Module description

Region: Module title

| Thermodynamics and Economics | 11-TDO-092-m01 |

Region: Module coordinator

| Managing Director of the Institute of Theoretical Physics and Astrophysics |

Region: Module offered by

| Faculty of Physics and Astronomy |

Region: ECTS

| 6 |

Region: Method of grading

| Only after succ. compl. of module(s) |

Region: Only after succ. compl. of module(s)

| -- |

Region: Duration

| 1 semester |

Region: Module level

| graduate |

Region: Other prerequisites

| Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew. |

Region: Contents

Energy and economic growth, entropy production, emission reduction. Part I describes the role of energy conversion in the development of the universe, the evolution of life and the unfolding of civilisation. In non-equilibrium thermodynamics, the entropy production density shows the relevance of the second law of thermodynamics for ecological damage and resource consumption. Energy conversion, entropy production and natural resources define the technological and ecological boundaries of industrial economic growth. Part 2 analyses how the factors capital, work, energy and creativity produce the goods and services of a national economy and determine economic growth. The productive power of cheap energy by far exceeds that of expensive labour. Within the current system of taxes and social security contributions, this discrepancy between power and costs of production factors leads to job cuts, waste of resources, impoverishment of nations and growing social tensions. The course discusses how factor income taxation can counteract this development. Part 3 includes seminar presentations, comprises the techniques of rational energy use and non-fossil energy use, and introduces the optimisation programme deeco (Dynamic Energy, Emission and Cost Optimization).

Region: Intended learning outcomes

The students understand that energy conversion and entropy production are going to play an important role in the world’s economic and social development. As an extension of economic theory, the students know the connections between thermodynamics and economy as well as the productive physical basis of modern economies. They are able to apply the acquired knowledge to particular problems.

NOTE: this is the module that was run by Prof. Dr. R. Kümmel, who has now retired. As the module was tailored to his own theory of economy, it has yet to be decided whether we will continue to offer this module.

Region: Courses

R + V (no information on SWS (weekly contact hours) and course language available)

Region: Method of assessment

| a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes) |

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English
Module description

Allocation of places

Additional information

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

- Bachelor' degree (1 major) Physics (2010)
- Bachelor' degree (1 major) Physics (2012)
- Bachelor' degree (1 major) Nanostructure Technology (2010)
- Bachelor' degree (1 major) Nanostructure Technology (2012)
- Master's degree (1 major) Physics (2010)
- Master's degree (1 major) Physics (2011)
- Master's degree (1 major) Nanostructure Technology (2011)
- Master's degree (1 major) Nanostructure Technology (2010)
- Master's degree (1 major) FOKUS Physics - Nanostructuring Technology (2010)
- Master's degree (1 major) FOKUS Physics (2010)
- Master's degree (1 major) FOKUS Physics (2011)