrisches Potenzial, Arbeit im E-Feld, elektr. Potenzial, Potenzialdifferenz, Spannung; Potenzialgleichung, Äquipotenzialflächen; verschiedene wichtige Beispiele: Kugel, Hohlkugel, Kondensatorplatten, elektrischer Dipol; Spitzeneffekte, Segnerrad
- 9. Materie im E-Feld, Ladung im homogenen Feld, Millikan-Versuch, Braunsche Röhre; Elektron: Feldemission, Glühemission, Dipol im homogenen und inhomogenen Feld; Influenz, Faradayscher Käfig
- 10. Kondensator, Spiegelladung, Definition, Kapazität; Platten-, Kugelkodensator; Kombination von Kondensatoren; Medien im Kondensator; Elektrische Polarisation, Verschiebungs- und Orientierungspolarisation, mikroskopisches Bild; dielektrische Verschiebung; Elektrolytkondensator; Piezoeffekt
- 11. Elektrischer Strom, Einführung, Stromdichte, Driftgeschwindigkeit, Leitungsmechanismen
- 12. Widerstand und Leitwert, spezifischer Widerstand, Temperaturabhängigkeit; ohmsches Gesetz; Realisierungen (ohmsch und nichtohmsch, NTC, PTC)
- 13. Stromkreise, elektrische Netzwerke, Kirchhoffsche Regeln (Maschen, Knoten); Innenwiderstand einer Spannungsquelle, Messgeräte; Wheatstone-Brücke
- 14. Leistung und Energie im Stromkreis; Kondensatorladung; galvanisches Element; Thermospannung
- 15. Leitungsmechanismen, Leitung in Festkörpern: Bändermodell, Halbleiter; Leitung in Flüssigkeiten und Gasen
- 16. Magnetostatik, Grundlagen; Permanentmagnet, Feldeigenschaften, Definitionen und Einheiten; Erdmagnetfeld; Amperesches Gesetz, Analogie zu E-Feld, magn. Fluss, Wirbel
- 17. Vektorpotenzial, formale Herleitung, Analogie zum elektrischen Skalarpotenzial; Berechnung von Feldern, Beispiele, Helmholtzspulen
- 18. Bewegte Ladung im statischen Magnetfeld, Stromwaage, Lorentz-Kraft, Rechte-Hand-Regel, Elektromotor; Dipol im Feld; Bewegungsbahnen, Massenspektrometer, Wien-Filter, Hall-Effekt; Elektron: e/m-Bestimmung
- 19. Materie im Magnetfeld, Auswirkungen des Feldes auf Materie, relative Permeabilität, Suszeptibilität; Para-, Dia-, Ferromagnetismus; magn. Moment des Elektrons, Verhalten an Grenzflächen
- 20. Induktion, Faradaysches Induktionsgesetz, Lenzsche Regel, Flussänderung; elektrisches Wirbelfeld; Waltenhofensches Pendel; Induktivität, Selbstinduktion; Anwendungen: Transformator, Generator
- 21. Maxwellscher Verschiebungsstrom, Wahl der Integrationsfläche, Verschiebungsstrom; Maxwellsche Erweiterung, Wellengleichung; Maxwell-Gleichungen
- 22. Wechselstrom: Grundlagen, sinusförmige Schwingungen, Amplitude, Periode und Phase; Leistung und Effektivwert, Ohmscher Widerstand; kapazitiver & induktiver Widerstand, Kondensator und Spule, Phasenverschiebung und Frequenzabhängigkeit; Impedanz: komplexer Widerstand; Leistung beim Wechselstrom

- 23. Schwingkreise, Kombinationen von RLC; Serien- und Parallelschwingkreis; erzwungene Schwingung, gedämpfter harmonischer Oszillator (Bezug zu 11-E-M)
- 24: Hertzscher Dipol, Charakteristika der Abstrahlung, Nahfeld, Fernfeld; Rayleigh-Streuung; beschleunigte Ladung, Synchrotronstrahlung, Röntgenstrahlung;
- 25. Elektromagnetische Wellen: Grundlagen, Maxwells Feststellung zum Elektromagnetismus, Strahlungsdruck (Poyntingscher Vektor, Strahlungsdruck)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Grundlagen und Zusammenhänge in der Wärmelehre, Elektrizitätslehre und Magnetismus. Sie kennen die einschlägigen Experimente, mit denen diese beobachtet und gemessen werden. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Optik und Quantenphysik I

(6 ECTS-Punkte)

Modulbezeichnung			Kurzbezeichnung		
Optik und Quantenphysik				11-E-OAV-152-m01	
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzur		ungen			
2 Seme	ester	grundständig			
Inhalte	Inhalte				

A. Optik und Quanten

- 1. Licht: (Anknüpfung an 11-E-E), Grundbegriffe, Lichtgeschwindigkeit, Huygenssches Prinzip, Reflexion, Brechung.
- 2. Licht in Materie: Ausbreitungsgeschwindigkeit im Medium, Dispersion, komplexe und frequenzabhängige Dielektrizitätszahl, Absorption, Kramers-Kronig, Grenzflächen, Fresnelsche Formeln, Polarisation, Erzeugung durch Absorption, Doppelbrechung, optische Aktivität (Dipolstrahlung).
- 3. Strahlenoptik: Grundlegende Konzepte der geometrischen Optik, Fermatsches Prinzip, optischer Weg Gauß'sche Strahlenoptik, Reflexion, Refraktion, ebene Grenzflächen, Snellius, Totalreflexion, optisches Tunneln, evaneszente Wellen, Prisma, normale, anomale Dispersion, gekrümmte Grenzflächen, dünne und dicke Linse, Linsensysteme, Linsenschleiferformel, Aberrationen, Abbildungsfehler.
- 4. Optische Instrumente: Kenngrößen, Kamera, Auge, Lupe, Mikroskop, Teleskoptypen, Bündelstrahlengang vs. Bildkonstruktion (Elektronenlinsen, Elektronenmikroskop), Konfokalmikroskopie.
- 5. Wellenoptik: räumliche und zeitliche Kohärenz, Doppelspalt, Youngsches Experiment, Interferenzmuster (Intensitätsverlauf), dünne Schichten, parallele Schichten, keilförmige Schichten, Phasensprung, Newtonringe, Interferometer (Michelson, Mach-Zehnder, Fabry-Perot).
- 6. Beugung im Fernfeld: Fraunhoferbeugung, Beugung im Nah- und Fernfeld, Einzelspalt, Intensitätsverteilung, Aperturen, Auflösungsvermögen: Rayleigh- & Abbé-Kriterium, Fourieroptik, Optisches Gitter, N-fach-Spalt, Intensitätsverteilung, Gitterspektrograph, Auflösungsvermögen, Beugung an atomaren Gittern, Faltungssatz.
- 7. Beugung im Nahfeld: Fresnelbeugung, Nahfeldbeugung an kreisförmiger Blende/Scheibchen, Fresnelsche Zonenplatte, Nahfeldmikroskopie, Holographie, Konzept nach Huygens-Fresnel, Weißlichthologramm.
- 8. Versagen der klassischen Physik I von der Lichtwelle zum Photon: Schwarzer Strahler, Strahlungsgesetze, Photoeffekt, Comptoneffekt, Welle-Teilchen-Dualismus, Photonen, Quantenstruktur der Natur.
- 9. Versagen der klassischen Physik II Teilchen als Materiewellen: Konzept der de Broglie'schen Materiewelle, Beugung von Teilchenstrahlen (Davisson-Germer-Experiment, Doppelspalt).
- 10. Wellenmechanik: Wellenpakete, Phasen- und Gruppengeschwindigkeit (Wdh. von 11-E-M), Unschärferelation, Nyquist-Shannon-Theorem, Wellenfunktion als Wahrscheinlichkeitsamplitude, Aufenthaltswahrscheinlichkeit, Messprozess in der Quantenmechanik (Doppelspaltexperiment & welche-Weg-Information, Kollaps der Wellenfunktion, Schrödingers Katze).
- 11. Mathematische Konzepte der Quantenmechanik: Schrödingergleichung als Wellengleichung, Konzeptvergleich mit der Wellenoptik, freies Teilchen und Teilchen im Potential, zeitunabh. Schrödinger-Gleichung als Eigenwertgleichung, einfache Beispiele in 1D (Potentialstufe, Potentialbarriere und Tunneleffekt, Potentialkasten und Energiequantisierung, harmonischer Oszillator), mehrdim. Potentialkasten und Entartung, formale Theorie der QM (Zustände, Operatoren und Observablen).
- B. Atom- und Molekülphysik
- 1. Aufbau der Atome: Experimentelle Hinweise auf die Existenz von Atomen, Größenbestimmung, Ladungen und Massen im Atom, Isotopie, innere Struktur, Rutherford-Streuexperiment, Instabilität des "klassischen" Rutherford-Atoms.
- 2. Quantenmechanische Grundlagen der Atomphysik (kurze Wiederholung aus Teil A): Licht als Teilchen, Teilchen als Wellen, Wellenfunktion und Aufenthaltswahrscheinlichkeit, Unschärferelation und Stabilität des Atoms,

Energiequantisierung im Atom, Franck-Hertz-Versuch, Atomspektren, Bohrsches Atommodell und seine Grenzen, nicht-relativistische Schrödinger-Gleichung

- 3. Das nicht-relativistische Wasserstoffatom: Wasserstoff und wasserstoffähnliche Atome, Zentralpotential und Drehimpuls in der QM, Schrödinger-Gleichung des H-Atoms, Atomorbitale: Radial- und Winkelwellenfunktionen, Quantenzahlen und Energieeigenwerte.
- 4. Atome in äußeren Feldern: magnetisches Bahnmoment und gyromagnetisches Verhältnis, magnetische Felder: normaler Zeeman-Effekt, elektrische Felder: Stark-Effekt.
- 5. Fein- und Hyperfeinstruktur: Spin des Elektrons und magnetisches Spin-Moment, Stern-Gerlach-Versuch, Einstein-de Haas-Effekt, Ausblick auf die Dirac-Gleichung (Spin als relativistisches Phänomen und Existenz von Antimaterie), Elektron-Spin-Resonanz (ESR), Spin-Bahn-Wechselwirkung, relativistische Feinstruktur, Lamb-Shift (Quantenelektrodynamik), Kernspin und Hyperfeinstruktur.
- 6. Mehrelektronenatome: Heliumatom als einfachstes Beispiel, Ununterscheidbarkeit quantenmechanischer Teilchen, (Anti) Symmtrie gegenüber Teilchenvertauschung, Fermionen und Bosonen, Zusammenhang mit dem Spin, Pauli-Prinzip, Bahn- und Spinwellenfunktion von Zweiteilchensystemen (Spin-Singlets und -Triplets), LS- und jj-Kopplung, Periodensystem der Elemente, Aufbauprinzip der elektronischen Zustände (inkl. Hund'sche Regeln).
- 7. Licht-Materie-Wechselwirkung: zeitabhängige Störungstheorie (Fermis Goldene Regel) und optische Übergänge, Matrixelemente und Dipolnäherung, Auswahlregeln und Symmetrie, Linienverbreiterungen (Lebensdauer, Dopplereffekt, Stoßverbreiterung), Atomspektroskopie.
- 8. Der Laser: optische Elementarprozesse (Absorption, spontane und stimulierte Emission), stimulierte Emission als Lichtverstärkung, Einstein'sche Ratengleichungen, thermisches Gleichgewicht, Nicht-Gleichgewicht beim Laser: Bilanzgleichung, Besetzungsinversion, und Laserbedingung, prinzipieller Aufbau eines Lasers, optisches Pumpen, 2-, 3- und 4-Niveau-Laser, Beispiele (Rubin-Laser, He-Ne-Laser, Halbleiterlaser).
- 9. Innerschalen-Anregungen und Röntgenphysik: Entstehung von Röntgenstrahlung, Bremsstrahlung und charakteristisches Spektrum, Röntgenemission zur Analytik (EDX), Röntgenabsorption und Kontrastbildung bei Röntgenaufnahmen, Röntgenphotoemission, nicht-strahlende Auger-Prozesse, Synchrotronstrahlung, Anwendungsbeispiele.
- 10. Moleküle und chemische Bindung: Wasserstoff-Molekülion (H2+) als einfachstes Beispiel: Näherung des starren Moleküls und LCAO-Ansatz, bindende und antibindende Molekülorbitale, Wasserstoff-Molekül (H2): Molekülorbitalnäherung vs. Heitler-London-Näherung, 2-atomige heteronukleare Moleküle: kovalente vs. ionische Bindung, van der Waals-Bindung und Lennard-Jones-Potential, (evt. konjugierte Moleküle).
- 11. Molekül-Rotationen und Schwingungen: Born-Oppenheimer-Näherung, Energieniveaus des starren Rotators (symmetrische und unsymmetrische Moleküle), Zentrifugalaufweitung, Molekül als (an)harmonischer Oszillator, Morse-Potential, Normalschwingungen, Schwingungs-Rotations-Wechselwirkung.
- 12. Molekülspektroskopie: Übergangsmatrixelemente, Schwingungsspektroskopie: Infrarotspektroskopie und Raman-Effekt, Schwingungs-Rotations-Übergänge: Fortrat-Diagramm, elektronische Übergänge: Franck-Condon-Prinzip.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Strahlen-, Wellen und Quantenoptik sowie Grundlagen von Quantenphänomenen, der Atom- und der Molekülphysik. Sie verstehen die theoretischen Konzepte und kennen Aufbau und Anwendung wichtiger optischer Instrumente und Messmethoden. Sie verstehen die Ideen und Konzepte der Quantentheorie und der Atomphysik und die einschlägigen Experimente, mit denen Quantenphänomene beobachtet und gemessen werden. Sie sind in der Lage, ihre Kenntnisse in einen größeren Zusammenhang einzuordnen und zu diskutieren.

Lehrveranstaltunger	(Art,	SWS,	Sprache	sofern	nicht	Deutsch')
---------------------	-------	------	---------	--------	-------	----------	---

V(4) + V(4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

mündliche Einzelprüfung (ca. 30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Optik und Quantenphysik II

(10 ECTS-Punkte)

Modulbezeichnung			Kurzbezeichnung		
Optik und Wellen - Übungen				11-E-OA-152-m01	
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	standene Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzun		ungen			
1 Seme	ster	grundständig			
Inhalto	Inhalto				

Übungen zur den in 11-E-OAV vermittelten Kenntnissen in Optik, U.a. Grundbegriffe, Fermatsches Prinzip, optischer Weg, Licht in Materie, Polarisation, Geometrische Optik, Optische Instrumente, Wellenoptik, Interferenz, Dünne Schichten, Interferometer, Fraunhoferbeugung Optisches Gitter, Fresnelbeugung, Holographie, Wellenpakete, Wellengleichung & Schrödingergleichung, Quantenstruktur der Natur, usw.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Strahlen-, Wellen und Quantenoptik. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 24 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Moduli	Modulbezeichnung Kurzbezeichnung					
Atome	Atome und Quanten - Übungen 11-E-AA-152-m01					
Moduly	/erantv	vortung		anbietende Einrich	tung	
Geschä	iftsführ	rende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Nodule		
5	nume	rische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ster	grundständig				
Inhalte						
perime Atome	ntelle (in äuße	Grundlagen der Quantenp	ohysik, Schrödingerg onenatome, Optische	leichung, Quantenm Übergänge und Spe	ysik. U.a. Aufbau der Atome, Exechanik des Wasserstoffatoms, ektroskopie, Laser, Moleküle und	
Qualifi	kations	sziele / Kompetenzen	,			
Quante ge der	nphän Atom- ι	omenen, der Atom- und o	der Molekülphysik. Si ematisch zu formulie	ie sind in der Lage, p eren und ihre Kenntn	inge und der Grundlagen von bhysikalische Zusammenhän- isse bei der Lösung mathema-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)			
Ü (2) Verans	taltung	ssprache: Ü: Deutsch od	er Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
Klausur (ca. 120 Min.) Prüfungssprache: Deutsch und/oder Englisch						
Platzvergabe						
						
weitere Angaben						
Arbeits	aufwai	nd				
150 h	150 h					

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Struktur der Materie

(14 ECTS-Punkte)

Modulbezeichnung			Kurzbezeichnung		
Einführung in die Festkörperphysik				11-E-F-152-m01	
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			calischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzur			weitere Voraussetz	ungen	
1 Seme	ester	grundständig			
Inhalte	Inhalte				

