

Module description

Module title					Abbreviation
Nano-Optics					11-NOP-Int-201-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics				Faculty of Physics and Astronomy	
ECTS	Meth	ethod of grading Only after s		. compl. of module(s)	
6	nume	rical grade			
Duration		Module level	Other prerequisites		
1 semester		graduate			
Contants					

Contents

The lecture conveys theoretical fundamentals, experimental techniques, and applications of nano-optics starting from the discussion of the focusing of light. Based on this, the fundamentals of modern far-field optical microscopy are discussed. In the following, the near-field optical microscopy is introduced and discussed. As a further basis, quantum emitters are introduced and their light emission in nano-environments is derived. Plasmons in 2D, 1D and o dimensions are introduced and discussed in detail. This finally leads to the concept of optical antennas.

Intended learning outcomes

Specific and in-depth knowledge of the topic of nano-optics. Familiarity with the basic theoretical description and applications of nano-optics as well as the current developments of the topic.

Courses (type, number of weekly contact hours, language — if other than German)

V(3) + R(1)

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 120 minutes) or b) oral examination of one candidate each (approx. 30 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or d) project report (approx. 8 to 10 pages) or e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: English

Allocation of places

--

Additional information

--

Workload

180 h

Teaching cycle

--

 $\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Physics International (2020)

Master's degree (1 major) Quantum Engineering (2020)

exchange program Physics (2023)

Master's degree (1 major) Quantum Engineering (2024)

Module description

Master's degree (1 major) Physics International (2024)

JMU Würzburg • generated 29.03.2024 • Module data record 110405