Module title
Relativistic Quantumfield Theory

Abbreviation
11-RQFT-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

Intended learning outcomes
The students have mastered the principles and underlying mathematics of relativistic quantum field theories. They know how to use perturbation theory and how to apply Feynman rules. They are able to calculate basics processes in the framework of quantum electrodynamics in leading order. Moreover, they have a basic understanding of radiative corrections and renormalisation.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Module appears in
Bachelor' degree (1 major) Physics (2010)
Bachelor' degree (1 major) Physics (2012)
<table>
<thead>
<tr>
<th>Qualification</th>
<th>Program</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's degree</td>
<td>Mathematical Physics</td>
<td>2009</td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Physics</td>
<td>2011</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics</td>
<td>2011</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Computational Mathematics</td>
<td>2012</td>
</tr>
</tbody>
</table>