

Module description

Module title					Abbreviation	
Advanced Computational Economics					12-M-NGM-242-m01	
Module coordinator				Module offered by		
holder of the Chair of Public Finance				Faculty of Management and Economics		
ECTS	Meth	od of grading	Only after succ. cor	Only after succ. compl. of module(s)		
5	nume	rical grade				
Duration		Module level	Other prerequisites	Other prerequisites		
1 semester		graduate				
Contents						

Description:

This course will mostly be concerned with the analysis of public policy (in areas such as taxation, social security etc.). Providing students with state-of-the-art techniques for quantitative macroeconomic research in this very field and familiarising them with the relevant literature, this course will teach students how such policies redistribute between different generations and also within generations, how they may improve risk sharing when markets are incomplete and how they can trigger distortions and therefore hurt the aggregate economy.

Outline of syllabus:

- 1. Programming with FORTRAN and application of numerical methods
- 2. Solution techniques for dynamic programming problems
- 3. Policy analysis with stochastic growth and life cycle models

Reading:

Lecture notes will be provided.

Intended learning outcomes

After completing the course "Advanced Computational Economics" students will be able to

- (i) edit and solve stochastic economic problems using advanced numerical techniques;
- (ii) implement small scale economic models on the computer;
- (iii) simulate tax and social security policy reforms and interpret the quantitative results in economic term.

 $\textbf{Courses} \ (\text{type, number of weekly contact hours, language} - \text{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 60 minutes) or
- b) term paper (approx. 15 pages)

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

Teaching cycle: winter semester

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for } \underline{\text{teaching-degree programmes}})$

--

Module description

Module appears in

Master's degree (1 major) Management (2024)

Master's degree (1 major) International Economic Policy (2024)

Master's degree (1 major) Economathematics (2024)

Master's degree (1 major) International Economic Policy (2025)

Master's degree (1 major) Management (2025)

Master's degree (1 major) China Business and Economics (2025)

Master's degree (1 major) China Language and Economy (2025)

Master's degree (1 major) Economathematics (2025)

JMU Würzburg • generated 18.04.2025 • Module data record 141886