- 1. Das Freie-Elektronen-Gas (FEG), freie Elektronen; Zustandsdichte; Pauli-Prinzip; Fermi-Dirac-Statistik; spez. Wärme, Sommerfeld-Koeffizient; Elektronen in Feldern: Drude-Sommerfeld-Lorentz; elektrische und thermische Leitfähigkeit, Wiedemann-Franz-Gesetz; Hall-Effekt; Grenzen des Modells
- 2. Kristallstruktur, periodisches Gitter; Gittertypen; Bravais-Gitter; Miller-Indizes; einfache Kristallstrukturen; Gitterfehler; Polykristalle; amorphe Festkörper; gruppentheoretische Ansätze, Bedeutung der Symmetrie für elektronische Eigenschaften
- 3. Das reziproke Gitter (RG), Motivation: Beugung; Bragg-Bedingung; Definition; Brillouinzonen; Beugungstheorie: Streuung; Ewald-Konstruktion; Bragg-Gleichung; Laue-Gleichung; Struktur- und Formfaktor
- 4. Strukturbestimmung, Sonden: Röntgen, Elektronen, Neutronen; Verfahren: Laue, Debye-Scherrer, Drehkristall; Elektronenbeugung, LEED
- 5. Gitterschwingungen (Phononen), Bewegungsgleichungen; Dispersion; Gruppengeschwindigkeit; zweiatomige Basis: optischer, akustischer Zweig; Quantisierung: Phononenimpuls; optische Eigenschaften im IR; dielektrische Funktion (Lorentz-Modell); Beispiele für Dispersionskurven (Wdh. Kramers-Kronig), Messmethoden
- 6. Thermische Eigenschaften von Isolatoren, Einstein- und Debye-Modell; Phononenzustandsdichte; Anharmonizitäten und Wärmeausdehnung; Wärmeleitfähigkeit; Umklapp-Prozesse; Kristallfehler
- 7. Elektronen im periodischen Potential, Bloch-Theorem; Bandstruktur; Näherung fast freier Elektronen (NFE); stark gebundene Elektronen (tight binding, LCAO); Beispiele für Bandstrukturen, Fermi-Flächen, Spin-Bahn-Wechselwirkung
- 8. Supraleitung, BCS-Theorie, Paarbildung, Vernüpfung bosonischer- und fermionischer Moden, Bandstruktur, Vielteilchenaspekte (Quasiteilchenkonzept)

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge und der Grundlagen der Festkörperphysik (Bindung und Struktur, Gitterdynamik, thermische Eigenschaften, Grundlagen der elektronischen Eigenschaften [freies Elektronengas]). Sie verstehen den Aufbau von Festkörpern und kennen die experimentellen Methoden der Festkörperphysik sowie die theoretischen Modelle zur Beschreibung festkörperphysikalischer Phänomene. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch-physikalischer Aufgabenstellungen selbstständig anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 27 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modul	bezeich	nnung			Kurzbezeichnung
Kern- ι	ınd Ele	mentarteilchenphysik			11-E-T-152-m01
Modul	verantv	vortung		anbietende Einric	 :htung
Gesch	iftsfüh	rende Leitung des Physi	kalischen Instituts	Fakultät für Physi	k und Astronomie
ECTS	Bewe	rtungsart	zuvor bestandene	zuvor bestandene Module	
6	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Vorausset	zungen	
ı Seme	ester	grundständig			
Inhalte)				

- 2. Methoden der Kernphysik, Streuung und Spektroskopie, Kernradius, Aufbau der Materie, Massen- und Ladungsverteilung im Kern, Entdeckung von Proton und Neutron
- 3. Kernmodelle, Masse der Atomkerne, Tröpfchen-Modell, Bindungsenergie, Schalenmodell
- 4. Struktur der Kerne, Drehimpuls, Spin, Parität, mag. und elektr. Momente, kollektive Anregungsformen, Spin-Bahn-Wechselwirkung
- 5. Radioaktivität und Spektroskopie, Radioaktiver Zerfall, natürliche und zivilisatorische Quellen ionisierender Strahlung
- 6. Kernenergie, Nukleare Energie, Kern-Spaltung, Kernreaktoren, Kern-Fusion, Stern-Energie, Stern-Entwicklung, Entstehung der chemischen Elemente aus Wasserstoff
- 7. Strahlung und Materie, Wechselwirkung von Strahlung und Materie, Bethe-Bloch-Formel, Photoeffekt, Paarerzeugung
- 8. Instrumente, Beschleuniger und Detektoren
- 9. Elektromagnetische Wechselwirkung, Differentieller Wirkungsquerschnitt, virtuelle Photonen, Feynman-Graphen, Austauschwechselwirkung
- 10. Starke Wechselwirkung, Quarks, Gluonen, Farbe als Freiheitsgrad, Tief-inelastische Elektron-Proton-Streuung, Confinement, Asymptotische Freiheit, Teilchenzoo, Isospin, Seltsamkeit, SU(3)-Symmetrie, Antiprotonen
- 11. Schwache Wechselwirkung, Gebrochene Spiegelsymmetrien, Wu-Experiment, Ladungskonjugation, Zeitumkehr, CP-Invarianz, Austauschteilchen, W und Z, Neutrinos, Neutrino-Oszillationen
- 12. Standardmodell, Drei Familien von Leptonen und Quarks, Quark-Lepton-Symmetrie, Higgs-Boson, freie Parameter

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über das Verständnis der prinzipiellen Zusammenhänge der Kern- und Elementarteilchenphysik. Sie haben einen Überblick über die experimentellen Beobachtungen der Teilchenphysik und die theoretischen Modelle, die sie beschreiben.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h Lehrturnus

k. A.

1-Fach-Bachelor Physik (2015)		JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 29 / 164
		PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulgruppe Theoretische Physik

(ECTS-Punkte)

Mechanik und Quantenmechanik

(16 ECTS-Punkte)

Modul	oezeich	nnung			Kurzbezeichnung	
Theoretische Mechanik					11-T-M-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Instituts Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie			
ECTS	Bewe	rtungsart	rt zuvor bestandene		Module	
8	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig		Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Aufgaben erfolgreich bearbeitet wurden. Details werden von der Dozentin bzw. dem Dozenten zu Semesterbeginn bekanntgegeben.				

Inhalte

- 1. Newtonsche Formulierung: Inertialsysteme, Newtonsche Gesetze, Bewegungsgleichungen; Eindimensionale Bewegung, Energieerhaltung; Harmonischer Oszillator; Bewegung im Anschauungsraum, konservative Kräfte
- 2. Lagrangesche Formulierung: Variationsprinzipien, Euler-Lagrange-Gleichung; Nebenbedingungen; Koordinatentransformationen, Mechanische Eichtransformation; Symmetrien, Noether-Theorem, Zyklische Koordinaten; Beschleunigte Bezugssysteme und Scheinkräfte
- 3. Hamiltonsche Formulierung: Legendre-Transformation, Phasenraum; Hamilton-Funktion, kanonische Gleichungen; Poisson-Klammern, kanonische Transformationen; Erzeugende von Symmetrien, Erhaltungssätze; minimale Kopplung; Liouville-Theorem; Hamilton-Jacobi-Formulierung [optional]
- 4. Anwendungen: Zentralkraftprobleme; Mechanische Ähnlichkeit, Virialsatz; Kleine Schwingungen; Teilchen im elektromagnetischen Feld; Starre Körper, Drehmoment und Trägheitstensor, Kreisel und Euler-Gleichungen [optional]; Streuung, Wirkungsquerschnitt [optional]
- 5. Relativistische Dynamik: Lorentz-Transformation; Minkowski-Raum; Bewegungsgleichungen
- 6. Nichtlineare Dynamik: Stabilitätstheorie; KAM-Theorie [optional]; Deterministisches Chaos [optional]

Qualifikationsziele / Kompetenzen

Die Studierenden haben erste Erfahrungen in der Arbeitsweise der theoretischen Physik erworben. Sie sind mit den Prinzipien der theoretischen Mechanik und ihren verschiedenen Formulierungen vertraut. Sie sind in der Lage, die erlernten mathematischen Methoden und Verfahren selbstständig auf einfache Probleme der theoretischen Physik anzuwenden und die Resultate zu interpretieren. Insbesondere haben sie sich grundlegende mathematische Konzepte angeeignet.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulb	oezeich	nnung			Kurzbezeichnung
Quantenmechanik					11-T-Q-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Instituts Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig		grundständig	Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Aufgaben erfolgreich bearbeitet wurden. Details werden von der Dozentin bzw. dem Dozenten zu Semesterbeginn bekanntgegeben.		

Inhalte

- 1. Historie und Grundlagen: Grenzen der klassischen Physik; Historisch grundlegende Experimente; Von der klassischen Physik zur Quantenmechanik (QM)
- 2. Wellenfunktion und Schrödinger-Gleichung (SG): SG für freie Teilchen; Superposition; Wahrscheinlichkeitsverteilung für Impulsmessung; Korrespondenzprinzip; Postulate der QM; Ehrenfest-Theorem; Kontinuitätsgleichung; Stationäre Lösungen der SG
- 3. Formalisierung der QM: Eigenwertgleichungen; Physikalische Bedeutung der Eigenwerte eines Operators; Zustandsraum und Dirac-Schreibweise; Darstellungen im Zustandsraum; Tensorprodukte von Zustandsräumen
- 4. Postulate der QM (und deren Deutung): Zustand; Messung; zeitliche Entwicklung; Energie-Zeit-Unschärfe
- 5. Eindimensionale Probleme: Der harmonische Oszillator; Potentialstufe; Potentialschwelle; Potentialtopf; Symmetrieeigenschaften
- 6. Spin-1/2-Systeme I: Theoretische Beschreibung in Dirac-Schreibweise; Spin 1/2 im homogenen Magnetfeld; Zwei-Niveau-Systeme (Qubits)
- 7. Drehimpuls: Vertauschungsrelationen und Drehungen; Eigenwerte von Drehimpulsoperatoren (abstrakt); Lösung der Eigenwertgleichung in Polarkoordinaten (konkret)
- 8. Zentralpotential -- Wasserstoffatom: Bindungszustände in 3D; Coulomb-Potential
- 9. Bewegung im elektromagnetischen Feld: Hamilton-Operator; Normaler Zeeman-Effekt; Kanonischer und kinetischer Impuls; Eichtransformation; Aharonov-Bohm-Effekt; Schrödinger-, Heisenberg- und Wechselwirkungs-Darstellung; Bewegung eines freien Elektrons im Magnetfeld
- 10. Spin-1/2-Systeme II: Formulierung mittels Drehimpulsalgebra
- 11. Addition von Drehimpulsen: 12. Näherungsmethoden: Stationäre Störungstheorie (mit Beispielen); Variationsmethode; WKB-Methode; Zeitabhängige Störungstheorie
- 13. Atome mit mehreren Elektronen: Identische Teilchen; Helium-Atom; Hartree- und Hartree-Fock-Näherung; Atomaufbau und Hundsche Regeln

Qualifikationsziele / Kompetenzen

Die Studierenden haben erste Erfahrungen in der Arbeitsweise der theoretischen Physik erworben. Sie sind mit den Grundlagen der Quantentheorie vertraut. Sie sind in der Lage, die erlernten mathematischen Methoden und Verfahren auf einfache Probleme der Quantentheorie anzuwenden und die Resultate zu interpretieren. Insbesondere haben sie sich weitergehende mathematische Konzepte angeeignet.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 35 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Statistische Physik und Elektrodynamik I

(6 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Statistische Physik und Elektrodynamik					11-T-SE-152-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für T Physik und Astrophysik		ts für Theoretische	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
2 Semester grundständig					
Inhalte	Inhalte				

A. Statistische Physik

- o. Grundlagen der Statistik: Elemente der Statistik (zentraler Grenzwertsatz und Statistik der Extreme); Mikround Makrozustände; Wahrscheinlichkeitsraum (bedingte Wahrscheinlichkeit, statistische Unabhängigkeit);
- 1. Statistische Physik: Entropie und Wahrscheinlichkeitstheorie; Entropie in der klassischen Physik; Thermodynamisches Gleichgewicht in abgeschlossenen und offenen Systemen (mit Energie- und/oder Teilchenaustausch)
- 2. Ideale Systeme: Spinsysteme; Lineare Oszillatoren; Ideales Gas
- 3. Statistische Physik und Thermodynamik: Der 1. Hauptsatz; Quasistatische Prozesse; Entropie und Temperatur; Verallgemeinerete Kräfte; Der 2. und 3. Hauptsatz; Reversibilität; Übergang von der Statistischen Physik zur Thermodynamik
- 4. Thermodynamik: Thermodynamische Fundamentalbeziehung; Thermodynamische Potentiale; Zustandsänderungen; Thermodynamische Maschinen (Carnot-Maschine und Wirkungsgrad); Chemisches Potential
- 5. Ideale Systeme II, Quantenstatistik: Systeme identischer Teilchen; Ideales Fermigas; Ideales Bosegas und Bose-Einstein-Kondensation; Gitter- und Normalschwingungen: Phononen
- 6. Systeme wechelswirkender Teilchen: Näherungsmethoden (Mean-Field-Theorie, Sommerfeld-Entwicklung); Computer-Simulation (Monte-Carlo-Methode); Wechselwirkende Phononen (Debye-Näherung); Ising-Modelle (Besonderheiten in 1 und 2 Dimensionen); Yang-Lee-Theoreme; Van der Waals-Gleichung für reale wechselwirkende Gase
- 7. Kritische Phänomene: Skalengesetze, critical slowing down, schnelle Variable als Bad (Elektron-Phonon-Wechselwirkung und BCS-Supraleitung); Magnetismus (Quantenkritikalität bei tiefen Temperaturen, Quanntenphasenübergänge bei T=o); Probleme des thermodynamischen Limes

B. Elektrodynamik

- o. Mathematische Werkzeuge: Gradient, Divergenz, Rotation; Kurven-, Flächen-, Volumenintegrale; Stokesscher und Gaußscher Satz; Delta-Funktion; Fourier-Transformation; Vollständige Funktionensysteme; Lösen partieller Differentialgleichungen
- 1. Maxwell-Gleichungen
- 2. Elektrostatik: Coulombgesetz; elektrostatisches Potential; geladene Grenzfläche; elektrostatische Feldenergie (Kondensator); Multipolentwicklung; Randwertprobleme; numerische Lösung; Bildladungen; Green'sche Funktionen; Entwicklung nach orthogonalen Funktionen
- 3. Magnetostatik: Stromdichte; Kontinuitätsgleichung; Vektorpotential; Biot-Savart-Gesetz; magnetisches Moment; Analogien zur Elektrostatik
- 4. Maxwell-Gleichungen in Materie: Elektrische und magnetische Suszeptibilität; Grenzflächen
- 5. Dynamik elektromagnetischer Felder: Faraday-Induktion; RCL-Kreise; Feldenergie und -impuls; Potentiale; ebene Wellen; Wellenpakete; ebene Wellen in Materie; Hohlraumresonatoren und Wellenleiter; inhomogene Wellengleichung; zeitlich oszillierende Quellen und Dipolstrahlung; beschleunigte Punktladungen
- 6. Spezielle Relativitätstheorie: Lorentz-Transformation; Gleichzeitigkeit; Längenkontraktion und Zeitdilatation; Lichtkegel; Wirkung, Energie und Impuls; ko- und kontravariante Tensoren; kovariante klassische Mechanik;
- 7. Kovariante Elektrodynamik: Feldstärketensor und Maxwell-Gleichungen; Transformation der Felder; Doppler-Effekt; Lorentz-Kraft

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse der Methoden der theoretischen Physik. Sie beherrschen die Grundlagen der Elektrodynamik und Thermodynamik sowie der statistischen Mechanik. Sie können die erlernten theoretischen Konzepte und in größere physikalische Zusammenhänge einordnen und diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + V(4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

mündliche Einzelprüfung (ca. 30 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Statistische Physik und Elektrodynamik II

(10 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Statistische Physik - Übungen					11-T-SA-152-m01
Modul	Modulverantwortung			anbietende Einrichtung	
		rende Leitung des Institu strophysik	ts für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau weite		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalte				

Aufgaben zur statistischen Physik und theoretischen Thermodynamik entsprechend den in 11-T-SEV vermittelten Inhalte. U.a. Grundlagen der Statistik, Statistische Physik, Ideale Systeme, Hauptsätze, Thermodynamische Potentiale, Quantenstatistik, Fermi- und Bosegas, Systeme wechelswirkender Teilchen, Näherungsmethoden, Ising-Modelle, Kritische Phänomene usw.

