Module title
Advanced Undergraduate Laboratory (Classical Mechanics, Thermodynamics, Basic Circuitry)

Abbreviation
11-PGA-NN-072-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
4

Method of grading
Only after succ. compl. of module(s)

Duration
1 semester

Module level
undergraduate

Other prerequisites
Recommended: 11-PFR

Contents
Physical laws of mechanics, thermodynamics, optics, science of electricity, vibrations and waves.

Intended learning outcomes
The students have knowledge and skills of physical measuring instruments and experimental techniques. They are able to independently plan and conduct experiments in cooperation with others, and to document the results in a measurement protocol.

Courses
(type, number of weekly contact hours, language — if other than German)

Beispiele aus Mechanik, Wärmelehre und Elektrik (Examples from Mechanics, Thermodynamics and Electricity, BAM): P (2 weekly contact hours)
Klassische Physik (Classical Physics, KLP): P (2 weekly contact hours)
Elektrizitätslehre und Schaltungen (Electricity and Circuits, ELS): P (2 weekly contact hours)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

This module has the following assessment components
1. Lab course in part 1: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).
2. Lab course in part 2: a) Preparing, performing and evaluating the experiments will be considered successfully completed if a Testat (exam) is passed. b) Talk (with discussion) to test the students' understanding of the physics-related contents of the course (approx. 30 minutes).

Students must register for assessment components 1 and 2 online (registration deadline to be announced). Students will be offered one opportunity to retake element a) and/or element b). To pass an assessment component, they must pass both elements a) and b).
To pass this module, students must successfully complete two out of the three courses.
To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor' degree (1 major) Nanostructure Technology (2008)
Bachelor' degree (1 major) Nanostructure Technology (2007)
Bachelor's degree (1 major, 1 minor) Physics (Minor, 2008)