Module title | Magnetism and Spin Transport

Abbreviation | 11-MST-092-m01

Module coordinator | Managing Director of the Institute of Applied Physics

Module offered by | Faculty of Physics and Astronomy

ECTS | 6

Method of grading | Only after succ. compl. of module(s)

Duration | 2 semester

Module level | graduate

Other prerequisites | Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents

The module spans two semesters. During the winter semester, the students become acquainted with the principles of magnetism (ranging from atoms to solids), properties of magnetic material (individual usage) and methods to characterise magnetic properties. During the summer semester, the students learn about spin transport in metallic systems in due consideration of giant magnetoresistance and tunnel magnetoresistance and its application in magnetic memory. As a last point, we discuss new phenomena from the field of spin dynamics and current-induced spin phenomena.

Intended learning outcomes

The students know the basic terms, concepts and phenomena of magnetism and measuring methods for magnetic experiments; they are familiar with spin transport applications of information technologies and have gained an overview of modern findings in this area (GMR, TMR). They are skilled in simple model building and in the formulation of mathematical-physical approaches and are able to apply them to tasks in the stated areas.

Courses (type, number of weekly contact hours, language — if other than German)

V + R + V (no information on SWS (weekly contact hours) and course language available)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO 1 (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor' degree (1 major) Physics (2010)
<table>
<thead>
<tr>
<th>Degree Type</th>
<th>Major</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor' degree</td>
<td>Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Bachelor' degree</td>
<td>Nanostructure Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Nanostructure Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics - Nanostructuring Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics</td>
<td>2010</td>
</tr>
</tbody>
</table>