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den mathematischen Methoden der theoretischen Thermodynamik und statistischen Physik vertraut und in der Lage, sie selbstständig zur Beschreibung und Lösung von Problemen der statistischen Physik anzuwenden und die Ergebnisse physikalisch zu interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

Ü (2)

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung	
Elektro	dynam	ik - Übungen			11-T-EA-152-m01	
Moduly	Modulverantwortung			anbietende Einrich	ntung	
		rende Leitung des Institu trophysik	ts für Theoretische	Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetz	ungen		
1 Seme	ster	grundständig		-		
Inhalte)					
ge, Ma tischer	xwell-G Felder	leichungen, Elektrostatik Elektromagentische We	k, Magnetostatik, Ma	xwell-Gleichungen iı	e. U.a. Mathematische Werkzeu- n Materie, Dynamik elektromagne ante Elektrodynamik usw.	
		sziele / Kompetenzen				
Lage, s	ie selb		ng und Lösung von P		lektrodynamik vertraut und in der odynamik anzuwenden und die	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
Ü (2) Verans	taltung	ssprache: Ü: Deutsch od	er Englisch			
Erfolgs	überpr	üfung (Art, Umfang, Sprache sc	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	se / Bonusfähigkeit sofern möglich)	
	•	20 Min.) che: Deutsch und/oder E	nglisch			
Platzve	ergabe					
weitere	Angal	pen	-			
Arbeits	aufwa	nd				
150 h						
Lehrtu	rnus					
k. A.						
Bezug zur LPO I						
Verwendung des Moduls in Studienfächern						
Bachel Bachel Bachel	or (1 Ha or (1 Ha or (1 Ha	auptfach) Physik (2015) auptfach) Mathematische auptfach) Mathematische auptfach) Physik (2020)	e Physik (2015)			

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Exchange Austauschprogramm Physik (2023)

Modulgruppe Mathematik

(ECTS-Punkte)

Mathematik 1 und 2

(16 ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Mathematik 1 für Studierende der Physik und Nanostrukturtechnik					10-M-PHY1-152-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekar	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Modul	Moduldauer Niveau weitere Vorau		weitere Voraussetz	ungen	
1 Seme	1 Semester grundständig				
Inhalte	Inhalte				

Grundlagen über Zahlen und Funktionen, Folgen und Reihen, Differential- und Integralrechnung in einer Veränderlichen, Vektorräume, einfache Differentialgleichungen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende lernt grundlegende Konzepte der Mathematik kennen. Er/Sie erwirbt die Fähigkeit, die hierbei erlernten Methoden auf einfache natur- und ingenieurwissenschaftliche Fragestellungen, insbesondere aus den Bereichen Physik und Nanostrukturtechnik, anzuwenden und die Ergebnisse zu interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(5) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Modulbezeichnung					Kurzbezeichnung	
Mathematik 2 für Studierende der Physik und Nanostrukturtechnik					10-M-PHY2-152-m01	
Modulverantwortung anbieten				anbietende Einrich	nbietende Einrichtung	
Studier	Studiendekan/-in Mathematik			Institut für Mathematik		
ECTS	Bewei	rtungsart	zuvor bestandene M	Module		
8	nume	rische Notenvergabe				
Modulo	Moduldauer Niveau weitere Voraussetzu		ungen			
1 Semester grundständig						
Inhalte	Inhalte					

Lineare Abbildungen und Gleichungssysteme, Matrizenkalkül, Eigenwerttheorie, Differential- und Integralrechnung in mehreren Veränderlichen, Differentialgleichungen, Fourier-Analysis.

Qualifikationsziele / Kompetenzen

Der/Die Studierende lernt grundlegende Konzepte der höheren Mathematik kennen. Er/Sie erwirbt die Fähigkeit, die hierbei erlernten Methoden auf natur- und ingenieurwissenschaftliche Fragestellungen, insbesondere aus den Bereichen Physik und Nanostrukturtechnik, anzuwenden und die Ergebnisse zu interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(5) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 20 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Mathematik 3 und 4

(16 ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Mathematik 3 für Studierende der Physik und verwandter Fächer (Differential-	11-M-D-152-mo1
gleichungen)	

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

,	,					
ECTS Bewertungsart		rtungsart	zuvor bestandene Module			
8 numerische Notenvergabe		rische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester		grundständig				

Inhalte

Grundlagen der gewöhnlichen Differentialgleichungen der Physik.

Gewöhnliche Differentialgleichungen und Systeme von Differentialgleichungen.

Grundlagen der Funktionentheorie.

- 1. Gewöhnliche Differentialgleichungen
- 1.1 Lösungsmethoden
- 1.2 Existenz- und Eindeutigkeitssatz
- 1.3 Systeme von Differentialgleichungen
- 1.4 Greens-Funktion für inhomogene Probleme
- 1.5 Hermitsche DGL, Legendre DGL
- 2. Funktionentheorie
- 2.1 Komplexe Funktionen
- 2.2 Differentiation, holomorphe Funktionen
- 2.3 Singularitäten im Komplexen
- 2.4 Komplexe Integration und der Cauchy Integralsatz
- 2.5 Laurent-Reihen, Residuensatz, Fourier-Transformation
- 2.6 Analytische Fortsetzung, meromorphe Funktionen, ganze Funktionen
- 2.7 Gamma-, Beta-, hypergeometrische Funktionen, Sätze von Weierstraß und Mittag-Leffler
- 2.8 Differentialgleichungen im Komplexen, Besselsche Differentialgleichung
- 2.9 Sattelpunktsmethode
- 3. (Quasi)Lineare Differentialgleichungen 1. Ordnung

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegende Mathematikkenntnisse zum Verständnis der dynamischen Gleichungen und Kenntnisse über Lösungsmethoden für gewöhnliche Differentialgleichungen sowie der Theorie der Funktionen einer komplexen Variablen und beherrscht die benötigten Rechentechniken.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 48 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung	Kurzbezeichnung	
Mathematik 4 für Studierende der Physik und verwandter I theorie)	11-M-F-152-mo1	
Modulverantwortung	anbietende Einrich	tung
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik	Fakultät für Physik	und Astronomie

7					
ECTS Bewertungsart		lene M	Module		
numerische Not	vergabe				
Moduldauer Niveau		ssetz	ungen		
nester grundstä	g				
uldauer Niveau	weitere Vorau	ssetz	ungen		

Inhalte

Grundkenntnisse der Funktionalanalysis, die im Kurs Quantenmechanik I benötigt werden.

Die Definition des Hilbertraums erschließt Verständnis für quantenmechanischer Zustände als Vektoren. Die darstellungsfreie Form der Quantenmechanik und die durch Basiszustände erzeugte Darstellung als Wellenfunktion bilden mit dem sog. Bracket-Formalismus von Dirac ein wichtiges Element des formalen Gerüstes der Ouantenmechanik.

Grundlagen der partiellen Differentialgleichungen der Physik und Systeme von Differentialgleichungen.

Teil I: Funktionalanalysis

- 1.1 Lineare Vektorräume
- 1.2 Metrische, normierte Räume
- 1.3 Lineare Operatoren
- 1.4 Funktionenraum, Vervollständigung, Lebesgue-Integral, Hilbertraum
- 1.5 Lineare Operatoren auf dem Hilbertraum
- 1.6 Matrixdarstellung von Operatoren
- 1.8 Die Diracsche Delta-Funktion und ihre unterschiedlichen Darstellungen
- 2. Partielle Differentialgleichungen
- 2.1 Lineare partielle Differentialgleichungen 2. Ordnung
- 2.2 1D und 3D Wellengleichung
- 2.3 Helmholtz-Gleichung und Potentialtheorie
- 2.4 Parabolische Differentialgleichungen

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegende Mathematikkenntnisse und über grundlegende Kenntnisse der Mathematik des Hilbertraumes sowie über Kenntnisse über Lösungsmethoden für partielle Differentialgleichungen und beherrscht die benötigten Rechentechniken.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 50 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modulgruppe Physikalisches Praktikum

(ECTS-Punkte)

Physikalisches Praktikum

(19 ECTS-Punkte)

Modul	bezeich	nnung	Kurzbezeichnung		
Physikalisches Praktikum A (Mechanik, Wärme, Elektromagneti			gnetismus)	11-P-PA-152-m01	
Modul	Modulverantwortung a			anbietende Einrichtung	
Gesch	äftsfühı	rende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
3	besta	nden / nicht bestanden			
Moduldauer Niveau weitere Vora		weitere Voraussetz	ungen		
1 Semester grundständig					

Inhalte

Messaufgaben zur Mechanik, Thermodynamik und Elektrizitätslehre. z.B.: Messung von Spannungen und Strömen, Wärmekapazität, Kalorimetrie, Dichte von Körpern, dynamische Viskosität, Elastizität, Oberflächenspannung, Federkonstante, Abfassung von graphischen Darstellungen und Abfassung von Messprotokollen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kenntnisse und Beherrschung von physikalischen Messgeräten und Experimentiertechniken. Er/Sie ist in der Lage, Experimente selbstständig zu planen und durchzuführen, auch in Kooperation mit anderen, und die Messergebnisse in einem Messprotokoll zu dokumentieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

praktische Leistung mit Vortrag (ca. 30 Min.)

Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung Physikalisches Praktikum B (Klassische Physik, Elektrik, Schaltungen)				Kurzbezeichnung	
				Schaltungen)	11-P-PB-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physik			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	besta	nden / nicht bestanden			
Module	Moduldauer Niveau		weitere Voraussetzungen		
2 Semester		grundständig	Es wird dringend empfohlen die Module 11-P-PA und 11-P-FR1 vor 11-P-PB zu absolvieren.		
Inhalta					

Inhalte

Physikalische Grundgesetze der Optik, der Schwingungen und Wellen, der Elektrizitätslehre und zu Schaltungen mit elektrischen Bauelementen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kenntnisse und Beherrschung von physikalischen Messgeräten und Experimentiertechniken. Er/Sie ist in der Lage, Experimente selbstständig zu planen und durchzuführen, auch in Kooperation mit anderen, und die Messergebnisse in einem Messprotokoll zu dokumentieren. Er/Sie verfügt über die Fähigkeit, die Messergebnisse unter Verwendung von Fehlerfortpflanzung und den Grundlagen der Statistik auszuwerten, Schlussfolgerungen daraus zu ziehen und diese darzustellen und zu diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P(2) + P(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

praktische Leistung mit Vortrag (ca. 30 Min.)

Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Exchange Austauschprogramm Physik (2023)

AA	UKZBU	ind 1	5 (3 2 3 2 3 8	3 0 2 5	1-Fach-Bachelor, 180 ECTS-Punkte	
Modulbezeichnung Kurzbezeichnung						
Physik	Physikalisches Fortgeschrittenenpraktikum C (Moderne Physik, Computergestützte Experimente) 11-P-PC-152-m01					
Moduly	erantv	vortung		anbietende Einrich	tung	
Geschä	iftsfühı	ende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene N	lodule		
8	besta	nden / nicht bestanden				
Modulo	dauer	Niveau	weitere Voraussetzı	ıngen		
2 Seme	ester	grundständig	Es wird dringend em ren.	pfohlen das Modul	11-P-PB vor 11-P-PC zu absolvie-	
Inhalte						
Physikalische Grundgesetze der Wellenoptik, der Atom-, Molekül- und Kernphysik sowie moderne Messmethoden unter Verwendung von computergesteuerten, speziellen Messgeräten an Beispielen aus der Optik und Festkörperphysik.						
Qualifi	kations	sziele / Kompetenzen				
Der/Die Studierende verfügt über die Fähigkeit zum Aufbau und weitgehend selbständigen Betrieb von fortgeschrittenen Versuchsaufbauten. Er/Sie ist in der Lage auch bei massivem Datenaufkommen die Messergebnisse strukturiert zu protokollieren und unter Verwendung von Fehlerfortpflanzung und Statistik zu analysieren. Er/Sie verfügt über die Fähigkeit, die Ergebnisse zu bewerten und Schlussfolgerungen daraus zu ziehen, sowie diese in Form eines wissenschaftlichen Aufsatzes und einer Präsentation darzustellen und zu diskutieren.						
Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)						
P (2) +	P (2)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
praktische Leistung mit Vortrag (ca. 30 Min.) Die erfolgreiche Vorbereitung, Durchführung und Auswertung (Messprotokoll bzw. Praktikumsbericht) von Versuchen werden testiert. Genau ein Versuch kann bei Nichtbestehen einmal wiederholt werden. Nach Durchführung aller Versuche Vortrag (mit Diskussion, ca. 30 Min.) zum Verständnis der Zusammenhänge der physikalischen Inhalte des Moduls. Der Vortrag kann bei Nichtbestehen einmal wiederholt werden. Beide Prüfungsbestandteile müssen bestanden werden.						
Platzvergabe						
weitere Angaben						

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Wahlpflichtbereich

(21 ECTS-Punkte)

Im Wahlpflichtbereich sind benotete Module im Umfang vom mindestens 12 ECTS-Punkten nachzuweisen. Insgesamt sind im Wahlpflichtbereich Module im Umfang von mindestens 21 ECTS-Punkten nachzuweisen.

Modulgruppe Chemie, Informatik, Mathematik

(ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung	
Experimentalchemie					o8-AC-ExChem-152-mo1	
Modul	verantv	vortung		anbietende Einrichtung		
Dozent/-in der Vorlesung "Experimentalchen			talchemie"	Institut für Anorganische Chemie		
ECTS	Bewe	rtungsart	zuvor bestandene Module			
5	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig						
	1-1-16-					

Inhalte

Das Modul bietet einen Überblick über die elementaren Grundkenntnisse der Chemie. Schwerpunkte sind die Stoff- und Teilchenebene, Metalle, Säure-Base-Reaktionen, das Periodensystem, chemisches Gleichgewicht und Komplexometrie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende versteht die Prinzipien des Periodensystems und kann daraus Informationen gewinnen. Er/sie beherrscht grundlegende Modelle des Aufbaus der Materie und kann diese fachgerecht beschreiben. Chemische Reaktionen kann er/sie mit chemietypischer Formelsprache darstellen und durch Identifikation des Reaktionstyps interpretieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

Lehrturnus: jährlich, WS

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Biologie (2011)

Bachelor (1 Hauptfach) Psychologie (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2008)

Bachelor (2 Hauptfächer) Sonderpädagogik (2009)

Magister Theologiae Katholische Theologie (2013)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2009)

Bachelor (2 Hauptfächer) Germanistik (2013)

Bachelor (1 Hauptfach) Geographie (2015)

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Musikwissenschaft (2015)

Bachelor (1 Hauptfach) Physik (2015)


```
Bachelor (1 Hauptfach) Psychologie (2015)
Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2015)
Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)
Bachelor (1 Hauptfach) Musikpädagogik (2015)
Bachelor (1 Hauptfach) Computational Mathematics (2015)
Bachelor (1 Hauptfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)
Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2015)
Bachelor (1 Hauptfach) Indologie/Südasienstudien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Ägyptologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Musikwissenschaft (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie und Religion (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2015)
Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2015)
Bachelor (2 Hauptfächer) Ägyptologie (2015)
Bachelor (2 Hauptfächer) Pädagogik (2015)
Bachelor (2 Hauptfächer) Evangelische Theologie (2015)
Bachelor (2 Hauptfächer) Musikwissenschaft (2015)
Bachelor (2 Hauptfächer) Philosophie (2015)
Bachelor (2 Hauptfächer) Sonderpädagogik (2015)
Bachelor (2 Hauptfächer) Vor- und Frühgeschichtliche Archäologie (2015)
Bachelor (2 Hauptfächer) Lateinische Philologie (2015)
Bachelor (2 Hauptfächer) Musikpädagogik (2015)
Bachelor (2 Hauptfächer) Philosophie und Religion (2015)
Bachelor (2 Hauptfächer) Theologische Studien (2015)
Bachelor (2 Hauptfächer) Political and Social Studies (2015)
Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2015)
Bachelor (2 Hauptfächer) Griechische Philologie (2015)
Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2015)
Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2015)
Bachelor (2 Hauptfächer) Geographie (2015)
Bachelor (2 Hauptfächer) Französisch (2015)
Bachelor (2 Hauptfächer) Geschichte (2015)
Bachelor (2 Hauptfächer) Sportwissenschaft mit dem Schwerpunkt Gesundheit und Bewegungspädagogik (2015)
Bachelor (2 Hauptfächer) Germanistik (2015)
Bachelor (1 Hauptfach) Mathematische Physik (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2016)
Bachelor (2 Hauptfächer) Französisch (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Italienisch (2016)
Bachelor (2 Hauptfächer) Italienisch (2016)
Bachelor (1 Hauptfach, 1 Nebenfach) Spanisch (2016)
Bachelor (2 Hauptfächer) Spanisch (2016)
Bachelor (1 Hauptfach) Romanistik (Französisch/Italienisch) (2016)
Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2016)
Bachelor (1 Hauptfach) Romanistik (Italienisch/Spanisch) (2016)
Bachelor (1 Hauptfach) Wirtschaftsinformatik (2016)
```


