

Module description

Module title					Abbreviation
Organic Semiconductors					11-OHL-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics				Faculty of Physics and Astronomy	
ECTS	Metho	od of grading	Only after succ. compl. of module(s)		
6	nume	rical grade			
Duration		Module level	Other prerequisites		
1 semester		graduate	-		
Contents					

Contents

Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applications.

Intended learning outcomes

The students have advanced knowledge of organic semiconductors.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Physics (2020)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2020)

Module description

Master's degree (1 major) Quantum Technology (2021) Master's degree (1 major) Functional Materials (2022) exchange program Physics (2023)

JMU Würzburg • generated 29.03.2024 • Module data record 124118