Mathematics 3 for Students of Physics and related Disciplines (Differential Equations)

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 3 for Students of Physics and related Disciplines (Differential Equations)</td>
<td>11-M-D-152-m01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module coordinator</th>
<th>Module offered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director of the Institute of Theoretical Physics and Astrophysics</td>
<td>Faculty of Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

- Basics of ordinary and partial differential equations of physics.
 1. Ordinary differential equations;
 1.1. Solution methods
 1.2 Existence and uniqueness theorem
 1.3 Systems of differential equations
 2. Partial differential equations
 2.1 Non-linear partial differential equations of the 1st and 2nd order
 2.2 1D and 3D wave equation
 2.3 Helmholtz equation and potential theory
 2.4 Parabolic differential equations

Intended learning outcomes

The students have basic mathematical knowledge of dynamic equations and solution methods for common and partial differential equations and have mastered the necessary calculation methods.

Courses

V (4) + Ü (2)
Module taught in: Ü: German or English

Method of assessment

written examination (approx. 120 minutes)
Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor' degree (1 major) Physics (2015)
Bachelor' degree (1 major) Nanostructure Technology (2015)
Bachelor' degree (1 major) Functional Materials (2015)