Bachelor (1 Hauptfach) Games Engineering (2016) Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2016) Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2016) Bachelor (1 Hauptfach) Medienkommunikation (2016) Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2016) Bachelor (1 Hauptfach) Biologie (2017) Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2017) Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2017) Bachelor (2 Hauptfächer) Kunstgeschichte (2017) Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2017) Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017) Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2017) Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017) Bachelor (1 Hauptfach) Games Engineering (2017) Bachelor (1 Hauptfach) Informatik (2017) Bachelor (1 Hauptfach) Medienkommunikation (2018) Bachelor (1 Hauptfach) Biomedizin (2018) Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2018) Bachelor (2 Hauptfächer) Klassische Archäologie (2018) Bachelor (1 Hauptfach, 1 Nebenfach) Klassische Archäologie (2018) Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2018) Bachelor (2 Hauptfächer) Digital Humanities (2018) Bachelor (1 Hauptfach) Informatik (2019) Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2019) Bachelor (1 Hauptfach) Indologie/Südasienstudien (2019) Bachelor (1 Hauptfach) Wirtschaftsinformatik (2019) Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2019) Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2019) Bachelor (1 Hauptfach) Modern China (2019) Bachelor (1 Hauptfach) Biomedizin (2020) Bachelor (1 Hauptfach) Pädagogik (2020) Bachelor (1 Hauptfach) Political and Social Studies (2020) Bachelor (1 Hauptfach) Wirtschaftsinformatik (2020) Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2020) Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2020) Bachelor (2 Hauptfächer) Political and Social Studies (2020) Bachelor (2 Hauptfächer) Sonderpädagogik (2020) Bachelor (1 Hauptfach) Physik (2020) Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Mathematische Physik (2020) Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020) Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2020) Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2020) Bachelor (2 Hauptfächer) Pädagogik (2020) Bachelor (1 Hauptfach) Psychologie (2020) Bachelor (1 Hauptfach) Biologie (2021) Magister Theologiae Katholische Theologie (2021) Bachelor (2 Hauptfächer) Geschichte (2021) Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2021) Bachelor (1 Hauptfach) Medienkommunikation (2021)

Bachelor (2 Hauptfächer) Theologische Studien (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2021) Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2021)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2021) Bachelor (1 Hauptfach) Funktionswerkstoffe (2021) Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021) Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2021) Bachelor (1 Hauptfach) Quantentechnologie (2021) Bachelor (2 Hauptfächer) Sonderpädagogik (2021) Bachelor (1 Hauptfach) Wirtschaftsinformatik (2021) Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021) Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2021) Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2022) Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2022) Bachelor (1 Hauptfach) Biologie (2022) Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022) Bachelor (1 Hauptfach) Mathematical Data Science (2022) Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022) Bachelor (2 Hauptfächer) Vorderasiatische Archäologie (2022) Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2022) Bachelor (2 Hauptfächer) Altorientalistik (2022) Bachelor (1 Hauptfach) Deutsch-Französische Studien: Sprache, Kultur, digitale Kompetenz (2022) Bachelor (1 Hauptfach) Europäisches Recht (2023) Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2023) Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2023) Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023) Bachelor (1 Hauptfach) Mathematik (2023) Bachelor (1 Hauptfach) Wirtschaftsinformatik (2023) Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023) Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2023) Bachelor (2 Hauptfächer) Kunstgeschichte (2023) Bachelor (2 Hauptfächer) Sonderpädagogik (2023) Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2023) Bachelor (1 Hauptfach) Geographie (2023) Bachelor (2 Hauptfächer) Geographie (2023) Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2023) Bachelor (2 Hauptfächer) Europäische Ethnologie/Empirische Kulturwissenschaft (2023) Bachelor (1 Hauptfach) Mathematische Physik (2024) Bachelor (2 Hauptfächer) Germanistik (2024) Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2024) Bachelor (1 Hauptfach) Musikpädagogik (2024) Bachelor (2 Hauptfächer) Musikpädagogik (2024) Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2024) Bachelor (1 Hauptfach) Indologie/Südasienstudien (2024) Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2024) Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2024) Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2024) Bachelor (2 Hauptfächer) Digital Humanities (2024) Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2024) Bachelor (1 Hauptfach) Hebammenwissenschaft (2024) Bachelor (2 Hauptfächer) Griechische Philologie (2024) Bachelor (2 Hauptfächer) Lateinische Philologie (2024) Bachelor (1 Hauptfach) Wirtschaftsinformatik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024) Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2024)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Bachelor (1 Hauptfach) Human-Computer-Interaction (2024)

Bachelor (2 Hauptfächer) Kunstpädagogik (2024)

Bachelor (1 Hauptfach) Digital Business & Data Science (2024)

Bachelor (1 Hauptfach) Classics (2024)

Bachelor (1 Hauptfach) Diversity, Ethics and Religions (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Bachelor (1 Hauptfach) Pflegewissenschaft (2025)

Bachelor (1 Hauptfach, 1 Nebenfach) Europäische Ethnologie/Empirische Kulturwissenschaft (2025)

Bachelor (1 Hauptfach) Pädagogik (2025)

Bachelor (2 Hauptfächer) Pädagogik (2025)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2025)

Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2025)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2025)

Bachelor (1 Hauptfach) Games Engineering (2025)

Modulbezeichnung				Kurzbezeichnung	
Praktikum Allgemeine und Analytische Chemie für Studierende der Naturwissenschaften					08-ACP-NF-152-m01
Modulverantwortung anbietende Einrichtung				tung	
Inhaber/-in des Lehrstuhls für Anorganische Chemie			ische Chemie	Institut für Anorganische Chemie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
2	besta	nden / nicht bestanden	o8-AC-ExChem		
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester		grundständig			
Inhalte					

Das Modul bietet die Möglichkeit, das Wissen der Grundvorlesung(en) praktisch anzuwenden. Nach einer Sicherheitseinweisung experimentieren die Studierenden selbstständig im Labor. Schwerpunkte sind Sicherheit im Labor, einfache Labortechniken, Synthese von einfachen Stoffen sowie Analysen eines unbekannten Stoffes.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist in der Lage, grundlegende chemische Fragestellungen zu identifizieren und kann diese experimentell lösen. Hierfür kann er/sie die notwendigen stöchiometrischen Rechnungen durchführen und die chemischen Vorgänge fachgerecht schriftlich und verbal darstellen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (4)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortestate/Nachtestate (Prüfungsgespräche jeweils ca. 15 Min., Protokoll jeweils ca. 5-10 S.) und Bewertung der praktischen Leistungen (2-4 Stichproben)

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

weitere Angaben

Arbeitsaufwand

60 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulbezeichnung	Kurzbezeichnung
Organische Chemie für Studierende der Medizin, Biomedizin, Zahnmedizin	08-OC-NF-152-m01
und Naturwissenschaften	

Modulverantwortung	anbietende Einrichtung
Dozent/-in der Vorlesung "Organische Chemie für Studie- rende der Medizin, Biomedizin, Zahnmedizin, Ingenieur- und Naturwissenschaften"	Institut für Organische Chemie

ECTS	Bewertungsart		zuvor bestandene Module
3	numerische Notenvergabe		
Modulo	dauer	Niveau	weitere Voraussetzungen
1 Semester		grundständig	

Inhalte

Das Modul bietet einen Überblick über die theoretischen Grundlagen der Organischen Chemie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über grundlegendes Wissen im Bereich der Organischen Chemie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

.

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Psychologie (2010)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2013)

Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2008)

Bachelor (2 Hauptfächer) Sonderpädagogik (2009)

Magister Theologiae Katholische Theologie (2013)

Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Biologie (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Chemie (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Evangelische Theologie (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2009)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Katholische Theologie (2009)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 66 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	ĺ

Erste Staatsprüfung für das Lehramt an Grundschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Sozialkunde (2009) Erste Staatsprüfung für das Lehramt an Grundschulen Sport (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Englisch (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Biologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Chemie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Geographie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Evangelische Theologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Deutsch (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Geschichte (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Sozialkunde (2009) Erste Staatsprüfung für das Lehramt an Hauptschulen Sport (2009) Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Biologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Chemie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Evangelische Theologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2009) Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2009) Erste Staatsprüfung für das Lehramt an Realschulen Informatik (2012) Erste Staatsprüfung für das Lehramt an Realschulen Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Realschulen Mathematik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Musik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Physik (2009) Erste Staatsprüfung für das Lehramt an Realschulen Sport (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Biologie (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Chemie (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Katholische Theologie (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2012) Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Musik (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Sozialkunde (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Sport (2009) Erste Staatsprüfung für das Lehramt an Gymnasien Musik, Doppelfach (2009)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Hauptschuldidaktik (2009) Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2009) Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Sozialkunde (2013) Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2013) Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2009) Bachelor (2 Hauptfächer) Germanistik (2013) Bachelor (1 Hauptfach) Geographie (2015) Bachelor (1 Hauptfach) Mathematik (2015) Bachelor (1 Hauptfach) Musikwissenschaft (2015) Bachelor (1 Hauptfach) Physik (2015) Bachelor (1 Hauptfach) Psychologie (2015) Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2015) Bachelor (1 Hauptfach) Nanostrukturtechnik (2015) Bachelor (1 Hauptfach) Musikpädagogik (2015) Bachelor (1 Hauptfach) Computational Mathematics (2015) Bachelor (1 Hauptfach) Political and Social Studies (2015) Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2015) Bachelor (1 Hauptfach) Indologie/Südasienstudien (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Ägyptologie (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Musikwissenschaft (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Philosophie und Religion (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Russische Sprache und Kultur (2015) Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2015) Bachelor (2 Hauptfächer) Ägyptologie (2015) Bachelor (2 Hauptfächer) Pädagogik (2015) Bachelor (2 Hauptfächer) Evangelische Theologie (2015) Bachelor (2 Hauptfächer) Musikwissenschaft (2015) Bachelor (2 Hauptfächer) Philosophie (2015) Bachelor (2 Hauptfächer) Sonderpädagogik (2015) Bachelor (2 Hauptfächer) Vor- und Frühgeschichtliche Archäologie (2015) Bachelor (2 Hauptfächer) Lateinische Philologie (2015) Bachelor (2 Hauptfächer) Musikpädagogik (2015) Bachelor (2 Hauptfächer) Philosophie und Religion (2015) Bachelor (2 Hauptfächer) Theologische Studien (2015)

Bachelor (2 Hauptfächer) Political and Social Studies (2015)

Bachelor (2 Hauptfächer) Russische Sprache und Kultur (2015) Bachelor (2 Hauptfächer) Griechische Philologie (2015) Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2015) Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Biologie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Chemie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Katholische Theologie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Mathematik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Grundschuldidaktik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Sozialkunde (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Biologie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Chemie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geographie (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Deutsch (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geschichte (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Katholische Religionslehre (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Kunst (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Sport (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Mathematik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Musik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015) Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Sozialkunde (2015) Erste Staatsprüfung für das Lehramt an Grundschulen Sport (2015) Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2015) Erste Staatsprüfung für das Lehramt an Realschulen Biologie (2015) Erste Staatsprüfung für das Lehramt an Realschulen Chemie (2015) Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2015) Erste Staatsprüfung für das Lehramt an Realschulen Evangelische Theologie (2015) Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2015) Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2015) Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2015) Erste Staatsprüfung für das Lehramt an Realschulen Informatik (2015) Erste Staatsprüfung für das Lehramt an Realschulen Katholische Theologie (2015) Erste Staatsprüfung für das Lehramt an Realschulen Mathematik (2015) Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015) Erste Staatsprüfung für das Lehramt an Realschulen Sport (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Biologie (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Chemie (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Informatik (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Katholische Theologie (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Sozialkunde (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2015) Erste Staatsprüfung für das Lehramt an Gymnasien Sport (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Katholische Religionslehre (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Kunst (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Sport (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Mathematik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Arbeitslehre (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Biologie (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Chemie (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geographie (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Evangelische Religionslehre (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Katholische Religionslehre (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Kunst (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sport (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Mathematik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sozialkunde (2015) Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen Sozialkunde (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Arbeitslehre (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Biologie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Chemie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geographie (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Evangelische Religionslehre (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Katholische Religionslehre (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Kunst (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sport (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Mathematik (2015) Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sozialkunde (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Mittelschuldidaktik (2015)

Bachelor (2 Hauptfächer) Geographie (2015)

Bachelor (2 Hauptfächer) Französisch (2015)

Bachelor (2 Hauptfächer) Geschichte (2015)

Bachelor (2 Hauptfächer) Sportwissenschaft mit dem Schwerpunkt Gesundheit und Bewegungspädagogik (2015)

Bachelor (2 Hauptfächer) Germanistik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Evangelische Theologie (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Musik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Evangelische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Musik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Musik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Musik, Doppelfach (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Evangelische Religionslehre (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Musik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Französisch (2016)

Bachelor (2 Hauptfächer) Französisch (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Italienisch (2016)

Bachelor (2 Hauptfächer) Italienisch (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Spanisch (2016)

Bachelor (2 Hauptfächer) Spanisch (2016)

Bachelor (1 Hauptfach) Romanistik (Französisch/Italienisch) (2016)

Bachelor (1 Hauptfach) Romanistik (Französisch/Spanisch) (2016)

Bachelor (1 Hauptfach) Romanistik (Italienisch/Spanisch) (2016)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Französisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Italienisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Spanisch (2016)

Erste Staatsprüfung für das Lehramt an Realschulen Französisch (2016)

Bachelor (1 Hauptfach) Games Engineering (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2016)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2016)

Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2016)

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2016)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2016)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2016)

Bachelor (1 Hauptfach) Medienkommunikation (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2016)

Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2017)

Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2017)

Bachelor (2 Hauptfächer) Kunstgeschichte (2017)

Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2017)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2017)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Bachelor (1 Hauptfach) Games Engineering (2017)

Bachelor (1 Hauptfach) Informatik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2018)

Bachelor (1 Hauptfach) Medienkommunikation (2018)

Bachelor (1 Hauptfach) Biomedizin (2018)

Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2018)

Bachelor (2 Hauptfächer) Klassische Archäologie (2018)

Bachelor (1 Hauptfach, 1 Nebenfach) Klassische Archäologie (2018)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2018)

Bachelor (2 Hauptfächer) Digital Humanities (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Bachelor (1 Hauptfach) Informatik (2019)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2019)

Modulstudium (Bachelor) Chemie (2019)

Bachelor (1 Hauptfach) Indologie/Südasienstudien (2019)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2019)

Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2019)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2019)

Bachelor (1 Hauptfach) Modern China (2019)

Modulstudium (Bachelor) Orientierungsstudien (2020)

Bachelor (1 Hauptfach) Biomedizin (2020)

Bachelor (1 Hauptfach) Pädagogik (2020)

Bachelor (1 Hauptfach) Political and Social Studies (2020)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Political and Social Studies (2020)

Bachelor (2 Hauptfächer) Europäische Ethnologie/Volkskunde (2020)

Bachelor (2 Hauptfächer) Political and Social Studies (2020)

Bachelor (2 Hauptfächer) Sonderpädagogik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Biologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Chemie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Chemie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2020 (Prüfungsordnungsversion 2016))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2020 (Prüfungsordnungsversion 2016))

Erste Staatsprüfung für das Lehramt an Mittelschulen Evangelische Theologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Katholische Theologie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt an Mittelschulen Mittelschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2020 (Prüfungsordnungsversion 2016))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Chemie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geographie (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Mittelschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Kunst (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Sport (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Mathematik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Evangelische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Katholische Religionslehre (2020 (Prüfungsordnungsversion 2015))

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2020)

Bachelor (2 Hauptfächer) Pädagogik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Beruf und Wirtschaft (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Beruf und Wirtschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Politik und Gesellschaft (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Politik und Gesellschaft (2020)

Bachelor (1 Hauptfach) Psychologie (2020)

Magister Theologiae Katholische Theologie (2021)

Bachelor (2 Hauptfächer) Geschichte (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2021)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2021)

Bachelor (1 Hauptfach) Medienkommunikation (2021)

Bachelor (2 Hauptfächer) Theologische Studien (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Theologische Studien (2021)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2021)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2021)

Erste Staatsprüfung für das Lehramt an Grundschulen Grundschuldidaktik (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2021)

Erste Staatsprüfung für das Lehramt an Gymnasien Philosophie / Ethik (2021)

Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)

Bachelor (2 Hauptfächer) Vergleichende indogermanische Sprachwissenschaft (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (2 Hauptfächer) Sonderpädagogik (2021)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2021)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik Grundschuldidaktik (2021)

Bachelor (1 Hauptfach) Mensch-Computer-Systeme (2022)

Bachelor (1 Hauptfach, 1 Nebenfach) Museologie und materielle Kultur (2022)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)

Erste Staatsprüfung für das Lehramt an Gymnasien Philosophie / Ethik (2022)

Bachelor (2 Hauptfächer) Vorderasiatische Archäologie (2022)

Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2022)

Bachelor (2 Hauptfächer) Altorientalistik (2022)

Bachelor (1 Hauptfach) Deutsch-Französische Studien: Sprache, Kultur, digitale Kompetenz (2022)

Erste Staatsprüfung für das Lehramt an Gymnasien Russisch (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2023)

Erste Staatsprüfung für das Lehramt an Realschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen Englisch (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Englisch (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Geographie (2023)

Erste Staatsprüfung für das Lehramt an Realschulen Geographie (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Geographie (2023)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geographie (2023)

Bachelor (1 Hauptfach) Europäisches Recht (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Anglistik/Amerikanistik (2023)

