Module description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction Course Mathematics</td>
<td>11-MKS-082-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Applied Physics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(not) successfully completed</td>
<td>--</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

Principles of mathematics and basic calculation methods beyond the school curriculum, especially for the introduction to and preparation of the modules of Theoretical Physics and Experimental Physics.

Intended learning outcomes

The students have knowledge of the principles of mathematics and elementary calculation methods which are required in Theoretical and Experimental Physics.

Courses

(type, number of weekly contact hours, language — if other than German)

V (no information on SWS (weekly contact hours) and course language available)

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 120 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor’ degree (1 major) Physics (2009)
Bachelor’ degree (1 major) Physics (2008)
Bachelor’ degree (1 major) Nanostructure Technology (2008)
Bachelor’s degree (1 major, 1 minor) Physics (Minor, 2008)