Module description | Module title Nanoanalytics | | | | | Abbreviation | | |---|------|---------------|---|---|----------------|--| | | | | | | 11-NAN-092-m01 | | | Module coordinator | | | | Module offered by | | | | Managing Director of the Institute of Applied Physics | | | | Faculty of Physics and Astronomy | | | | ECTS | Meth | od of grading | Only after succ. co | mpl. of module(s) | | | | 6 | nume | rical grade | | | | | | Duration | | Module level | Other prerequisit | Other prerequisites | | | | 1 semester | | graduate | sessment. The led
at the beginning of
sidered a declarate
dents have obtain
the course of the
sessment into efforted to assessment
sessment at a late | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification fo admission to assessment anew. | | | #### Contents Principles of analytic procedures in the field of nanostructure physics, imaging techniques from a microscopic level up to an atomic level, examination of chemical composition, spectroscopy of electronic properties, usage of X-ray methods. - Physics and material systems on the nanoscale. - Scanning probes: Atomic force microscopy. Scanning tunneling microscopy. - Electron probes: Scanning electron microscope. - Transmission electron microscope. - Secondary ions - mass spectrometry - X-ray methods: Synchrotron spectroscopy. Photoemission. X-ray absorption ### **Intended learning outcomes** The students have basic knowledge of modern research methods for different nanostructures up to an atomic level. They know microscoping procedures that are used in practice in labs and the industry as well as spectroscopic methods for the determination of electronic properties. They are able to evaluate the efficiency of different research methods. **Courses** (type, number of weekly contact hours, language — if other than German) R + V (no information on SWS (weekly contact hours) and course language available) **Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus) a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes) Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009. Language of assessment: German, English | Language of assessment. German, English | |---| | Allocation of places | | | | Additional information | | - | | Workload | | | # Module description ### **Teaching cycle** -- **Referred to in LPO I** (examination regulations for teaching-degree programmes) -- ### Module appears in Bachelor' degree (1 major) Physics (2010) Bachelor' degree (1 major) Physics (2012) Bachelor' degree (1 major) Nanostructure Technology (2010) Bachelor' degree (1 major) Nanostructure Technology (2012) Master's degree (1 major) Physics (2010) Master's degree (1 major) Physics (2011) Master's degree (1 major) Nanostructure Technology (2011) Master's degree (1 major) Nanostructure Technology (2010) Master's degree (1 major) FOKUS Physics - Nanostructuring Technology (2010) Master's degree (1 major) FOKUS Physics (2010) Master's degree (1 major) FOKUS Physics (2011) Master's degree (1 major) Functional Materials (2012) JMU Würzburg • generated 20.10.2023 • Module data record 114336