Bachelor (2 Hauptfächer) Anglistik/Amerikanistik (2023)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Kunstgeschichte (2023)

Bachelor (2 Hauptfächer) Sonderpädagogik (2023)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2023)

Bachelor (1 Hauptfach) Geographie (2023)

Bachelor (2 Hauptfächer) Geographie (2023)

Bachelor (1 Hauptfach, 1 Nebenfach) Geographie (2023)

Bachelor (2 Hauptfächer) Europäische Ethnologie/Empirische Kulturwissenschaft (2023)

Erste Staatsprüfung für das Lehramt an Grundschulen Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Realschulen Deutsch (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Deutsch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen Deutsch (2024)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (2 Hauptfächer) Germanistik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Germanistik (2024)

Bachelor (1 Hauptfach) Musikpädagogik (2024)

Bachelor (2 Hauptfächer) Musikpädagogik (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Musikpädagogik (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Musik (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Musik (2024)

Bachelor (1 Hauptfach) Indologie/Südasienstudien (2024)

Bachelor (2 Hauptfächer) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Indologie/Südasienstudien (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Alte Welt (2024)

Bachelor (2 Hauptfächer) Digital Humanities (2024)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2024)

Bachelor (1 Hauptfach) Hebammenwissenschaft (2024)

Bachelor (2 Hauptfächer) Griechische Philologie (2024)

Bachelor (2 Hauptfächer) Lateinische Philologie (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Latein (2024)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Bachelor (1 Hauptfach) Wirtschaftswissenschaft (2024)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Englisch (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Beruf und Wirtschaft (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Beruf und Wirtschaft (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Realschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Geschichte (2024)

Erste Staatsprüfung für das Lehramt an Gymnasien Griechisch (2024)

Bachelor (1 Hauptfach) Human-Computer-Interaction (2024)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Kunst (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik GS-Didaktik Kunst (2024)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Kunst (2024)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Kunst (2024)

Bachelor (2 Hauptfächer) Kunstpädagogik (2024)

Bachelor (1 Hauptfach) Digital Business & Data Science (2024)

Bachelor (1 Hauptfach) Classics (2024)

Bachelor (1 Hauptfach) Diversity, Ethics and Religions (2024)

Bachelor (1 Hauptfach) Pflegewissenschaft (2025)

Bachelor (1 Hauptfach, 1 Nebenfach) Europäische Ethnologie/Empirische Kulturwissenschaft (2025)

Bachelor (1 Hauptfach) Pädagogik (2025)

Bachelor (2 Hauptfächer) Pädagogik (2025)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2025)

Bachelor (1 Hauptfach) Akademische Sprachtherapie/Logopädie (2025)

Bachelor (1 Hauptfach, 1 Nebenfach) Pädagogik (2025)

Bachelor (1 Hauptfach) Games Engineering (2025)

Modul	Modulbezeichnung				Kurzbezeichnung
Einfüh	rung in	die Informatik für Studi	erende aller Fakultäte	en	10-I-EIN-152-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Studie	ndekar	ı/-in Informatik		Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere \		weitere Voraussetz	ungen		
1 Semester grundständig					
luballa.					

Grundlagen der Informatik, u.a. Darstellung von Informationen und Webseiten (HTML, XML, EBNF), Datenbanken, Algorithmen und Datenstrukturen, Programmierung (Java).

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende Kenntnis in der Informatik, u.a. im Bereich der Darstellung von Informationen und Webseiten (HTML, XML, EBNF), Datenbanken, Algorithmen und Datenstrukturen, Programmierung in Java.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Geographie (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Master (1 Hauptfach) Psychologie (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Vor- und Frühgeschichtliche Archäologie (Nebenfach, 2015)

Bachelor (2 Hauptfächer) Vor- und Frühgeschichtliche Archäologie (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (2018)

Bachelor (1 Hauptfach, 1 Nebenfach) Digital Humanities (Nebenfach, 2018)

Bachelor (2 Hauptfächer) Digital Humanities (2018)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Master (1 Hauptfach) Psychologie (2022)

Exchange Austauschprogramm Psychologie (2023)

Bachelor (1 Hauptfach) Geographie (2023)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modul	bezeich	nnung			Kurzbezeichnung	
Compu	Computerorientierte Mathematik				10-M-COM-152-m01	
Modulverantwortung				anbietende Einrichtung		
Studie	ndekar	/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule		
4	besta	nden / nicht bestanden				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig						

Einführung in moderne mathematische Software-Pakete zur symbolischen Mathematik wie Mathematica oder Maple und zur numerischen Mathematik wie Matlab, begleitend und ergänzend zu den Modulen 10-M-ANA-G und 10-M-LNA-G. Computergestützte Lösung von Aufgaben aus den Bereichen Lineare Algebra, Geometrie, Analysis, insbesondere Differential- und Integralrechnung, Visualisierung von Funktionen.

Qualifikationsziele / Kompetenzen

Der/Die Studierende erlernt den Umgang mit höher entwickelten mathematischen Software-Paketen und vermag deren Einsatzmöglichkeiten bei der Lösung mathematischer Probleme einzuschätzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(1) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektarbeit in Form von Programmieraufgaben (ca. 20-25 Std.)

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Exchange Austauschprogramm Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2025)

Modul	bezeich	nung	Kurzbezeichnung			
Numer	ische N	Nathematik 1 für Studier	ende anderer Fächer		10-M-NUM1af-152-m01	
Modul	Modulverantwortung			anbietende Einrichtung		
Studie	ndekan	/-in Mathematik		Institut für Mathematik		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
10	nume	rische Notenvergabe				
Moduldauer Niveau w		weitere Voraussetzungen				
1 Seme	1 Semester grundständig					
Inhalte	Inhalte					

Lösung von linearen Gleichungssystemen und Ausgleichsproblemen, nichtlineare Gleichungen und Gleichungssysteme, Interpolation mit Polynomen, Splines und trigonometrischen Funktionen, numerische Integration.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt grundlegende Konzepte und Verfahren der numerischen Mathematik, testet selbige an praktischen Beispielen und weiß um typische Einsatzgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-180 Min., Regelfall) oder
- b) mündliche Einzelprüfung (15-30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, 10-15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Informatik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Informatik (2017)

Bachelor (1 Hauptfach) Informatik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung				Kurzbezeichnung	
Numeri	ische N	Nathematik 2 für Studie	10-M-NUM2af-152-m01		
Moduly	verantv	vortung		anbietende Einrichtung	
Studier	ndekan	ı/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
10	nume	rische Notenvergabe			
Modulo	dauer	Niveau	weitere Voraussetz	veitere Voraussetzungen	
1 Seme	ester	grundständig			_
Inhalte					
Eigenwertprobleme, lineare Programme, Verfahren für Anfangswertaufgaben bei gewöhnlichen Differentialgleichungen, Randwertprobleme					

Qualifikationsziele / Kompetenzen

Der/Die Studierende kann die vorgestellten Konzepte der numerischen Mathematik gegeneinander abgrenzen und kennt ihre Stärken und Schwächen in Hinblick auf ihre Einsatzmöglichkeiten in verschiedenen Bereichen der Natur- und Ingenieur- und Wirtschaftswissenschaften.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-180 Min., Regelfall) oder
- b) mündliche Einzelprüfung (15-30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, 10-15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung					Kurzbezeichnung
Programmierkurs für Studierende der Mathematik und anderer Fäche				erer Fächer	10-M-PRG-152-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Studie	Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	ECTS Bewertungsart		zuvor bestandene Module		
3	besta	nden / nicht bestanden	ht bestanden		
Module	Moduldauer Niveau		weitere Voraussetzi	ungen	

1 Semester

Grundlagen der Programmierung in C oder einer verwandten Programmiersprache

Qualifikationsziele / Kompetenzen

grundständig

Der/Die Studierende kann kleinere Programmieraufgaben und Standardprogrammierprobleme der Mathematik selbständig bearbeiten.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

P (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Projektarbeit in Form von Programmieraufgaben (ca. 20-25 Std.)

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2017)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2021)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2022)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Exchange Austauschprogramm Mathematik (2023)

Erste Staatsprüfung für das Lehramt an Gymnasien Mathematik (2023)

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulbezeichnung					Kurzbezeichnung
Modellierung und Wissenschaftliches Rechnen					10-M-MWR-152-m01
Modulverantwortung				anbietende Einrichtung	
Studie	ndekan	/-in Mathematik		Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
8	nume	rische Notenvergabe			
Moduldauer Niveau weite		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte					

Aspekte der mathematischen Modellierung technisch-naturwissenschaftlicher Vorgänge. Grundprinzipien der Modellierung, Skalenaspekte der Modellierung, asymptotische Reihen und Entwicklungen, klassische Lösungsverfahren für gewöhnliche und partielle Differentialgleichungen, grundlegende Verfahren zur numerischen Lösung von partiellen Differentialgleichungen und der dabei anfallenden linearen Gleichungssysteme.

Qualifikationsziele / Kompetenzen

Der/Die Studierende beherrscht die grundlegenden mathematischen Methoden, Techniken und Verfahren, um computergestützt technisch-naturwissenschaftliche Vorgänge zu simulieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(4) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-180 Min., Regelfall) oder
- b) mündliche Einzelprüfung (15-30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, 10-15 Min. je TN)

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Modulbezeichnung	Kurzbezeichnung
Gruppentheorie	11-GRT-152-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

,	, , ,				
ECTS	Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	dauer	Niveau	weitere Voraussetzungen		
1 Seme	ster	weiterführend			

Inhalte

Gruppentheorie. Endliche Gruppen. Lie-Gruppen. Lie-Algebren. Darstellungen. Tensoren. Klassifikationstheorem. Anwendungen.

Qualifikationsziele / Kompetenzen

Die Studierenden beherrschen die Grundlagen der Gruppentheorie, insbesondere der Lie-Gruppen. Sie sind in der Lage, Problemstellungen der Gruppentheorie zu erkennen und mit Hilfe der erlernten Methoden zu lösen. Sie können die Gruppentheorie zur Formulierung und Bearbeitung physikalischer Probleme anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modul	bezeich	nnung		Kurzbezeichnung		
Progra	Programmierpraktikum für Studierende der Naturwissenschaften 10-I-NPP-182-m01					
Modul	verantv	vortung		anbietende Einric	:htung	
Studie	ndekar	ı/-in Informatik		Institut für Inform	atik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	besta	nden / nicht bestanden				
Modul	dauer	Niveau	weitere Voraussetz	ungen		
1-2 Sei	mester	grundständig				
Inhalte	е		•			
Die Pro	_	iiersprache Java, selbstst	tändige Erstellung kle	einer bis mittlerer, (qualitativ hochstehender Java Pro-	
Qualif	ikations	sziele / Kompetenzen				
Die Stu wickel		den können kleinere bis	mittlere, qualitativ h	ochstehende Java F	Programme selbstständig ent-	
Lehrve	ranstal	tungen (Art, SWS, Sprache sof	ern nicht Deutsch)			
P (3)						
Erfolgs	süberpr	"üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterwe	eise / Bonusfähigkeit sofern möglich)	
praktis	sche Pri	ifung in Form von Progra	mmieraufgaben (ca. :	120 Std.) und Klaus	sur (ca. 30-60 Min.)	
Platzv	ergabe					
weiter	e Angal	ben				
Arbeit	saufwa	nd				
150 h						
Lehrtu	rnus					
k. A.	k. A.					
Bezug	zur LP(01				
Verwe	ndung	des Moduls in Studienfä	chern			
	-	auptfach) Physik (2015)				
Bache	lor (1 Ha	auptfach) Physik (2020)				

Modulbezeichnung					Kurzbezeichnung
Grundl	lagen d	er Programmierung			10-l-GdP-172-m01
Modul	Modulverantwortung			anbietende Einrichtung	
Inhabe	er/-in de	es Lehrstuhls für Informa	atik II	Institut für Informatik	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
5	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					

Datentypen, Kontrollstrukturen, Grundlagen der prozeduralen Programmierung, ausgewählte Themen zu C, Einführung in die Objektorientierung in Java, ausgewählte Themen zu C++, weiterführende Java-Konzepte, Exkurs zu Skriptsprachen.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über grundlegende Kenntnisse über Programmiersprachen (insbesondere Java, C und C++) und können kleinere bis mittlere, qualitativ hochstehende Java Programme selbstständig entwickeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 15 Min. je TN) ersetzt werden. bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 49 | Nr. 1 b)

§ 69 | Nr. 1 b)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Bachelor (1 Hauptfach) Informatik (2017)

Bachelor (1 Hauptfach) Informatik (2019)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2020)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Bachelor (1 Hauptfach) Informatik und Nachhaltigkeit (2021)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2021)

Bachelor (1 Hauptfach) Mathematical Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2022)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2023)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 88 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Mathematik (2023)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2023)

Bachelor (1 Hauptfach) Wirtschaftsinformatik (2024)

Bachelor (1 Hauptfach) Künstliche Intelligenz und Data Science (2024)

Bachelor (1 Hauptfach) Wirtschaftsmathematik (2025)

Modulgruppe Angewandte Physik

(ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Computational Physics					11-CP-152-m01
Moduly	erantv/	vortung		anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für T Physik und Astrophysik			s für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					

- Einführung in die Programmierung auf der Basis von C++ / Java / Mathematica
- Numerische Lösung von Differentialgleichungen
- Simulation chaotischer Systeme
- Erzeugung von Zufallszahlen
- Random walk
- Vielteilchenprozesse und Raktions-Diffusionsmodell

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt Programmierkenntnisse in zwei wichtigen Programmiersprachen und kennt wichtige Algorithmen für die Physik. Er/Sie beherrscht numerische Standardverfahren und ist in der Lage, rechnergestützte Verfahren zur Lösung physikalischer Probleme anzuwenden, z.B. Algorithmen zur Lösung numerischer Probleme der Physik zu implementieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) Mündliche Einzelprüfung (ca. 30 Min.) oder
- c) Mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 91 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung				Kurzbezeichnung	
Elektronische Schaltungen					11-EL-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Inst			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	numerische Notenvergabe				
Moduldauer Niveau weitere Voraussetzun		ungen			
1 Semester grundständig					
Inhalto	Inhalto				

Grundlagen elektronischer Bauelemente und Schaltungen. Analoge Schaltungstechnik: Passive (Widerstände, Kondensatoren, Spulen und Dioden) und aktive Bauelemente (Bipolar- und Feldeffktransistoren sowie Operationsverstärker). Digitalen Schaltungen: unterschiedliche Gatter-Typen und CMOS-Schaltungen. Mikrokontroller

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über das Verständnis und die Kenntnisse des praktischen Aufbaus elektronischer Schaltungen aus dem Bereich analoger und digitaler Schaltungstechnik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 93 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung				Kurzbezeichnung	
Labor- und Messtechnik					11-LMT-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalische			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzu		ungen			
1 Semester grundständig					
Inhalto	Inhalto				

Einführung in elektronische und optische Messverfahren in der physikalischen Messtechnik sowie Vakuum- und Kryotechnik, Tieftemperaturtechnik, Lichtquellen, spektroskopische Verfahren und die Messwerterfassung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kompetenzen in elektronischen und optischen Messverfahren in der physikalischen Messtechnik sowie Vakuum- und Kryotechnik, Tieftemperaturtechnik, Lichtquellen, spektroskopische Verfahren und die Messwerterfassung.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023) Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung Kurzbezeichnung				Kurzbezeichnung	
Einführung in Labview					11-LVW-152-m01
Modulverantwortung anl				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraus		weitere Voraussetz	ungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Das Studienmodul beinhaltet einen Grundlagenbereich und einen Aufbaubereich. Der Grundlagenbereich "NI LabVIEW Basic 1" ist die erste Stufe jeder LabVIEW-Lernphase. LabVIEW Basic führt Sie systematisch in die Funktionen und Einsatzmöglichkeiten der Entwicklungsumgebung LabVIEW ein. Sie lernen das Prinzip der Datenflussprogrammierung sowie gängige LabVIEW-Architekturen kennen. Sie werden lernen, LabVIEW-Anwendungen für vielfältigste Einsatzbereiche zu entwickeln, angefangen bei Prüf- und Mess-anwendungen bis hin zur Datenerfassung, Gerätesteuerung, Datenprotokollierung und Messwertanalyse. Im Aufbaubereich "NI LabVIEW Core 2" erlernen Sie die Entwicklung vollständiger Stand-alone-Anwendungen mit der grafischen Entwicklungsumgebung LabVIEW. Dieser Kurs ist der Aufbaukurs zu LabVIEW Basic 1 und führt Sie in die gängigsten Entwicklungstechniken ein, um LabVIEW-Anwendungen für die unterschiedlichsten Einsatzbereiche erfolgreich zu implementieren und zu verteilen. Behandelte Themen sind u. a. Techniken und Verfahren zur Verbesserung der Anwendungsleistung, z.B. durch eine optimierte Wiederverwendung bestehenden Codes, die Verwendung von Datei-I/O-Funktionen, Grundlagen der Datenverwaltung, Ereignisprogrammierung sowie Praktiken zur Fehlerbehandlung. Nach Kursende sind Sie in der Lage, LabVIEW-Funktionen gezielt für Ihre individuellen Anforderungen einzusetzen, wodurch eine zügige und produktive Anwendungsentwicklung ermöglicht wird.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches und vertieftes Wissen in der Anwendung von LabVIEW. Er/Sie ist beherrscht die Grundlagen der Arbeit mit LabView und ist in der Lage, Anwendungen z.B. zur Erfassung und Analyse von Messdaten zu entwickeln.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (1) + R (3)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

-

weitere Angaben

--

Arbeitsaufwand

180 h

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 97 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung				Kurzbezeichnung	
Labor- und Messtechnik in der Biophysik			sik		11-LMB-152-m01
Modul	verantv	vortung		anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzu		ungen			
1 Semester weiterführend					
lub alta					

Gegenstand der Vorlesung sind relevante Grundlagen der Molekular- und Zellbiologie sowie die physikalischen Grundlagen biophysikalischer Verfahren zur Untersuchung und Manipulation von biologischen Systemen. Schwerpunkte bilden optische Messtechniken und Sensorik, Verfahren der Einzelteilchendetektion, spezielle Mikroskopietechniken, sowie Verfahren zur Strukturaufklärung von Biomolekülen.

