Module description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Semiconductors</td>
<td>11-OHL-161-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
--

Contents
Fundamentals of organic semiconductors, molecular and polymer electronics and sensor technology, applications.

Intended learning outcomes
The students have advanced knowledge of organic semiconductors.

Courses
<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(3)</td>
<td>German</td>
</tr>
<tr>
<td>R</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

Module taught in: German or English

Method of assessment
(a) written examination (approx. 90 to 120 minutes) or
(b) oral examination of one candidate each (approx. 30 minutes) or
(c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
(d) project report (approx. 8 to 10 pages) or
(e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester.

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degrees programmes)
--

Module appears in
- Master's degree (1 major) Physics (2016)
- Master's degree (1 major) Nanostructure Technology (2016)
- Master's degree (1 major) Functional Materials (2016)
- Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
- Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)