Module description

Module title
Statistical Physics and Electrodynamics

Abbreviation
11-T-SE-152-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
2 semester

Module level
undergraduate

Other prerequisites
--

Contents

A. Statistical Physics;
- Principles of statistics: Elements of statistics (central limit theorem and statistics of extremes); Micro- and macro-states; probability space (conditional probability, statistical independence);
- Statistical Physics: Entropy and probability theory; entropy in classical physics; thermodynamic equilibrium in closed and open systems (with energy and / or particle exchange);
- Ideal systems: Spin systems; linear oscillators; ideal gas;
- Statistical Physics and thermodynamics: The 1st law; quasi-static processes; entropy and temperature; generalised forces; the second and third law; reversibility; transition from Statistical Physics to thermodynamics;
- Thermodynamics: Thermodynamic fundamentals relationship; thermodynamic potentials; changes of state; thermodynamic machines (Carnot engine and efficiency); chemical potential;
- Ideal Systems II, quantum statistics: Systems of identical particles; ideal Fermi gas; ideal Bose gas and Bose-Einstein condensation; grids and normal modes: Phonons;
- Systems of interacting particles: Approximation methods (mean-field theory, Sommerfeld expansion); computer simulation (Monte Carlo method); interacting phonons (Debye approximation); Ising models (particularities in 1 and 2 dimensions); Yang-Lee-theorems; Van der Waals equation for real interacting gases;
- Critical phenomena: Scaling laws, critical slowing down, fast variable as Bad (electron-phonon interaction and BCS superconductivity); magnetism (quantum criticality at low temperatures, quantum phase transitions at T = 0); problems of the thermodynamic limit;

B. Electrodynamics;
- Mathematical tools: Gradient, divergence, curl; curve, surface, volume integrals; Stokes and Gaussian sentence; Delta function; Fourier transform; full functional systems; solving PDEs;
- Maxwell equations;
- Electrostatics: Coulomb’s law; electrostatic potential; charged interface; electrostatic field energy (capacitor); multipole expansion; Boundary value problems; numerical solution; Image charges; Green’s functions; development according to orthogonal functions;
- Magnetostatics: Current density; continuity equation; vector potential; Biot-Savart law; magnetic moment; analogies to electrostatics;
- Maxwell equations in matter: Electrical and magnetic susceptibility; interfaces;
- Dynamics of electromagnetic fields: Faraday induction; RCL-circuits; field energy and pulse; potentials; plane waves; wave packets; plane waves in matter; cavity resonators and wave guides; inhomogeneous wave equation; temporally oscillating sources and dipole radiation; accelerated point charges;
- Special Theory of Relativity: Lorentz transform; simultaneity; length contraction and time dilation; light cone; effect, energy and momentum; co- and contra-variant tensors; covariant classical mechanics;
- Covariant electrodynamics: Field strength tensor and Maxwell’s equations; transformation of the fields; Dopper effect; Lorentz force

Intended learning outcomes

The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of electrodynamics, thermodynamics and statistical mechanics. They are able to discuss the acquired theoretical concepts and to attribute them to bigger physical contexts.

Courses
(type, number of weekly contact hours, language — if other than German)

V (4) + V (4)
<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>Oral examination of one candidate each (approx. 30 minutes)</th>
<th>Language of assessment: German and/or English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation of places</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Additional information</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Referred to in LPO I</td>
<td>(examination regulations for teaching-degree programmes)</td>
<td>---</td>
</tr>
<tr>
<td>Module appears in</td>
<td>Bachelor' degree (1 major) Physics (2015)</td>
<td>Bachelor' degree (1 major) Mathematical Physics (2015)</td>
</tr>
<tr>
<td></td>
<td>Bachelor' degree (1 major) Mathematical Physics (2016)</td>
<td></td>
</tr>
</tbody>
</table>