

Module description

Module title					Abbreviation
Superconductivity					11-SUP-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics				Faculty of Physics and Astronomy	
ECTS	Method of grading		Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration		Module level	Other prerequisites		
1 semester		graduate			

Contents

Physical principles of superconductors and their applications (among others development of technological platforms, methods of material sciences for calculating temperature profiles in superconductors)

Intended learning outcomes

The students have a basic understanding of superconductivity as a macroscopic quantum phenomenon. They are able to evaluate the contributions of materials sciences to the development of superconductivity.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes)

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)