Module title
Quantum Information and Quantum Computing

Abbreviation
11-QIC-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
5

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
The first part introduces the theoretical concepts of quantum information and quantum computers. It discusses the main quantum algorithms. The second part discusses experimental possibilities for the realization of entangled states. One of the main topics is the production, controlling and manipulation of coherent two-electron spin states. The third part covers the description and explanation of decoherence of quantum mechanical states.

Intended learning outcomes
The students have an advanced understanding of quantum theory and basic knowledge of quantum calculation. They are able to solve simple problems of quantum information theory.

Courses
R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor' degree (1 major) Physics (2010)
Bachelor' degree (1 major) Physics (2012)
<table>
<thead>
<tr>
<th>Degree Level</th>
<th>Major / Program</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor</td>
<td>Mathematical Physics</td>
<td>2009</td>
</tr>
<tr>
<td>Bachelor</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's</td>
<td>Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's</td>
<td>Physics</td>
<td>2011</td>
</tr>
<tr>
<td>Master's</td>
<td>Nanostructure Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's</td>
<td>Nanostructure Technology</td>
<td>2011</td>
</tr>
<tr>
<td>Master's</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's</td>
<td>FOKUS Physics - Nanostructuring Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's</td>
<td>FOKUS Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's</td>
<td>FOKUS Physics</td>
<td>2011</td>
</tr>
</tbody>
</table>