Module title: String Theory 2
Abbreviation: 11-STRG2-171-m01

Module coordinator: Managing Director of the Institute of Theoretical Physics and Astrophysics
Module offered by: Faculty of Physics and Astronomy

ECTS: 6
Method of grading: Only after succ. compl. of module(s)
Numerical grade: --

Duration: 1 semester
Module level: graduate
Other prerequisites: --

Contents

Superstring theories and M theory, in particular a short introduction to bosonic string theory, the theory of fermionic fields and representations of Clifford algebra in diverse dimensions, a review of supersymmetry in two and more dimensions, the classical and quantum version of the Ramond-Neveu-Schwarz superstring, type II A/B superstrings, the Gliozzi-Scherck-Olive projection and space-time supersymmetry in 10 dimensions, the type I superstring, heterotic string theories, anomaly cancellation and restrictions on gauge groups, dualities between the five superstring theories as well as their relation to M theory in 11D, D-Branes and supersymmetric gauge theories, supergravity and the AdS/CFT correspondence.

Intended learning outcomes

The students are familiar with supersymmetrical string theory and M theory. They know the basic characteristics of bosonic string theory and fermionic field theory as well as the depiction of Clifford algebra in different dimensions. They have studied the aspects of supersymmetry in two or more dimensions relevant to superstring theory. They are acquainted with classical and quantum theory of the Ramon-Neveu-Schwarz superstring, they understand the deduction of type IIA/B string theories and the ensuring of space-time supersymmetry on the basis of Gliozzi-Scherk-Olive projection. They have gained insights into type I and heterotic superstring theory and into the limiting effects of anomaly freedom on the permitted gauge groups of these theories. They have studied the dualities between the five superstring theories and their connections to M theory in 11 dimensions. They are familiar with the properties of supersymmetric D-branes in type I and II superstring theories and the corresponding supersymmetric gauge theories as well as the supergravity effects in 10 and 11 dimensions and the connection to AdS/CFT correspondence.

Courses

(type, number of weekly contact hours, language — if other than German)

V (3) + R (1)
Module taught in: German or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--
<table>
<thead>
<tr>
<th>Module appears in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s degree (1 major) Physics (2016)</td>
</tr>
<tr>
<td>Master’s teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)</td>
</tr>
<tr>
<td>Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)</td>
</tr>
</tbody>
</table>