Teaching cycle ## Module description | Module title | | | | | Abbreviation | | |--|---|--|--|---|---|------| | Relativ | istic Qı | uantum Field Theory | | | 11-RQFT-161-m01 | | | Module coordinator Managing Director of the Institute of Theoretical Physics and Astrophysics | | | | Module offered by Faculty of Physics and Astronomy | | | | | | | | | | ECTS | | 8 | numei | rical grade | | | | | | Duration Module level | | Module level | Other prerequisites | | | | | 1 semester | | graduate | | | | | | Conten | ts | | | | | | | 4. Field
5. Scat
6. Gaus
7. Pertu
8. Feyn
9. Qua
10. Rad | I quanti
tering tl
ge princ
urbatior
man ru
ntum el
liative c | heory and S-matrix
ciple and interaction
n theory
les
lectrodynamic process
corrections | es in Born approximat | ion | | | | | | ning outcomes | | | | | | They ki
proces
standii | now how
ses in thing of rac | w to use perturbation the framework of quantition to diative corrections and | theory and how to app
tum electrodynamics in
the renormalisation. | ly Feynman rules. The
n leading order. More | tivistic quantum field theories. ey are able to calculate basics eover, they have a basic under- | | | | | umber of weekly contact hou | rs, language — if other than G | erman) | | | | V (4) +
Module | | t in: German or English | 1 | | | | | Metho | d of ass | | | , examination offered — if no | ot every semester, information on whether | | | or oral
pages)
If a wri-
stead t
of asse
nation
Assess
Langua | examin
or pres
tten exa
ake the
essment
date at
ment o | ation in groups (group
sentation/talk (approx
amination was chosen
form of an oral exami
t is changed, the lectu
the latest.
ffered: In the semeste
ssessment: German a | es of 2, approx. 30 min
30 minutes).
as method of assessn
nation of one candida
rer must inform studer | utes per candidate) on
ment, this may be cha
te each or an oral exa
nts about this by four | ndidate each (approx. 30 minutes) or project report (approx. 8 to 10 anged and assessment may insemination in groups. If the method weeks prior to the original examiubsequent semester | | | Allocat | ion of p | olaces | | | | | | | | | | | | | | Additio | nal info | ormation | | | | | | | | | | | | | | Worklo | ad | | | | | | | 240 h | | | | | | | | | | | | | | | ## Module description ## **Referred to in LPO I** (examination regulations for teaching-degree programmes) ## Module appears in Master's degree (1 major) Mathematics (2016) Master's degree (1 major) Physics (2016) Master's degree (1 major) Mathematical Physics (2016) Master's degree (1 major) Computational Mathematics (2016) Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016) Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016) Master's degree (1 major) Computational Mathematics (2019) Master's degree (1 major) Mathematics (2019) JMU Würzburg • generated 20.10.2023 • Module data record 123923