Module title	Abbreviation
Theoretical Mechanics | 11-T-MV-162-m01

Module coordinator | Module offered by
Managing Director of the Institute of Theoretical Physics and Astrophysics | Faculty of Physics and Astronomy

ECTS	**Method of grading**	**Only after succ. compl. of module(s)**
5 | numerical grade | --

Duration	**Module level**	**Other prerequisites**
1 semester | undergraduate | --

Contents

1. Newton’s formulation: Inertial systems, Newton’s laws of motion, equations of motion; one-dimensional motion, energy conservation; Harmonic oscillator; Movement in space of intuition, conservative forces;
2. Lagrangian formulation: Variational principles, Euler-Lagrange equation; constraints; coordinate transformations, mechanical gauge transformation; symmetries, Noether theorem, cyclic coordinates; accelerated reference systems and apparent forces;
3. Hamiltonian formulation: Legendre transformation, phase space; Hamilton function, canonical equations; Poisson brackets, canonical transformations; generator of symmetries, conservation laws; minimal coupling; Liouville theorem; Hamilton-Jacobi formulation [optional];
4. Applications: Central-force problems; mechanical similarity, Virial theorem; minor vibrations; particles in an electromagnetic field; rigid bodies, torque and inertia tensor, centrifugal and Euler equations [optional]; scattering, cross section [optional];
5. Relativistic dynamics: Lorentz Transformation; Minkowski space; equations of motion;
6. Non-linear dynamics: Stability theory; KAM theory [optional]; deterministic chaos [optional]

Intended learning outcomes

The students have gained first experiences concerning the working methods of Theoretical Physics. They are familiar with the principles of theoretical mechanics and their different formulations. They are able to independently apply the acquired mathematical methods and techniques to simple problems of Theoretical Physics and to interpret the results. They have especially acquired knowledge of basic mathematical concepts.

Courses (type, number of weekly contact hours, language — if other than German)

V (4)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor’ degree (1 major) Mathematical Physics (2016)