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Grundlagen der Molekular- und Zellbiologie sowie die physikalischen Grundlagen biophysikalischer Verfahren zur Untersuchung und Manipulation von biologischen Systemen. Sie verfügen über Kenntnisse optischer Messtechniken und deren Anwendungen und sind in der Lage, die Verfahren der Strukturaufklärung auf einfache Biomoleküle anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 99 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023) Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung				Kurzbezeichnung	
Grundlagen der zwei- und dreidimensionalen Röntgenbildgeb				gebung	11-ZDR-152-m01
Modulverantwortung				anbietende Einrichtung	
Gesch	äftsfühi	rende Leitung des Physik	calischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetz		ungen			
1 Semester weiterführend					

Physik der Röntgenstrahlerzeugung (Röntgenröhren, Synchrotron). Physik der Wechselwirkung von Röntgenstrahlung und Materie (Phototabsorption, Streuung), Physik der Röntgenstrahldetektion. Mathematik der Rekonstruktionsalgorithmen (Gefilterte Rückprojektion, Fourierrekonstruktion, Iterative Methoden). Bildverarbeitung (Bilddatenvorverarbeitung, Merkmalsextraktion, Visualisierung, ...). Anwendungen der Röntgenbildgebung in der Industrie (Bauteilprüfung, Materialcharakterisierung, Metrologie, Biologie, ...). Strahlenschutz und biologische Strahlenwirkung (Dosis, ...).

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die Grundlagen der Erzeugung von Röntgenstrahlung und ihrer Wechselwirkung mit Materie. Sie kennen bildgebende Verfahren unter Verwendung von Röntgenstrahlung und Methoden zur Bildverarbeitung sowie die Anwendungsgebiete dieser Methoden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 101 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung				Kurzbezeichnung	
Bildgebende Methoden am Synchrotron					11-BMS-152-m01
Moduly	verantv	vortung		anbietende Einrichtung	
Geschä	Geschäftsführende Leitung des Physikalischen Instituts			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vorausse		weitere Voraussetz	ungen		
1 Semester grundständig					
Inhalte	Inhalte				

Periodische und aperiodische Signale. Grundlagen der diskreten und exakten Fourier-Transformation. Grundlagen der digitalen Signal- und Bildverarbeitung. Diskretisierung von Signalen/Abtasttheorem (Shannon). Homogene und lineare Filter, das Faltungsprodukt. Fensterfunktionen und Interpolation von Bildern. Das Parsival-Theorem, Korrelation und energetische Betrachtung. Statistische Signale, Bildrauschen, Momente, stationäre Signale. Tomographie: Hankel- und Radon-Transformation.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist mit den Grundlagen der digitalen Bild- und Signalverarbeitung vertraut. Er/Sie kennt die Funktionsweisen und Anwendungen verschiedener Bildverarbeitungsmethoden und ist in der Lage, sie in der Praxis anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023) Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung				Kurzbezeichnung		
Methoden der zerstörungsfreien Material- und Bauteilcharakterisierung				11-ZMB-152-m01		
Modulverantwortung anbiet				anbietende Einrich	anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
4	nume	rische Notenvergabe				
Moduldauer Niveau weitere V		weitere Voraussetz	ungen			
1 Semester grundständig						
Inhalto	Inhalto					

Grundlagen der zerstörungsfreien Werkstoff- und Bauteilprüfung. Thermographie. Neutronenradiographie. Röntgenprüfung. Ultraschall. Optische Prüfung, Laser. Bildverarbeitung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Grundlagenkenntnisse zur Erzeugung und zu den Wechselwirkungsmechanismen verschiedener Strahlungsarten (Wärme, Röntgen, Terahertz), Teilchen (Neutronen) oder Ultraschallwellen mit Werkstoffen. Er/Sie kennt die dazu angewandten Methoden zur Detektion der Strahlungsarten, Teilchen und Ultraschallwellen und kann sie auf grundlegende Probleme der Werkstoffprüfung und -charakterisierung anwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 105 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Quantentechnologie (2021) Master (1 Hauptfach) Funktionswerkstoffe (2022) Exchange Austauschprogramm Physik (2023) Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modul	bezeich	nnung			Kurzbezeichnung
Abbildende Sensoren im Infraroten					11-ASI-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalische		kalischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module		
3	nume	rische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester		grundständig			
Inhalte	`				

Infrarotkameras sind wichtige experimentelle und technische Hilfsmittel, zum Beispiel für Messungen von Temperaturen. Der Spektralbereich des Infraroten liegt zwischen dem Sichtbaren, wo als natürliche Lichtquelle die Sonne dominiert, und den Mikrowellen bis Radiowellen mit künstlichen Strahlern. Im Infraroten gibt es deutliche und zum Teil dominierende Abstrahlung von Körpern mit Umgebungstemperatur. Die Vorlesung führt in die physikalische Optik dieses Spektralbereichs ein und behandelt: Besonderheiten von Infrarot-Kameras und Wärmebildern, verschiedene Sensortypen (Bolometer, Quantentrog, Supergitter), bis hin zur Bewertung solcher Sensoren mit neurophysiologischen Aspekten.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches, vertieftes Wissen im Fachgebiet Abbildende Sensoren im Infraroten. Er/Sie kennt die verschiedenen Technologien und Detektorstrukturen und ihre Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 107 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

Modul	Modulbezeichnung Kurzbezeichnung				
Einführ	rung in	die Bildverarbeitung			11-EBV-152-m01
Modulverantwortung anbietende Einrichtung					tung
Geschäftsführende Leitung des Physikali			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
3	3 numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte					

Einführung in die Bildverarbeitung. Bilder als zweidimensionale Signale; Digitalisierung. Zweidimensionale Fouriertransformation. Punktoperationen (z.B. Bildaufhellung) und Nachbarschaftsoperationen (z.B. Rauschminderung). Automatische Bilderkennung: Segmentierung, Klassifizierung. Technische Bilderzeugung. Anwendungen (z.B. Bewegungsverfolgung). Dreidimensionale Bilder.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches und vertieftes Wissen im Fachgebiet Bildverarbeitung. Er kennt die Grundlagen und Theorie der Signalverarbeitung für Bilder und dazu notwendige Kenntnisse der Bilderzeugung. Er kann selbständig Fachliteratur erarbeiten, versteht die Charakteristik der Bildverarbeitung mit kommerzieller Software, und kann eigene Bildverarbeitung erstellen für die Analyse von Experimenten mit bildgebenden Messverfahren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

weitere Angaben

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 109 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	ĺ

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020) Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

Modul	Modulbezeichnung Kurzbezeichnung				
Grundl	lagen d	er Klassifikation von Mu	ıstern		11-KVM-152-m01
Modulverantwortung anbietende Einrichtung					tung
Gesch	Geschäftsführende Leitung des Physikalischen Insti			Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
3	numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte					

Signale wie Bilder, aber auch akustische Aufzeichnungen, Spektren, elektrische Messwerte enthalten oft wiederkehrende Muster. Diese Muster werden meist von Beobachtern zugeordnet und bewertet, zum Beispiel bei der
Auswertung eines EKG durch einen Arzt. Zunehmend werden automatische Verfahren eingesetzt, die diese Aufgaben übernehmen und Muster klassifizieren. Die Vorlesung wird Grundlagen und verschiedene Klassifikatoren
wie "minimum distance" und "maximum likelihood" behandeln.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches, vertieftes Wissen auf dem Gebiet der Mustererkennung. Er/Sie kennt Methoden, um Muster in Messwerten zu klassifizieren und Verfahren und diese zu automatisieren. Er/Sie ist in der Lage, diese auf praktische Probleme anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 111 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Moduli	bezeichnung	Kurzbezeichnung		
Statistik, Datenanalyse und Computerphysik				11-SDC-152-m01
Modul	verantwortung		anbietende Einrichtung	
Geschä	iftsführende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie
ECTS	Bewertungsart	zuvor bestandene Module		

4 numerische Notenvergabe --

ModuldauerNiveauweitere Voraussetzungen1 Semesterweiterführend--

Inhalte

Statistik, Datenanalyse und Computerphysik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über spezifisches, vertieftes Wissen im Fachgebiet Statistik, Datenanalyse und Computerphysik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

1-Fach-Bachelor Physik (2015) JMU Würzburg • Erzeugungsdatum 18.04.2025 • Seite 112 / 164
PO-Datensatz Bachelor (180 ECTS) Physik - 2015

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulgruppe Astrophysik

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Astrophysik	11-AP-152-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

,	, , , , , , , , , , , , , , , , , , , ,				
ECTS	Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzungen		
1 Semester		grundständig			
Moduldauer 1 Semester					

Inhalte

Geschichte der Astronomie, Koordinaten und Zeitmessung, das Sonnensystem, Exoplaneten, Astronomische Größenskalen, Teleskope und Detektoren, Sternaufbau und Sternatmosphären, Entwicklung und Endstadien von Sternen, Interstellares Medium, Molekülwolken, Aufbau der Milchstraße, Lokales Universum, Expandierende Raumzeit, Galaxien, Aktive Galaxienkerne, großskalige Strukturen, Kosmologie.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist mit dem modernen Weltbild der Astrophysik vertraut. Er/Sie kennt die Methoden und Geräte, mit denen astrophysikalische Beobachtungen gemacht und ausgewertet werden. Er/Sie ist in der Lage, eigene Beobachtungen unter Anwendung dieser Methoden zu planen und zu interpretieren. Er/Sie ist vertraut mit der Physik und Entwicklung der wichtigsten astrophysikalischen Objekte, wie z.B. Sternen und Galaxien.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 115 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modul	Modulbezeichnung Kurzbezeichnung				
Astrop	hysikal	lisches Praktikum			11-APP-152-m01
Modulverantwortung anbietende Einrichtung			tung		
		rende Leitung des Institut trophysik	s für Theoretische	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
6	besta	nden / nicht bestanden			
Module	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ester	weiterführend			
Inhalte)				
Versuc achtun		Astrophysik in den Bereic	then Detektoren, Tele	eskope, Methodik, A	nalyse und Astronomische Beob-
Qualifi	kations	sziele / Kompetenzen			
tischer die Erg Lehrve P (4)	Strahlı ebniss ranstal	ung vertraut. Sie sind in de e darzustellen. tungen (Art, SWS, Sprache sofd	ler Lage, Beobachtun	_	um Nachweis von elektromagne- n zu planen und auszuwerten und
		ssprache: Deutsch oder I	-		
Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich) a) erfolgreiche Vorbereitung, Durchführung und Auswertung von Versuchen (wird testiert, ein Versuch kann bei Nichtbestehen einmal wiederholt werden) oder b) Diskussion zum Verständnis der physikalischen Inhalte und der Ergebnisse des Versuchs (ca. 20 Min.). Prüfungssprache: Deutsch und/oder Englisch					
Platzve	ergabe				
weiter	e Angal	pen			
Arbeitsaufwand					
180 h					
Lehrturnus					
k. A.					
Bezug	Bezug zur LPO I				

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 117 / 16
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Verwendung des Moduls in Studienfächern

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Physik (2015) Bachelor (1 Hauptfach) Physik (2020)

Modulgruppe Teilchenphysik

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Teilchenphysik (Standardmodell)	11-TPS-152-m01
	<u> </u>

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitungen des Physikalischen Instituts
und des Instituts für Theoretische Physik und AstrophysikFakultät für Physik und Astronomie

	, , , , , , , , , , , , , , , , , , ,				
ECTS	Bewertungsart		zuvor bestandene Module		
8	numerische Notenvergabe				
Modulo	lauer	Niveau	weitere Voraussetzungen		
1 Semester		grundständig			

Inhalte

Theoretische Beschreibung des Standardmodells

Elektroschwache Symmetriebrechung durch den Higgsmechanismus

Paritätsverletzung

Bhabha-Streuung

Z-Lineshape und Vorwärts-/Rückwärts-Asymmetrie

Higgs-Produktion und -Zerfall

Experimenteller Aufbau und Ergebnisse von Schlüsselexperimenten zum Test des Standardmodells sowie zur Bestimmung seiner Parameter

Suche nach dem Higgsboson

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennen die Theoretischen Grundlagen des Standardmodells der Teilchenphysik und die Schlüsselexperimente, die das Standardmodell etabliert und bestätigt haben. Er/Sie besitzt die Grundlagenkenntnisse, um experimentelle oder theoretische Ergebnisse im Rahmen des Standardmodells interpretieren zu können und kennt dessen Aussagekraft und Grenzen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 119 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung					Kurzbezeichnung
Detektoren für Teilchenstrahlung					11-DTS-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschä	äftsfühi	ende Leitung des Physik	alischen Instituts	Instituts Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
4	nume	rische Notenvergabe			
Moduldauer Niveau weite			weitere Voraussetz	ungen	
1 Semester weiterführend					
Inhalte	Inhalte				

Inhalte

Grundlagen zur Wechselwirkung zwischen Teilchen und Materie. Teilchendetektoren für Orts- und Zeitmessung, Impuls- und Energiebestimmung und zur Teilchenidentifikation. Konzeption von Teilchendetektoren in Beispielen.

Qualifikationsziele / Kompetenzen

Die Studierenden kennen die physikalischen Grundlagen und den prinzipiellen Aufbau von Teilchendetektoren. Sie kennen die Funktion und Anwendung verschiedener Arten von Detektoren, können die Messung physikalischer Größen erläutern und verfügen über Grundlagenkenntnisse in der Konzeption von Detektorsystemen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

120 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung		Kurzbezeichnung
Relativitätstheorie		11-RTTB-232-m01
Madulianativa	ambiatanda Fimilabi	· · · · · · · · · · · · · · · · · · ·

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

	,				
ECTS	TS Bewertungsart		zuvor bestandene Module		
6	numerische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen		
1 Seme	ster	grundständig			

Inhalte

- 1. Mathematische Grundlagen
- 2. Differentialformen
- 3. Kurze Zusammenfassung der speziellen Relativitätstheorie
- 4. Elemente der Differentialgeometrie
- 5. Elektrodynamik als Beispiel einer relativistischen Eichtheorie
- 6. Feldgleichungen der Allgemeinen Relativitätstheorie
- 7. Sterngleichgewichtsmodelle
- 8. Einführung in die Kosmologie

Qualifikationsziele / Kompetenzen

Die Studierenden werden mit den grundlegenden physikalischen und mathematischen Konzepten der allgemeinen Relativitätstheorie vertraut gemacht. Ein Schwerpunkt ist dabei eine moderne Formulierung mit Hilfe von Differentialformen. Außerdem wird die formale Ähnlichkeit zwischen der Elektrodynamik als Eichtheorie und der Allgemeinen Relativitätstheorie betont. Die Studierenden lernen, die Theorie auf einfache Sterngleichgewichtsmodelle anzuwenden und kommen mit grundlegenden Elementen der Kosmologie in Kontakt.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

Genehmigung des Prüfungsausschusses erforderlich

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 122 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulgruppe Halbleiterphysik

(ECTS-Punkte)

Modulbezeichnung					Kurzbezeichnung
Halbleiterlaser und Photonik					11-HLF-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen			alischen Instituts	ischen Instituts Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau we			weitere Voraussetzungen		
1 Semester weiterführend					
Inhalte	Inhalte				

Die Vorlesung vermittelt die Grundlagen der Laserphysik am Beispiel von Halbleiterlasern und geht auf aktuelle Bauelemententwicklungen ein. Die Grundlagen von Lasern werden zunächst anhand eines allgemeinen Lasermodells beschrieben, das dann um spezielle Aspekte von Halbleiterlasern erweitert wird. Grundlegende Begriffe wie z.B. Schwellenbedingung, Kennlinie und Lasereffizienz werden anhand von gekoppelten Ratengleichungen für Ladungsträger und Photonen hergeleitet. Weitere Themen der Vorlesung sind optische Prozesse in Halbleitern, Schicht- und Stegwellenleiter, Laserresonatoren, Modenselektion, dynamische Eigenschaften sowie Technologie zur Herstellung von Halbleiterlasern. Den Abschluss der Vorlesung bilden aktuelle Themen der Laserforschung wie z.B. Quantenpunktlaser, Quantenkaskadenlaser, THz -- Laser oder Hochleistungslaser.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in den Grundalgen der Physik von Halbleiterlasern. Er/Sie ist in der Lage, diese auf moderne Fragestellungen anzuwenden und kennt die Anwendungen in der aktuellen Entwicklung von Bauelementen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

- -

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 125 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulbezeichnung					Kurzbezeichnung
Grundlagen der Halbleiterphysik				11-HLP-152-m01	
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Institu			alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzung			weitere Voraussetz	ungen	
1 Semester grundständig					
1114	L.L. II.				

