Module title
Statistical Physics

Abbreviation
11-T-S-152-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
0. Principles of statistics; elements of statistics (central limit theorem and statistics of extremes); Micro- and macro-states; Probability space (conditional probability, statistical independence);

1. Statistical Physics: Entropy and probability theory; entropy in classical physics; thermodynamic equilibrium in closed and open systems (with energy and / or particle exchange);

2. Ideal systems: Spin systems; linear oscillators; ideal gas;

3. Statistical Physics and thermodynamics: The 1st law; quasi-static processes; entropy and temperature; generalised forces; the second and third law; reversibility; transition from Statistical Physics to thermodynamics;

4. Thermodynamics: Thermodynamic fundamentals relationship; thermodynamic potentials; changes of state; thermodynamic machines (Carnot engine and efficiency); chemical potential;

5. Ideal Systems II, quantum statistics: Systems of identical particles; ideal Fermi gas; ideal Bose gas and Bose-Einstein condensation; grids and normal modes: Phonons;

6. Systems of interacting particles: Approximation methods (mean-field theory, Sommerfeld expansion); computer simulation (Monte Carlo method); interacting phonons (Debye approximation); Ising models (particularities in 1 and 2 dimensions); Yang-Lee-theorems; Van der Waals equation for real interacting gases;

7. Critical phenomena: Scaling laws, critical slowing down, fast variable as Bad (electron-phonon interaction and BCS superconductivity); magnetism (quantum criticality at low temperatures, quantum phase transitions at T = 0); problems of the thermodynamic limit

Intended learning outcomes
The students have advanced knowledge of the methods of Theoretical Physics. They know the principles of statistical mechanics and thermodynamics. They are familiar with the corresponding mathematical methods and are able to independently apply them to the description and solution of problems in this area.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Language</th>
<th>Other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td></td>
<td>German and/or English</td>
<td></td>
</tr>
</tbody>
</table>

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Module appears in

- Bachelor’s degree (1 major) Mathematics (2015)
- Bachelor’s degree (1 major) Computational Mathematics (2015)
- Bachelor’s degree (1 major, 1 minor) Physics (Minor, 2015)