Inhalte

- 1. Symmetrie-Eigenschaften
- 2. Kristallbindung und elektronische Bandstruktur
- 3. Optische Anregungen und deren Kopplungseffekte
- 4. Elektron-Phonon-Kopplung
- 5. Temperaturabhängige Transporteigenschaften
- 6. (semi-)magnetische Halbleiter

Qualifikationsziele / Kompetenzen

Die Studierenden sind mit den Grundlagen der Halbleiterphysik vertraut. Sie verstehen den Aufbau von Halbleitern und können ihre physikalischen Eigenschaften und Effekte erklären. Sie kennen wichtige Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

__

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 127 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Quantentechnologie (2021) Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung
Physik der Halbleiterbauelemente					11-SPD-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Ins			alischen Instituts	schen Instituts Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau w			weitere Voraussetzungen		
1 Semester grundständig					
Inhalte	Inhalte				

Aufbauend auf den Grundlagen der Halbleiterphysik, gibt die Vorlesung einen Einblick in Halbleiter-Schlüsseltechnologien und diskutiert beispielhaft die wichtigsten Bauelemente aus den Bereichen Elektronik und Photonik. Im Grundlagenteil werden die Kristallstrukturen und die Band- und die Phononendispersionen der technologisch relevanten Halbleiter vorgestellt. Basierend auf der Ladungsträgerdichte im thermischen Gleichgewicht werden dann die Grundlagen des Ladungstransports unter Einbeziehung von Nichtgleichgewichtseffekten entwickelt. Der Technologieteil gibt einen Einblick in die Methoden zur Herstellung von Halbleitermaterialien und stellt die wichtigsten Verfahren der Planartechnologie vor. Gegliedert nach Volumen- und Grenzflächenbauelementen und unterschiedlichen Einsatzbereichen wird beispielhaft auf die Funktionsweise folgender Bauelemente eingegangen: Gleichrichterdioden, Zenerdioden, Varistor, Varaktor, Tunneldioden, Impatt-, Baritt- und Gunn-Dioden, Fotodiode, Solarzelle, Leuchtdiode, Halbleiter-Injektionslaser, Transistor , JFET, Thyristor, Diac, Triac, Schottky-Diode, MOSFET, MESFET, HFET. Die Bedeutung niedrigdimensionaler Ladungsträgersysteme für die Technik und die Grundlagenforschung wird hervorgehoben und neuere Entwicklungen auf dem Bauelemente-Sektor werden vorgestellt.

Qualifikationsziele / Kompetenzen

Die Studierenden

- sind mit den Eigenschaften von Halbleitern verstraut, sie haben einen Überblick über die elektronischen und phononischen Bandstrukturen wichtiger Halbleiter und den daraus ableitbaren elektronischen, optischen und thermischen Eigenschaften
- kennen die Grundlagen des Ladungstransports und können die Poisson-, Boltzmann- und Kontinuitätsgleichung bei der Lösung von Fragestellungen anwenden
- haben einen Einblick in die Methoden der Halbleiterherstellung und sind mit den Ansätzen der Planartechnologie und neueren Entwicklungen auf diesem Sektor vertraut, sie haben ein grundlegendes Verständnis für die Bauelementeherstellung
- verstehen den Aufbau und die Funktionsweise der wichtigsten Bauelemente aus der Elektronik (Diode, Transistor, FET, Thyristor, Diac, Triac), dem Bereich Mikrowellenanwendungen (Tunnel-, Impatt-, Barittund Gunn-Diode) und der Optoelektronik (Fotodiode, Solarzelle, Leuchtdiode, Halbleiter-Injektionslaser)
- kennen die Realisierungsmöglichkeiten von niedrigdimensionalen Ladungsträgersystemen auf Halbleiterbasis und ihre technologische Relevanz
- sind mit neueren Entwicklungen auf dem Bauelementesektor vertraut

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 129 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Prüfungsturnus: jährlich, SS Platzvergabe weitere Angaben **Arbeitsaufwand** 180 h Lehrturnus k. A. Bezug zur LPO I Verwendung des Moduls in Studienfächern Bachelor (1 Hauptfach) Physik (2015) Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modul	bezeich	nnung	Kurzbezeichnung		
Kristallwachstum, dünne Schichten und Lithographie					11-KDS-152-m01
Modul	verantv	vortung		anbietende Einrichtung	
Gesch	äftsfühi	rende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Moduldauer Niveau w		weitere Voraussetzungen			
1 Semester grundständig					
Inhalte	Inhalte				

Inhalte

Kristallwachstum, dünne Schichten, Lithographie.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über Kenntnisse des Kristallwachstums und die Techniken und Methoden, mit denen dieses im Labor kontrolliert werden kann. Sie verfügen über Methodenkenntnisse der Herstellung und Untersuchung dünner Schichten und kennen Techniken und Anwendungen der Lithographie.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modulgruppe Festkörper- und Nanostrukturphysik

(ECTS-Punkte)

Moduli	bezeich	nnung			Kurzbezeichnung	
Nanoanalytik					11-NAN-152-mo1	
Modulverantwortung				anbietende Einrichtung		
Geschä	iftsfüh	rende Leitung des Physik	alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester weiterführend						
	I					

Inhalte

Grundlagen der analytischen Verfahren im Bereich der Nanostrukturphysik, bildgebende Verfahren zur Mikroskopie bis zur atomaren Skala, Untersuchung der chemischen Komposition, Spektroskopie der elektronischen Eigenschaften, Nutzung von Röntgenmethoden. - Physik und Materialsysteme auf der Nanoskala. - Rastersonden: Rasterkraftmikroskopie. Rastertunnelmikroskopie. - Elektronensonden: Rasterelektronenmikroskop. Transmissions-Elektronenmikroskop. - Sekundärionen-Massenspektrometrie. - Röntgenmethoden: Synchrotron-Spektroskopie. Photoemission. Röntgenabsorption

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über wesentliche Kenntnisse über moderne Untersuchungsmethoden für verschiedene Nanostrukturen bis hinunter zur atomaren Skala. Sie kennen Mikroskopieverfahren, die in der Labor- und Industriepraxis verwendet werden und spektroskopische Methoden zur Bestimmung von elektronischen Eigenschaften. Sie sind in der Lage, die Leistungsfähigkeit verschiedener Untersuchungsmethoden zu beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 133 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Modulbezeichnung					Kurzbezeichnung	
Einfühı	rung in	die Energietechnik			11-ENT-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschäftsführende Leitung des Physikalischen Instituts			alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester weiterführend						
Inhalta	Inhalta					

Inhalte

Physikalische Grundlagen von Energiekonservierung und Energiewandlung, Energietransport und -Speicherung sowie der regenerativen Energiequellen. Dabei werden auch Aspekte der Materialoptimierung (z.B. nanostrukturierte Dämmstoffe, selektive Schichten, hochaktivierte Kohlenstoffe) behandelt. Die Veranstaltung ist insbesondere auch für Lehramtsstudenten geeignet. Energy Conservation via Thermal Insulation. Thermodynamic Energy Efficiency. Fossil Fired Energy Converters. Nuclear Power Plants. Hydroelectricity. Wind Turbines. Photovoltaics. Solar Thermal: Heat. Solar Thermal: Electricity. Biomass. Geothermal Energy. Energy Storage. Energy Transport.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die Grundlagen verschiedener Methoden der Energietechnik, insbesondere Energieumwandlung, -transport und Speicherung. Er/Sie überblickt den Aufbau der entsprechenden Anlagen und kann sie vergleichend beurteilen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.)

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 135 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Exchange Austauschprogramm Physik (2023)

Master (1 Hauptfach) Funktionswerkstoffe (2025)

Modulgruppe Aktuelle Themen der Physik

(ECTS-Punkte)

Modull	bezeich	nnung	Kurzbezeichnung			
Aktuell	le Then	nen der Experimenteller	n Physik		11-BXE5-152-m01	
Modul	verantv	vortung		anbietende Einrichtung		
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Module	Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig Genehmigung			Genehmigung des F	Prüfungsausschusse	s erforderlich.	
Inhalte	Inhalte					

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen Physik im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Experimentellen Physik und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019)

Modull	bezeich	nung	Kurzbezeichnung			
Aktuel	le Then	nen der Experimentellen		11-BXE6-152-m01		
Moduly	verantv	vortung		anbietende Einrichtung		
Prüfun	Prüfungsausschussvorsitzende/-r			Fakultät für Physik und Astronomie		
ECTS	Bewe	Bewertungsart zuvor be		Module		
6	nume	rische Notenvergabe				
Module	dauer	Niveau	weitere Voraussetzungen			
1 Semester grundständig Genehmi			Genehmigung des F	Genehmigung des Prüfungsausschusses erforderlich.		
Inhalte	Inhalte					

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen Physik im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Experimentellen Physik und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019)

Modulbezeichnung					Kurzbezeichnung	
Aktuell	le Then	nen der Experimenteller	ı Physik		11-BXE8-152-m01	
Modulverantwortung				anbietende Einrichtung		
Prüfungsausschussvorsitzende/-r				Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
8	nume	rische Notenvergabe				
Moduldauer Niveau we		weitere Voraussetzungen				
1 Semester grundständig Genehmigung de			Genehmigung des F	Prüfungsausschusse	s erforderlich.	
Inhalte	Inhalte					

Aktuelle Themen der Experimentellen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt fortgeschrittene Kompetenzen, die den Anforderungen an ein Modul der Experimentellen Physik im Bachelorstudiengang entsprechen. Er/Sie verfügt über Kenntnisse auf einem aktuellen Teilgebiet der Experimentellen Physik und das Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019)

Modulbezeichnung					Kurzbezeichnung	
Aktuelle Themen der Theoretischen Physik					11-BXT5-152-m01	
Modulverantwortung				anbietende Einrichtung		
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
5	nume	rische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzungen			
1 Semester grundständig			Genehmigung des Prüfungsausschusses erforderlich.			
Inhalte	Inhalte					

Aktuelle Themen der Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt vertiefte Kenntnisse, die dem Anspruch an ein Modul der Theoretischen Physik im Bachelorstudiengang entsprechen. Er/Sie hat sich fortgeschrittenes Fachwissen in einem Teilgebiet der Theoretischen Physik angeeignet und beherrscht die dazu erforderlichen Methoden. Er/Sie ist in der Lage, diese Methoden auf aktuelle Probleme der Theoretischen Physik anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(2) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019) Bachelor (1 Hauptfach) Physik (2020)

Modul	bezeich	nung	Kurzbezeichnung			
Aktuelle Themen der Theoretischen Physik					11-BXT6-152-m01	
Modulverantwortung				anbietende Einrichtung		
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
6	nume	rische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen				
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.				
Inhalte	Inhalto					

Inhalte

Aktuelle Themen der Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt vertiefte Kenntnisse, die dem Anspruch an ein Modul der Theoretischen Physik im Bachelorstudiengang entsprechen. Er/Sie hat sich fortgeschrittenes Fachwissen in einem Teilgebiet der Theoretischen Physik angeeignet und beherrscht die dazu erforderlichen Methoden. Er/Sie ist in der Lage, diese Methoden auf aktuelle Probleme der Theoretischen Physik anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019) Bachelor (1 Hauptfach) Physik (2020)

Modulbezeichnung					Kurzbezeichnung	
Aktuelle Themen der Theoretischen Physik					11-BXT8-152-m01	
Modulverantwortung				anbietende Einrichtung		
Prüfungsausschussvorsitzende/-r				Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene M	Module		
8	nume	rische Notenvergabe				
Moduldauer Niveau wei			weitere Voraussetz	weitere Voraussetzungen		
1 Semester grundständig Genehmi			Genehmigung des F	Prüfungsausschusse	s erforderlich.	
Inhalte	Inhalte					

Aktuelle Themen der Theoretischen Physik. Angerechnete Studienleistungen, z.B. bei Hochschulwechsel oder Auslandsstudium.

Qualifikationsziele / Kompetenzen

Der/Die Studierende besitzt vertiefte Kenntnisse, die dem Anspruch an ein Modul der Theoretischen Physik im Bachelorstudiengang entsprechen. Er/Sie hat sich fortgeschrittenes Fachwissen in einem Teilgebiet der Theoretischen Physik angeeignet und beherrscht die dazu erforderlichen Methoden. Er/Sie ist in der Lage, diese Methoden auf aktuelle Probleme der Theoretischen Physik anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019) Bachelor (1 Hauptfach) Physik (2020)

Moduli	Modulbezeichnung				Kurzbezeichnung	
Ausgev	Ausgewählte Kapitel der Astrophysik 11-CSA6-152-mo1					
Modulverantwortung				anbietende Einrich	tung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	lodule		
6	nume	rische Notenvergabe	-			
Modulo	dauer	Niveau	weitere Voraussetzi	ıngen		
1 Seme	ster	grundständig	Genehmigung des P	rüfungsausschusse	s erforderlich.	
Inhalte	•					
Ausgev	vählte I	Kapitel der Astrophysik.				
Qualifi	kations	sziele / Kompetenzen				
ständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete. Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch) V (3) + R (1) Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich) Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.). Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen. Prüfungssprache: Deutsch und/oder Englisch						
Platzve	rgabe					
						
weitere Angaben						
						
Arbeitsaufwand						
180 h						
Lehrtu	rnus					
k. A.	A.					

Bachelor (1 Hauptfach) Physik (2015)

Modulstudium (Bachelor) Physik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bezug zur LPO I

Modul	bezeich	nnung			Kurzbezeichnung
Ausge	wählte	Kapitel der Teilchenphy	rsik		11-CST6-152-m01
Modul	verantv	vortung		anbietende Einrich	tung
Prüfungsausschussvorsitzende/-r			Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	Module	
6	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ester	grundständig	Genehmigung des F	Prüfungsausschusse	s erforderlich.
Inhalte	9				
Ausgev	wählte	Kapitel der Teilchenphy	sik.		
Qualifi	ikations	sziele / Kompetenzen			
Sie kar Lehrve	nn das eranstal		n Zusammenhänge eir		deren Erwerb notwendig sind. Er/ lie Anwendungsgebiete.
V (3) +					
					e / Bonusfähigkeit sofern möglich)
30 Min Sofern fung go der Do	n. je TN) eine Kl eänder zentin	oder Projektbericht (ca lausur als Prüfungsform	. 8-10 S.) oder Referat, festgelegt wurde, kan stens vier Wochen vor ukündigen.	/Vortrag (ca. 30 Min. n diese in eine mün	dliche Gruppenprüfung (2 TN, ca.). dliche Einzel- bzw. Gruppenprü- stgesetzten Klausurtermin von
Platzv	ergabe				
weiter	e Anga	ben			
Arbeits	saufwa	nd			
180 h					

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Modulbezeichnung			Kurzbezeichnung		
Ausgewählte Kapitel der Festkörperphysik			hysik		11-CSF6-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfungsausschussvorsitzende/-r		Fakultät für Physik und Astronomie		und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
6	numerische Notenvergabe				
Moduldauer Niveau		weitere Voraussetzungen			
1 Semester grundständig		Genehmigung des Prüfungsausschusses erforderlich.			
Inhalte					

Ausgewählte Kapitel der Festkörperphysik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Grundlagenkenntnisse in einem Spezialgebiet der Festkörperphysik und Verständnis der Mess- und/oder Auswertungsmethoden, die zu deren Erwerb notwendig sind. Er/Sie kann das Erlernte in die fachlichen Zusammenhänge einordnen und kennt die Anwendungsgebiete.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Modulstudium (Bachelor) Physik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulstudium (Bachelor) Quantentechnologie (2021)

Modul	bezeich	nnung			Kurzbezeichnung
Ausgewählte Kapitel der Theoretischen Physik				11-CSTh6-152-m01	
Modulverantwortung an			anbietende Einrich	tung	
Prüfungsausschussvorsitzende/-r			Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule	
6	numerische Notenvergabe				
Modul	dauer	Niveau	weitere Voraussetzi	ungen	
1 Seme	ester	grundständig	Genehmigung des P	rüfungsausschusse	s erforderlich.
Inhalte	;		•		
Ausgev	vählte l	Kapitel der Theoretischer	Physik.		
Qualifi	kations	sziele / Kompetenzen			
elle Pro	obleme ranstal	e dazu erforderlichen ma der Theoretischen Physi tungen (Art, SWS, Sprache sof	k anzuwenden.	den. Er / sie ist in de	er Lage, diese Methoden auf aktu-
		üfung (Art, Umfang, Sprache so	ofern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)
30 Min Sofern fung ge der Do	. je TN) eine Kl eändert zentin l	oder Projektbericht (ca. ausur als Prüfungsform f	8-10 S.) oder Referat, estgelegt wurde, kan ens vier Wochen vor kündigen.	/Vortrag (ca. 30 Min. n diese in eine münd	dliche Gruppenprüfung (2 TN, ca.). dliche Einzel- bzw. Gruppenprü- stgesetzten Klausurtermin von
Platzve	ergabe				
weiter	e Angal	oen			
Arbeits	aufwa	nd			
180 h					

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Modulstudium (Bachelor) Physik (2019)

Bachelor (1 Hauptfach) Physik (2020)

Schlüsselqualifikationsbereich

(20 ECTS-Punkte)

Allgemeine Schlüsselqualifikationen

(5 ECTS-Punkte)

Neben den nachfolgend aufgeführten Modulen können auch Module aus dem von der JMU angebotenen Pool der allgemeinen Schlüsselqualifikationen (ASQ-Pool) belegt werden.

Allgemeine Schlüsselqualifikationen (fachspezifisch)

(ECTS-Punkte)

Modulbezeichnung	Kurzbezeichnung
Einführungskurs Mathematik	11-P-VKM-152-m01

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitungen des Physikalischen Instituts
und des Instituts für Theoretische Physik und AstrophysikFakultät für Physik und Astronomie

ECTS	Bewertungsart		zuvor bestandene Module
2	besta	nden / nicht bestanden	-
Modulo	dauer	Niveau	weitere Voraussetzungen
1 Seme	ster	grundständig	-

Inhalte

Grundlagen der Mathematik und elementare Rechenmethoden aus dem Schulstoff und teilweise weiterführend, insbesondere zur Einführung und Vorbereitung auf die Module der Experimentellen und Theoretischen Physik.

- 1. Grundlegende Geometrie und Algebra
- 2. Koordinatensysteme und komplexe Zahlen
- 3. Vektoren gerichtete Größen
- 4. Differentialrechnung
- 5. Integralrechnung

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über die Kenntnisse der Grundlagen der Mathematik und die Fertigkeiten in den elementaren Rechentechniken, welche zum erfolgreichen Studieneinstieg in der Experimentellen und Theoretischen Physik benötigt werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

T (2)

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Übungsaufgaben (erfolgreiche Bearbeitung von ca. 50% von ca. 6 Übungsblättern) oder
- b) Vortrag (ca. 15 Min.)

Prüfungsturnus: jährlich, WS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

60 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 1 h)

§ 22 II Nr. 2 f)

§ 22 II Nr. 3 f)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 151 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Grundschulen GS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Erste Staatsprüfung für das Lehramt für Sonderpädagogik MS-Didaktik Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen MS-Didaktik Physik (2018)

Modulbezeichnung					Kurzbezeichnung
Fit for Industry					11-FFl-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physika		alischen Instituts Fakultät für Physik und Astronomie			
ECTS	Bewertungsart		zuvor bestandene Module		
3	nume	rische Notenvergabe			
Modul	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ester	grundständig			
Inhalto		•			

Inhalte

Physiker im Beruf. Tätigkeiten in der Industrie und an der Universität. Orientierung im industriellen Umfeld. Produktentstehung. Verdienstmöglichkeiten. Projektmanagement. Marketing, Unternehmensstrategie und Management. Führungsaufgaben und Soft Skills.

Qualifikationsziele / Kompetenzen

Die Studierenden sind sich über die Anforderungen an eine berufliche Tätigkeit in der Industrie bewusst und können aufgrund ihrer Kenntnisse eine Entscheidung über ihre eigene berufliche Zukunft treffen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(1) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: jährlich, SS

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Modulbezeichnung					Kurzbezeichnung
Projektmanagement in der Praxis					11-PMP-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physik		lischen Instituts Fakultät für Physik und Astronomie			
ECTS	Bewe	rtungsart	zuvor bestandene I	Module	
3	besta	nden / nicht bestanden			
Modul	dauer	Niveau	weitere Voraussetz	ungen	
1 Seme	ester	weiterführend			
Inhalte					

Inhalte

Technisches Projektmanagement in der Praxis, Inhalte: Definitionen, Begriffe, Kardinalfehler im Projektmanagement, Projektablauf, Kick-Off und Stakeholder, Teams und Resources, Meilensteine und Planung, Visualisierung und Reporting, Konflikte, Erfolgsfaktoren, Technisches und wirtschaftliches Controlling, Zielvereinbarungen, Balanced Score Cards, Erarbeiten der Fallbeispiele.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über Kenntnisse des Technischen Projektmanagements. Er/Sie ist mir verschiedenen Methoden und Erfolgsfaktoren vertraut und in der Lage, ein Projekt zu definieren, den Ablauf zu planen und es erfolgreich durchzuführen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(1) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

90 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Modulb	ezeich	nnung			Kurzbezeichnung
Allgem	eine K	ompetenzen für Physikei	und Physikerinnen		11-BASQ5-152-m01
Moduly	erantv	vortung		anbietende Einrich	tung
Prüfung	gsauss	chussvorsitzende/-r		Fakultät für Physik	und Astronomie
ECTS	Bewe	rtungsart	zuvor bestandene N	Nodule	
5	nume	rische Notenvergabe			
Moduldauer Niveau weitere Voraussetzungen					
1 Seme	ster	grundständig	Genehmigung des P	rüfungsausschusse	s erforderlich.
Inhalte	!				
Allgem	eine Ko	ompetenzen für Physiker	und Physikerinnen.		
Qualifi	kations	sziele / Kompetenzen			
Lehrver V (2) + Erfolgs Klausur 30 Min Sofern fung ge	ranstal R (2) überpr r (ca. 9 . je TN) eine Kl	o-120 Min.) oder mündlic oder Projektbericht (ca. ausur als Prüfungsform f	ern nicht Deutsch) ofern nicht Deutsch / Turnus che Einzelprüfung (ca 8-10 S.) oder Referat/ estgelegt wurde, kan ens vier Wochen vor	. 30 Min.) oder mün Vortrag (ca. 30 Min. n diese in eine mün	ge / Bonusfähigkeit sofern möglich) dliche Gruppenprüfung (2 TN, ca. .). dliche Einzel- bzw. Gruppenprü- estgesetzten Klausurtermin von
		che: Deutsch und/oder E	•		
Platzve	rgabe				
weitere	Angal	ben			
Arbeits	autwai	nd			
150 h	'nuc				
Lehrtu	nus				
	k. A. Bezug zur LPO I				
Bezug :	zur LP(JI			

1-Fach-Bachelor Physik (2015)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015) Bachelor (1 Hauptfach) Physik (2020)

Fachspezifische Schlüsselqualifikationen

(15 ECTS-Punkte)

Modulbezeichnung		Kurzbezeichnung
Mathematische Rechenmethoden Physik		11-M-MR-152-m01
Modulverantwortung	anbietende Einrich	tung

Modulverantwortung		andietende Eninchtung
Geschäftsführende Leitung des Instituts Physik und Astrophysik	s für Theoretische	Fakultät für Physik und Astronomie
i nysik unu Astrophysik		

		zuvor bestandene Module
6 besta	anden / nicht bestanden	
Moduldauer	Niveau	weitere Voraussetzungen
2 Semester	grundständig	

Inhalte

Grundlagen der Mathematik und elementare Rechenmethoden jenseits des Schulstoffes, insbesondere zur Einführung und Vorbereitung auf die Module der Theoretischen Physik und der Klassischen bzw. Experimentellen Physik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über die Kenntnisse der Grundlagen der Mathematik und der elementaren Rechentechniken, welche in der Theoretischen Physik und der Experimentellen Physik benötigt werden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(1) + V(2) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Übungsaufgaben (erfolgreiche Bearbeitung von ca. 50% von ca. 13 Übungsblättern) oder b) Vortrag (ca. 15 Min.)

Platzvergabe

--

weitere Angaben

_

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 a)

§ 77 | Nr. 1 a)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Modulbezeichnung	Kurzbezeichnung
Hauptseminar Experimentelle/Theoretische Physik	11-HS-152-m01
	·

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitungen des Physikalischen Instituts
und des Instituts für Theoretische Physik und AstrophysikFakultät für Physik und Astronomie

, , ,					
ECTS	CTS Bewertungsart		zuvor bestandene Module		
5	5 numerische Notenvergabe				
Modulo	Moduldauer Niveau		weitere Voraussetzungen		
1 Semester grundständig		grundständig	Vorleistung: Regelmäßige Teilnahme (mind. 85% der Termine).		

Inhalte

Aktuelle Fragestellungen zur theoretischen/experimentellen Physik.

Qualifikationsziele / Kompetenzen

Die Studierenden verfügen über vertiefte Kenntnisse in einem Spezialgebiet der experimentellen oder theoretische Physik. Sie sind in der Lage, sich diese Kenntnisse selbstständig anzueignen, zusammenzufassen und in einem Vortrag verständlich darzustellen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

S (2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Vortrag mit Diskussion (30-45 Min.)

Platzvergabe

--

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Modulbezeichnung				Kurzbezeichnung	
Auswertung von Messungen: Fehlerrechnung			chnung		11-P-FR1-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts		alischen Instituts	Fakultät für Physik und Astronomie		
ECTS	Bewe	rtungsart	zuvor bestandene Module		
2	besta	nden / nicht bestanden			
Moduldauer Niveau weitere Vorauss		weitere Voraussetz	zungen		
1 Semester grundständig		Vorleistung: Übungsaufgaben, pro Semester sind ca. 13 Übungsblätter zu bearbeiten. Die Vorleistung ist erbracht, wenn ca. 50% der gestellten Aufgaben erfolgreich bearbeitet wurden. Details werden von der Dozentin bzw. dem Dozenten zu Semesterbeginn bekanntgegeben.			
Inhalte					

Fehlerarten, Fehlerabschätzung und -fortpflanzung, graphische Darstellungen, lineare Regression, Mittelwerte und Standardabweichung.

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über die Fähigkeit, Messergebnisse unter Verwendung von Fehlerfortpflanzung und den Grundlagen der Statistik auszuwerten, Schlussfolgerungen daraus zu ziehen und diese darzustellen und zu diskutieren.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(1) + \ddot{U}(1)$

Veranstaltungssprache: Ü: Deutsch oder Englisch

 $\textbf{Erfolgs\"{u}berpr\"{u}fung} \ (Art, \ Umfang, \ Sprache \ sofern \ nicht \ Deutsch \ / \ Turnus \ sofern \ nicht \ semesterweis\underline{e} \ / \ Bonusf\"{a}higkeit \ sofern \ m\"{o}glich)$

Klausur (ca. 120 Min.)

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

weitere Angaben

Anmeldung: Das Belegen der Übungen durch die Studierende oder den Studierenden einhergehend mit der Erbringung der geforderten Vorleistung wird gemäß § 20 Abs. 3 Satz 4 ASPO als Willenserklärung für die Teilnahme an der Prüfung gewertet. Stellen die Modulverantwortlichen anschließend fest, dass die geforderten Vorleistungen erbracht wurden, so vollziehen sie die eigentliche Prüfungsanmeldung. Die Studierenden können nur dann erfolgreich zu einer Prüfung angemeldet werden, wenn sie die hierfür erforderlichen Voraussetzungen erfüllen. Bei fehlender Anmeldung ist eine Teilnahme an der betreffenden Prüfung ausgeschlossen bzw. wird die trotzdem erbrachte Prüfungsleistung nicht bewertet.

Arbeitsaufwand

60 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 53 | Nr. 1 c)

§ 77 | Nr. 1 d)

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Mathematik (2015)

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2015)

Bachelor (1 Hauptfach) Computational Mathematics (2015)

1-Fach-Bachelor Physik (2015)	JMU Würzburg • Erzeugungsdatum 18.04.2025 •	Seite 160 / 164
	PO-Datensatz Bachelor (180 ECTS) Physik - 2015	

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2015)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2015)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2015)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2015)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2015)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2015)

Bachelor (1 Hauptfach) Mathematische Physik (2016)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2017)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2018)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2018)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2018)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach, 1 Nebenfach) Physik (Nebenfach, 2020)

Bachelor (1 Hauptfach) Luft- und Raumfahrtinformatik (2020)

Erste Staatsprüfung für das Lehramt an Grundschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Gymnasien Physik (2020)

Erste Staatsprüfung für das Lehramt an Realschulen Physik (2020)

Erste Staatsprüfung für das Lehramt an Mittelschulen Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Bachelor (1 Hauptfach) Mathematik (2023)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Modult	Modulbezeichnung Kurzbezeichnung					
Fortgeschrittene Fehlerrechnung und computergestütztes Arbeiten				Arbeiten	11-P-FR2-152-m01	
Modulverantwortung				anbietende Einrichtung		
Geschä	iftsführ	ende Leitung des Physik	alischen Instituts	Fakultät für Physik	und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	lodule		
2	besta	nden / nicht bestanden				
Modulo	lauer	Niveau	weitere Voraussetzu	aussetzungen		
1 Seme	ster	grundständig	Es wird dringend em	empfohlen das Modul 11-P-FR1 vor 11-P-FR2 zu absolvie-		
Inhalte	!					
_		ne Methoden der Datena omputergestützte Datena	•	hnung. Verteilungsfu	unktionen, Signifikanztests, Mo-	
Qualifil	kations	sziele / Kompetenzen				
nung. E	r/Sie b		computergestützten	Datenanalyse und b	n Messdaten und der Fehlerrech- esitzt die Fähigkeiten, diese auf	
Lehrvei	ranstal	tungen (Art, SWS, Sprache sofe	ern nicht Deutsch)			
V (1) + (Ü (1)					
Erfolgs	überpr	üfung (Art, Umfang, Sprache so	fern nicht Deutsch / Turnus	sofern nicht semesterweis	e / Bonusfähigkeit sofern möglich)	
_	_	oen (erfolgreiche Bearbei ıs: jährlich, SS	tung von ca. 50% vor	n ca. 10 Übungsblätt	ern)	
Platzve	rgabe					
weitere	Angal	oen				
Arbeits	aufwai	nd	,			
60 h						
Lehrturnus						
k. A.						
Bezug zur LPO I						
Verwen	dung	des Moduls in Studienfäc	hern			
Bachelor (1 Hauptfach) Physik (2015)						
	Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)					
	Bachelor (1 Hauptfach) Mathematische Physik (2015) Bachelor (1 Hauptfach) Mathematische Physik (2016)					
Bachel	-	auptfach) Mathematische	Physik (2016)			

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Mathematische Physik (2020)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2021)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Exchange Austauschprogramm Physik (2023)

Bachelor (1 Hauptfach) Mathematische Physik (2024)

Bachelor (1 Hauptfach) Funktionswerkstoffe (2025)

Abschlussbereich

(10 ECTS-Punkte)

Modulbezeichnung			Kurzbezeichnung		
Bachelor-Thesis Physik					11-BA-P-152-m01
Modulverantwortung				anbietende Einrichtung	
Prüfun	gsauss	chussvorsitzende/-r		Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene M	zuvor bestandene Module	
10	nume	rische Notenvergabe			
Moduldauer Niveau weitere Vorausse		weitere Voraussetz	zungen		
1 Seme	ester	grundständig			
Inhalte					
Weitgehend selbstständige Bearbeitung einer experimentellen oder theoretischen Aufgabe aus der Physik nach bekannten Verfahren und wissenschaftlichen Gesichtspunkten.					
Qualifikationsziele / Kompetenzen					
Der/Die Studierende verfügt über die Fähigkeit, weitgehend selbstständig eine experimentelle oder theoretische Aufgabe aus der Physik insbesondere nach bekannten Verfahren und wissenschaftlichen Gesichtspunkten zu bearbeiten und die Bachelorarbeit zu erstellen.					
Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)					

keine LV zugeordnet

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Bachelor-Thesis (ca. 25 S.)

Prüfungssprache: Deutsch oder Englisch

Platzvergabe

weitere Angaben

Bearbeitungszeit: 12 Wochen

Arbeitsaufwand

300 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Physik (2020)